]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ide/ppc/pmac.c
fix file specification in comments
[mirror_ubuntu-artful-kernel.git] / drivers / ide / ppc / pmac.c
1 /*
2 * linux/drivers/ide/ppc/pmac.c
3 *
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
6 * for doing DMA.
7 *
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Some code taken from drivers/ide/ide-dma.c:
16 *
17 * Copyright (c) 1995-1998 Mark Lord
18 *
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
23 *
24 */
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/ide.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37
38 #include <asm/prom.h>
39 #include <asm/io.h>
40 #include <asm/dbdma.h>
41 #include <asm/ide.h>
42 #include <asm/pci-bridge.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/irq.h>
47
48 #ifndef CONFIG_PPC64
49 #include <asm/mediabay.h>
50 #endif
51
52 #include "ide-timing.h"
53
54 #undef IDE_PMAC_DEBUG
55
56 #define DMA_WAIT_TIMEOUT 50
57
58 typedef struct pmac_ide_hwif {
59 unsigned long regbase;
60 int irq;
61 int kind;
62 int aapl_bus_id;
63 unsigned cable_80 : 1;
64 unsigned mediabay : 1;
65 unsigned broken_dma : 1;
66 unsigned broken_dma_warn : 1;
67 struct device_node* node;
68 struct macio_dev *mdev;
69 u32 timings[4];
70 volatile u32 __iomem * *kauai_fcr;
71 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
72 /* Those fields are duplicating what is in hwif. We currently
73 * can't use the hwif ones because of some assumptions that are
74 * beeing done by the generic code about the kind of dma controller
75 * and format of the dma table. This will have to be fixed though.
76 */
77 volatile struct dbdma_regs __iomem * dma_regs;
78 struct dbdma_cmd* dma_table_cpu;
79 #endif
80
81 } pmac_ide_hwif_t;
82
83 static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
84 static int pmac_ide_count;
85
86 enum {
87 controller_ohare, /* OHare based */
88 controller_heathrow, /* Heathrow/Paddington */
89 controller_kl_ata3, /* KeyLargo ATA-3 */
90 controller_kl_ata4, /* KeyLargo ATA-4 */
91 controller_un_ata6, /* UniNorth2 ATA-6 */
92 controller_k2_ata6, /* K2 ATA-6 */
93 controller_sh_ata6, /* Shasta ATA-6 */
94 };
95
96 static const char* model_name[] = {
97 "OHare ATA", /* OHare based */
98 "Heathrow ATA", /* Heathrow/Paddington */
99 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
100 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
101 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
102 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
103 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
104 };
105
106 /*
107 * Extra registers, both 32-bit little-endian
108 */
109 #define IDE_TIMING_CONFIG 0x200
110 #define IDE_INTERRUPT 0x300
111
112 /* Kauai (U2) ATA has different register setup */
113 #define IDE_KAUAI_PIO_CONFIG 0x200
114 #define IDE_KAUAI_ULTRA_CONFIG 0x210
115 #define IDE_KAUAI_POLL_CONFIG 0x220
116
117 /*
118 * Timing configuration register definitions
119 */
120
121 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
122 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
123 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
124 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
125 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
126
127 /* 133Mhz cell, found in shasta.
128 * See comments about 100 Mhz Uninorth 2...
129 * Note that PIO_MASK and MDMA_MASK seem to overlap
130 */
131 #define TR_133_PIOREG_PIO_MASK 0xff000fff
132 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
133 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
134 #define TR_133_UDMAREG_UDMA_EN 0x00000001
135
136 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
137 * this one yet, it appears as a pci device (106b/0033) on uninorth
138 * internal PCI bus and it's clock is controlled like gem or fw. It
139 * appears to be an evolution of keylargo ATA4 with a timing register
140 * extended to 2 32bits registers and a similar DBDMA channel. Other
141 * registers seem to exist but I can't tell much about them.
142 *
143 * So far, I'm using pre-calculated tables for this extracted from
144 * the values used by the MacOS X driver.
145 *
146 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
147 * register controls the UDMA timings. At least, it seems bit 0
148 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
149 * cycle time in units of 10ns. Bits 8..15 are used by I don't
150 * know their meaning yet
151 */
152 #define TR_100_PIOREG_PIO_MASK 0xff000fff
153 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
154 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
155 #define TR_100_UDMAREG_UDMA_EN 0x00000001
156
157
158 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
159 * 40 connector cable and to 4 on 80 connector one.
160 * Clock unit is 15ns (66Mhz)
161 *
162 * 3 Values can be programmed:
163 * - Write data setup, which appears to match the cycle time. They
164 * also call it DIOW setup.
165 * - Ready to pause time (from spec)
166 * - Address setup. That one is weird. I don't see where exactly
167 * it fits in UDMA cycles, I got it's name from an obscure piece
168 * of commented out code in Darwin. They leave it to 0, we do as
169 * well, despite a comment that would lead to think it has a
170 * min value of 45ns.
171 * Apple also add 60ns to the write data setup (or cycle time ?) on
172 * reads.
173 */
174 #define TR_66_UDMA_MASK 0xfff00000
175 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
176 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
177 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
178 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
179 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
180 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
181 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
182 #define TR_66_MDMA_MASK 0x000ffc00
183 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
184 #define TR_66_MDMA_RECOVERY_SHIFT 15
185 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
186 #define TR_66_MDMA_ACCESS_SHIFT 10
187 #define TR_66_PIO_MASK 0x000003ff
188 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
189 #define TR_66_PIO_RECOVERY_SHIFT 5
190 #define TR_66_PIO_ACCESS_MASK 0x0000001f
191 #define TR_66_PIO_ACCESS_SHIFT 0
192
193 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
194 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
195 *
196 * The access time and recovery time can be programmed. Some older
197 * Darwin code base limit OHare to 150ns cycle time. I decided to do
198 * the same here fore safety against broken old hardware ;)
199 * The HalfTick bit, when set, adds half a clock (15ns) to the access
200 * time and removes one from recovery. It's not supported on KeyLargo
201 * implementation afaik. The E bit appears to be set for PIO mode 0 and
202 * is used to reach long timings used in this mode.
203 */
204 #define TR_33_MDMA_MASK 0x003ff800
205 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
206 #define TR_33_MDMA_RECOVERY_SHIFT 16
207 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
208 #define TR_33_MDMA_ACCESS_SHIFT 11
209 #define TR_33_MDMA_HALFTICK 0x00200000
210 #define TR_33_PIO_MASK 0x000007ff
211 #define TR_33_PIO_E 0x00000400
212 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
213 #define TR_33_PIO_RECOVERY_SHIFT 5
214 #define TR_33_PIO_ACCESS_MASK 0x0000001f
215 #define TR_33_PIO_ACCESS_SHIFT 0
216
217 /*
218 * Interrupt register definitions
219 */
220 #define IDE_INTR_DMA 0x80000000
221 #define IDE_INTR_DEVICE 0x40000000
222
223 /*
224 * FCR Register on Kauai. Not sure what bit 0x4 is ...
225 */
226 #define KAUAI_FCR_UATA_MAGIC 0x00000004
227 #define KAUAI_FCR_UATA_RESET_N 0x00000002
228 #define KAUAI_FCR_UATA_ENABLE 0x00000001
229
230 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
231
232 /* Rounded Multiword DMA timings
233 *
234 * I gave up finding a generic formula for all controller
235 * types and instead, built tables based on timing values
236 * used by Apple in Darwin's implementation.
237 */
238 struct mdma_timings_t {
239 int accessTime;
240 int recoveryTime;
241 int cycleTime;
242 };
243
244 struct mdma_timings_t mdma_timings_33[] =
245 {
246 { 240, 240, 480 },
247 { 180, 180, 360 },
248 { 135, 135, 270 },
249 { 120, 120, 240 },
250 { 105, 105, 210 },
251 { 90, 90, 180 },
252 { 75, 75, 150 },
253 { 75, 45, 120 },
254 { 0, 0, 0 }
255 };
256
257 struct mdma_timings_t mdma_timings_33k[] =
258 {
259 { 240, 240, 480 },
260 { 180, 180, 360 },
261 { 150, 150, 300 },
262 { 120, 120, 240 },
263 { 90, 120, 210 },
264 { 90, 90, 180 },
265 { 90, 60, 150 },
266 { 90, 30, 120 },
267 { 0, 0, 0 }
268 };
269
270 struct mdma_timings_t mdma_timings_66[] =
271 {
272 { 240, 240, 480 },
273 { 180, 180, 360 },
274 { 135, 135, 270 },
275 { 120, 120, 240 },
276 { 105, 105, 210 },
277 { 90, 90, 180 },
278 { 90, 75, 165 },
279 { 75, 45, 120 },
280 { 0, 0, 0 }
281 };
282
283 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
284 struct {
285 int addrSetup; /* ??? */
286 int rdy2pause;
287 int wrDataSetup;
288 } kl66_udma_timings[] =
289 {
290 { 0, 180, 120 }, /* Mode 0 */
291 { 0, 150, 90 }, /* 1 */
292 { 0, 120, 60 }, /* 2 */
293 { 0, 90, 45 }, /* 3 */
294 { 0, 90, 30 } /* 4 */
295 };
296
297 /* UniNorth 2 ATA/100 timings */
298 struct kauai_timing {
299 int cycle_time;
300 u32 timing_reg;
301 };
302
303 static struct kauai_timing kauai_pio_timings[] =
304 {
305 { 930 , 0x08000fff },
306 { 600 , 0x08000a92 },
307 { 383 , 0x0800060f },
308 { 360 , 0x08000492 },
309 { 330 , 0x0800048f },
310 { 300 , 0x080003cf },
311 { 270 , 0x080003cc },
312 { 240 , 0x0800038b },
313 { 239 , 0x0800030c },
314 { 180 , 0x05000249 },
315 { 120 , 0x04000148 }
316 };
317
318 static struct kauai_timing kauai_mdma_timings[] =
319 {
320 { 1260 , 0x00fff000 },
321 { 480 , 0x00618000 },
322 { 360 , 0x00492000 },
323 { 270 , 0x0038e000 },
324 { 240 , 0x0030c000 },
325 { 210 , 0x002cb000 },
326 { 180 , 0x00249000 },
327 { 150 , 0x00209000 },
328 { 120 , 0x00148000 },
329 { 0 , 0 },
330 };
331
332 static struct kauai_timing kauai_udma_timings[] =
333 {
334 { 120 , 0x000070c0 },
335 { 90 , 0x00005d80 },
336 { 60 , 0x00004a60 },
337 { 45 , 0x00003a50 },
338 { 30 , 0x00002a30 },
339 { 20 , 0x00002921 },
340 { 0 , 0 },
341 };
342
343 static struct kauai_timing shasta_pio_timings[] =
344 {
345 { 930 , 0x08000fff },
346 { 600 , 0x0A000c97 },
347 { 383 , 0x07000712 },
348 { 360 , 0x040003cd },
349 { 330 , 0x040003cd },
350 { 300 , 0x040003cd },
351 { 270 , 0x040003cd },
352 { 240 , 0x040003cd },
353 { 239 , 0x040003cd },
354 { 180 , 0x0400028b },
355 { 120 , 0x0400010a }
356 };
357
358 static struct kauai_timing shasta_mdma_timings[] =
359 {
360 { 1260 , 0x00fff000 },
361 { 480 , 0x00820800 },
362 { 360 , 0x00820800 },
363 { 270 , 0x00820800 },
364 { 240 , 0x00820800 },
365 { 210 , 0x00820800 },
366 { 180 , 0x00820800 },
367 { 150 , 0x0028b000 },
368 { 120 , 0x001ca000 },
369 { 0 , 0 },
370 };
371
372 static struct kauai_timing shasta_udma133_timings[] =
373 {
374 { 120 , 0x00035901, },
375 { 90 , 0x000348b1, },
376 { 60 , 0x00033881, },
377 { 45 , 0x00033861, },
378 { 30 , 0x00033841, },
379 { 20 , 0x00033031, },
380 { 15 , 0x00033021, },
381 { 0 , 0 },
382 };
383
384
385 static inline u32
386 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
387 {
388 int i;
389
390 for (i=0; table[i].cycle_time; i++)
391 if (cycle_time > table[i+1].cycle_time)
392 return table[i].timing_reg;
393 return 0;
394 }
395
396 /* allow up to 256 DBDMA commands per xfer */
397 #define MAX_DCMDS 256
398
399 /*
400 * Wait 1s for disk to answer on IDE bus after a hard reset
401 * of the device (via GPIO/FCR).
402 *
403 * Some devices seem to "pollute" the bus even after dropping
404 * the BSY bit (typically some combo drives slave on the UDMA
405 * bus) after a hard reset. Since we hard reset all drives on
406 * KeyLargo ATA66, we have to keep that delay around. I may end
407 * up not hard resetting anymore on these and keep the delay only
408 * for older interfaces instead (we have to reset when coming
409 * from MacOS...) --BenH.
410 */
411 #define IDE_WAKEUP_DELAY (1*HZ)
412
413 static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
414 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
415 static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed);
416 static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio);
417 static void pmac_ide_selectproc(ide_drive_t *drive);
418 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
419
420 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
421
422 /*
423 * N.B. this can't be an initfunc, because the media-bay task can
424 * call ide_[un]register at any time.
425 */
426 void
427 pmac_ide_init_hwif_ports(hw_regs_t *hw,
428 unsigned long data_port, unsigned long ctrl_port,
429 int *irq)
430 {
431 int i, ix;
432
433 if (data_port == 0)
434 return;
435
436 for (ix = 0; ix < MAX_HWIFS; ++ix)
437 if (data_port == pmac_ide[ix].regbase)
438 break;
439
440 if (ix >= MAX_HWIFS) {
441 /* Probably a PCI interface... */
442 for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
443 hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
444 hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
445 return;
446 }
447
448 for (i = 0; i < 8; ++i)
449 hw->io_ports[i] = data_port + i * 0x10;
450 hw->io_ports[8] = data_port + 0x160;
451
452 if (irq != NULL)
453 *irq = pmac_ide[ix].irq;
454
455 hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
456 }
457
458 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
459
460 /*
461 * Apply the timings of the proper unit (master/slave) to the shared
462 * timing register when selecting that unit. This version is for
463 * ASICs with a single timing register
464 */
465 static void
466 pmac_ide_selectproc(ide_drive_t *drive)
467 {
468 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
469
470 if (pmif == NULL)
471 return;
472
473 if (drive->select.b.unit & 0x01)
474 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
475 else
476 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
477 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
478 }
479
480 /*
481 * Apply the timings of the proper unit (master/slave) to the shared
482 * timing register when selecting that unit. This version is for
483 * ASICs with a dual timing register (Kauai)
484 */
485 static void
486 pmac_ide_kauai_selectproc(ide_drive_t *drive)
487 {
488 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
489
490 if (pmif == NULL)
491 return;
492
493 if (drive->select.b.unit & 0x01) {
494 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
495 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
496 } else {
497 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
498 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
499 }
500 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
501 }
502
503 /*
504 * Force an update of controller timing values for a given drive
505 */
506 static void
507 pmac_ide_do_update_timings(ide_drive_t *drive)
508 {
509 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
510
511 if (pmif == NULL)
512 return;
513
514 if (pmif->kind == controller_sh_ata6 ||
515 pmif->kind == controller_un_ata6 ||
516 pmif->kind == controller_k2_ata6)
517 pmac_ide_kauai_selectproc(drive);
518 else
519 pmac_ide_selectproc(drive);
520 }
521
522 static void
523 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
524 {
525 u32 tmp;
526
527 writeb(value, (void __iomem *) port);
528 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
529 }
530
531 /*
532 * Send the SET_FEATURE IDE command to the drive and update drive->id with
533 * the new state. We currently don't use the generic routine as it used to
534 * cause various trouble, especially with older mediabays.
535 * This code is sometimes triggering a spurrious interrupt though, I need
536 * to sort that out sooner or later and see if I can finally get the
537 * common version to work properly in all cases
538 */
539 static int
540 pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
541 {
542 ide_hwif_t *hwif = HWIF(drive);
543 int result = 1;
544
545 disable_irq_nosync(hwif->irq);
546 udelay(1);
547 SELECT_DRIVE(drive);
548 SELECT_MASK(drive, 0);
549 udelay(1);
550 /* Get rid of pending error state */
551 (void) hwif->INB(IDE_STATUS_REG);
552 /* Timeout bumped for some powerbooks */
553 if (wait_for_ready(drive, 2000)) {
554 /* Timeout bumped for some powerbooks */
555 printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
556 "before SET_FEATURE!\n", drive->name);
557 goto out;
558 }
559 udelay(10);
560 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
561 hwif->OUTB(command, IDE_NSECTOR_REG);
562 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
563 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
564 udelay(1);
565 /* Timeout bumped for some powerbooks */
566 result = wait_for_ready(drive, 2000);
567 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
568 if (result)
569 printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
570 "after SET_FEATURE !\n", drive->name);
571 out:
572 SELECT_MASK(drive, 0);
573 if (result == 0) {
574 drive->id->dma_ultra &= ~0xFF00;
575 drive->id->dma_mword &= ~0x0F00;
576 drive->id->dma_1word &= ~0x0F00;
577 switch(command) {
578 case XFER_UDMA_7:
579 drive->id->dma_ultra |= 0x8080; break;
580 case XFER_UDMA_6:
581 drive->id->dma_ultra |= 0x4040; break;
582 case XFER_UDMA_5:
583 drive->id->dma_ultra |= 0x2020; break;
584 case XFER_UDMA_4:
585 drive->id->dma_ultra |= 0x1010; break;
586 case XFER_UDMA_3:
587 drive->id->dma_ultra |= 0x0808; break;
588 case XFER_UDMA_2:
589 drive->id->dma_ultra |= 0x0404; break;
590 case XFER_UDMA_1:
591 drive->id->dma_ultra |= 0x0202; break;
592 case XFER_UDMA_0:
593 drive->id->dma_ultra |= 0x0101; break;
594 case XFER_MW_DMA_2:
595 drive->id->dma_mword |= 0x0404; break;
596 case XFER_MW_DMA_1:
597 drive->id->dma_mword |= 0x0202; break;
598 case XFER_MW_DMA_0:
599 drive->id->dma_mword |= 0x0101; break;
600 case XFER_SW_DMA_2:
601 drive->id->dma_1word |= 0x0404; break;
602 case XFER_SW_DMA_1:
603 drive->id->dma_1word |= 0x0202; break;
604 case XFER_SW_DMA_0:
605 drive->id->dma_1word |= 0x0101; break;
606 default: break;
607 }
608 }
609 enable_irq(hwif->irq);
610 return result;
611 }
612
613 /*
614 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
615 */
616 static void
617 pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
618 {
619 ide_pio_data_t d;
620 u32 *timings;
621 unsigned accessTicks, recTicks;
622 unsigned accessTime, recTime;
623 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
624
625 if (pmif == NULL)
626 return;
627
628 /* which drive is it ? */
629 timings = &pmif->timings[drive->select.b.unit & 0x01];
630
631 pio = ide_get_best_pio_mode(drive, pio, 4, &d);
632
633 switch (pmif->kind) {
634 case controller_sh_ata6: {
635 /* 133Mhz cell */
636 u32 tr = kauai_lookup_timing(shasta_pio_timings, d.cycle_time);
637 if (tr == 0)
638 return;
639 *timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr;
640 break;
641 }
642 case controller_un_ata6:
643 case controller_k2_ata6: {
644 /* 100Mhz cell */
645 u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time);
646 if (tr == 0)
647 return;
648 *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
649 break;
650 }
651 case controller_kl_ata4:
652 /* 66Mhz cell */
653 recTime = d.cycle_time - ide_pio_timings[pio].active_time
654 - ide_pio_timings[pio].setup_time;
655 recTime = max(recTime, 150U);
656 accessTime = ide_pio_timings[pio].active_time;
657 accessTime = max(accessTime, 150U);
658 accessTicks = SYSCLK_TICKS_66(accessTime);
659 accessTicks = min(accessTicks, 0x1fU);
660 recTicks = SYSCLK_TICKS_66(recTime);
661 recTicks = min(recTicks, 0x1fU);
662 *timings = ((*timings) & ~TR_66_PIO_MASK) |
663 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
664 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
665 break;
666 default: {
667 /* 33Mhz cell */
668 int ebit = 0;
669 recTime = d.cycle_time - ide_pio_timings[pio].active_time
670 - ide_pio_timings[pio].setup_time;
671 recTime = max(recTime, 150U);
672 accessTime = ide_pio_timings[pio].active_time;
673 accessTime = max(accessTime, 150U);
674 accessTicks = SYSCLK_TICKS(accessTime);
675 accessTicks = min(accessTicks, 0x1fU);
676 accessTicks = max(accessTicks, 4U);
677 recTicks = SYSCLK_TICKS(recTime);
678 recTicks = min(recTicks, 0x1fU);
679 recTicks = max(recTicks, 5U) - 4;
680 if (recTicks > 9) {
681 recTicks--; /* guess, but it's only for PIO0, so... */
682 ebit = 1;
683 }
684 *timings = ((*timings) & ~TR_33_PIO_MASK) |
685 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
686 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
687 if (ebit)
688 *timings |= TR_33_PIO_E;
689 break;
690 }
691 }
692
693 #ifdef IDE_PMAC_DEBUG
694 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
695 drive->name, pio, *timings);
696 #endif
697
698 if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG))
699 pmac_ide_do_update_timings(drive);
700 }
701
702 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
703
704 /*
705 * Calculate KeyLargo ATA/66 UDMA timings
706 */
707 static int
708 set_timings_udma_ata4(u32 *timings, u8 speed)
709 {
710 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
711
712 if (speed > XFER_UDMA_4)
713 return 1;
714
715 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
716 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
717 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
718
719 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
720 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
721 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
722 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
723 TR_66_UDMA_EN;
724 #ifdef IDE_PMAC_DEBUG
725 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
726 speed & 0xf, *timings);
727 #endif
728
729 return 0;
730 }
731
732 /*
733 * Calculate Kauai ATA/100 UDMA timings
734 */
735 static int
736 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
737 {
738 struct ide_timing *t = ide_timing_find_mode(speed);
739 u32 tr;
740
741 if (speed > XFER_UDMA_5 || t == NULL)
742 return 1;
743 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
744 if (tr == 0)
745 return 1;
746 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
747 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
748
749 return 0;
750 }
751
752 /*
753 * Calculate Shasta ATA/133 UDMA timings
754 */
755 static int
756 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
757 {
758 struct ide_timing *t = ide_timing_find_mode(speed);
759 u32 tr;
760
761 if (speed > XFER_UDMA_6 || t == NULL)
762 return 1;
763 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
764 if (tr == 0)
765 return 1;
766 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
767 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
768
769 return 0;
770 }
771
772 /*
773 * Calculate MDMA timings for all cells
774 */
775 static int
776 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
777 u8 speed, int drive_cycle_time)
778 {
779 int cycleTime, accessTime = 0, recTime = 0;
780 unsigned accessTicks, recTicks;
781 struct mdma_timings_t* tm = NULL;
782 int i;
783
784 /* Get default cycle time for mode */
785 switch(speed & 0xf) {
786 case 0: cycleTime = 480; break;
787 case 1: cycleTime = 150; break;
788 case 2: cycleTime = 120; break;
789 default:
790 return 1;
791 }
792 /* Adjust for drive */
793 if (drive_cycle_time && drive_cycle_time > cycleTime)
794 cycleTime = drive_cycle_time;
795 /* OHare limits according to some old Apple sources */
796 if ((intf_type == controller_ohare) && (cycleTime < 150))
797 cycleTime = 150;
798 /* Get the proper timing array for this controller */
799 switch(intf_type) {
800 case controller_sh_ata6:
801 case controller_un_ata6:
802 case controller_k2_ata6:
803 break;
804 case controller_kl_ata4:
805 tm = mdma_timings_66;
806 break;
807 case controller_kl_ata3:
808 tm = mdma_timings_33k;
809 break;
810 default:
811 tm = mdma_timings_33;
812 break;
813 }
814 if (tm != NULL) {
815 /* Lookup matching access & recovery times */
816 i = -1;
817 for (;;) {
818 if (tm[i+1].cycleTime < cycleTime)
819 break;
820 i++;
821 }
822 if (i < 0)
823 return 1;
824 cycleTime = tm[i].cycleTime;
825 accessTime = tm[i].accessTime;
826 recTime = tm[i].recoveryTime;
827
828 #ifdef IDE_PMAC_DEBUG
829 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
830 drive->name, cycleTime, accessTime, recTime);
831 #endif
832 }
833 switch(intf_type) {
834 case controller_sh_ata6: {
835 /* 133Mhz cell */
836 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
837 if (tr == 0)
838 return 1;
839 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
840 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
841 }
842 case controller_un_ata6:
843 case controller_k2_ata6: {
844 /* 100Mhz cell */
845 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
846 if (tr == 0)
847 return 1;
848 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
849 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
850 }
851 break;
852 case controller_kl_ata4:
853 /* 66Mhz cell */
854 accessTicks = SYSCLK_TICKS_66(accessTime);
855 accessTicks = min(accessTicks, 0x1fU);
856 accessTicks = max(accessTicks, 0x1U);
857 recTicks = SYSCLK_TICKS_66(recTime);
858 recTicks = min(recTicks, 0x1fU);
859 recTicks = max(recTicks, 0x3U);
860 /* Clear out mdma bits and disable udma */
861 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
862 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
863 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
864 break;
865 case controller_kl_ata3:
866 /* 33Mhz cell on KeyLargo */
867 accessTicks = SYSCLK_TICKS(accessTime);
868 accessTicks = max(accessTicks, 1U);
869 accessTicks = min(accessTicks, 0x1fU);
870 accessTime = accessTicks * IDE_SYSCLK_NS;
871 recTicks = SYSCLK_TICKS(recTime);
872 recTicks = max(recTicks, 1U);
873 recTicks = min(recTicks, 0x1fU);
874 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
875 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
876 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
877 break;
878 default: {
879 /* 33Mhz cell on others */
880 int halfTick = 0;
881 int origAccessTime = accessTime;
882 int origRecTime = recTime;
883
884 accessTicks = SYSCLK_TICKS(accessTime);
885 accessTicks = max(accessTicks, 1U);
886 accessTicks = min(accessTicks, 0x1fU);
887 accessTime = accessTicks * IDE_SYSCLK_NS;
888 recTicks = SYSCLK_TICKS(recTime);
889 recTicks = max(recTicks, 2U) - 1;
890 recTicks = min(recTicks, 0x1fU);
891 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
892 if ((accessTicks > 1) &&
893 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
894 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
895 halfTick = 1;
896 accessTicks--;
897 }
898 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
899 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
900 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
901 if (halfTick)
902 *timings |= TR_33_MDMA_HALFTICK;
903 }
904 }
905 #ifdef IDE_PMAC_DEBUG
906 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
907 drive->name, speed & 0xf, *timings);
908 #endif
909 return 0;
910 }
911 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
912
913 /*
914 * Speedproc. This function is called by the core to set any of the standard
915 * timing (PIO, MDMA or UDMA) to both the drive and the controller.
916 * You may notice we don't use this function on normal "dma check" operation,
917 * our dedicated function is more precise as it uses the drive provided
918 * cycle time value. We should probably fix this one to deal with that too...
919 */
920 static int
921 pmac_ide_tune_chipset (ide_drive_t *drive, byte speed)
922 {
923 int unit = (drive->select.b.unit & 0x01);
924 int ret = 0;
925 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
926 u32 *timings, *timings2;
927
928 if (pmif == NULL)
929 return 1;
930
931 timings = &pmif->timings[unit];
932 timings2 = &pmif->timings[unit+2];
933
934 switch(speed) {
935 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
936 case XFER_UDMA_6:
937 if (pmif->kind != controller_sh_ata6)
938 return 1;
939 case XFER_UDMA_5:
940 if (pmif->kind != controller_un_ata6 &&
941 pmif->kind != controller_k2_ata6 &&
942 pmif->kind != controller_sh_ata6)
943 return 1;
944 case XFER_UDMA_4:
945 case XFER_UDMA_3:
946 if (HWIF(drive)->udma_four == 0)
947 return 1;
948 case XFER_UDMA_2:
949 case XFER_UDMA_1:
950 case XFER_UDMA_0:
951 if (pmif->kind == controller_kl_ata4)
952 ret = set_timings_udma_ata4(timings, speed);
953 else if (pmif->kind == controller_un_ata6
954 || pmif->kind == controller_k2_ata6)
955 ret = set_timings_udma_ata6(timings, timings2, speed);
956 else if (pmif->kind == controller_sh_ata6)
957 ret = set_timings_udma_shasta(timings, timings2, speed);
958 else
959 ret = 1;
960 break;
961 case XFER_MW_DMA_2:
962 case XFER_MW_DMA_1:
963 case XFER_MW_DMA_0:
964 ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0);
965 break;
966 case XFER_SW_DMA_2:
967 case XFER_SW_DMA_1:
968 case XFER_SW_DMA_0:
969 return 1;
970 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
971 case XFER_PIO_4:
972 case XFER_PIO_3:
973 case XFER_PIO_2:
974 case XFER_PIO_1:
975 case XFER_PIO_0:
976 pmac_ide_tuneproc(drive, speed & 0x07);
977 break;
978 default:
979 ret = 1;
980 }
981 if (ret)
982 return ret;
983
984 ret = pmac_ide_do_setfeature(drive, speed);
985 if (ret)
986 return ret;
987
988 pmac_ide_do_update_timings(drive);
989 drive->current_speed = speed;
990
991 return 0;
992 }
993
994 /*
995 * Blast some well known "safe" values to the timing registers at init or
996 * wakeup from sleep time, before we do real calculation
997 */
998 static void
999 sanitize_timings(pmac_ide_hwif_t *pmif)
1000 {
1001 unsigned int value, value2 = 0;
1002
1003 switch(pmif->kind) {
1004 case controller_sh_ata6:
1005 value = 0x0a820c97;
1006 value2 = 0x00033031;
1007 break;
1008 case controller_un_ata6:
1009 case controller_k2_ata6:
1010 value = 0x08618a92;
1011 value2 = 0x00002921;
1012 break;
1013 case controller_kl_ata4:
1014 value = 0x0008438c;
1015 break;
1016 case controller_kl_ata3:
1017 value = 0x00084526;
1018 break;
1019 case controller_heathrow:
1020 case controller_ohare:
1021 default:
1022 value = 0x00074526;
1023 break;
1024 }
1025 pmif->timings[0] = pmif->timings[1] = value;
1026 pmif->timings[2] = pmif->timings[3] = value2;
1027 }
1028
1029 unsigned long
1030 pmac_ide_get_base(int index)
1031 {
1032 return pmac_ide[index].regbase;
1033 }
1034
1035 int
1036 pmac_ide_check_base(unsigned long base)
1037 {
1038 int ix;
1039
1040 for (ix = 0; ix < MAX_HWIFS; ++ix)
1041 if (base == pmac_ide[ix].regbase)
1042 return ix;
1043 return -1;
1044 }
1045
1046 int
1047 pmac_ide_get_irq(unsigned long base)
1048 {
1049 int ix;
1050
1051 for (ix = 0; ix < MAX_HWIFS; ++ix)
1052 if (base == pmac_ide[ix].regbase)
1053 return pmac_ide[ix].irq;
1054 return 0;
1055 }
1056
1057 static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
1058
1059 dev_t __init
1060 pmac_find_ide_boot(char *bootdevice, int n)
1061 {
1062 int i;
1063
1064 /*
1065 * Look through the list of IDE interfaces for this one.
1066 */
1067 for (i = 0; i < pmac_ide_count; ++i) {
1068 char *name;
1069 if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
1070 continue;
1071 name = pmac_ide[i].node->full_name;
1072 if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
1073 /* XXX should cope with the 2nd drive as well... */
1074 return MKDEV(ide_majors[i], 0);
1075 }
1076 }
1077
1078 return 0;
1079 }
1080
1081 /* Suspend call back, should be called after the child devices
1082 * have actually been suspended
1083 */
1084 static int
1085 pmac_ide_do_suspend(ide_hwif_t *hwif)
1086 {
1087 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1088
1089 /* We clear the timings */
1090 pmif->timings[0] = 0;
1091 pmif->timings[1] = 0;
1092
1093 disable_irq(pmif->irq);
1094
1095 /* The media bay will handle itself just fine */
1096 if (pmif->mediabay)
1097 return 0;
1098
1099 /* Kauai has bus control FCRs directly here */
1100 if (pmif->kauai_fcr) {
1101 u32 fcr = readl(pmif->kauai_fcr);
1102 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
1103 writel(fcr, pmif->kauai_fcr);
1104 }
1105
1106 /* Disable the bus on older machines and the cell on kauai */
1107 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
1108 0);
1109
1110 return 0;
1111 }
1112
1113 /* Resume call back, should be called before the child devices
1114 * are resumed
1115 */
1116 static int
1117 pmac_ide_do_resume(ide_hwif_t *hwif)
1118 {
1119 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1120
1121 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1122 if (!pmif->mediabay) {
1123 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
1124 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
1125 msleep(10);
1126 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
1127
1128 /* Kauai has it different */
1129 if (pmif->kauai_fcr) {
1130 u32 fcr = readl(pmif->kauai_fcr);
1131 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
1132 writel(fcr, pmif->kauai_fcr);
1133 }
1134
1135 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1136 }
1137
1138 /* Sanitize drive timings */
1139 sanitize_timings(pmif);
1140
1141 enable_irq(pmif->irq);
1142
1143 return 0;
1144 }
1145
1146 /*
1147 * Setup, register & probe an IDE channel driven by this driver, this is
1148 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1149 * that ends up beeing free of any device is not kept around by this driver
1150 * (it is kept in 2.4). This introduce an interface numbering change on some
1151 * rare machines unfortunately, but it's better this way.
1152 */
1153 static int
1154 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1155 {
1156 struct device_node *np = pmif->node;
1157 const int *bidp;
1158
1159 pmif->cable_80 = 0;
1160 pmif->broken_dma = pmif->broken_dma_warn = 0;
1161 if (device_is_compatible(np, "shasta-ata"))
1162 pmif->kind = controller_sh_ata6;
1163 else if (device_is_compatible(np, "kauai-ata"))
1164 pmif->kind = controller_un_ata6;
1165 else if (device_is_compatible(np, "K2-UATA"))
1166 pmif->kind = controller_k2_ata6;
1167 else if (device_is_compatible(np, "keylargo-ata")) {
1168 if (strcmp(np->name, "ata-4") == 0)
1169 pmif->kind = controller_kl_ata4;
1170 else
1171 pmif->kind = controller_kl_ata3;
1172 } else if (device_is_compatible(np, "heathrow-ata"))
1173 pmif->kind = controller_heathrow;
1174 else {
1175 pmif->kind = controller_ohare;
1176 pmif->broken_dma = 1;
1177 }
1178
1179 bidp = get_property(np, "AAPL,bus-id", NULL);
1180 pmif->aapl_bus_id = bidp ? *bidp : 0;
1181
1182 /* Get cable type from device-tree */
1183 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
1184 || pmif->kind == controller_k2_ata6
1185 || pmif->kind == controller_sh_ata6) {
1186 const char* cable = get_property(np, "cable-type", NULL);
1187 if (cable && !strncmp(cable, "80-", 3))
1188 pmif->cable_80 = 1;
1189 }
1190 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1191 * they have a 80 conductor cable, this seem to be always the case unless
1192 * the user mucked around
1193 */
1194 if (device_is_compatible(np, "K2-UATA") ||
1195 device_is_compatible(np, "shasta-ata"))
1196 pmif->cable_80 = 1;
1197
1198 /* On Kauai-type controllers, we make sure the FCR is correct */
1199 if (pmif->kauai_fcr)
1200 writel(KAUAI_FCR_UATA_MAGIC |
1201 KAUAI_FCR_UATA_RESET_N |
1202 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1203
1204 pmif->mediabay = 0;
1205
1206 /* Make sure we have sane timings */
1207 sanitize_timings(pmif);
1208
1209 #ifndef CONFIG_PPC64
1210 /* XXX FIXME: Media bay stuff need re-organizing */
1211 if (np->parent && np->parent->name
1212 && strcasecmp(np->parent->name, "media-bay") == 0) {
1213 #ifdef CONFIG_PMAC_MEDIABAY
1214 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
1215 #endif /* CONFIG_PMAC_MEDIABAY */
1216 pmif->mediabay = 1;
1217 if (!bidp)
1218 pmif->aapl_bus_id = 1;
1219 } else if (pmif->kind == controller_ohare) {
1220 /* The code below is having trouble on some ohare machines
1221 * (timing related ?). Until I can put my hand on one of these
1222 * units, I keep the old way
1223 */
1224 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1225 } else
1226 #endif
1227 {
1228 /* This is necessary to enable IDE when net-booting */
1229 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1230 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1231 msleep(10);
1232 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1233 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1234 }
1235
1236 /* Setup MMIO ops */
1237 default_hwif_mmiops(hwif);
1238 hwif->OUTBSYNC = pmac_outbsync;
1239
1240 /* Tell common code _not_ to mess with resources */
1241 hwif->mmio = 2;
1242 hwif->hwif_data = pmif;
1243 pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
1244 memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
1245 hwif->chipset = ide_pmac;
1246 hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
1247 hwif->hold = pmif->mediabay;
1248 hwif->udma_four = pmif->cable_80;
1249 hwif->drives[0].unmask = 1;
1250 hwif->drives[1].unmask = 1;
1251 hwif->tuneproc = pmac_ide_tuneproc;
1252 if (pmif->kind == controller_un_ata6
1253 || pmif->kind == controller_k2_ata6
1254 || pmif->kind == controller_sh_ata6)
1255 hwif->selectproc = pmac_ide_kauai_selectproc;
1256 else
1257 hwif->selectproc = pmac_ide_selectproc;
1258 hwif->speedproc = pmac_ide_tune_chipset;
1259
1260 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1261 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1262 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1263
1264 #ifdef CONFIG_PMAC_MEDIABAY
1265 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1266 hwif->noprobe = 0;
1267 #endif /* CONFIG_PMAC_MEDIABAY */
1268
1269 hwif->sg_max_nents = MAX_DCMDS;
1270
1271 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1272 /* has a DBDMA controller channel */
1273 if (pmif->dma_regs)
1274 pmac_ide_setup_dma(pmif, hwif);
1275 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1276
1277 /* We probe the hwif now */
1278 probe_hwif_init(hwif);
1279
1280 return 0;
1281 }
1282
1283 /*
1284 * Attach to a macio probed interface
1285 */
1286 static int __devinit
1287 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1288 {
1289 void __iomem *base;
1290 unsigned long regbase;
1291 int irq;
1292 ide_hwif_t *hwif;
1293 pmac_ide_hwif_t *pmif;
1294 int i, rc;
1295
1296 i = 0;
1297 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1298 || pmac_ide[i].node != NULL))
1299 ++i;
1300 if (i >= MAX_HWIFS) {
1301 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1302 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1303 return -ENODEV;
1304 }
1305
1306 pmif = &pmac_ide[i];
1307 hwif = &ide_hwifs[i];
1308
1309 if (macio_resource_count(mdev) == 0) {
1310 printk(KERN_WARNING "ide%d: no address for %s\n",
1311 i, mdev->ofdev.node->full_name);
1312 return -ENXIO;
1313 }
1314
1315 /* Request memory resource for IO ports */
1316 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1317 printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
1318 return -EBUSY;
1319 }
1320
1321 /* XXX This is bogus. Should be fixed in the registry by checking
1322 * the kind of host interrupt controller, a bit like gatwick
1323 * fixes in irq.c. That works well enough for the single case
1324 * where that happens though...
1325 */
1326 if (macio_irq_count(mdev) == 0) {
1327 printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1328 i, mdev->ofdev.node->full_name);
1329 irq = irq_create_mapping(NULL, 13);
1330 } else
1331 irq = macio_irq(mdev, 0);
1332
1333 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1334 regbase = (unsigned long) base;
1335
1336 hwif->pci_dev = mdev->bus->pdev;
1337 hwif->gendev.parent = &mdev->ofdev.dev;
1338
1339 pmif->mdev = mdev;
1340 pmif->node = mdev->ofdev.node;
1341 pmif->regbase = regbase;
1342 pmif->irq = irq;
1343 pmif->kauai_fcr = NULL;
1344 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1345 if (macio_resource_count(mdev) >= 2) {
1346 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1347 printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1348 else
1349 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1350 } else
1351 pmif->dma_regs = NULL;
1352 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1353 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1354
1355 rc = pmac_ide_setup_device(pmif, hwif);
1356 if (rc != 0) {
1357 /* The inteface is released to the common IDE layer */
1358 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1359 iounmap(base);
1360 if (pmif->dma_regs)
1361 iounmap(pmif->dma_regs);
1362 memset(pmif, 0, sizeof(*pmif));
1363 macio_release_resource(mdev, 0);
1364 if (pmif->dma_regs)
1365 macio_release_resource(mdev, 1);
1366 }
1367
1368 return rc;
1369 }
1370
1371 static int
1372 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1373 {
1374 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1375 int rc = 0;
1376
1377 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1378 && mesg.event == PM_EVENT_SUSPEND) {
1379 rc = pmac_ide_do_suspend(hwif);
1380 if (rc == 0)
1381 mdev->ofdev.dev.power.power_state = mesg;
1382 }
1383
1384 return rc;
1385 }
1386
1387 static int
1388 pmac_ide_macio_resume(struct macio_dev *mdev)
1389 {
1390 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1391 int rc = 0;
1392
1393 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1394 rc = pmac_ide_do_resume(hwif);
1395 if (rc == 0)
1396 mdev->ofdev.dev.power.power_state = PMSG_ON;
1397 }
1398
1399 return rc;
1400 }
1401
1402 /*
1403 * Attach to a PCI probed interface
1404 */
1405 static int __devinit
1406 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1407 {
1408 ide_hwif_t *hwif;
1409 struct device_node *np;
1410 pmac_ide_hwif_t *pmif;
1411 void __iomem *base;
1412 unsigned long rbase, rlen;
1413 int i, rc;
1414
1415 np = pci_device_to_OF_node(pdev);
1416 if (np == NULL) {
1417 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1418 return -ENODEV;
1419 }
1420 i = 0;
1421 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1422 || pmac_ide[i].node != NULL))
1423 ++i;
1424 if (i >= MAX_HWIFS) {
1425 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1426 printk(KERN_ERR " %s\n", np->full_name);
1427 return -ENODEV;
1428 }
1429
1430 pmif = &pmac_ide[i];
1431 hwif = &ide_hwifs[i];
1432
1433 if (pci_enable_device(pdev)) {
1434 printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1435 i, np->full_name);
1436 return -ENXIO;
1437 }
1438 pci_set_master(pdev);
1439
1440 if (pci_request_regions(pdev, "Kauai ATA")) {
1441 printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1442 i, np->full_name);
1443 return -ENXIO;
1444 }
1445
1446 hwif->pci_dev = pdev;
1447 hwif->gendev.parent = &pdev->dev;
1448 pmif->mdev = NULL;
1449 pmif->node = np;
1450
1451 rbase = pci_resource_start(pdev, 0);
1452 rlen = pci_resource_len(pdev, 0);
1453
1454 base = ioremap(rbase, rlen);
1455 pmif->regbase = (unsigned long) base + 0x2000;
1456 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1457 pmif->dma_regs = base + 0x1000;
1458 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1459 pmif->kauai_fcr = base;
1460 pmif->irq = pdev->irq;
1461
1462 pci_set_drvdata(pdev, hwif);
1463
1464 rc = pmac_ide_setup_device(pmif, hwif);
1465 if (rc != 0) {
1466 /* The inteface is released to the common IDE layer */
1467 pci_set_drvdata(pdev, NULL);
1468 iounmap(base);
1469 memset(pmif, 0, sizeof(*pmif));
1470 pci_release_regions(pdev);
1471 }
1472
1473 return rc;
1474 }
1475
1476 static int
1477 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1478 {
1479 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1480 int rc = 0;
1481
1482 if (mesg.event != pdev->dev.power.power_state.event
1483 && mesg.event == PM_EVENT_SUSPEND) {
1484 rc = pmac_ide_do_suspend(hwif);
1485 if (rc == 0)
1486 pdev->dev.power.power_state = mesg;
1487 }
1488
1489 return rc;
1490 }
1491
1492 static int
1493 pmac_ide_pci_resume(struct pci_dev *pdev)
1494 {
1495 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1496 int rc = 0;
1497
1498 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1499 rc = pmac_ide_do_resume(hwif);
1500 if (rc == 0)
1501 pdev->dev.power.power_state = PMSG_ON;
1502 }
1503
1504 return rc;
1505 }
1506
1507 static struct of_device_id pmac_ide_macio_match[] =
1508 {
1509 {
1510 .name = "IDE",
1511 },
1512 {
1513 .name = "ATA",
1514 },
1515 {
1516 .type = "ide",
1517 },
1518 {
1519 .type = "ata",
1520 },
1521 {},
1522 };
1523
1524 static struct macio_driver pmac_ide_macio_driver =
1525 {
1526 .name = "ide-pmac",
1527 .match_table = pmac_ide_macio_match,
1528 .probe = pmac_ide_macio_attach,
1529 .suspend = pmac_ide_macio_suspend,
1530 .resume = pmac_ide_macio_resume,
1531 };
1532
1533 static struct pci_device_id pmac_ide_pci_match[] = {
1534 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA,
1535 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1536 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100,
1537 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1538 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100,
1539 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1540 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
1541 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1542 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA,
1543 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1544 };
1545
1546 static struct pci_driver pmac_ide_pci_driver = {
1547 .name = "ide-pmac",
1548 .id_table = pmac_ide_pci_match,
1549 .probe = pmac_ide_pci_attach,
1550 .suspend = pmac_ide_pci_suspend,
1551 .resume = pmac_ide_pci_resume,
1552 };
1553 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1554
1555 void __init
1556 pmac_ide_probe(void)
1557 {
1558 if (!machine_is(powermac))
1559 return;
1560
1561 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1562 pci_register_driver(&pmac_ide_pci_driver);
1563 macio_register_driver(&pmac_ide_macio_driver);
1564 #else
1565 macio_register_driver(&pmac_ide_macio_driver);
1566 pci_register_driver(&pmac_ide_pci_driver);
1567 #endif
1568 }
1569
1570 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1571
1572 /*
1573 * pmac_ide_build_dmatable builds the DBDMA command list
1574 * for a transfer and sets the DBDMA channel to point to it.
1575 */
1576 static int
1577 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1578 {
1579 struct dbdma_cmd *table;
1580 int i, count = 0;
1581 ide_hwif_t *hwif = HWIF(drive);
1582 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1583 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1584 struct scatterlist *sg;
1585 int wr = (rq_data_dir(rq) == WRITE);
1586
1587 /* DMA table is already aligned */
1588 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1589
1590 /* Make sure DMA controller is stopped (necessary ?) */
1591 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1592 while (readl(&dma->status) & RUN)
1593 udelay(1);
1594
1595 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1596
1597 if (!i)
1598 return 0;
1599
1600 /* Build DBDMA commands list */
1601 sg = hwif->sg_table;
1602 while (i && sg_dma_len(sg)) {
1603 u32 cur_addr;
1604 u32 cur_len;
1605
1606 cur_addr = sg_dma_address(sg);
1607 cur_len = sg_dma_len(sg);
1608
1609 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1610 if (pmif->broken_dma_warn == 0) {
1611 printk(KERN_WARNING "%s: DMA on non aligned address,"
1612 "switching to PIO on Ohare chipset\n", drive->name);
1613 pmif->broken_dma_warn = 1;
1614 }
1615 goto use_pio_instead;
1616 }
1617 while (cur_len) {
1618 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1619
1620 if (count++ >= MAX_DCMDS) {
1621 printk(KERN_WARNING "%s: DMA table too small\n",
1622 drive->name);
1623 goto use_pio_instead;
1624 }
1625 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1626 st_le16(&table->req_count, tc);
1627 st_le32(&table->phy_addr, cur_addr);
1628 table->cmd_dep = 0;
1629 table->xfer_status = 0;
1630 table->res_count = 0;
1631 cur_addr += tc;
1632 cur_len -= tc;
1633 ++table;
1634 }
1635 sg++;
1636 i--;
1637 }
1638
1639 /* convert the last command to an input/output last command */
1640 if (count) {
1641 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1642 /* add the stop command to the end of the list */
1643 memset(table, 0, sizeof(struct dbdma_cmd));
1644 st_le16(&table->command, DBDMA_STOP);
1645 mb();
1646 writel(hwif->dmatable_dma, &dma->cmdptr);
1647 return 1;
1648 }
1649
1650 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1651 use_pio_instead:
1652 pci_unmap_sg(hwif->pci_dev,
1653 hwif->sg_table,
1654 hwif->sg_nents,
1655 hwif->sg_dma_direction);
1656 return 0; /* revert to PIO for this request */
1657 }
1658
1659 /* Teardown mappings after DMA has completed. */
1660 static void
1661 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1662 {
1663 ide_hwif_t *hwif = drive->hwif;
1664 struct pci_dev *dev = HWIF(drive)->pci_dev;
1665 struct scatterlist *sg = hwif->sg_table;
1666 int nents = hwif->sg_nents;
1667
1668 if (nents) {
1669 pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
1670 hwif->sg_nents = 0;
1671 }
1672 }
1673
1674 /*
1675 * Pick up best MDMA timing for the drive and apply it
1676 */
1677 static int
1678 pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
1679 {
1680 ide_hwif_t *hwif = HWIF(drive);
1681 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1682 int drive_cycle_time;
1683 struct hd_driveid *id = drive->id;
1684 u32 *timings, *timings2;
1685 u32 timing_local[2];
1686 int ret;
1687
1688 /* which drive is it ? */
1689 timings = &pmif->timings[drive->select.b.unit & 0x01];
1690 timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
1691
1692 /* Check if drive provide explicit cycle time */
1693 if ((id->field_valid & 2) && (id->eide_dma_time))
1694 drive_cycle_time = id->eide_dma_time;
1695 else
1696 drive_cycle_time = 0;
1697
1698 /* Copy timings to local image */
1699 timing_local[0] = *timings;
1700 timing_local[1] = *timings2;
1701
1702 /* Calculate controller timings */
1703 ret = set_timings_mdma( drive, pmif->kind,
1704 &timing_local[0],
1705 &timing_local[1],
1706 mode,
1707 drive_cycle_time);
1708 if (ret)
1709 return 0;
1710
1711 /* Set feature on drive */
1712 printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
1713 ret = pmac_ide_do_setfeature(drive, mode);
1714 if (ret) {
1715 printk(KERN_WARNING "%s: Failed !\n", drive->name);
1716 return 0;
1717 }
1718
1719 /* Apply timings to controller */
1720 *timings = timing_local[0];
1721 *timings2 = timing_local[1];
1722
1723 /* Set speed info in drive */
1724 drive->current_speed = mode;
1725 if (!drive->init_speed)
1726 drive->init_speed = mode;
1727
1728 return 1;
1729 }
1730
1731 /*
1732 * Pick up best UDMA timing for the drive and apply it
1733 */
1734 static int
1735 pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
1736 {
1737 ide_hwif_t *hwif = HWIF(drive);
1738 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1739 u32 *timings, *timings2;
1740 u32 timing_local[2];
1741 int ret;
1742
1743 /* which drive is it ? */
1744 timings = &pmif->timings[drive->select.b.unit & 0x01];
1745 timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
1746
1747 /* Copy timings to local image */
1748 timing_local[0] = *timings;
1749 timing_local[1] = *timings2;
1750
1751 /* Calculate timings for interface */
1752 if (pmif->kind == controller_un_ata6
1753 || pmif->kind == controller_k2_ata6)
1754 ret = set_timings_udma_ata6( &timing_local[0],
1755 &timing_local[1],
1756 mode);
1757 else if (pmif->kind == controller_sh_ata6)
1758 ret = set_timings_udma_shasta( &timing_local[0],
1759 &timing_local[1],
1760 mode);
1761 else
1762 ret = set_timings_udma_ata4(&timing_local[0], mode);
1763 if (ret)
1764 return 0;
1765
1766 /* Set feature on drive */
1767 printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
1768 ret = pmac_ide_do_setfeature(drive, mode);
1769 if (ret) {
1770 printk(KERN_WARNING "%s: Failed !\n", drive->name);
1771 return 0;
1772 }
1773
1774 /* Apply timings to controller */
1775 *timings = timing_local[0];
1776 *timings2 = timing_local[1];
1777
1778 /* Set speed info in drive */
1779 drive->current_speed = mode;
1780 if (!drive->init_speed)
1781 drive->init_speed = mode;
1782
1783 return 1;
1784 }
1785
1786 /*
1787 * Check what is the best DMA timing setting for the drive and
1788 * call appropriate functions to apply it.
1789 */
1790 static int
1791 pmac_ide_dma_check(ide_drive_t *drive)
1792 {
1793 struct hd_driveid *id = drive->id;
1794 ide_hwif_t *hwif = HWIF(drive);
1795 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1796 int enable = 1;
1797 int map;
1798 drive->using_dma = 0;
1799
1800 if (drive->media == ide_floppy)
1801 enable = 0;
1802 if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive))
1803 enable = 0;
1804 if (__ide_dma_bad_drive(drive))
1805 enable = 0;
1806
1807 if (enable) {
1808 short mode;
1809
1810 map = XFER_MWDMA;
1811 if (pmif->kind == controller_kl_ata4
1812 || pmif->kind == controller_un_ata6
1813 || pmif->kind == controller_k2_ata6
1814 || pmif->kind == controller_sh_ata6) {
1815 map |= XFER_UDMA;
1816 if (pmif->cable_80) {
1817 map |= XFER_UDMA_66;
1818 if (pmif->kind == controller_un_ata6 ||
1819 pmif->kind == controller_k2_ata6 ||
1820 pmif->kind == controller_sh_ata6)
1821 map |= XFER_UDMA_100;
1822 if (pmif->kind == controller_sh_ata6)
1823 map |= XFER_UDMA_133;
1824 }
1825 }
1826 mode = ide_find_best_mode(drive, map);
1827 if (mode & XFER_UDMA)
1828 drive->using_dma = pmac_ide_udma_enable(drive, mode);
1829 else if (mode & XFER_MWDMA)
1830 drive->using_dma = pmac_ide_mdma_enable(drive, mode);
1831 hwif->OUTB(0, IDE_CONTROL_REG);
1832 /* Apply settings to controller */
1833 pmac_ide_do_update_timings(drive);
1834 }
1835 return 0;
1836 }
1837
1838 /*
1839 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1840 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1841 */
1842 static int
1843 pmac_ide_dma_setup(ide_drive_t *drive)
1844 {
1845 ide_hwif_t *hwif = HWIF(drive);
1846 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1847 struct request *rq = HWGROUP(drive)->rq;
1848 u8 unit = (drive->select.b.unit & 0x01);
1849 u8 ata4;
1850
1851 if (pmif == NULL)
1852 return 1;
1853 ata4 = (pmif->kind == controller_kl_ata4);
1854
1855 if (!pmac_ide_build_dmatable(drive, rq)) {
1856 ide_map_sg(drive, rq);
1857 return 1;
1858 }
1859
1860 /* Apple adds 60ns to wrDataSetup on reads */
1861 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1862 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1863 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1864 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1865 }
1866
1867 drive->waiting_for_dma = 1;
1868
1869 return 0;
1870 }
1871
1872 static void
1873 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1874 {
1875 /* issue cmd to drive */
1876 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1877 }
1878
1879 /*
1880 * Kick the DMA controller into life after the DMA command has been issued
1881 * to the drive.
1882 */
1883 static void
1884 pmac_ide_dma_start(ide_drive_t *drive)
1885 {
1886 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1887 volatile struct dbdma_regs __iomem *dma;
1888
1889 dma = pmif->dma_regs;
1890
1891 writel((RUN << 16) | RUN, &dma->control);
1892 /* Make sure it gets to the controller right now */
1893 (void)readl(&dma->control);
1894 }
1895
1896 /*
1897 * After a DMA transfer, make sure the controller is stopped
1898 */
1899 static int
1900 pmac_ide_dma_end (ide_drive_t *drive)
1901 {
1902 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1903 volatile struct dbdma_regs __iomem *dma;
1904 u32 dstat;
1905
1906 if (pmif == NULL)
1907 return 0;
1908 dma = pmif->dma_regs;
1909
1910 drive->waiting_for_dma = 0;
1911 dstat = readl(&dma->status);
1912 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1913 pmac_ide_destroy_dmatable(drive);
1914 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1915 * in theory, but with ATAPI decices doing buffer underruns, that would
1916 * cause us to disable DMA, which isn't what we want
1917 */
1918 return (dstat & (RUN|DEAD)) != RUN;
1919 }
1920
1921 /*
1922 * Check out that the interrupt we got was for us. We can't always know this
1923 * for sure with those Apple interfaces (well, we could on the recent ones but
1924 * that's not implemented yet), on the other hand, we don't have shared interrupts
1925 * so it's not really a problem
1926 */
1927 static int
1928 pmac_ide_dma_test_irq (ide_drive_t *drive)
1929 {
1930 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1931 volatile struct dbdma_regs __iomem *dma;
1932 unsigned long status, timeout;
1933
1934 if (pmif == NULL)
1935 return 0;
1936 dma = pmif->dma_regs;
1937
1938 /* We have to things to deal with here:
1939 *
1940 * - The dbdma won't stop if the command was started
1941 * but completed with an error without transferring all
1942 * datas. This happens when bad blocks are met during
1943 * a multi-block transfer.
1944 *
1945 * - The dbdma fifo hasn't yet finished flushing to
1946 * to system memory when the disk interrupt occurs.
1947 *
1948 */
1949
1950 /* If ACTIVE is cleared, the STOP command have passed and
1951 * transfer is complete.
1952 */
1953 status = readl(&dma->status);
1954 if (!(status & ACTIVE))
1955 return 1;
1956 if (!drive->waiting_for_dma)
1957 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1958 called while not waiting\n", HWIF(drive)->index);
1959
1960 /* If dbdma didn't execute the STOP command yet, the
1961 * active bit is still set. We consider that we aren't
1962 * sharing interrupts (which is hopefully the case with
1963 * those controllers) and so we just try to flush the
1964 * channel for pending data in the fifo
1965 */
1966 udelay(1);
1967 writel((FLUSH << 16) | FLUSH, &dma->control);
1968 timeout = 0;
1969 for (;;) {
1970 udelay(1);
1971 status = readl(&dma->status);
1972 if ((status & FLUSH) == 0)
1973 break;
1974 if (++timeout > 100) {
1975 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1976 timeout flushing channel\n", HWIF(drive)->index);
1977 break;
1978 }
1979 }
1980 return 1;
1981 }
1982
1983 static int
1984 pmac_ide_dma_host_off (ide_drive_t *drive)
1985 {
1986 return 0;
1987 }
1988
1989 static int
1990 pmac_ide_dma_host_on (ide_drive_t *drive)
1991 {
1992 return 0;
1993 }
1994
1995 static int
1996 pmac_ide_dma_lostirq (ide_drive_t *drive)
1997 {
1998 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1999 volatile struct dbdma_regs __iomem *dma;
2000 unsigned long status;
2001
2002 if (pmif == NULL)
2003 return 0;
2004 dma = pmif->dma_regs;
2005
2006 status = readl(&dma->status);
2007 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
2008 return 0;
2009 }
2010
2011 /*
2012 * Allocate the data structures needed for using DMA with an interface
2013 * and fill the proper list of functions pointers
2014 */
2015 static void __init
2016 pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
2017 {
2018 /* We won't need pci_dev if we switch to generic consistent
2019 * DMA routines ...
2020 */
2021 if (hwif->pci_dev == NULL)
2022 return;
2023 /*
2024 * Allocate space for the DBDMA commands.
2025 * The +2 is +1 for the stop command and +1 to allow for
2026 * aligning the start address to a multiple of 16 bytes.
2027 */
2028 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
2029 hwif->pci_dev,
2030 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
2031 &hwif->dmatable_dma);
2032 if (pmif->dma_table_cpu == NULL) {
2033 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
2034 hwif->name);
2035 return;
2036 }
2037
2038 hwif->ide_dma_off_quietly = &__ide_dma_off_quietly;
2039 hwif->ide_dma_on = &__ide_dma_on;
2040 hwif->ide_dma_check = &pmac_ide_dma_check;
2041 hwif->dma_setup = &pmac_ide_dma_setup;
2042 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
2043 hwif->dma_start = &pmac_ide_dma_start;
2044 hwif->ide_dma_end = &pmac_ide_dma_end;
2045 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
2046 hwif->ide_dma_host_off = &pmac_ide_dma_host_off;
2047 hwif->ide_dma_host_on = &pmac_ide_dma_host_on;
2048 hwif->ide_dma_timeout = &__ide_dma_timeout;
2049 hwif->ide_dma_lostirq = &pmac_ide_dma_lostirq;
2050
2051 hwif->atapi_dma = 1;
2052 switch(pmif->kind) {
2053 case controller_sh_ata6:
2054 hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
2055 hwif->mwdma_mask = 0x07;
2056 hwif->swdma_mask = 0x00;
2057 break;
2058 case controller_un_ata6:
2059 case controller_k2_ata6:
2060 hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
2061 hwif->mwdma_mask = 0x07;
2062 hwif->swdma_mask = 0x00;
2063 break;
2064 case controller_kl_ata4:
2065 hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
2066 hwif->mwdma_mask = 0x07;
2067 hwif->swdma_mask = 0x00;
2068 break;
2069 default:
2070 hwif->ultra_mask = 0x00;
2071 hwif->mwdma_mask = 0x07;
2072 hwif->swdma_mask = 0x00;
2073 break;
2074 }
2075 }
2076
2077 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */