2 * linux/drivers/ide/ppc/pmac.c
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
9 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
16 * Some code taken from drivers/ide/ide-dma.c:
18 * Copyright (c) 1995-1998 Mark Lord
20 * TODO: - Use pre-calculated (kauai) timing tables all the time and
21 * get rid of the "rounded" tables used previously, so we have the
22 * same table format for all controllers and can then just have one
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/ide.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
40 #include <asm/dbdma.h>
42 #include <asm/pci-bridge.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
49 #include <asm/mediabay.h>
52 #include "../ide-timing.h"
56 #define DMA_WAIT_TIMEOUT 50
58 typedef struct pmac_ide_hwif
{
59 unsigned long regbase
;
63 unsigned cable_80
: 1;
64 unsigned mediabay
: 1;
65 unsigned broken_dma
: 1;
66 unsigned broken_dma_warn
: 1;
67 struct device_node
* node
;
68 struct macio_dev
*mdev
;
70 volatile u32 __iomem
* *kauai_fcr
;
71 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
72 /* Those fields are duplicating what is in hwif. We currently
73 * can't use the hwif ones because of some assumptions that are
74 * beeing done by the generic code about the kind of dma controller
75 * and format of the dma table. This will have to be fixed though.
77 volatile struct dbdma_regs __iomem
* dma_regs
;
78 struct dbdma_cmd
* dma_table_cpu
;
83 static pmac_ide_hwif_t pmac_ide
[MAX_HWIFS
];
84 static int pmac_ide_count
;
87 controller_ohare
, /* OHare based */
88 controller_heathrow
, /* Heathrow/Paddington */
89 controller_kl_ata3
, /* KeyLargo ATA-3 */
90 controller_kl_ata4
, /* KeyLargo ATA-4 */
91 controller_un_ata6
, /* UniNorth2 ATA-6 */
92 controller_k2_ata6
, /* K2 ATA-6 */
93 controller_sh_ata6
, /* Shasta ATA-6 */
96 static const char* model_name
[] = {
97 "OHare ATA", /* OHare based */
98 "Heathrow ATA", /* Heathrow/Paddington */
99 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
100 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
101 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
102 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
103 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
107 * Extra registers, both 32-bit little-endian
109 #define IDE_TIMING_CONFIG 0x200
110 #define IDE_INTERRUPT 0x300
112 /* Kauai (U2) ATA has different register setup */
113 #define IDE_KAUAI_PIO_CONFIG 0x200
114 #define IDE_KAUAI_ULTRA_CONFIG 0x210
115 #define IDE_KAUAI_POLL_CONFIG 0x220
118 * Timing configuration register definitions
121 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
122 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
123 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
124 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
125 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
127 /* 133Mhz cell, found in shasta.
128 * See comments about 100 Mhz Uninorth 2...
129 * Note that PIO_MASK and MDMA_MASK seem to overlap
131 #define TR_133_PIOREG_PIO_MASK 0xff000fff
132 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
133 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
134 #define TR_133_UDMAREG_UDMA_EN 0x00000001
136 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
137 * this one yet, it appears as a pci device (106b/0033) on uninorth
138 * internal PCI bus and it's clock is controlled like gem or fw. It
139 * appears to be an evolution of keylargo ATA4 with a timing register
140 * extended to 2 32bits registers and a similar DBDMA channel. Other
141 * registers seem to exist but I can't tell much about them.
143 * So far, I'm using pre-calculated tables for this extracted from
144 * the values used by the MacOS X driver.
146 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
147 * register controls the UDMA timings. At least, it seems bit 0
148 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
149 * cycle time in units of 10ns. Bits 8..15 are used by I don't
150 * know their meaning yet
152 #define TR_100_PIOREG_PIO_MASK 0xff000fff
153 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
154 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
155 #define TR_100_UDMAREG_UDMA_EN 0x00000001
158 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
159 * 40 connector cable and to 4 on 80 connector one.
160 * Clock unit is 15ns (66Mhz)
162 * 3 Values can be programmed:
163 * - Write data setup, which appears to match the cycle time. They
164 * also call it DIOW setup.
165 * - Ready to pause time (from spec)
166 * - Address setup. That one is weird. I don't see where exactly
167 * it fits in UDMA cycles, I got it's name from an obscure piece
168 * of commented out code in Darwin. They leave it to 0, we do as
169 * well, despite a comment that would lead to think it has a
171 * Apple also add 60ns to the write data setup (or cycle time ?) on
174 #define TR_66_UDMA_MASK 0xfff00000
175 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
176 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
177 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
178 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
179 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
180 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
181 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
182 #define TR_66_MDMA_MASK 0x000ffc00
183 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
184 #define TR_66_MDMA_RECOVERY_SHIFT 15
185 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
186 #define TR_66_MDMA_ACCESS_SHIFT 10
187 #define TR_66_PIO_MASK 0x000003ff
188 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
189 #define TR_66_PIO_RECOVERY_SHIFT 5
190 #define TR_66_PIO_ACCESS_MASK 0x0000001f
191 #define TR_66_PIO_ACCESS_SHIFT 0
193 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
194 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
196 * The access time and recovery time can be programmed. Some older
197 * Darwin code base limit OHare to 150ns cycle time. I decided to do
198 * the same here fore safety against broken old hardware ;)
199 * The HalfTick bit, when set, adds half a clock (15ns) to the access
200 * time and removes one from recovery. It's not supported on KeyLargo
201 * implementation afaik. The E bit appears to be set for PIO mode 0 and
202 * is used to reach long timings used in this mode.
204 #define TR_33_MDMA_MASK 0x003ff800
205 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
206 #define TR_33_MDMA_RECOVERY_SHIFT 16
207 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
208 #define TR_33_MDMA_ACCESS_SHIFT 11
209 #define TR_33_MDMA_HALFTICK 0x00200000
210 #define TR_33_PIO_MASK 0x000007ff
211 #define TR_33_PIO_E 0x00000400
212 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
213 #define TR_33_PIO_RECOVERY_SHIFT 5
214 #define TR_33_PIO_ACCESS_MASK 0x0000001f
215 #define TR_33_PIO_ACCESS_SHIFT 0
218 * Interrupt register definitions
220 #define IDE_INTR_DMA 0x80000000
221 #define IDE_INTR_DEVICE 0x40000000
224 * FCR Register on Kauai. Not sure what bit 0x4 is ...
226 #define KAUAI_FCR_UATA_MAGIC 0x00000004
227 #define KAUAI_FCR_UATA_RESET_N 0x00000002
228 #define KAUAI_FCR_UATA_ENABLE 0x00000001
230 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
232 /* Rounded Multiword DMA timings
234 * I gave up finding a generic formula for all controller
235 * types and instead, built tables based on timing values
236 * used by Apple in Darwin's implementation.
238 struct mdma_timings_t
{
244 struct mdma_timings_t mdma_timings_33
[] =
257 struct mdma_timings_t mdma_timings_33k
[] =
270 struct mdma_timings_t mdma_timings_66
[] =
283 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
285 int addrSetup
; /* ??? */
288 } kl66_udma_timings
[] =
290 { 0, 180, 120 }, /* Mode 0 */
291 { 0, 150, 90 }, /* 1 */
292 { 0, 120, 60 }, /* 2 */
293 { 0, 90, 45 }, /* 3 */
294 { 0, 90, 30 } /* 4 */
297 /* UniNorth 2 ATA/100 timings */
298 struct kauai_timing
{
303 static struct kauai_timing kauai_pio_timings
[] =
305 { 930 , 0x08000fff },
306 { 600 , 0x08000a92 },
307 { 383 , 0x0800060f },
308 { 360 , 0x08000492 },
309 { 330 , 0x0800048f },
310 { 300 , 0x080003cf },
311 { 270 , 0x080003cc },
312 { 240 , 0x0800038b },
313 { 239 , 0x0800030c },
314 { 180 , 0x05000249 },
315 { 120 , 0x04000148 },
319 static struct kauai_timing kauai_mdma_timings
[] =
321 { 1260 , 0x00fff000 },
322 { 480 , 0x00618000 },
323 { 360 , 0x00492000 },
324 { 270 , 0x0038e000 },
325 { 240 , 0x0030c000 },
326 { 210 , 0x002cb000 },
327 { 180 , 0x00249000 },
328 { 150 , 0x00209000 },
329 { 120 , 0x00148000 },
333 static struct kauai_timing kauai_udma_timings
[] =
335 { 120 , 0x000070c0 },
344 static struct kauai_timing shasta_pio_timings
[] =
346 { 930 , 0x08000fff },
347 { 600 , 0x0A000c97 },
348 { 383 , 0x07000712 },
349 { 360 , 0x040003cd },
350 { 330 , 0x040003cd },
351 { 300 , 0x040003cd },
352 { 270 , 0x040003cd },
353 { 240 , 0x040003cd },
354 { 239 , 0x040003cd },
355 { 180 , 0x0400028b },
356 { 120 , 0x0400010a },
360 static struct kauai_timing shasta_mdma_timings
[] =
362 { 1260 , 0x00fff000 },
363 { 480 , 0x00820800 },
364 { 360 , 0x00820800 },
365 { 270 , 0x00820800 },
366 { 240 , 0x00820800 },
367 { 210 , 0x00820800 },
368 { 180 , 0x00820800 },
369 { 150 , 0x0028b000 },
370 { 120 , 0x001ca000 },
374 static struct kauai_timing shasta_udma133_timings
[] =
376 { 120 , 0x00035901, },
377 { 90 , 0x000348b1, },
378 { 60 , 0x00033881, },
379 { 45 , 0x00033861, },
380 { 30 , 0x00033841, },
381 { 20 , 0x00033031, },
382 { 15 , 0x00033021, },
388 kauai_lookup_timing(struct kauai_timing
* table
, int cycle_time
)
392 for (i
=0; table
[i
].cycle_time
; i
++)
393 if (cycle_time
> table
[i
+1].cycle_time
)
394 return table
[i
].timing_reg
;
399 /* allow up to 256 DBDMA commands per xfer */
400 #define MAX_DCMDS 256
403 * Wait 1s for disk to answer on IDE bus after a hard reset
404 * of the device (via GPIO/FCR).
406 * Some devices seem to "pollute" the bus even after dropping
407 * the BSY bit (typically some combo drives slave on the UDMA
408 * bus) after a hard reset. Since we hard reset all drives on
409 * KeyLargo ATA66, we have to keep that delay around. I may end
410 * up not hard resetting anymore on these and keep the delay only
411 * for older interfaces instead (we have to reset when coming
412 * from MacOS...) --BenH.
414 #define IDE_WAKEUP_DELAY (1*HZ)
416 static void pmac_ide_setup_dma(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
);
417 static int pmac_ide_build_dmatable(ide_drive_t
*drive
, struct request
*rq
);
418 static void pmac_ide_selectproc(ide_drive_t
*drive
);
419 static void pmac_ide_kauai_selectproc(ide_drive_t
*drive
);
421 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
424 * N.B. this can't be an initfunc, because the media-bay task can
425 * call ide_[un]register at any time.
428 pmac_ide_init_hwif_ports(hw_regs_t
*hw
,
429 unsigned long data_port
, unsigned long ctrl_port
,
437 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
438 if (data_port
== pmac_ide
[ix
].regbase
)
441 if (ix
>= MAX_HWIFS
) {
442 /* Probably a PCI interface... */
443 for (i
= IDE_DATA_OFFSET
; i
<= IDE_STATUS_OFFSET
; ++i
)
444 hw
->io_ports
[i
] = data_port
+ i
- IDE_DATA_OFFSET
;
445 hw
->io_ports
[IDE_CONTROL_OFFSET
] = ctrl_port
;
449 for (i
= 0; i
< 8; ++i
)
450 hw
->io_ports
[i
] = data_port
+ i
* 0x10;
451 hw
->io_ports
[8] = data_port
+ 0x160;
454 *irq
= pmac_ide
[ix
].irq
;
456 hw
->dev
= &pmac_ide
[ix
].mdev
->ofdev
.dev
;
459 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
462 * Apply the timings of the proper unit (master/slave) to the shared
463 * timing register when selecting that unit. This version is for
464 * ASICs with a single timing register
467 pmac_ide_selectproc(ide_drive_t
*drive
)
469 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
474 if (drive
->select
.b
.unit
& 0x01)
475 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
477 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
478 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
482 * Apply the timings of the proper unit (master/slave) to the shared
483 * timing register when selecting that unit. This version is for
484 * ASICs with a dual timing register (Kauai)
487 pmac_ide_kauai_selectproc(ide_drive_t
*drive
)
489 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
494 if (drive
->select
.b
.unit
& 0x01) {
495 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
496 writel(pmif
->timings
[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
498 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
499 writel(pmif
->timings
[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
501 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
505 * Force an update of controller timing values for a given drive
508 pmac_ide_do_update_timings(ide_drive_t
*drive
)
510 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
515 if (pmif
->kind
== controller_sh_ata6
||
516 pmif
->kind
== controller_un_ata6
||
517 pmif
->kind
== controller_k2_ata6
)
518 pmac_ide_kauai_selectproc(drive
);
520 pmac_ide_selectproc(drive
);
524 pmac_outbsync(ide_drive_t
*drive
, u8 value
, unsigned long port
)
528 writeb(value
, (void __iomem
*) port
);
529 tmp
= readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
533 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
536 pmac_ide_set_pio_mode(ide_drive_t
*drive
, const u8 pio
)
539 unsigned accessTicks
, recTicks
;
540 unsigned accessTime
, recTime
;
541 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
542 unsigned int cycle_time
;
547 /* which drive is it ? */
548 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
551 cycle_time
= ide_pio_cycle_time(drive
, pio
);
553 switch (pmif
->kind
) {
554 case controller_sh_ata6
: {
556 u32 tr
= kauai_lookup_timing(shasta_pio_timings
, cycle_time
);
557 t
= (t
& ~TR_133_PIOREG_PIO_MASK
) | tr
;
560 case controller_un_ata6
:
561 case controller_k2_ata6
: {
563 u32 tr
= kauai_lookup_timing(kauai_pio_timings
, cycle_time
);
564 t
= (t
& ~TR_100_PIOREG_PIO_MASK
) | tr
;
567 case controller_kl_ata4
:
569 recTime
= cycle_time
- ide_pio_timings
[pio
].active_time
570 - ide_pio_timings
[pio
].setup_time
;
571 recTime
= max(recTime
, 150U);
572 accessTime
= ide_pio_timings
[pio
].active_time
;
573 accessTime
= max(accessTime
, 150U);
574 accessTicks
= SYSCLK_TICKS_66(accessTime
);
575 accessTicks
= min(accessTicks
, 0x1fU
);
576 recTicks
= SYSCLK_TICKS_66(recTime
);
577 recTicks
= min(recTicks
, 0x1fU
);
578 t
= (t
& ~TR_66_PIO_MASK
) |
579 (accessTicks
<< TR_66_PIO_ACCESS_SHIFT
) |
580 (recTicks
<< TR_66_PIO_RECOVERY_SHIFT
);
585 recTime
= cycle_time
- ide_pio_timings
[pio
].active_time
586 - ide_pio_timings
[pio
].setup_time
;
587 recTime
= max(recTime
, 150U);
588 accessTime
= ide_pio_timings
[pio
].active_time
;
589 accessTime
= max(accessTime
, 150U);
590 accessTicks
= SYSCLK_TICKS(accessTime
);
591 accessTicks
= min(accessTicks
, 0x1fU
);
592 accessTicks
= max(accessTicks
, 4U);
593 recTicks
= SYSCLK_TICKS(recTime
);
594 recTicks
= min(recTicks
, 0x1fU
);
595 recTicks
= max(recTicks
, 5U) - 4;
597 recTicks
--; /* guess, but it's only for PIO0, so... */
600 t
= (t
& ~TR_33_PIO_MASK
) |
601 (accessTicks
<< TR_33_PIO_ACCESS_SHIFT
) |
602 (recTicks
<< TR_33_PIO_RECOVERY_SHIFT
);
609 #ifdef IDE_PMAC_DEBUG
610 printk(KERN_ERR
"%s: Set PIO timing for mode %d, reg: 0x%08x\n",
611 drive
->name
, pio
, *timings
);
615 pmac_ide_do_update_timings(drive
);
618 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
621 * Calculate KeyLargo ATA/66 UDMA timings
624 set_timings_udma_ata4(u32
*timings
, u8 speed
)
626 unsigned rdyToPauseTicks
, wrDataSetupTicks
, addrTicks
;
628 if (speed
> XFER_UDMA_4
)
631 rdyToPauseTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].rdy2pause
);
632 wrDataSetupTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].wrDataSetup
);
633 addrTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].addrSetup
);
635 *timings
= ((*timings
) & ~(TR_66_UDMA_MASK
| TR_66_MDMA_MASK
)) |
636 (wrDataSetupTicks
<< TR_66_UDMA_WRDATASETUP_SHIFT
) |
637 (rdyToPauseTicks
<< TR_66_UDMA_RDY2PAUS_SHIFT
) |
638 (addrTicks
<<TR_66_UDMA_ADDRSETUP_SHIFT
) |
640 #ifdef IDE_PMAC_DEBUG
641 printk(KERN_ERR
"ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
642 speed
& 0xf, *timings
);
649 * Calculate Kauai ATA/100 UDMA timings
652 set_timings_udma_ata6(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
654 struct ide_timing
*t
= ide_timing_find_mode(speed
);
657 if (speed
> XFER_UDMA_5
|| t
== NULL
)
659 tr
= kauai_lookup_timing(kauai_udma_timings
, (int)t
->udma
);
660 *ultra_timings
= ((*ultra_timings
) & ~TR_100_UDMAREG_UDMA_MASK
) | tr
;
661 *ultra_timings
= (*ultra_timings
) | TR_100_UDMAREG_UDMA_EN
;
667 * Calculate Shasta ATA/133 UDMA timings
670 set_timings_udma_shasta(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
672 struct ide_timing
*t
= ide_timing_find_mode(speed
);
675 if (speed
> XFER_UDMA_6
|| t
== NULL
)
677 tr
= kauai_lookup_timing(shasta_udma133_timings
, (int)t
->udma
);
678 *ultra_timings
= ((*ultra_timings
) & ~TR_133_UDMAREG_UDMA_MASK
) | tr
;
679 *ultra_timings
= (*ultra_timings
) | TR_133_UDMAREG_UDMA_EN
;
685 * Calculate MDMA timings for all cells
688 set_timings_mdma(ide_drive_t
*drive
, int intf_type
, u32
*timings
, u32
*timings2
,
691 int cycleTime
, accessTime
= 0, recTime
= 0;
692 unsigned accessTicks
, recTicks
;
693 struct hd_driveid
*id
= drive
->id
;
694 struct mdma_timings_t
* tm
= NULL
;
697 /* Get default cycle time for mode */
698 switch(speed
& 0xf) {
699 case 0: cycleTime
= 480; break;
700 case 1: cycleTime
= 150; break;
701 case 2: cycleTime
= 120; break;
707 /* Check if drive provides explicit DMA cycle time */
708 if ((id
->field_valid
& 2) && id
->eide_dma_time
)
709 cycleTime
= max_t(int, id
->eide_dma_time
, cycleTime
);
711 /* OHare limits according to some old Apple sources */
712 if ((intf_type
== controller_ohare
) && (cycleTime
< 150))
714 /* Get the proper timing array for this controller */
716 case controller_sh_ata6
:
717 case controller_un_ata6
:
718 case controller_k2_ata6
:
720 case controller_kl_ata4
:
721 tm
= mdma_timings_66
;
723 case controller_kl_ata3
:
724 tm
= mdma_timings_33k
;
727 tm
= mdma_timings_33
;
731 /* Lookup matching access & recovery times */
734 if (tm
[i
+1].cycleTime
< cycleTime
)
738 cycleTime
= tm
[i
].cycleTime
;
739 accessTime
= tm
[i
].accessTime
;
740 recTime
= tm
[i
].recoveryTime
;
742 #ifdef IDE_PMAC_DEBUG
743 printk(KERN_ERR
"%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
744 drive
->name
, cycleTime
, accessTime
, recTime
);
748 case controller_sh_ata6
: {
750 u32 tr
= kauai_lookup_timing(shasta_mdma_timings
, cycleTime
);
751 *timings
= ((*timings
) & ~TR_133_PIOREG_MDMA_MASK
) | tr
;
752 *timings2
= (*timings2
) & ~TR_133_UDMAREG_UDMA_EN
;
754 case controller_un_ata6
:
755 case controller_k2_ata6
: {
757 u32 tr
= kauai_lookup_timing(kauai_mdma_timings
, cycleTime
);
758 *timings
= ((*timings
) & ~TR_100_PIOREG_MDMA_MASK
) | tr
;
759 *timings2
= (*timings2
) & ~TR_100_UDMAREG_UDMA_EN
;
762 case controller_kl_ata4
:
764 accessTicks
= SYSCLK_TICKS_66(accessTime
);
765 accessTicks
= min(accessTicks
, 0x1fU
);
766 accessTicks
= max(accessTicks
, 0x1U
);
767 recTicks
= SYSCLK_TICKS_66(recTime
);
768 recTicks
= min(recTicks
, 0x1fU
);
769 recTicks
= max(recTicks
, 0x3U
);
770 /* Clear out mdma bits and disable udma */
771 *timings
= ((*timings
) & ~(TR_66_MDMA_MASK
| TR_66_UDMA_MASK
)) |
772 (accessTicks
<< TR_66_MDMA_ACCESS_SHIFT
) |
773 (recTicks
<< TR_66_MDMA_RECOVERY_SHIFT
);
775 case controller_kl_ata3
:
776 /* 33Mhz cell on KeyLargo */
777 accessTicks
= SYSCLK_TICKS(accessTime
);
778 accessTicks
= max(accessTicks
, 1U);
779 accessTicks
= min(accessTicks
, 0x1fU
);
780 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
781 recTicks
= SYSCLK_TICKS(recTime
);
782 recTicks
= max(recTicks
, 1U);
783 recTicks
= min(recTicks
, 0x1fU
);
784 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
785 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
786 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
789 /* 33Mhz cell on others */
791 int origAccessTime
= accessTime
;
792 int origRecTime
= recTime
;
794 accessTicks
= SYSCLK_TICKS(accessTime
);
795 accessTicks
= max(accessTicks
, 1U);
796 accessTicks
= min(accessTicks
, 0x1fU
);
797 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
798 recTicks
= SYSCLK_TICKS(recTime
);
799 recTicks
= max(recTicks
, 2U) - 1;
800 recTicks
= min(recTicks
, 0x1fU
);
801 recTime
= (recTicks
+ 1) * IDE_SYSCLK_NS
;
802 if ((accessTicks
> 1) &&
803 ((accessTime
- IDE_SYSCLK_NS
/2) >= origAccessTime
) &&
804 ((recTime
- IDE_SYSCLK_NS
/2) >= origRecTime
)) {
808 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
809 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
810 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
812 *timings
|= TR_33_MDMA_HALFTICK
;
815 #ifdef IDE_PMAC_DEBUG
816 printk(KERN_ERR
"%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
817 drive
->name
, speed
& 0xf, *timings
);
820 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
822 static void pmac_ide_set_dma_mode(ide_drive_t
*drive
, const u8 speed
)
824 int unit
= (drive
->select
.b
.unit
& 0x01);
826 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
827 u32
*timings
, *timings2
, tl
[2];
829 timings
= &pmif
->timings
[unit
];
830 timings2
= &pmif
->timings
[unit
+2];
832 /* Copy timings to local image */
837 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
845 if (pmif
->kind
== controller_kl_ata4
)
846 ret
= set_timings_udma_ata4(&tl
[0], speed
);
847 else if (pmif
->kind
== controller_un_ata6
848 || pmif
->kind
== controller_k2_ata6
)
849 ret
= set_timings_udma_ata6(&tl
[0], &tl
[1], speed
);
850 else if (pmif
->kind
== controller_sh_ata6
)
851 ret
= set_timings_udma_shasta(&tl
[0], &tl
[1], speed
);
858 set_timings_mdma(drive
, pmif
->kind
, &tl
[0], &tl
[1], speed
);
864 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
871 /* Apply timings to controller */
875 pmac_ide_do_update_timings(drive
);
879 * Blast some well known "safe" values to the timing registers at init or
880 * wakeup from sleep time, before we do real calculation
883 sanitize_timings(pmac_ide_hwif_t
*pmif
)
885 unsigned int value
, value2
= 0;
888 case controller_sh_ata6
:
892 case controller_un_ata6
:
893 case controller_k2_ata6
:
897 case controller_kl_ata4
:
900 case controller_kl_ata3
:
903 case controller_heathrow
:
904 case controller_ohare
:
909 pmif
->timings
[0] = pmif
->timings
[1] = value
;
910 pmif
->timings
[2] = pmif
->timings
[3] = value2
;
914 pmac_ide_get_base(int index
)
916 return pmac_ide
[index
].regbase
;
920 pmac_ide_check_base(unsigned long base
)
924 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
925 if (base
== pmac_ide
[ix
].regbase
)
931 pmac_ide_get_irq(unsigned long base
)
935 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
936 if (base
== pmac_ide
[ix
].regbase
)
937 return pmac_ide
[ix
].irq
;
941 static int ide_majors
[] = { 3, 22, 33, 34, 56, 57 };
944 pmac_find_ide_boot(char *bootdevice
, int n
)
949 * Look through the list of IDE interfaces for this one.
951 for (i
= 0; i
< pmac_ide_count
; ++i
) {
953 if (!pmac_ide
[i
].node
|| !pmac_ide
[i
].node
->full_name
)
955 name
= pmac_ide
[i
].node
->full_name
;
956 if (memcmp(name
, bootdevice
, n
) == 0 && name
[n
] == 0) {
957 /* XXX should cope with the 2nd drive as well... */
958 return MKDEV(ide_majors
[i
], 0);
965 /* Suspend call back, should be called after the child devices
966 * have actually been suspended
969 pmac_ide_do_suspend(ide_hwif_t
*hwif
)
971 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
973 /* We clear the timings */
974 pmif
->timings
[0] = 0;
975 pmif
->timings
[1] = 0;
977 disable_irq(pmif
->irq
);
979 /* The media bay will handle itself just fine */
983 /* Kauai has bus control FCRs directly here */
984 if (pmif
->kauai_fcr
) {
985 u32 fcr
= readl(pmif
->kauai_fcr
);
986 fcr
&= ~(KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
);
987 writel(fcr
, pmif
->kauai_fcr
);
990 /* Disable the bus on older machines and the cell on kauai */
991 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
,
997 /* Resume call back, should be called before the child devices
1001 pmac_ide_do_resume(ide_hwif_t
*hwif
)
1003 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1005 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1006 if (!pmif
->mediabay
) {
1007 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 1);
1008 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
, 1);
1010 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 0);
1012 /* Kauai has it different */
1013 if (pmif
->kauai_fcr
) {
1014 u32 fcr
= readl(pmif
->kauai_fcr
);
1015 fcr
|= KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
;
1016 writel(fcr
, pmif
->kauai_fcr
);
1019 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1022 /* Sanitize drive timings */
1023 sanitize_timings(pmif
);
1025 enable_irq(pmif
->irq
);
1031 * Setup, register & probe an IDE channel driven by this driver, this is
1032 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1033 * that ends up beeing free of any device is not kept around by this driver
1034 * (it is kept in 2.4). This introduce an interface numbering change on some
1035 * rare machines unfortunately, but it's better this way.
1038 pmac_ide_setup_device(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
)
1040 struct device_node
*np
= pmif
->node
;
1044 pmif
->broken_dma
= pmif
->broken_dma_warn
= 0;
1045 if (of_device_is_compatible(np
, "shasta-ata"))
1046 pmif
->kind
= controller_sh_ata6
;
1047 else if (of_device_is_compatible(np
, "kauai-ata"))
1048 pmif
->kind
= controller_un_ata6
;
1049 else if (of_device_is_compatible(np
, "K2-UATA"))
1050 pmif
->kind
= controller_k2_ata6
;
1051 else if (of_device_is_compatible(np
, "keylargo-ata")) {
1052 if (strcmp(np
->name
, "ata-4") == 0)
1053 pmif
->kind
= controller_kl_ata4
;
1055 pmif
->kind
= controller_kl_ata3
;
1056 } else if (of_device_is_compatible(np
, "heathrow-ata"))
1057 pmif
->kind
= controller_heathrow
;
1059 pmif
->kind
= controller_ohare
;
1060 pmif
->broken_dma
= 1;
1063 bidp
= of_get_property(np
, "AAPL,bus-id", NULL
);
1064 pmif
->aapl_bus_id
= bidp
? *bidp
: 0;
1066 /* Get cable type from device-tree */
1067 if (pmif
->kind
== controller_kl_ata4
|| pmif
->kind
== controller_un_ata6
1068 || pmif
->kind
== controller_k2_ata6
1069 || pmif
->kind
== controller_sh_ata6
) {
1070 const char* cable
= of_get_property(np
, "cable-type", NULL
);
1071 if (cable
&& !strncmp(cable
, "80-", 3))
1074 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1075 * they have a 80 conductor cable, this seem to be always the case unless
1076 * the user mucked around
1078 if (of_device_is_compatible(np
, "K2-UATA") ||
1079 of_device_is_compatible(np
, "shasta-ata"))
1082 /* On Kauai-type controllers, we make sure the FCR is correct */
1083 if (pmif
->kauai_fcr
)
1084 writel(KAUAI_FCR_UATA_MAGIC
|
1085 KAUAI_FCR_UATA_RESET_N
|
1086 KAUAI_FCR_UATA_ENABLE
, pmif
->kauai_fcr
);
1090 /* Make sure we have sane timings */
1091 sanitize_timings(pmif
);
1093 #ifndef CONFIG_PPC64
1094 /* XXX FIXME: Media bay stuff need re-organizing */
1095 if (np
->parent
&& np
->parent
->name
1096 && strcasecmp(np
->parent
->name
, "media-bay") == 0) {
1097 #ifdef CONFIG_PMAC_MEDIABAY
1098 media_bay_set_ide_infos(np
->parent
, pmif
->regbase
, pmif
->irq
, hwif
->index
);
1099 #endif /* CONFIG_PMAC_MEDIABAY */
1102 pmif
->aapl_bus_id
= 1;
1103 } else if (pmif
->kind
== controller_ohare
) {
1104 /* The code below is having trouble on some ohare machines
1105 * (timing related ?). Until I can put my hand on one of these
1106 * units, I keep the old way
1108 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, 0, 1);
1112 /* This is necessary to enable IDE when net-booting */
1113 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 1);
1114 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, pmif
->aapl_bus_id
, 1);
1116 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 0);
1117 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1120 /* Setup MMIO ops */
1121 default_hwif_mmiops(hwif
);
1122 hwif
->OUTBSYNC
= pmac_outbsync
;
1124 /* Tell common code _not_ to mess with resources */
1126 hwif
->hwif_data
= pmif
;
1127 pmac_ide_init_hwif_ports(&hwif
->hw
, pmif
->regbase
, 0, &hwif
->irq
);
1128 memcpy(hwif
->io_ports
, hwif
->hw
.io_ports
, sizeof(hwif
->io_ports
));
1129 hwif
->chipset
= ide_pmac
;
1130 hwif
->noprobe
= !hwif
->io_ports
[IDE_DATA_OFFSET
] || pmif
->mediabay
;
1131 hwif
->hold
= pmif
->mediabay
;
1132 hwif
->cbl
= pmif
->cable_80
? ATA_CBL_PATA80
: ATA_CBL_PATA40
;
1133 hwif
->drives
[0].unmask
= 1;
1134 hwif
->drives
[1].unmask
= 1;
1135 hwif
->drives
[0].autotune
= IDE_TUNE_AUTO
;
1136 hwif
->drives
[1].autotune
= IDE_TUNE_AUTO
;
1137 hwif
->host_flags
= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
|
1138 IDE_HFLAG_POST_SET_MODE
;
1139 hwif
->pio_mask
= ATA_PIO4
;
1140 hwif
->set_pio_mode
= pmac_ide_set_pio_mode
;
1141 if (pmif
->kind
== controller_un_ata6
1142 || pmif
->kind
== controller_k2_ata6
1143 || pmif
->kind
== controller_sh_ata6
)
1144 hwif
->selectproc
= pmac_ide_kauai_selectproc
;
1146 hwif
->selectproc
= pmac_ide_selectproc
;
1147 hwif
->set_dma_mode
= pmac_ide_set_dma_mode
;
1149 printk(KERN_INFO
"ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1150 hwif
->index
, model_name
[pmif
->kind
], pmif
->aapl_bus_id
,
1151 pmif
->mediabay
? " (mediabay)" : "", hwif
->irq
);
1153 #ifdef CONFIG_PMAC_MEDIABAY
1154 if (pmif
->mediabay
&& check_media_bay_by_base(pmif
->regbase
, MB_CD
) == 0)
1156 #endif /* CONFIG_PMAC_MEDIABAY */
1158 hwif
->sg_max_nents
= MAX_DCMDS
;
1160 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1161 /* has a DBDMA controller channel */
1163 pmac_ide_setup_dma(pmif
, hwif
);
1164 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1166 /* We probe the hwif now */
1167 probe_hwif_init(hwif
);
1169 ide_proc_register_port(hwif
);
1175 * Attach to a macio probed interface
1177 static int __devinit
1178 pmac_ide_macio_attach(struct macio_dev
*mdev
, const struct of_device_id
*match
)
1181 unsigned long regbase
;
1184 pmac_ide_hwif_t
*pmif
;
1188 while (i
< MAX_HWIFS
&& (ide_hwifs
[i
].io_ports
[IDE_DATA_OFFSET
] != 0
1189 || pmac_ide
[i
].node
!= NULL
))
1191 if (i
>= MAX_HWIFS
) {
1192 printk(KERN_ERR
"ide-pmac: MacIO interface attach with no slot\n");
1193 printk(KERN_ERR
" %s\n", mdev
->ofdev
.node
->full_name
);
1197 pmif
= &pmac_ide
[i
];
1198 hwif
= &ide_hwifs
[i
];
1200 if (macio_resource_count(mdev
) == 0) {
1201 printk(KERN_WARNING
"ide%d: no address for %s\n",
1202 i
, mdev
->ofdev
.node
->full_name
);
1206 /* Request memory resource for IO ports */
1207 if (macio_request_resource(mdev
, 0, "ide-pmac (ports)")) {
1208 printk(KERN_ERR
"ide%d: can't request mmio resource !\n", i
);
1212 /* XXX This is bogus. Should be fixed in the registry by checking
1213 * the kind of host interrupt controller, a bit like gatwick
1214 * fixes in irq.c. That works well enough for the single case
1215 * where that happens though...
1217 if (macio_irq_count(mdev
) == 0) {
1218 printk(KERN_WARNING
"ide%d: no intrs for device %s, using 13\n",
1219 i
, mdev
->ofdev
.node
->full_name
);
1220 irq
= irq_create_mapping(NULL
, 13);
1222 irq
= macio_irq(mdev
, 0);
1224 base
= ioremap(macio_resource_start(mdev
, 0), 0x400);
1225 regbase
= (unsigned long) base
;
1227 hwif
->pci_dev
= mdev
->bus
->pdev
;
1228 hwif
->gendev
.parent
= &mdev
->ofdev
.dev
;
1231 pmif
->node
= mdev
->ofdev
.node
;
1232 pmif
->regbase
= regbase
;
1234 pmif
->kauai_fcr
= NULL
;
1235 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1236 if (macio_resource_count(mdev
) >= 2) {
1237 if (macio_request_resource(mdev
, 1, "ide-pmac (dma)"))
1238 printk(KERN_WARNING
"ide%d: can't request DMA resource !\n", i
);
1240 pmif
->dma_regs
= ioremap(macio_resource_start(mdev
, 1), 0x1000);
1242 pmif
->dma_regs
= NULL
;
1243 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1244 dev_set_drvdata(&mdev
->ofdev
.dev
, hwif
);
1246 rc
= pmac_ide_setup_device(pmif
, hwif
);
1248 /* The inteface is released to the common IDE layer */
1249 dev_set_drvdata(&mdev
->ofdev
.dev
, NULL
);
1252 iounmap(pmif
->dma_regs
);
1253 memset(pmif
, 0, sizeof(*pmif
));
1254 macio_release_resource(mdev
, 0);
1256 macio_release_resource(mdev
, 1);
1263 pmac_ide_macio_suspend(struct macio_dev
*mdev
, pm_message_t mesg
)
1265 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1268 if (mesg
.event
!= mdev
->ofdev
.dev
.power
.power_state
.event
1269 && mesg
.event
== PM_EVENT_SUSPEND
) {
1270 rc
= pmac_ide_do_suspend(hwif
);
1272 mdev
->ofdev
.dev
.power
.power_state
= mesg
;
1279 pmac_ide_macio_resume(struct macio_dev
*mdev
)
1281 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1284 if (mdev
->ofdev
.dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1285 rc
= pmac_ide_do_resume(hwif
);
1287 mdev
->ofdev
.dev
.power
.power_state
= PMSG_ON
;
1294 * Attach to a PCI probed interface
1296 static int __devinit
1297 pmac_ide_pci_attach(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1300 struct device_node
*np
;
1301 pmac_ide_hwif_t
*pmif
;
1303 unsigned long rbase
, rlen
;
1306 np
= pci_device_to_OF_node(pdev
);
1308 printk(KERN_ERR
"ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1312 while (i
< MAX_HWIFS
&& (ide_hwifs
[i
].io_ports
[IDE_DATA_OFFSET
] != 0
1313 || pmac_ide
[i
].node
!= NULL
))
1315 if (i
>= MAX_HWIFS
) {
1316 printk(KERN_ERR
"ide-pmac: PCI interface attach with no slot\n");
1317 printk(KERN_ERR
" %s\n", np
->full_name
);
1321 pmif
= &pmac_ide
[i
];
1322 hwif
= &ide_hwifs
[i
];
1324 if (pci_enable_device(pdev
)) {
1325 printk(KERN_WARNING
"ide%i: Can't enable PCI device for %s\n",
1329 pci_set_master(pdev
);
1331 if (pci_request_regions(pdev
, "Kauai ATA")) {
1332 printk(KERN_ERR
"ide%d: Cannot obtain PCI resources for %s\n",
1337 hwif
->pci_dev
= pdev
;
1338 hwif
->gendev
.parent
= &pdev
->dev
;
1342 rbase
= pci_resource_start(pdev
, 0);
1343 rlen
= pci_resource_len(pdev
, 0);
1345 base
= ioremap(rbase
, rlen
);
1346 pmif
->regbase
= (unsigned long) base
+ 0x2000;
1347 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1348 pmif
->dma_regs
= base
+ 0x1000;
1349 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1350 pmif
->kauai_fcr
= base
;
1351 pmif
->irq
= pdev
->irq
;
1353 pci_set_drvdata(pdev
, hwif
);
1355 rc
= pmac_ide_setup_device(pmif
, hwif
);
1357 /* The inteface is released to the common IDE layer */
1358 pci_set_drvdata(pdev
, NULL
);
1360 memset(pmif
, 0, sizeof(*pmif
));
1361 pci_release_regions(pdev
);
1368 pmac_ide_pci_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
1370 ide_hwif_t
*hwif
= (ide_hwif_t
*)pci_get_drvdata(pdev
);
1373 if (mesg
.event
!= pdev
->dev
.power
.power_state
.event
1374 && mesg
.event
== PM_EVENT_SUSPEND
) {
1375 rc
= pmac_ide_do_suspend(hwif
);
1377 pdev
->dev
.power
.power_state
= mesg
;
1384 pmac_ide_pci_resume(struct pci_dev
*pdev
)
1386 ide_hwif_t
*hwif
= (ide_hwif_t
*)pci_get_drvdata(pdev
);
1389 if (pdev
->dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1390 rc
= pmac_ide_do_resume(hwif
);
1392 pdev
->dev
.power
.power_state
= PMSG_ON
;
1398 static struct of_device_id pmac_ide_macio_match
[] =
1415 static struct macio_driver pmac_ide_macio_driver
=
1418 .match_table
= pmac_ide_macio_match
,
1419 .probe
= pmac_ide_macio_attach
,
1420 .suspend
= pmac_ide_macio_suspend
,
1421 .resume
= pmac_ide_macio_resume
,
1424 static const struct pci_device_id pmac_ide_pci_match
[] = {
1425 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_ATA
), 0 },
1426 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_IPID_ATA100
), 0 },
1427 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_K2_ATA100
), 0 },
1428 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_SH_ATA
), 0 },
1429 { PCI_VDEVICE(APPLE
, PCI_DEVICE_ID_APPLE_IPID2_ATA
), 0 },
1433 static struct pci_driver pmac_ide_pci_driver
= {
1435 .id_table
= pmac_ide_pci_match
,
1436 .probe
= pmac_ide_pci_attach
,
1437 .suspend
= pmac_ide_pci_suspend
,
1438 .resume
= pmac_ide_pci_resume
,
1440 MODULE_DEVICE_TABLE(pci
, pmac_ide_pci_match
);
1442 int __init
pmac_ide_probe(void)
1446 if (!machine_is(powermac
))
1449 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1450 error
= pci_register_driver(&pmac_ide_pci_driver
);
1453 error
= macio_register_driver(&pmac_ide_macio_driver
);
1455 pci_unregister_driver(&pmac_ide_pci_driver
);
1459 error
= macio_register_driver(&pmac_ide_macio_driver
);
1462 error
= pci_register_driver(&pmac_ide_pci_driver
);
1464 macio_unregister_driver(&pmac_ide_macio_driver
);
1472 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1475 * pmac_ide_build_dmatable builds the DBDMA command list
1476 * for a transfer and sets the DBDMA channel to point to it.
1479 pmac_ide_build_dmatable(ide_drive_t
*drive
, struct request
*rq
)
1481 struct dbdma_cmd
*table
;
1483 ide_hwif_t
*hwif
= HWIF(drive
);
1484 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1485 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1486 struct scatterlist
*sg
;
1487 int wr
= (rq_data_dir(rq
) == WRITE
);
1489 /* DMA table is already aligned */
1490 table
= (struct dbdma_cmd
*) pmif
->dma_table_cpu
;
1492 /* Make sure DMA controller is stopped (necessary ?) */
1493 writel((RUN
|PAUSE
|FLUSH
|WAKE
|DEAD
) << 16, &dma
->control
);
1494 while (readl(&dma
->status
) & RUN
)
1497 hwif
->sg_nents
= i
= ide_build_sglist(drive
, rq
);
1502 /* Build DBDMA commands list */
1503 sg
= hwif
->sg_table
;
1504 while (i
&& sg_dma_len(sg
)) {
1508 cur_addr
= sg_dma_address(sg
);
1509 cur_len
= sg_dma_len(sg
);
1511 if (pmif
->broken_dma
&& cur_addr
& (L1_CACHE_BYTES
- 1)) {
1512 if (pmif
->broken_dma_warn
== 0) {
1513 printk(KERN_WARNING
"%s: DMA on non aligned address,"
1514 "switching to PIO on Ohare chipset\n", drive
->name
);
1515 pmif
->broken_dma_warn
= 1;
1517 goto use_pio_instead
;
1520 unsigned int tc
= (cur_len
< 0xfe00)? cur_len
: 0xfe00;
1522 if (count
++ >= MAX_DCMDS
) {
1523 printk(KERN_WARNING
"%s: DMA table too small\n",
1525 goto use_pio_instead
;
1527 st_le16(&table
->command
, wr
? OUTPUT_MORE
: INPUT_MORE
);
1528 st_le16(&table
->req_count
, tc
);
1529 st_le32(&table
->phy_addr
, cur_addr
);
1531 table
->xfer_status
= 0;
1532 table
->res_count
= 0;
1541 /* convert the last command to an input/output last command */
1543 st_le16(&table
[-1].command
, wr
? OUTPUT_LAST
: INPUT_LAST
);
1544 /* add the stop command to the end of the list */
1545 memset(table
, 0, sizeof(struct dbdma_cmd
));
1546 st_le16(&table
->command
, DBDMA_STOP
);
1548 writel(hwif
->dmatable_dma
, &dma
->cmdptr
);
1552 printk(KERN_DEBUG
"%s: empty DMA table?\n", drive
->name
);
1554 pci_unmap_sg(hwif
->pci_dev
,
1557 hwif
->sg_dma_direction
);
1558 return 0; /* revert to PIO for this request */
1561 /* Teardown mappings after DMA has completed. */
1563 pmac_ide_destroy_dmatable (ide_drive_t
*drive
)
1565 ide_hwif_t
*hwif
= drive
->hwif
;
1566 struct pci_dev
*dev
= HWIF(drive
)->pci_dev
;
1567 struct scatterlist
*sg
= hwif
->sg_table
;
1568 int nents
= hwif
->sg_nents
;
1571 pci_unmap_sg(dev
, sg
, nents
, hwif
->sg_dma_direction
);
1577 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1578 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1581 pmac_ide_dma_setup(ide_drive_t
*drive
)
1583 ide_hwif_t
*hwif
= HWIF(drive
);
1584 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1585 struct request
*rq
= HWGROUP(drive
)->rq
;
1586 u8 unit
= (drive
->select
.b
.unit
& 0x01);
1591 ata4
= (pmif
->kind
== controller_kl_ata4
);
1593 if (!pmac_ide_build_dmatable(drive
, rq
)) {
1594 ide_map_sg(drive
, rq
);
1598 /* Apple adds 60ns to wrDataSetup on reads */
1599 if (ata4
&& (pmif
->timings
[unit
] & TR_66_UDMA_EN
)) {
1600 writel(pmif
->timings
[unit
] + (!rq_data_dir(rq
) ? 0x00800000UL
: 0),
1601 PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1602 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1605 drive
->waiting_for_dma
= 1;
1611 pmac_ide_dma_exec_cmd(ide_drive_t
*drive
, u8 command
)
1613 /* issue cmd to drive */
1614 ide_execute_command(drive
, command
, &ide_dma_intr
, 2*WAIT_CMD
, NULL
);
1618 * Kick the DMA controller into life after the DMA command has been issued
1622 pmac_ide_dma_start(ide_drive_t
*drive
)
1624 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1625 volatile struct dbdma_regs __iomem
*dma
;
1627 dma
= pmif
->dma_regs
;
1629 writel((RUN
<< 16) | RUN
, &dma
->control
);
1630 /* Make sure it gets to the controller right now */
1631 (void)readl(&dma
->control
);
1635 * After a DMA transfer, make sure the controller is stopped
1638 pmac_ide_dma_end (ide_drive_t
*drive
)
1640 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1641 volatile struct dbdma_regs __iomem
*dma
;
1646 dma
= pmif
->dma_regs
;
1648 drive
->waiting_for_dma
= 0;
1649 dstat
= readl(&dma
->status
);
1650 writel(((RUN
|WAKE
|DEAD
) << 16), &dma
->control
);
1651 pmac_ide_destroy_dmatable(drive
);
1652 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1653 * in theory, but with ATAPI decices doing buffer underruns, that would
1654 * cause us to disable DMA, which isn't what we want
1656 return (dstat
& (RUN
|DEAD
)) != RUN
;
1660 * Check out that the interrupt we got was for us. We can't always know this
1661 * for sure with those Apple interfaces (well, we could on the recent ones but
1662 * that's not implemented yet), on the other hand, we don't have shared interrupts
1663 * so it's not really a problem
1666 pmac_ide_dma_test_irq (ide_drive_t
*drive
)
1668 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1669 volatile struct dbdma_regs __iomem
*dma
;
1670 unsigned long status
, timeout
;
1674 dma
= pmif
->dma_regs
;
1676 /* We have to things to deal with here:
1678 * - The dbdma won't stop if the command was started
1679 * but completed with an error without transferring all
1680 * datas. This happens when bad blocks are met during
1681 * a multi-block transfer.
1683 * - The dbdma fifo hasn't yet finished flushing to
1684 * to system memory when the disk interrupt occurs.
1688 /* If ACTIVE is cleared, the STOP command have passed and
1689 * transfer is complete.
1691 status
= readl(&dma
->status
);
1692 if (!(status
& ACTIVE
))
1694 if (!drive
->waiting_for_dma
)
1695 printk(KERN_WARNING
"ide%d, ide_dma_test_irq \
1696 called while not waiting\n", HWIF(drive
)->index
);
1698 /* If dbdma didn't execute the STOP command yet, the
1699 * active bit is still set. We consider that we aren't
1700 * sharing interrupts (which is hopefully the case with
1701 * those controllers) and so we just try to flush the
1702 * channel for pending data in the fifo
1705 writel((FLUSH
<< 16) | FLUSH
, &dma
->control
);
1709 status
= readl(&dma
->status
);
1710 if ((status
& FLUSH
) == 0)
1712 if (++timeout
> 100) {
1713 printk(KERN_WARNING
"ide%d, ide_dma_test_irq \
1714 timeout flushing channel\n", HWIF(drive
)->index
);
1721 static void pmac_ide_dma_host_off(ide_drive_t
*drive
)
1725 static void pmac_ide_dma_host_on(ide_drive_t
*drive
)
1730 pmac_ide_dma_lost_irq (ide_drive_t
*drive
)
1732 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1733 volatile struct dbdma_regs __iomem
*dma
;
1734 unsigned long status
;
1738 dma
= pmif
->dma_regs
;
1740 status
= readl(&dma
->status
);
1741 printk(KERN_ERR
"ide-pmac lost interrupt, dma status: %lx\n", status
);
1745 * Allocate the data structures needed for using DMA with an interface
1746 * and fill the proper list of functions pointers
1749 pmac_ide_setup_dma(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
)
1751 /* We won't need pci_dev if we switch to generic consistent
1754 if (hwif
->pci_dev
== NULL
)
1757 * Allocate space for the DBDMA commands.
1758 * The +2 is +1 for the stop command and +1 to allow for
1759 * aligning the start address to a multiple of 16 bytes.
1761 pmif
->dma_table_cpu
= (struct dbdma_cmd
*)pci_alloc_consistent(
1763 (MAX_DCMDS
+ 2) * sizeof(struct dbdma_cmd
),
1764 &hwif
->dmatable_dma
);
1765 if (pmif
->dma_table_cpu
== NULL
) {
1766 printk(KERN_ERR
"%s: unable to allocate DMA command list\n",
1771 hwif
->dma_off_quietly
= &ide_dma_off_quietly
;
1772 hwif
->ide_dma_on
= &__ide_dma_on
;
1773 hwif
->dma_setup
= &pmac_ide_dma_setup
;
1774 hwif
->dma_exec_cmd
= &pmac_ide_dma_exec_cmd
;
1775 hwif
->dma_start
= &pmac_ide_dma_start
;
1776 hwif
->ide_dma_end
= &pmac_ide_dma_end
;
1777 hwif
->ide_dma_test_irq
= &pmac_ide_dma_test_irq
;
1778 hwif
->dma_host_off
= &pmac_ide_dma_host_off
;
1779 hwif
->dma_host_on
= &pmac_ide_dma_host_on
;
1780 hwif
->dma_timeout
= &ide_dma_timeout
;
1781 hwif
->dma_lost_irq
= &pmac_ide_dma_lost_irq
;
1783 hwif
->atapi_dma
= 1;
1784 switch(pmif
->kind
) {
1785 case controller_sh_ata6
:
1786 hwif
->ultra_mask
= pmif
->cable_80
? 0x7f : 0x07;
1787 hwif
->mwdma_mask
= 0x07;
1788 hwif
->swdma_mask
= 0x00;
1790 case controller_un_ata6
:
1791 case controller_k2_ata6
:
1792 hwif
->ultra_mask
= pmif
->cable_80
? 0x3f : 0x07;
1793 hwif
->mwdma_mask
= 0x07;
1794 hwif
->swdma_mask
= 0x00;
1796 case controller_kl_ata4
:
1797 hwif
->ultra_mask
= pmif
->cable_80
? 0x1f : 0x07;
1798 hwif
->mwdma_mask
= 0x07;
1799 hwif
->swdma_mask
= 0x00;
1802 hwif
->ultra_mask
= 0x00;
1803 hwif
->mwdma_mask
= 0x07;
1804 hwif
->swdma_mask
= 0x00;
1809 hwif
->drives
[1].autodma
= hwif
->drives
[0].autodma
= hwif
->autodma
;
1812 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */