]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/ide/pci/hpt366.c
ide: add proper PCI PM support (v2)
[mirror_ubuntu-zesty-kernel.git] / drivers / ide / pci / hpt366.c
1 /*
2 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org>
3 * Portions Copyright (C) 2001 Sun Microsystems, Inc.
4 * Portions Copyright (C) 2003 Red Hat Inc
5 * Portions Copyright (C) 2007 Bartlomiej Zolnierkiewicz
6 * Portions Copyright (C) 2005-2007 MontaVista Software, Inc.
7 *
8 * Thanks to HighPoint Technologies for their assistance, and hardware.
9 * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10 * donation of an ABit BP6 mainboard, processor, and memory acellerated
11 * development and support.
12 *
13 *
14 * HighPoint has its own drivers (open source except for the RAID part)
15 * available from http://www.highpoint-tech.com/BIOS%20+%20Driver/.
16 * This may be useful to anyone wanting to work on this driver, however do not
17 * trust them too much since the code tends to become less and less meaningful
18 * as the time passes... :-/
19 *
20 * Note that final HPT370 support was done by force extraction of GPL.
21 *
22 * - add function for getting/setting power status of drive
23 * - the HPT370's state machine can get confused. reset it before each dma
24 * xfer to prevent that from happening.
25 * - reset state engine whenever we get an error.
26 * - check for busmaster state at end of dma.
27 * - use new highpoint timings.
28 * - detect bus speed using highpoint register.
29 * - use pll if we don't have a clock table. added a 66MHz table that's
30 * just 2x the 33MHz table.
31 * - removed turnaround. NOTE: we never want to switch between pll and
32 * pci clocks as the chip can glitch in those cases. the highpoint
33 * approved workaround slows everything down too much to be useful. in
34 * addition, we would have to serialize access to each chip.
35 * Adrian Sun <a.sun@sun.com>
36 *
37 * add drive timings for 66MHz PCI bus,
38 * fix ATA Cable signal detection, fix incorrect /proc info
39 * add /proc display for per-drive PIO/DMA/UDMA mode and
40 * per-channel ATA-33/66 Cable detect.
41 * Duncan Laurie <void@sun.com>
42 *
43 * fixup /proc output for multiple controllers
44 * Tim Hockin <thockin@sun.com>
45 *
46 * On hpt366:
47 * Reset the hpt366 on error, reset on dma
48 * Fix disabling Fast Interrupt hpt366.
49 * Mike Waychison <crlf@sun.com>
50 *
51 * Added support for 372N clocking and clock switching. The 372N needs
52 * different clocks on read/write. This requires overloading rw_disk and
53 * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54 * keeping me sane.
55 * Alan Cox <alan@redhat.com>
56 *
57 * - fix the clock turnaround code: it was writing to the wrong ports when
58 * called for the secondary channel, caching the current clock mode per-
59 * channel caused the cached register value to get out of sync with the
60 * actual one, the channels weren't serialized, the turnaround shouldn't
61 * be done on 66 MHz PCI bus
62 * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63 * does not allow for this speed anyway
64 * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65 * their primary channel is kind of virtual, it isn't tied to any pins)
66 * - fix/remove bad/unused timing tables and use one set of tables for the whole
67 * HPT37x chip family; save space by introducing the separate transfer mode
68 * table in which the mode lookup is done
69 * - use f_CNT value saved by the HighPoint BIOS as reading it directly gives
70 * the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71 * read it only from the function 0 of HPT374 chips
72 * - fix the hotswap code: it caused RESET- to glitch when tristating the bus,
73 * and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74 * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75 * they tamper with its fields
76 * - pass to the init_setup handlers a copy of the ide_pci_device_t structure
77 * since they may tamper with its fields
78 * - prefix the driver startup messages with the real chip name
79 * - claim the extra 240 bytes of I/O space for all chips
80 * - optimize the UltraDMA filtering and the drive list lookup code
81 * - use pci_get_slot() to get to the function 1 of HPT36x/374
82 * - cache offset of the channel's misc. control registers (MCRs) being used
83 * throughout the driver
84 * - only touch the relevant MCR when detecting the cable type on HPT374's
85 * function 1
86 * - rename all the register related variables consistently
87 * - move all the interrupt twiddling code from the speedproc handlers into
88 * init_hwif_hpt366(), also grouping all the DMA related code together there
89 * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90 * separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91 * when setting an UltraDMA mode
92 * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93 * the best possible one
94 * - clean up DMA timeout handling for HPT370
95 * - switch to using the enumeration type to differ between the numerous chip
96 * variants, matching PCI device/revision ID with the chip type early, at the
97 * init_setup stage
98 * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99 * stop duplicating it for each channel by storing the pointer in the pci_dev
100 * structure: first, at the init_setup stage, point it to a static "template"
101 * with only the chip type and its specific base DPLL frequency, the highest
102 * UltraDMA mode, and the chip settings table pointer filled, then, at the
103 * init_chipset stage, allocate per-chip instance and fill it with the rest
104 * of the necessary information
105 * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106 * switch to calculating PCI clock frequency based on the chip's base DPLL
107 * frequency
108 * - switch to using the DPLL clock and enable UltraATA/133 mode by default on
109 * anything newer than HPT370/A (except HPT374 that is not capable of this
110 * mode according to the manual)
111 * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112 * also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113 * unify HPT36x/37x timing setup code and the speedproc handlers by joining
114 * the register setting lists into the table indexed by the clock selected
115 * - set the correct hwif->ultra_mask for each individual chip
116 * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117 * Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
118 */
119
120 #include <linux/types.h>
121 #include <linux/module.h>
122 #include <linux/kernel.h>
123 #include <linux/delay.h>
124 #include <linux/blkdev.h>
125 #include <linux/interrupt.h>
126 #include <linux/pci.h>
127 #include <linux/init.h>
128 #include <linux/ide.h>
129
130 #include <asm/uaccess.h>
131 #include <asm/io.h>
132
133 #define DRV_NAME "hpt366"
134
135 /* various tuning parameters */
136 #define HPT_RESET_STATE_ENGINE
137 #undef HPT_DELAY_INTERRUPT
138 #define HPT_SERIALIZE_IO 0
139
140 static const char *quirk_drives[] = {
141 "QUANTUM FIREBALLlct08 08",
142 "QUANTUM FIREBALLP KA6.4",
143 "QUANTUM FIREBALLP LM20.4",
144 "QUANTUM FIREBALLP LM20.5",
145 NULL
146 };
147
148 static const char *bad_ata100_5[] = {
149 "IBM-DTLA-307075",
150 "IBM-DTLA-307060",
151 "IBM-DTLA-307045",
152 "IBM-DTLA-307030",
153 "IBM-DTLA-307020",
154 "IBM-DTLA-307015",
155 "IBM-DTLA-305040",
156 "IBM-DTLA-305030",
157 "IBM-DTLA-305020",
158 "IC35L010AVER07-0",
159 "IC35L020AVER07-0",
160 "IC35L030AVER07-0",
161 "IC35L040AVER07-0",
162 "IC35L060AVER07-0",
163 "WDC AC310200R",
164 NULL
165 };
166
167 static const char *bad_ata66_4[] = {
168 "IBM-DTLA-307075",
169 "IBM-DTLA-307060",
170 "IBM-DTLA-307045",
171 "IBM-DTLA-307030",
172 "IBM-DTLA-307020",
173 "IBM-DTLA-307015",
174 "IBM-DTLA-305040",
175 "IBM-DTLA-305030",
176 "IBM-DTLA-305020",
177 "IC35L010AVER07-0",
178 "IC35L020AVER07-0",
179 "IC35L030AVER07-0",
180 "IC35L040AVER07-0",
181 "IC35L060AVER07-0",
182 "WDC AC310200R",
183 "MAXTOR STM3320620A",
184 NULL
185 };
186
187 static const char *bad_ata66_3[] = {
188 "WDC AC310200R",
189 NULL
190 };
191
192 static const char *bad_ata33[] = {
193 "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
194 "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
195 "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
196 "Maxtor 90510D4",
197 "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
198 "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
199 "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
200 NULL
201 };
202
203 static u8 xfer_speeds[] = {
204 XFER_UDMA_6,
205 XFER_UDMA_5,
206 XFER_UDMA_4,
207 XFER_UDMA_3,
208 XFER_UDMA_2,
209 XFER_UDMA_1,
210 XFER_UDMA_0,
211
212 XFER_MW_DMA_2,
213 XFER_MW_DMA_1,
214 XFER_MW_DMA_0,
215
216 XFER_PIO_4,
217 XFER_PIO_3,
218 XFER_PIO_2,
219 XFER_PIO_1,
220 XFER_PIO_0
221 };
222
223 /* Key for bus clock timings
224 * 36x 37x
225 * bits bits
226 * 0:3 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
227 * cycles = value + 1
228 * 4:7 4:8 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
229 * cycles = value + 1
230 * 8:11 9:12 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
231 * register access.
232 * 12:15 13:17 cmd_low_time. Active time of DIOW_/DIOR_ during task file
233 * register access.
234 * 16:18 18:20 udma_cycle_time. Clock cycles for UDMA xfer.
235 * - 21 CLK frequency: 0=ATA clock, 1=dual ATA clock.
236 * 19:21 22:24 pre_high_time. Time to initialize the 1st cycle for PIO and
237 * MW DMA xfer.
238 * 22:24 25:27 cmd_pre_high_time. Time to initialize the 1st PIO cycle for
239 * task file register access.
240 * 28 28 UDMA enable.
241 * 29 29 DMA enable.
242 * 30 30 PIO MST enable. If set, the chip is in bus master mode during
243 * PIO xfer.
244 * 31 31 FIFO enable.
245 */
246
247 static u32 forty_base_hpt36x[] = {
248 /* XFER_UDMA_6 */ 0x900fd943,
249 /* XFER_UDMA_5 */ 0x900fd943,
250 /* XFER_UDMA_4 */ 0x900fd943,
251 /* XFER_UDMA_3 */ 0x900ad943,
252 /* XFER_UDMA_2 */ 0x900bd943,
253 /* XFER_UDMA_1 */ 0x9008d943,
254 /* XFER_UDMA_0 */ 0x9008d943,
255
256 /* XFER_MW_DMA_2 */ 0xa008d943,
257 /* XFER_MW_DMA_1 */ 0xa010d955,
258 /* XFER_MW_DMA_0 */ 0xa010d9fc,
259
260 /* XFER_PIO_4 */ 0xc008d963,
261 /* XFER_PIO_3 */ 0xc010d974,
262 /* XFER_PIO_2 */ 0xc010d997,
263 /* XFER_PIO_1 */ 0xc010d9c7,
264 /* XFER_PIO_0 */ 0xc018d9d9
265 };
266
267 static u32 thirty_three_base_hpt36x[] = {
268 /* XFER_UDMA_6 */ 0x90c9a731,
269 /* XFER_UDMA_5 */ 0x90c9a731,
270 /* XFER_UDMA_4 */ 0x90c9a731,
271 /* XFER_UDMA_3 */ 0x90cfa731,
272 /* XFER_UDMA_2 */ 0x90caa731,
273 /* XFER_UDMA_1 */ 0x90cba731,
274 /* XFER_UDMA_0 */ 0x90c8a731,
275
276 /* XFER_MW_DMA_2 */ 0xa0c8a731,
277 /* XFER_MW_DMA_1 */ 0xa0c8a732, /* 0xa0c8a733 */
278 /* XFER_MW_DMA_0 */ 0xa0c8a797,
279
280 /* XFER_PIO_4 */ 0xc0c8a731,
281 /* XFER_PIO_3 */ 0xc0c8a742,
282 /* XFER_PIO_2 */ 0xc0d0a753,
283 /* XFER_PIO_1 */ 0xc0d0a7a3, /* 0xc0d0a793 */
284 /* XFER_PIO_0 */ 0xc0d0a7aa /* 0xc0d0a7a7 */
285 };
286
287 static u32 twenty_five_base_hpt36x[] = {
288 /* XFER_UDMA_6 */ 0x90c98521,
289 /* XFER_UDMA_5 */ 0x90c98521,
290 /* XFER_UDMA_4 */ 0x90c98521,
291 /* XFER_UDMA_3 */ 0x90cf8521,
292 /* XFER_UDMA_2 */ 0x90cf8521,
293 /* XFER_UDMA_1 */ 0x90cb8521,
294 /* XFER_UDMA_0 */ 0x90cb8521,
295
296 /* XFER_MW_DMA_2 */ 0xa0ca8521,
297 /* XFER_MW_DMA_1 */ 0xa0ca8532,
298 /* XFER_MW_DMA_0 */ 0xa0ca8575,
299
300 /* XFER_PIO_4 */ 0xc0ca8521,
301 /* XFER_PIO_3 */ 0xc0ca8532,
302 /* XFER_PIO_2 */ 0xc0ca8542,
303 /* XFER_PIO_1 */ 0xc0d08572,
304 /* XFER_PIO_0 */ 0xc0d08585
305 };
306
307 #if 0
308 /* These are the timing tables from the HighPoint open source drivers... */
309 static u32 thirty_three_base_hpt37x[] = {
310 /* XFER_UDMA_6 */ 0x12446231, /* 0x12646231 ?? */
311 /* XFER_UDMA_5 */ 0x12446231,
312 /* XFER_UDMA_4 */ 0x12446231,
313 /* XFER_UDMA_3 */ 0x126c6231,
314 /* XFER_UDMA_2 */ 0x12486231,
315 /* XFER_UDMA_1 */ 0x124c6233,
316 /* XFER_UDMA_0 */ 0x12506297,
317
318 /* XFER_MW_DMA_2 */ 0x22406c31,
319 /* XFER_MW_DMA_1 */ 0x22406c33,
320 /* XFER_MW_DMA_0 */ 0x22406c97,
321
322 /* XFER_PIO_4 */ 0x06414e31,
323 /* XFER_PIO_3 */ 0x06414e42,
324 /* XFER_PIO_2 */ 0x06414e53,
325 /* XFER_PIO_1 */ 0x06814e93,
326 /* XFER_PIO_0 */ 0x06814ea7
327 };
328
329 static u32 fifty_base_hpt37x[] = {
330 /* XFER_UDMA_6 */ 0x12848242,
331 /* XFER_UDMA_5 */ 0x12848242,
332 /* XFER_UDMA_4 */ 0x12ac8242,
333 /* XFER_UDMA_3 */ 0x128c8242,
334 /* XFER_UDMA_2 */ 0x120c8242,
335 /* XFER_UDMA_1 */ 0x12148254,
336 /* XFER_UDMA_0 */ 0x121882ea,
337
338 /* XFER_MW_DMA_2 */ 0x22808242,
339 /* XFER_MW_DMA_1 */ 0x22808254,
340 /* XFER_MW_DMA_0 */ 0x228082ea,
341
342 /* XFER_PIO_4 */ 0x0a81f442,
343 /* XFER_PIO_3 */ 0x0a81f443,
344 /* XFER_PIO_2 */ 0x0a81f454,
345 /* XFER_PIO_1 */ 0x0ac1f465,
346 /* XFER_PIO_0 */ 0x0ac1f48a
347 };
348
349 static u32 sixty_six_base_hpt37x[] = {
350 /* XFER_UDMA_6 */ 0x1c869c62,
351 /* XFER_UDMA_5 */ 0x1cae9c62, /* 0x1c8a9c62 */
352 /* XFER_UDMA_4 */ 0x1c8a9c62,
353 /* XFER_UDMA_3 */ 0x1c8e9c62,
354 /* XFER_UDMA_2 */ 0x1c929c62,
355 /* XFER_UDMA_1 */ 0x1c9a9c62,
356 /* XFER_UDMA_0 */ 0x1c829c62,
357
358 /* XFER_MW_DMA_2 */ 0x2c829c62,
359 /* XFER_MW_DMA_1 */ 0x2c829c66,
360 /* XFER_MW_DMA_0 */ 0x2c829d2e,
361
362 /* XFER_PIO_4 */ 0x0c829c62,
363 /* XFER_PIO_3 */ 0x0c829c84,
364 /* XFER_PIO_2 */ 0x0c829ca6,
365 /* XFER_PIO_1 */ 0x0d029d26,
366 /* XFER_PIO_0 */ 0x0d029d5e
367 };
368 #else
369 /*
370 * The following are the new timing tables with PIO mode data/taskfile transfer
371 * overclocking fixed...
372 */
373
374 /* This table is taken from the HPT370 data manual rev. 1.02 */
375 static u32 thirty_three_base_hpt37x[] = {
376 /* XFER_UDMA_6 */ 0x16455031, /* 0x16655031 ?? */
377 /* XFER_UDMA_5 */ 0x16455031,
378 /* XFER_UDMA_4 */ 0x16455031,
379 /* XFER_UDMA_3 */ 0x166d5031,
380 /* XFER_UDMA_2 */ 0x16495031,
381 /* XFER_UDMA_1 */ 0x164d5033,
382 /* XFER_UDMA_0 */ 0x16515097,
383
384 /* XFER_MW_DMA_2 */ 0x26515031,
385 /* XFER_MW_DMA_1 */ 0x26515033,
386 /* XFER_MW_DMA_0 */ 0x26515097,
387
388 /* XFER_PIO_4 */ 0x06515021,
389 /* XFER_PIO_3 */ 0x06515022,
390 /* XFER_PIO_2 */ 0x06515033,
391 /* XFER_PIO_1 */ 0x06915065,
392 /* XFER_PIO_0 */ 0x06d1508a
393 };
394
395 static u32 fifty_base_hpt37x[] = {
396 /* XFER_UDMA_6 */ 0x1a861842,
397 /* XFER_UDMA_5 */ 0x1a861842,
398 /* XFER_UDMA_4 */ 0x1aae1842,
399 /* XFER_UDMA_3 */ 0x1a8e1842,
400 /* XFER_UDMA_2 */ 0x1a0e1842,
401 /* XFER_UDMA_1 */ 0x1a161854,
402 /* XFER_UDMA_0 */ 0x1a1a18ea,
403
404 /* XFER_MW_DMA_2 */ 0x2a821842,
405 /* XFER_MW_DMA_1 */ 0x2a821854,
406 /* XFER_MW_DMA_0 */ 0x2a8218ea,
407
408 /* XFER_PIO_4 */ 0x0a821842,
409 /* XFER_PIO_3 */ 0x0a821843,
410 /* XFER_PIO_2 */ 0x0a821855,
411 /* XFER_PIO_1 */ 0x0ac218a8,
412 /* XFER_PIO_0 */ 0x0b02190c
413 };
414
415 static u32 sixty_six_base_hpt37x[] = {
416 /* XFER_UDMA_6 */ 0x1c86fe62,
417 /* XFER_UDMA_5 */ 0x1caefe62, /* 0x1c8afe62 */
418 /* XFER_UDMA_4 */ 0x1c8afe62,
419 /* XFER_UDMA_3 */ 0x1c8efe62,
420 /* XFER_UDMA_2 */ 0x1c92fe62,
421 /* XFER_UDMA_1 */ 0x1c9afe62,
422 /* XFER_UDMA_0 */ 0x1c82fe62,
423
424 /* XFER_MW_DMA_2 */ 0x2c82fe62,
425 /* XFER_MW_DMA_1 */ 0x2c82fe66,
426 /* XFER_MW_DMA_0 */ 0x2c82ff2e,
427
428 /* XFER_PIO_4 */ 0x0c82fe62,
429 /* XFER_PIO_3 */ 0x0c82fe84,
430 /* XFER_PIO_2 */ 0x0c82fea6,
431 /* XFER_PIO_1 */ 0x0d02ff26,
432 /* XFER_PIO_0 */ 0x0d42ff7f
433 };
434 #endif
435
436 #define HPT366_DEBUG_DRIVE_INFO 0
437 #define HPT371_ALLOW_ATA133_6 1
438 #define HPT302_ALLOW_ATA133_6 1
439 #define HPT372_ALLOW_ATA133_6 1
440 #define HPT370_ALLOW_ATA100_5 0
441 #define HPT366_ALLOW_ATA66_4 1
442 #define HPT366_ALLOW_ATA66_3 1
443 #define HPT366_MAX_DEVS 8
444
445 /* Supported ATA clock frequencies */
446 enum ata_clock {
447 ATA_CLOCK_25MHZ,
448 ATA_CLOCK_33MHZ,
449 ATA_CLOCK_40MHZ,
450 ATA_CLOCK_50MHZ,
451 ATA_CLOCK_66MHZ,
452 NUM_ATA_CLOCKS
453 };
454
455 struct hpt_timings {
456 u32 pio_mask;
457 u32 dma_mask;
458 u32 ultra_mask;
459 u32 *clock_table[NUM_ATA_CLOCKS];
460 };
461
462 /*
463 * Hold all the HighPoint chip information in one place.
464 */
465
466 struct hpt_info {
467 char *chip_name; /* Chip name */
468 u8 chip_type; /* Chip type */
469 u8 udma_mask; /* Allowed UltraDMA modes mask. */
470 u8 dpll_clk; /* DPLL clock in MHz */
471 u8 pci_clk; /* PCI clock in MHz */
472 struct hpt_timings *timings; /* Chipset timing data */
473 u8 clock; /* ATA clock selected */
474 };
475
476 /* Supported HighPoint chips */
477 enum {
478 HPT36x,
479 HPT370,
480 HPT370A,
481 HPT374,
482 HPT372,
483 HPT372A,
484 HPT302,
485 HPT371,
486 HPT372N,
487 HPT302N,
488 HPT371N
489 };
490
491 static struct hpt_timings hpt36x_timings = {
492 .pio_mask = 0xc1f8ffff,
493 .dma_mask = 0x303800ff,
494 .ultra_mask = 0x30070000,
495 .clock_table = {
496 [ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
497 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
498 [ATA_CLOCK_40MHZ] = forty_base_hpt36x,
499 [ATA_CLOCK_50MHZ] = NULL,
500 [ATA_CLOCK_66MHZ] = NULL
501 }
502 };
503
504 static struct hpt_timings hpt37x_timings = {
505 .pio_mask = 0xcfc3ffff,
506 .dma_mask = 0x31c001ff,
507 .ultra_mask = 0x303c0000,
508 .clock_table = {
509 [ATA_CLOCK_25MHZ] = NULL,
510 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
511 [ATA_CLOCK_40MHZ] = NULL,
512 [ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
513 [ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
514 }
515 };
516
517 static const struct hpt_info hpt36x __devinitdata = {
518 .chip_name = "HPT36x",
519 .chip_type = HPT36x,
520 .udma_mask = HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
521 .dpll_clk = 0, /* no DPLL */
522 .timings = &hpt36x_timings
523 };
524
525 static const struct hpt_info hpt370 __devinitdata = {
526 .chip_name = "HPT370",
527 .chip_type = HPT370,
528 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
529 .dpll_clk = 48,
530 .timings = &hpt37x_timings
531 };
532
533 static const struct hpt_info hpt370a __devinitdata = {
534 .chip_name = "HPT370A",
535 .chip_type = HPT370A,
536 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
537 .dpll_clk = 48,
538 .timings = &hpt37x_timings
539 };
540
541 static const struct hpt_info hpt374 __devinitdata = {
542 .chip_name = "HPT374",
543 .chip_type = HPT374,
544 .udma_mask = ATA_UDMA5,
545 .dpll_clk = 48,
546 .timings = &hpt37x_timings
547 };
548
549 static const struct hpt_info hpt372 __devinitdata = {
550 .chip_name = "HPT372",
551 .chip_type = HPT372,
552 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
553 .dpll_clk = 55,
554 .timings = &hpt37x_timings
555 };
556
557 static const struct hpt_info hpt372a __devinitdata = {
558 .chip_name = "HPT372A",
559 .chip_type = HPT372A,
560 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
561 .dpll_clk = 66,
562 .timings = &hpt37x_timings
563 };
564
565 static const struct hpt_info hpt302 __devinitdata = {
566 .chip_name = "HPT302",
567 .chip_type = HPT302,
568 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
569 .dpll_clk = 66,
570 .timings = &hpt37x_timings
571 };
572
573 static const struct hpt_info hpt371 __devinitdata = {
574 .chip_name = "HPT371",
575 .chip_type = HPT371,
576 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
577 .dpll_clk = 66,
578 .timings = &hpt37x_timings
579 };
580
581 static const struct hpt_info hpt372n __devinitdata = {
582 .chip_name = "HPT372N",
583 .chip_type = HPT372N,
584 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
585 .dpll_clk = 77,
586 .timings = &hpt37x_timings
587 };
588
589 static const struct hpt_info hpt302n __devinitdata = {
590 .chip_name = "HPT302N",
591 .chip_type = HPT302N,
592 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
593 .dpll_clk = 77,
594 .timings = &hpt37x_timings
595 };
596
597 static const struct hpt_info hpt371n __devinitdata = {
598 .chip_name = "HPT371N",
599 .chip_type = HPT371N,
600 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
601 .dpll_clk = 77,
602 .timings = &hpt37x_timings
603 };
604
605 static int check_in_drive_list(ide_drive_t *drive, const char **list)
606 {
607 char *m = (char *)&drive->id[ATA_ID_PROD];
608
609 while (*list)
610 if (!strcmp(*list++, m))
611 return 1;
612 return 0;
613 }
614
615 static struct hpt_info *hpt3xx_get_info(struct device *dev)
616 {
617 struct ide_host *host = dev_get_drvdata(dev);
618 struct hpt_info *info = (struct hpt_info *)host->host_priv;
619
620 return dev == host->dev[1] ? info + 1 : info;
621 }
622
623 /*
624 * The Marvell bridge chips used on the HighPoint SATA cards do not seem
625 * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
626 */
627
628 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
629 {
630 ide_hwif_t *hwif = HWIF(drive);
631 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
632 u8 mask = hwif->ultra_mask;
633
634 switch (info->chip_type) {
635 case HPT36x:
636 if (!HPT366_ALLOW_ATA66_4 ||
637 check_in_drive_list(drive, bad_ata66_4))
638 mask = ATA_UDMA3;
639
640 if (!HPT366_ALLOW_ATA66_3 ||
641 check_in_drive_list(drive, bad_ata66_3))
642 mask = ATA_UDMA2;
643 break;
644 case HPT370:
645 if (!HPT370_ALLOW_ATA100_5 ||
646 check_in_drive_list(drive, bad_ata100_5))
647 mask = ATA_UDMA4;
648 break;
649 case HPT370A:
650 if (!HPT370_ALLOW_ATA100_5 ||
651 check_in_drive_list(drive, bad_ata100_5))
652 return ATA_UDMA4;
653 case HPT372 :
654 case HPT372A:
655 case HPT372N:
656 case HPT374 :
657 if (ata_id_is_sata(drive->id))
658 mask &= ~0x0e;
659 /* Fall thru */
660 default:
661 return mask;
662 }
663
664 return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
665 }
666
667 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
668 {
669 ide_hwif_t *hwif = HWIF(drive);
670 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
671
672 switch (info->chip_type) {
673 case HPT372 :
674 case HPT372A:
675 case HPT372N:
676 case HPT374 :
677 if (ata_id_is_sata(drive->id))
678 return 0x00;
679 /* Fall thru */
680 default:
681 return 0x07;
682 }
683 }
684
685 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
686 {
687 int i;
688
689 /*
690 * Lookup the transfer mode table to get the index into
691 * the timing table.
692 *
693 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
694 */
695 for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
696 if (xfer_speeds[i] == speed)
697 break;
698
699 return info->timings->clock_table[info->clock][i];
700 }
701
702 static void hpt3xx_set_mode(ide_drive_t *drive, const u8 speed)
703 {
704 ide_hwif_t *hwif = drive->hwif;
705 struct pci_dev *dev = to_pci_dev(hwif->dev);
706 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
707 struct hpt_timings *t = info->timings;
708 u8 itr_addr = 0x40 + (drive->dn * 4);
709 u32 old_itr = 0;
710 u32 new_itr = get_speed_setting(speed, info);
711 u32 itr_mask = speed < XFER_MW_DMA_0 ? t->pio_mask :
712 (speed < XFER_UDMA_0 ? t->dma_mask :
713 t->ultra_mask);
714
715 pci_read_config_dword(dev, itr_addr, &old_itr);
716 new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
717 /*
718 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
719 * to avoid problems handling I/O errors later
720 */
721 new_itr &= ~0xc0000000;
722
723 pci_write_config_dword(dev, itr_addr, new_itr);
724 }
725
726 static void hpt3xx_set_pio_mode(ide_drive_t *drive, const u8 pio)
727 {
728 hpt3xx_set_mode(drive, XFER_PIO_0 + pio);
729 }
730
731 static void hpt3xx_quirkproc(ide_drive_t *drive)
732 {
733 char *m = (char *)&drive->id[ATA_ID_PROD];
734 const char **list = quirk_drives;
735
736 while (*list)
737 if (strstr(m, *list++)) {
738 drive->quirk_list = 1;
739 return;
740 }
741
742 drive->quirk_list = 0;
743 }
744
745 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
746 {
747 ide_hwif_t *hwif = HWIF(drive);
748 struct pci_dev *dev = to_pci_dev(hwif->dev);
749 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
750
751 if (drive->quirk_list) {
752 if (info->chip_type >= HPT370) {
753 u8 scr1 = 0;
754
755 pci_read_config_byte(dev, 0x5a, &scr1);
756 if (((scr1 & 0x10) >> 4) != mask) {
757 if (mask)
758 scr1 |= 0x10;
759 else
760 scr1 &= ~0x10;
761 pci_write_config_byte(dev, 0x5a, scr1);
762 }
763 } else {
764 if (mask)
765 disable_irq(hwif->irq);
766 else
767 enable_irq (hwif->irq);
768 }
769 } else
770 outb(ATA_DEVCTL_OBS | (mask ? 2 : 0), hwif->io_ports.ctl_addr);
771 }
772
773 /*
774 * This is specific to the HPT366 UDMA chipset
775 * by HighPoint|Triones Technologies, Inc.
776 */
777 static void hpt366_dma_lost_irq(ide_drive_t *drive)
778 {
779 struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
780 u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
781
782 pci_read_config_byte(dev, 0x50, &mcr1);
783 pci_read_config_byte(dev, 0x52, &mcr3);
784 pci_read_config_byte(dev, 0x5a, &scr1);
785 printk("%s: (%s) mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
786 drive->name, __func__, mcr1, mcr3, scr1);
787 if (scr1 & 0x10)
788 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
789 ide_dma_lost_irq(drive);
790 }
791
792 static void hpt370_clear_engine(ide_drive_t *drive)
793 {
794 ide_hwif_t *hwif = HWIF(drive);
795 struct pci_dev *dev = to_pci_dev(hwif->dev);
796
797 pci_write_config_byte(dev, hwif->select_data, 0x37);
798 udelay(10);
799 }
800
801 static void hpt370_irq_timeout(ide_drive_t *drive)
802 {
803 ide_hwif_t *hwif = HWIF(drive);
804 struct pci_dev *dev = to_pci_dev(hwif->dev);
805 u16 bfifo = 0;
806 u8 dma_cmd;
807
808 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
809 printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
810
811 /* get DMA command mode */
812 dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
813 /* stop DMA */
814 outb(dma_cmd & ~0x1, hwif->dma_base + ATA_DMA_CMD);
815 hpt370_clear_engine(drive);
816 }
817
818 static void hpt370_dma_start(ide_drive_t *drive)
819 {
820 #ifdef HPT_RESET_STATE_ENGINE
821 hpt370_clear_engine(drive);
822 #endif
823 ide_dma_start(drive);
824 }
825
826 static int hpt370_dma_end(ide_drive_t *drive)
827 {
828 ide_hwif_t *hwif = HWIF(drive);
829 u8 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
830
831 if (dma_stat & 0x01) {
832 /* wait a little */
833 udelay(20);
834 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
835 if (dma_stat & 0x01)
836 hpt370_irq_timeout(drive);
837 }
838 return __ide_dma_end(drive);
839 }
840
841 static void hpt370_dma_timeout(ide_drive_t *drive)
842 {
843 hpt370_irq_timeout(drive);
844 ide_dma_timeout(drive);
845 }
846
847 /* returns 1 if DMA IRQ issued, 0 otherwise */
848 static int hpt374_dma_test_irq(ide_drive_t *drive)
849 {
850 ide_hwif_t *hwif = HWIF(drive);
851 struct pci_dev *dev = to_pci_dev(hwif->dev);
852 u16 bfifo = 0;
853 u8 dma_stat;
854
855 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
856 if (bfifo & 0x1FF) {
857 // printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
858 return 0;
859 }
860
861 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
862 /* return 1 if INTR asserted */
863 if (dma_stat & 4)
864 return 1;
865
866 if (!drive->waiting_for_dma)
867 printk(KERN_WARNING "%s: (%s) called while not waiting\n",
868 drive->name, __func__);
869 return 0;
870 }
871
872 static int hpt374_dma_end(ide_drive_t *drive)
873 {
874 ide_hwif_t *hwif = HWIF(drive);
875 struct pci_dev *dev = to_pci_dev(hwif->dev);
876 u8 mcr = 0, mcr_addr = hwif->select_data;
877 u8 bwsr = 0, mask = hwif->channel ? 0x02 : 0x01;
878
879 pci_read_config_byte(dev, 0x6a, &bwsr);
880 pci_read_config_byte(dev, mcr_addr, &mcr);
881 if (bwsr & mask)
882 pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
883 return __ide_dma_end(drive);
884 }
885
886 /**
887 * hpt3xxn_set_clock - perform clock switching dance
888 * @hwif: hwif to switch
889 * @mode: clocking mode (0x21 for write, 0x23 otherwise)
890 *
891 * Switch the DPLL clock on the HPT3xxN devices. This is a right mess.
892 */
893
894 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
895 {
896 unsigned long base = hwif->extra_base;
897 u8 scr2 = inb(base + 0x6b);
898
899 if ((scr2 & 0x7f) == mode)
900 return;
901
902 /* Tristate the bus */
903 outb(0x80, base + 0x63);
904 outb(0x80, base + 0x67);
905
906 /* Switch clock and reset channels */
907 outb(mode, base + 0x6b);
908 outb(0xc0, base + 0x69);
909
910 /*
911 * Reset the state machines.
912 * NOTE: avoid accidentally enabling the disabled channels.
913 */
914 outb(inb(base + 0x60) | 0x32, base + 0x60);
915 outb(inb(base + 0x64) | 0x32, base + 0x64);
916
917 /* Complete reset */
918 outb(0x00, base + 0x69);
919
920 /* Reconnect channels to bus */
921 outb(0x00, base + 0x63);
922 outb(0x00, base + 0x67);
923 }
924
925 /**
926 * hpt3xxn_rw_disk - prepare for I/O
927 * @drive: drive for command
928 * @rq: block request structure
929 *
930 * This is called when a disk I/O is issued to HPT3xxN.
931 * We need it because of the clock switching.
932 */
933
934 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
935 {
936 hpt3xxn_set_clock(HWIF(drive), rq_data_dir(rq) ? 0x23 : 0x21);
937 }
938
939 /**
940 * hpt37x_calibrate_dpll - calibrate the DPLL
941 * @dev: PCI device
942 *
943 * Perform a calibration cycle on the DPLL.
944 * Returns 1 if this succeeds
945 */
946 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
947 {
948 u32 dpll = (f_high << 16) | f_low | 0x100;
949 u8 scr2;
950 int i;
951
952 pci_write_config_dword(dev, 0x5c, dpll);
953
954 /* Wait for oscillator ready */
955 for(i = 0; i < 0x5000; ++i) {
956 udelay(50);
957 pci_read_config_byte(dev, 0x5b, &scr2);
958 if (scr2 & 0x80)
959 break;
960 }
961 /* See if it stays ready (we'll just bail out if it's not yet) */
962 for(i = 0; i < 0x1000; ++i) {
963 pci_read_config_byte(dev, 0x5b, &scr2);
964 /* DPLL destabilized? */
965 if(!(scr2 & 0x80))
966 return 0;
967 }
968 /* Turn off tuning, we have the DPLL set */
969 pci_read_config_dword (dev, 0x5c, &dpll);
970 pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
971 return 1;
972 }
973
974 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
975 {
976 struct ide_host *host = pci_get_drvdata(dev);
977 struct hpt_info *info = host->host_priv + (&dev->dev == host->dev[1]);
978 u8 chip_type = info->chip_type;
979 u8 new_mcr, old_mcr = 0;
980
981 /*
982 * Disable the "fast interrupt" prediction. Don't hold off
983 * on interrupts. (== 0x01 despite what the docs say)
984 */
985 pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
986
987 if (chip_type >= HPT374)
988 new_mcr = old_mcr & ~0x07;
989 else if (chip_type >= HPT370) {
990 new_mcr = old_mcr;
991 new_mcr &= ~0x02;
992 #ifdef HPT_DELAY_INTERRUPT
993 new_mcr &= ~0x01;
994 #else
995 new_mcr |= 0x01;
996 #endif
997 } else /* HPT366 and HPT368 */
998 new_mcr = old_mcr & ~0x80;
999
1000 if (new_mcr != old_mcr)
1001 pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
1002 }
1003
1004 static unsigned int init_chipset_hpt366(struct pci_dev *dev)
1005 {
1006 unsigned long io_base = pci_resource_start(dev, 4);
1007 struct hpt_info *info = hpt3xx_get_info(&dev->dev);
1008 const char *name = DRV_NAME;
1009 u8 pci_clk, dpll_clk = 0; /* PCI and DPLL clock in MHz */
1010 u8 chip_type;
1011 enum ata_clock clock;
1012
1013 chip_type = info->chip_type;
1014
1015 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
1016 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
1017 pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
1018 pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
1019
1020 /*
1021 * First, try to estimate the PCI clock frequency...
1022 */
1023 if (chip_type >= HPT370) {
1024 u8 scr1 = 0;
1025 u16 f_cnt = 0;
1026 u32 temp = 0;
1027
1028 /* Interrupt force enable. */
1029 pci_read_config_byte(dev, 0x5a, &scr1);
1030 if (scr1 & 0x10)
1031 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
1032
1033 /*
1034 * HighPoint does this for HPT372A.
1035 * NOTE: This register is only writeable via I/O space.
1036 */
1037 if (chip_type == HPT372A)
1038 outb(0x0e, io_base + 0x9c);
1039
1040 /*
1041 * Default to PCI clock. Make sure MA15/16 are set to output
1042 * to prevent drives having problems with 40-pin cables.
1043 */
1044 pci_write_config_byte(dev, 0x5b, 0x23);
1045
1046 /*
1047 * We'll have to read f_CNT value in order to determine
1048 * the PCI clock frequency according to the following ratio:
1049 *
1050 * f_CNT = Fpci * 192 / Fdpll
1051 *
1052 * First try reading the register in which the HighPoint BIOS
1053 * saves f_CNT value before reprogramming the DPLL from its
1054 * default setting (which differs for the various chips).
1055 *
1056 * NOTE: This register is only accessible via I/O space;
1057 * HPT374 BIOS only saves it for the function 0, so we have to
1058 * always read it from there -- no need to check the result of
1059 * pci_get_slot() for the function 0 as the whole device has
1060 * been already "pinned" (via function 1) in init_setup_hpt374()
1061 */
1062 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1063 struct pci_dev *dev1 = pci_get_slot(dev->bus,
1064 dev->devfn - 1);
1065 unsigned long io_base = pci_resource_start(dev1, 4);
1066
1067 temp = inl(io_base + 0x90);
1068 pci_dev_put(dev1);
1069 } else
1070 temp = inl(io_base + 0x90);
1071
1072 /*
1073 * In case the signature check fails, we'll have to
1074 * resort to reading the f_CNT register itself in hopes
1075 * that nobody has touched the DPLL yet...
1076 */
1077 if ((temp & 0xFFFFF000) != 0xABCDE000) {
1078 int i;
1079
1080 printk(KERN_WARNING "%s %s: no clock data saved by "
1081 "BIOS\n", name, pci_name(dev));
1082
1083 /* Calculate the average value of f_CNT. */
1084 for (temp = i = 0; i < 128; i++) {
1085 pci_read_config_word(dev, 0x78, &f_cnt);
1086 temp += f_cnt & 0x1ff;
1087 mdelay(1);
1088 }
1089 f_cnt = temp / 128;
1090 } else
1091 f_cnt = temp & 0x1ff;
1092
1093 dpll_clk = info->dpll_clk;
1094 pci_clk = (f_cnt * dpll_clk) / 192;
1095
1096 /* Clamp PCI clock to bands. */
1097 if (pci_clk < 40)
1098 pci_clk = 33;
1099 else if(pci_clk < 45)
1100 pci_clk = 40;
1101 else if(pci_clk < 55)
1102 pci_clk = 50;
1103 else
1104 pci_clk = 66;
1105
1106 printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1107 "assuming %d MHz PCI\n", name, pci_name(dev),
1108 dpll_clk, f_cnt, pci_clk);
1109 } else {
1110 u32 itr1 = 0;
1111
1112 pci_read_config_dword(dev, 0x40, &itr1);
1113
1114 /* Detect PCI clock by looking at cmd_high_time. */
1115 switch((itr1 >> 8) & 0x07) {
1116 case 0x09:
1117 pci_clk = 40;
1118 break;
1119 case 0x05:
1120 pci_clk = 25;
1121 break;
1122 case 0x07:
1123 default:
1124 pci_clk = 33;
1125 break;
1126 }
1127 }
1128
1129 /* Let's assume we'll use PCI clock for the ATA clock... */
1130 switch (pci_clk) {
1131 case 25:
1132 clock = ATA_CLOCK_25MHZ;
1133 break;
1134 case 33:
1135 default:
1136 clock = ATA_CLOCK_33MHZ;
1137 break;
1138 case 40:
1139 clock = ATA_CLOCK_40MHZ;
1140 break;
1141 case 50:
1142 clock = ATA_CLOCK_50MHZ;
1143 break;
1144 case 66:
1145 clock = ATA_CLOCK_66MHZ;
1146 break;
1147 }
1148
1149 /*
1150 * Only try the DPLL if we don't have a table for the PCI clock that
1151 * we are running at for HPT370/A, always use it for anything newer...
1152 *
1153 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1154 * We also don't like using the DPLL because this causes glitches
1155 * on PRST-/SRST- when the state engine gets reset...
1156 */
1157 if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1158 u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1159 int adjust;
1160
1161 /*
1162 * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1163 * supported/enabled, use 50 MHz DPLL clock otherwise...
1164 */
1165 if (info->udma_mask == ATA_UDMA6) {
1166 dpll_clk = 66;
1167 clock = ATA_CLOCK_66MHZ;
1168 } else if (dpll_clk) { /* HPT36x chips don't have DPLL */
1169 dpll_clk = 50;
1170 clock = ATA_CLOCK_50MHZ;
1171 }
1172
1173 if (info->timings->clock_table[clock] == NULL) {
1174 printk(KERN_ERR "%s %s: unknown bus timing!\n",
1175 name, pci_name(dev));
1176 return -EIO;
1177 }
1178
1179 /* Select the DPLL clock. */
1180 pci_write_config_byte(dev, 0x5b, 0x21);
1181
1182 /*
1183 * Adjust the DPLL based upon PCI clock, enable it,
1184 * and wait for stabilization...
1185 */
1186 f_low = (pci_clk * 48) / dpll_clk;
1187
1188 for (adjust = 0; adjust < 8; adjust++) {
1189 if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1190 break;
1191
1192 /*
1193 * See if it'll settle at a fractionally different clock
1194 */
1195 if (adjust & 1)
1196 f_low -= adjust >> 1;
1197 else
1198 f_low += adjust >> 1;
1199 }
1200 if (adjust == 8) {
1201 printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1202 name, pci_name(dev));
1203 return -EIO;
1204 }
1205
1206 printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1207 name, pci_name(dev), dpll_clk);
1208 } else {
1209 /* Mark the fact that we're not using the DPLL. */
1210 dpll_clk = 0;
1211
1212 printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1213 name, pci_name(dev), pci_clk);
1214 }
1215
1216 /* Store the clock frequencies. */
1217 info->dpll_clk = dpll_clk;
1218 info->pci_clk = pci_clk;
1219 info->clock = clock;
1220
1221 if (chip_type >= HPT370) {
1222 u8 mcr1, mcr4;
1223
1224 /*
1225 * Reset the state engines.
1226 * NOTE: Avoid accidentally enabling the disabled channels.
1227 */
1228 pci_read_config_byte (dev, 0x50, &mcr1);
1229 pci_read_config_byte (dev, 0x54, &mcr4);
1230 pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1231 pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1232 udelay(100);
1233 }
1234
1235 /*
1236 * On HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1237 * the MISC. register to stretch the UltraDMA Tss timing.
1238 * NOTE: This register is only writeable via I/O space.
1239 */
1240 if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1241 outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1242
1243 hpt3xx_disable_fast_irq(dev, 0x50);
1244 hpt3xx_disable_fast_irq(dev, 0x54);
1245
1246 return dev->irq;
1247 }
1248
1249 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1250 {
1251 struct pci_dev *dev = to_pci_dev(hwif->dev);
1252 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1253 u8 chip_type = info->chip_type;
1254 u8 scr1 = 0, ata66 = hwif->channel ? 0x01 : 0x02;
1255
1256 /*
1257 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1258 * address lines to access an external EEPROM. To read valid
1259 * cable detect state the pins must be enabled as inputs.
1260 */
1261 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1262 /*
1263 * HPT374 PCI function 1
1264 * - set bit 15 of reg 0x52 to enable TCBLID as input
1265 * - set bit 15 of reg 0x56 to enable FCBLID as input
1266 */
1267 u8 mcr_addr = hwif->select_data + 2;
1268 u16 mcr;
1269
1270 pci_read_config_word(dev, mcr_addr, &mcr);
1271 pci_write_config_word(dev, mcr_addr, (mcr | 0x8000));
1272 /* now read cable id register */
1273 pci_read_config_byte(dev, 0x5a, &scr1);
1274 pci_write_config_word(dev, mcr_addr, mcr);
1275 } else if (chip_type >= HPT370) {
1276 /*
1277 * HPT370/372 and 374 pcifn 0
1278 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1279 */
1280 u8 scr2 = 0;
1281
1282 pci_read_config_byte(dev, 0x5b, &scr2);
1283 pci_write_config_byte(dev, 0x5b, (scr2 & ~1));
1284 /* now read cable id register */
1285 pci_read_config_byte(dev, 0x5a, &scr1);
1286 pci_write_config_byte(dev, 0x5b, scr2);
1287 } else
1288 pci_read_config_byte(dev, 0x5a, &scr1);
1289
1290 return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1291 }
1292
1293 static void __devinit init_hwif_hpt366(ide_hwif_t *hwif)
1294 {
1295 struct pci_dev *dev = to_pci_dev(hwif->dev);
1296 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1297 int serialize = HPT_SERIALIZE_IO;
1298 u8 chip_type = info->chip_type;
1299
1300 /* Cache the channel's MISC. control registers' offset */
1301 hwif->select_data = hwif->channel ? 0x54 : 0x50;
1302
1303 /*
1304 * HPT3xxN chips have some complications:
1305 *
1306 * - on 33 MHz PCI we must clock switch
1307 * - on 66 MHz PCI we must NOT use the PCI clock
1308 */
1309 if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1310 /*
1311 * Clock is shared between the channels,
1312 * so we'll have to serialize them... :-(
1313 */
1314 serialize = 1;
1315 hwif->rw_disk = &hpt3xxn_rw_disk;
1316 }
1317
1318 /* Serialize access to this device if needed */
1319 if (serialize && hwif->mate)
1320 hwif->serialized = hwif->mate->serialized = 1;
1321 }
1322
1323 static int __devinit init_dma_hpt366(ide_hwif_t *hwif,
1324 const struct ide_port_info *d)
1325 {
1326 struct pci_dev *dev = to_pci_dev(hwif->dev);
1327 unsigned long flags, base = ide_pci_dma_base(hwif, d);
1328 u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1329
1330 if (base == 0)
1331 return -1;
1332
1333 hwif->dma_base = base;
1334
1335 if (ide_pci_check_simplex(hwif, d) < 0)
1336 return -1;
1337
1338 if (ide_pci_set_master(dev, d->name) < 0)
1339 return -1;
1340
1341 dma_old = inb(base + 2);
1342
1343 local_irq_save(flags);
1344
1345 dma_new = dma_old;
1346 pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1347 pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47, &slavedma);
1348
1349 if (masterdma & 0x30) dma_new |= 0x20;
1350 if ( slavedma & 0x30) dma_new |= 0x40;
1351 if (dma_new != dma_old)
1352 outb(dma_new, base + 2);
1353
1354 local_irq_restore(flags);
1355
1356 printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx\n",
1357 hwif->name, base, base + 7);
1358
1359 hwif->extra_base = base + (hwif->channel ? 8 : 16);
1360
1361 if (ide_allocate_dma_engine(hwif))
1362 return -1;
1363
1364 hwif->dma_ops = &sff_dma_ops;
1365
1366 return 0;
1367 }
1368
1369 static void __devinit hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1370 {
1371 if (dev2->irq != dev->irq) {
1372 /* FIXME: we need a core pci_set_interrupt() */
1373 dev2->irq = dev->irq;
1374 printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1375 "fixed\n", pci_name(dev2));
1376 }
1377 }
1378
1379 static void __devinit hpt371_init(struct pci_dev *dev)
1380 {
1381 u8 mcr1 = 0;
1382
1383 /*
1384 * HPT371 chips physically have only one channel, the secondary one,
1385 * but the primary channel registers do exist! Go figure...
1386 * So, we manually disable the non-existing channel here
1387 * (if the BIOS hasn't done this already).
1388 */
1389 pci_read_config_byte(dev, 0x50, &mcr1);
1390 if (mcr1 & 0x04)
1391 pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1392 }
1393
1394 static int __devinit hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1395 {
1396 u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1397
1398 /*
1399 * Now we'll have to force both channels enabled if
1400 * at least one of them has been enabled by BIOS...
1401 */
1402 pci_read_config_byte(dev, 0x50, &mcr1);
1403 if (mcr1 & 0x30)
1404 pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1405
1406 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin1);
1407 pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1408
1409 if (pin1 != pin2 && dev->irq == dev2->irq) {
1410 printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1411 "pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1412 return 1;
1413 }
1414
1415 return 0;
1416 }
1417
1418 #define IDE_HFLAGS_HPT3XX \
1419 (IDE_HFLAG_NO_ATAPI_DMA | \
1420 IDE_HFLAG_OFF_BOARD)
1421
1422 static const struct ide_port_ops hpt3xx_port_ops = {
1423 .set_pio_mode = hpt3xx_set_pio_mode,
1424 .set_dma_mode = hpt3xx_set_mode,
1425 .quirkproc = hpt3xx_quirkproc,
1426 .maskproc = hpt3xx_maskproc,
1427 .mdma_filter = hpt3xx_mdma_filter,
1428 .udma_filter = hpt3xx_udma_filter,
1429 .cable_detect = hpt3xx_cable_detect,
1430 };
1431
1432 static const struct ide_dma_ops hpt37x_dma_ops = {
1433 .dma_host_set = ide_dma_host_set,
1434 .dma_setup = ide_dma_setup,
1435 .dma_exec_cmd = ide_dma_exec_cmd,
1436 .dma_start = ide_dma_start,
1437 .dma_end = hpt374_dma_end,
1438 .dma_test_irq = hpt374_dma_test_irq,
1439 .dma_lost_irq = ide_dma_lost_irq,
1440 .dma_timeout = ide_dma_timeout,
1441 };
1442
1443 static const struct ide_dma_ops hpt370_dma_ops = {
1444 .dma_host_set = ide_dma_host_set,
1445 .dma_setup = ide_dma_setup,
1446 .dma_exec_cmd = ide_dma_exec_cmd,
1447 .dma_start = hpt370_dma_start,
1448 .dma_end = hpt370_dma_end,
1449 .dma_test_irq = ide_dma_test_irq,
1450 .dma_lost_irq = ide_dma_lost_irq,
1451 .dma_timeout = hpt370_dma_timeout,
1452 };
1453
1454 static const struct ide_dma_ops hpt36x_dma_ops = {
1455 .dma_host_set = ide_dma_host_set,
1456 .dma_setup = ide_dma_setup,
1457 .dma_exec_cmd = ide_dma_exec_cmd,
1458 .dma_start = ide_dma_start,
1459 .dma_end = __ide_dma_end,
1460 .dma_test_irq = ide_dma_test_irq,
1461 .dma_lost_irq = hpt366_dma_lost_irq,
1462 .dma_timeout = ide_dma_timeout,
1463 };
1464
1465 static const struct ide_port_info hpt366_chipsets[] __devinitdata = {
1466 { /* 0: HPT36x */
1467 .name = DRV_NAME,
1468 .init_chipset = init_chipset_hpt366,
1469 .init_hwif = init_hwif_hpt366,
1470 .init_dma = init_dma_hpt366,
1471 /*
1472 * HPT36x chips have one channel per function and have
1473 * both channel enable bits located differently and visible
1474 * to both functions -- really stupid design decision... :-(
1475 * Bit 4 is for the primary channel, bit 5 for the secondary.
1476 */
1477 .enablebits = {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1478 .port_ops = &hpt3xx_port_ops,
1479 .dma_ops = &hpt36x_dma_ops,
1480 .host_flags = IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1481 .pio_mask = ATA_PIO4,
1482 .mwdma_mask = ATA_MWDMA2,
1483 },
1484 { /* 1: HPT3xx */
1485 .name = DRV_NAME,
1486 .init_chipset = init_chipset_hpt366,
1487 .init_hwif = init_hwif_hpt366,
1488 .init_dma = init_dma_hpt366,
1489 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1490 .port_ops = &hpt3xx_port_ops,
1491 .dma_ops = &hpt37x_dma_ops,
1492 .host_flags = IDE_HFLAGS_HPT3XX,
1493 .pio_mask = ATA_PIO4,
1494 .mwdma_mask = ATA_MWDMA2,
1495 }
1496 };
1497
1498 /**
1499 * hpt366_init_one - called when an HPT366 is found
1500 * @dev: the hpt366 device
1501 * @id: the matching pci id
1502 *
1503 * Called when the PCI registration layer (or the IDE initialization)
1504 * finds a device matching our IDE device tables.
1505 */
1506 static int __devinit hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1507 {
1508 const struct hpt_info *info = NULL;
1509 struct hpt_info *dyn_info;
1510 struct pci_dev *dev2 = NULL;
1511 struct ide_port_info d;
1512 u8 idx = id->driver_data;
1513 u8 rev = dev->revision;
1514 int ret;
1515
1516 if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1517 return -ENODEV;
1518
1519 switch (idx) {
1520 case 0:
1521 if (rev < 3)
1522 info = &hpt36x;
1523 else {
1524 switch (min_t(u8, rev, 6)) {
1525 case 3: info = &hpt370; break;
1526 case 4: info = &hpt370a; break;
1527 case 5: info = &hpt372; break;
1528 case 6: info = &hpt372n; break;
1529 }
1530 idx++;
1531 }
1532 break;
1533 case 1:
1534 info = (rev > 1) ? &hpt372n : &hpt372a;
1535 break;
1536 case 2:
1537 info = (rev > 1) ? &hpt302n : &hpt302;
1538 break;
1539 case 3:
1540 hpt371_init(dev);
1541 info = (rev > 1) ? &hpt371n : &hpt371;
1542 break;
1543 case 4:
1544 info = &hpt374;
1545 break;
1546 case 5:
1547 info = &hpt372n;
1548 break;
1549 }
1550
1551 printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1552
1553 d = hpt366_chipsets[min_t(u8, idx, 1)];
1554
1555 d.udma_mask = info->udma_mask;
1556
1557 /* fixup ->dma_ops for HPT370/HPT370A */
1558 if (info == &hpt370 || info == &hpt370a)
1559 d.dma_ops = &hpt370_dma_ops;
1560
1561 if (info == &hpt36x || info == &hpt374)
1562 dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1563
1564 dyn_info = kzalloc(sizeof(*dyn_info) * (dev2 ? 2 : 1), GFP_KERNEL);
1565 if (dyn_info == NULL) {
1566 printk(KERN_ERR "%s %s: out of memory!\n",
1567 d.name, pci_name(dev));
1568 pci_dev_put(dev2);
1569 return -ENOMEM;
1570 }
1571
1572 /*
1573 * Copy everything from a static "template" structure
1574 * to just allocated per-chip hpt_info structure.
1575 */
1576 memcpy(dyn_info, info, sizeof(*dyn_info));
1577
1578 if (dev2) {
1579 memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1580
1581 if (info == &hpt374)
1582 hpt374_init(dev, dev2);
1583 else {
1584 if (hpt36x_init(dev, dev2))
1585 d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1586 }
1587
1588 ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1589 if (ret < 0) {
1590 pci_dev_put(dev2);
1591 kfree(dyn_info);
1592 }
1593 return ret;
1594 }
1595
1596 ret = ide_pci_init_one(dev, &d, dyn_info);
1597 if (ret < 0)
1598 kfree(dyn_info);
1599
1600 return ret;
1601 }
1602
1603 static void __devexit hpt366_remove(struct pci_dev *dev)
1604 {
1605 struct ide_host *host = pci_get_drvdata(dev);
1606 struct ide_info *info = host->host_priv;
1607 struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1608
1609 ide_pci_remove(dev);
1610 pci_dev_put(dev2);
1611 kfree(info);
1612 }
1613
1614 static const struct pci_device_id hpt366_pci_tbl[] __devinitconst = {
1615 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), 0 },
1616 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372), 1 },
1617 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302), 2 },
1618 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371), 3 },
1619 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374), 4 },
1620 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1621 { 0, },
1622 };
1623 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1624
1625 static struct pci_driver driver = {
1626 .name = "HPT366_IDE",
1627 .id_table = hpt366_pci_tbl,
1628 .probe = hpt366_init_one,
1629 .remove = __devexit_p(hpt366_remove),
1630 .suspend = ide_pci_suspend,
1631 .resume = ide_pci_resume,
1632 };
1633
1634 static int __init hpt366_ide_init(void)
1635 {
1636 return ide_pci_register_driver(&driver);
1637 }
1638
1639 static void __exit hpt366_ide_exit(void)
1640 {
1641 pci_unregister_driver(&driver);
1642 }
1643
1644 module_init(hpt366_ide_init);
1645 module_exit(hpt366_ide_exit);
1646
1647 MODULE_AUTHOR("Andre Hedrick");
1648 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1649 MODULE_LICENSE("GPL");