]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ieee1394/eth1394.c
mm: Remove slab destructors from kmem_cache_create().
[mirror_ubuntu-artful-kernel.git] / drivers / ieee1394 / eth1394.c
1 /*
2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3 *
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7 *
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 */
24
25 /*
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
28 *
29 * TODO:
30 * RFC 2734 related:
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32 *
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
40 */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86 struct list_head list;
87 int offset;
88 int len;
89 };
90
91 struct partial_datagram {
92 struct list_head list;
93 u16 dgl;
94 u16 dg_size;
95 u16 ether_type;
96 struct sk_buff *skb;
97 char *pbuf;
98 struct list_head frag_info;
99 };
100
101 struct pdg_list {
102 struct list_head list; /* partial datagram list per node */
103 unsigned int sz; /* partial datagram list size per node */
104 spinlock_t lock; /* partial datagram lock */
105 };
106
107 struct eth1394_host_info {
108 struct hpsb_host *host;
109 struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113 struct unit_directory *ud;
114 struct list_head list;
115 };
116
117 struct eth1394_node_info {
118 u16 maxpayload; /* max payload */
119 u8 sspd; /* max speed */
120 u64 fifo; /* FIFO address */
121 struct pdg_list pdg; /* partial RX datagram lists */
122 int dgl; /* outgoing datagram label */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133 sizeof(struct eth1394_uf_hdr),
134 sizeof(struct eth1394_ff_hdr),
135 sizeof(struct eth1394_sf_hdr),
136 sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /* S100, S200, S400, S800, S1600, S3200 */
141 512, 1024, 2048, 4096, 4096, 4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149 * The max_partial_datagrams parameter is the maximum number of fragmented
150 * datagrams per node that eth1394 will keep in memory. Providing an upper
151 * bound allows us to limit the amount of memory that partial datagrams
152 * consume in the event that some partial datagrams are never completed.
153 */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157 "Maximum number of partially received fragmented datagrams "
158 "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162 unsigned short type, void *daddr, void *saddr,
163 unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
166 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
167 static void ether1394_header_cache_update(struct hh_cache *hh,
168 struct net_device *dev,
169 unsigned char *haddr);
170 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
171 static void ether1394_iso(struct hpsb_iso *iso);
172
173 static struct ethtool_ops ethtool_ops;
174
175 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
176 quadlet_t *data, u64 addr, size_t len, u16 flags);
177 static void ether1394_add_host(struct hpsb_host *host);
178 static void ether1394_remove_host(struct hpsb_host *host);
179 static void ether1394_host_reset(struct hpsb_host *host);
180
181 /* Function for incoming 1394 packets */
182 static struct hpsb_address_ops addr_ops = {
183 .write = ether1394_write,
184 };
185
186 /* Ieee1394 highlevel driver functions */
187 static struct hpsb_highlevel eth1394_highlevel = {
188 .name = driver_name,
189 .add_host = ether1394_add_host,
190 .remove_host = ether1394_remove_host,
191 .host_reset = ether1394_host_reset,
192 };
193
194 static int ether1394_recv_init(struct eth1394_priv *priv)
195 {
196 unsigned int iso_buf_size;
197
198 /* FIXME: rawiso limits us to PAGE_SIZE */
199 iso_buf_size = min((unsigned int)PAGE_SIZE,
200 2 * (1U << (priv->host->csr.max_rec + 1)));
201
202 priv->iso = hpsb_iso_recv_init(priv->host,
203 ETHER1394_GASP_BUFFERS * iso_buf_size,
204 ETHER1394_GASP_BUFFERS,
205 priv->broadcast_channel,
206 HPSB_ISO_DMA_PACKET_PER_BUFFER,
207 1, ether1394_iso);
208 if (priv->iso == NULL) {
209 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
210 priv->bc_state = ETHER1394_BC_ERROR;
211 return -EAGAIN;
212 }
213
214 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
215 priv->bc_state = ETHER1394_BC_STOPPED;
216 else
217 priv->bc_state = ETHER1394_BC_RUNNING;
218 return 0;
219 }
220
221 /* This is called after an "ifup" */
222 static int ether1394_open(struct net_device *dev)
223 {
224 struct eth1394_priv *priv = netdev_priv(dev);
225 int ret;
226
227 if (priv->bc_state == ETHER1394_BC_ERROR) {
228 ret = ether1394_recv_init(priv);
229 if (ret)
230 return ret;
231 }
232 netif_start_queue(dev);
233 return 0;
234 }
235
236 /* This is called after an "ifdown" */
237 static int ether1394_stop(struct net_device *dev)
238 {
239 /* flush priv->wake */
240 flush_scheduled_work();
241
242 netif_stop_queue(dev);
243 return 0;
244 }
245
246 /* Return statistics to the caller */
247 static struct net_device_stats *ether1394_stats(struct net_device *dev)
248 {
249 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
250 }
251
252 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
253 * so that's what we do. Should we increment the stat counters too? */
254 static void ether1394_tx_timeout(struct net_device *dev)
255 {
256 struct hpsb_host *host =
257 ((struct eth1394_priv *)netdev_priv(dev))->host;
258
259 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
260 ether1394_host_reset(host);
261 }
262
263 static inline int ether1394_max_mtu(struct hpsb_host* host)
264 {
265 return (1 << (host->csr.max_rec + 1))
266 - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
267 }
268
269 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
270 {
271 int max_mtu;
272
273 if (new_mtu < 68)
274 return -EINVAL;
275
276 max_mtu = ether1394_max_mtu(
277 ((struct eth1394_priv *)netdev_priv(dev))->host);
278 if (new_mtu > max_mtu) {
279 ETH1394_PRINT(KERN_INFO, dev->name,
280 "Local node constrains MTU to %d\n", max_mtu);
281 return -ERANGE;
282 }
283
284 dev->mtu = new_mtu;
285 return 0;
286 }
287
288 static void purge_partial_datagram(struct list_head *old)
289 {
290 struct partial_datagram *pd;
291 struct list_head *lh, *n;
292 struct fragment_info *fi;
293
294 pd = list_entry(old, struct partial_datagram, list);
295
296 list_for_each_safe(lh, n, &pd->frag_info) {
297 fi = list_entry(lh, struct fragment_info, list);
298 list_del(lh);
299 kfree(fi);
300 }
301 list_del(old);
302 kfree_skb(pd->skb);
303 kfree(pd);
304 }
305
306 /******************************************
307 * 1394 bus activity functions
308 ******************************************/
309
310 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
311 struct unit_directory *ud)
312 {
313 struct eth1394_node_ref *node;
314
315 list_for_each_entry(node, inl, list)
316 if (node->ud == ud)
317 return node;
318
319 return NULL;
320 }
321
322 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
323 u64 guid)
324 {
325 struct eth1394_node_ref *node;
326
327 list_for_each_entry(node, inl, list)
328 if (node->ud->ne->guid == guid)
329 return node;
330
331 return NULL;
332 }
333
334 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
335 nodeid_t nodeid)
336 {
337 struct eth1394_node_ref *node;
338
339 list_for_each_entry(node, inl, list)
340 if (node->ud->ne->nodeid == nodeid)
341 return node;
342
343 return NULL;
344 }
345
346 static int eth1394_new_node(struct eth1394_host_info *hi,
347 struct unit_directory *ud)
348 {
349 struct eth1394_priv *priv;
350 struct eth1394_node_ref *new_node;
351 struct eth1394_node_info *node_info;
352
353 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
354 if (!new_node)
355 return -ENOMEM;
356
357 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
358 if (!node_info) {
359 kfree(new_node);
360 return -ENOMEM;
361 }
362
363 spin_lock_init(&node_info->pdg.lock);
364 INIT_LIST_HEAD(&node_info->pdg.list);
365 node_info->pdg.sz = 0;
366 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
367
368 ud->device.driver_data = node_info;
369 new_node->ud = ud;
370
371 priv = netdev_priv(hi->dev);
372 list_add_tail(&new_node->list, &priv->ip_node_list);
373 return 0;
374 }
375
376 static int eth1394_probe(struct device *dev)
377 {
378 struct unit_directory *ud;
379 struct eth1394_host_info *hi;
380
381 ud = container_of(dev, struct unit_directory, device);
382 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
383 if (!hi)
384 return -ENOENT;
385
386 return eth1394_new_node(hi, ud);
387 }
388
389 static int eth1394_remove(struct device *dev)
390 {
391 struct unit_directory *ud;
392 struct eth1394_host_info *hi;
393 struct eth1394_priv *priv;
394 struct eth1394_node_ref *old_node;
395 struct eth1394_node_info *node_info;
396 struct list_head *lh, *n;
397 unsigned long flags;
398
399 ud = container_of(dev, struct unit_directory, device);
400 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
401 if (!hi)
402 return -ENOENT;
403
404 priv = netdev_priv(hi->dev);
405
406 old_node = eth1394_find_node(&priv->ip_node_list, ud);
407 if (!old_node)
408 return 0;
409
410 list_del(&old_node->list);
411 kfree(old_node);
412
413 node_info = (struct eth1394_node_info*)ud->device.driver_data;
414
415 spin_lock_irqsave(&node_info->pdg.lock, flags);
416 /* The partial datagram list should be empty, but we'll just
417 * make sure anyway... */
418 list_for_each_safe(lh, n, &node_info->pdg.list)
419 purge_partial_datagram(lh);
420 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
421
422 kfree(node_info);
423 ud->device.driver_data = NULL;
424 return 0;
425 }
426
427 static int eth1394_update(struct unit_directory *ud)
428 {
429 struct eth1394_host_info *hi;
430 struct eth1394_priv *priv;
431 struct eth1394_node_ref *node;
432
433 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
434 if (!hi)
435 return -ENOENT;
436
437 priv = netdev_priv(hi->dev);
438 node = eth1394_find_node(&priv->ip_node_list, ud);
439 if (node)
440 return 0;
441
442 return eth1394_new_node(hi, ud);
443 }
444
445 static struct ieee1394_device_id eth1394_id_table[] = {
446 {
447 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
448 IEEE1394_MATCH_VERSION),
449 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
450 .version = ETHER1394_GASP_VERSION,
451 },
452 {}
453 };
454
455 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
456
457 static struct hpsb_protocol_driver eth1394_proto_driver = {
458 .name = driver_name,
459 .id_table = eth1394_id_table,
460 .update = eth1394_update,
461 .driver = {
462 .probe = eth1394_probe,
463 .remove = eth1394_remove,
464 },
465 };
466
467 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
468 {
469 unsigned long flags;
470 int i;
471 struct eth1394_priv *priv = netdev_priv(dev);
472 struct hpsb_host *host = priv->host;
473 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
474 int max_speed = IEEE1394_SPEED_MAX;
475
476 spin_lock_irqsave(&priv->lock, flags);
477
478 memset(priv->ud_list, 0, sizeof(priv->ud_list));
479 priv->bc_maxpayload = 512;
480
481 /* Determine speed limit */
482 /* FIXME: This is broken for nodes with link speed < PHY speed,
483 * and it is suboptimal for S200B...S800B hardware.
484 * The result of nodemgr's speed probe should be used somehow. */
485 for (i = 0; i < host->node_count; i++) {
486 /* take care of S100B...S400B PHY ports */
487 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
488 max_speed = IEEE1394_SPEED_100;
489 break;
490 }
491 if (max_speed > host->speed[i])
492 max_speed = host->speed[i];
493 }
494 priv->bc_sspd = max_speed;
495
496 if (set_mtu) {
497 /* Use the RFC 2734 default 1500 octets or the maximum payload
498 * as initial MTU */
499 dev->mtu = min(1500, ether1394_max_mtu(host));
500
501 /* Set our hardware address while we're at it */
502 memcpy(dev->dev_addr, &guid, sizeof(u64));
503 memset(dev->broadcast, 0xff, sizeof(u64));
504 }
505
506 spin_unlock_irqrestore(&priv->lock, flags);
507 }
508
509 static void ether1394_init_dev(struct net_device *dev)
510 {
511 dev->open = ether1394_open;
512 dev->stop = ether1394_stop;
513 dev->hard_start_xmit = ether1394_tx;
514 dev->get_stats = ether1394_stats;
515 dev->tx_timeout = ether1394_tx_timeout;
516 dev->change_mtu = ether1394_change_mtu;
517
518 dev->hard_header = ether1394_header;
519 dev->rebuild_header = ether1394_rebuild_header;
520 dev->hard_header_cache = ether1394_header_cache;
521 dev->header_cache_update= ether1394_header_cache_update;
522 dev->hard_header_parse = ether1394_header_parse;
523
524 SET_ETHTOOL_OPS(dev, &ethtool_ops);
525
526 dev->watchdog_timeo = ETHER1394_TIMEOUT;
527 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
528 dev->features = NETIF_F_HIGHDMA;
529 dev->addr_len = ETH1394_ALEN;
530 dev->hard_header_len = ETH1394_HLEN;
531 dev->type = ARPHRD_IEEE1394;
532
533 /* FIXME: This value was copied from ether_setup(). Is it too much? */
534 dev->tx_queue_len = 1000;
535 }
536
537 /*
538 * Wake the queue up after commonly encountered transmit failure conditions are
539 * hopefully over. Currently only tlabel exhaustion is accounted for.
540 */
541 static void ether1394_wake_queue(struct work_struct *work)
542 {
543 struct eth1394_priv *priv;
544 struct hpsb_packet *packet;
545
546 priv = container_of(work, struct eth1394_priv, wake);
547 packet = hpsb_alloc_packet(0);
548
549 /* This is really bad, but unjam the queue anyway. */
550 if (!packet)
551 goto out;
552
553 packet->host = priv->host;
554 packet->node_id = priv->wake_node;
555 /*
556 * A transaction label is all we really want. If we get one, it almost
557 * always means we can get a lot more because the ieee1394 core recycled
558 * a whole batch of tlabels, at last.
559 */
560 if (hpsb_get_tlabel(packet) == 0)
561 hpsb_free_tlabel(packet);
562
563 hpsb_free_packet(packet);
564 out:
565 netif_wake_queue(priv->wake_dev);
566 }
567
568 /*
569 * This function is called every time a card is found. It is generally called
570 * when the module is installed. This is where we add all of our ethernet
571 * devices. One for each host.
572 */
573 static void ether1394_add_host(struct hpsb_host *host)
574 {
575 struct eth1394_host_info *hi = NULL;
576 struct net_device *dev = NULL;
577 struct eth1394_priv *priv;
578 u64 fifo_addr;
579
580 if (hpsb_config_rom_ip1394_add(host) != 0) {
581 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
582 return;
583 }
584
585 fifo_addr = hpsb_allocate_and_register_addrspace(
586 &eth1394_highlevel, host, &addr_ops,
587 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
588 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
589 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
590 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
591 hpsb_config_rom_ip1394_remove(host);
592 return;
593 }
594
595 dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
596 if (dev == NULL) {
597 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
598 goto out;
599 }
600
601 SET_MODULE_OWNER(dev);
602 SET_NETDEV_DEV(dev, &host->device);
603
604 priv = netdev_priv(dev);
605 INIT_LIST_HEAD(&priv->ip_node_list);
606 spin_lock_init(&priv->lock);
607 priv->host = host;
608 priv->local_fifo = fifo_addr;
609 INIT_WORK(&priv->wake, ether1394_wake_queue);
610 priv->wake_dev = dev;
611
612 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
613 if (hi == NULL) {
614 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
615 goto out;
616 }
617
618 ether1394_reset_priv(dev, 1);
619
620 if (register_netdev(dev)) {
621 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
622 goto out;
623 }
624
625 ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
626 host->id);
627
628 hi->host = host;
629 hi->dev = dev;
630
631 /* Ignore validity in hopes that it will be set in the future. It'll
632 * be checked when the eth device is opened. */
633 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
634
635 ether1394_recv_init(priv);
636 return;
637 out:
638 if (dev)
639 free_netdev(dev);
640 if (hi)
641 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
642 hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
643 hpsb_config_rom_ip1394_remove(host);
644 }
645
646 /* Remove a card from our list */
647 static void ether1394_remove_host(struct hpsb_host *host)
648 {
649 struct eth1394_host_info *hi;
650 struct eth1394_priv *priv;
651
652 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
653 if (!hi)
654 return;
655 priv = netdev_priv(hi->dev);
656 hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
657 hpsb_config_rom_ip1394_remove(host);
658 if (priv->iso)
659 hpsb_iso_shutdown(priv->iso);
660 unregister_netdev(hi->dev);
661 free_netdev(hi->dev);
662 }
663
664 /* A bus reset happened */
665 static void ether1394_host_reset(struct hpsb_host *host)
666 {
667 struct eth1394_host_info *hi;
668 struct eth1394_priv *priv;
669 struct net_device *dev;
670 struct list_head *lh, *n;
671 struct eth1394_node_ref *node;
672 struct eth1394_node_info *node_info;
673 unsigned long flags;
674
675 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
676
677 /* This can happen for hosts that we don't use */
678 if (!hi)
679 return;
680
681 dev = hi->dev;
682 priv = netdev_priv(dev);
683
684 /* Reset our private host data, but not our MTU */
685 netif_stop_queue(dev);
686 ether1394_reset_priv(dev, 0);
687
688 list_for_each_entry(node, &priv->ip_node_list, list) {
689 node_info = node->ud->device.driver_data;
690
691 spin_lock_irqsave(&node_info->pdg.lock, flags);
692
693 list_for_each_safe(lh, n, &node_info->pdg.list)
694 purge_partial_datagram(lh);
695
696 INIT_LIST_HEAD(&(node_info->pdg.list));
697 node_info->pdg.sz = 0;
698
699 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
700 }
701
702 netif_wake_queue(dev);
703 }
704
705 /******************************************
706 * HW Header net device functions
707 ******************************************/
708 /* These functions have been adapted from net/ethernet/eth.c */
709
710 /* Create a fake MAC header for an arbitrary protocol layer.
711 * saddr=NULL means use device source address
712 * daddr=NULL means leave destination address (eg unresolved arp). */
713 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
714 unsigned short type, void *daddr, void *saddr,
715 unsigned len)
716 {
717 struct eth1394hdr *eth =
718 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
719
720 eth->h_proto = htons(type);
721
722 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
723 memset(eth->h_dest, 0, dev->addr_len);
724 return dev->hard_header_len;
725 }
726
727 if (daddr) {
728 memcpy(eth->h_dest, daddr, dev->addr_len);
729 return dev->hard_header_len;
730 }
731
732 return -dev->hard_header_len;
733 }
734
735 /* Rebuild the faked MAC header. This is called after an ARP
736 * (or in future other address resolution) has completed on this
737 * sk_buff. We now let ARP fill in the other fields.
738 *
739 * This routine CANNOT use cached dst->neigh!
740 * Really, it is used only when dst->neigh is wrong.
741 */
742 static int ether1394_rebuild_header(struct sk_buff *skb)
743 {
744 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
745
746 if (eth->h_proto == htons(ETH_P_IP))
747 return arp_find((unsigned char *)&eth->h_dest, skb);
748
749 ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
750 "unable to resolve type %04x addresses\n",
751 ntohs(eth->h_proto));
752 return 0;
753 }
754
755 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
756 {
757 struct net_device *dev = skb->dev;
758
759 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
760 return ETH1394_ALEN;
761 }
762
763 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
764 {
765 unsigned short type = hh->hh_type;
766 struct net_device *dev = neigh->dev;
767 struct eth1394hdr *eth =
768 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
769
770 if (type == htons(ETH_P_802_3))
771 return -1;
772
773 eth->h_proto = type;
774 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
775
776 hh->hh_len = ETH1394_HLEN;
777 return 0;
778 }
779
780 /* Called by Address Resolution module to notify changes in address. */
781 static void ether1394_header_cache_update(struct hh_cache *hh,
782 struct net_device *dev,
783 unsigned char * haddr)
784 {
785 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
786 }
787
788 /******************************************
789 * Datagram reception code
790 ******************************************/
791
792 /* Copied from net/ethernet/eth.c */
793 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
794 {
795 struct eth1394hdr *eth;
796 unsigned char *rawp;
797
798 skb_reset_mac_header(skb);
799 skb_pull(skb, ETH1394_HLEN);
800 eth = eth1394_hdr(skb);
801
802 if (*eth->h_dest & 1) {
803 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
804 skb->pkt_type = PACKET_BROADCAST;
805 #if 0
806 else
807 skb->pkt_type = PACKET_MULTICAST;
808 #endif
809 } else {
810 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
811 skb->pkt_type = PACKET_OTHERHOST;
812 }
813
814 if (ntohs(eth->h_proto) >= 1536)
815 return eth->h_proto;
816
817 rawp = skb->data;
818
819 if (*(unsigned short *)rawp == 0xFFFF)
820 return htons(ETH_P_802_3);
821
822 return htons(ETH_P_802_2);
823 }
824
825 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
826 * We also perform ARP translation here, if need be. */
827 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
828 nodeid_t srcid, nodeid_t destid,
829 u16 ether_type)
830 {
831 struct eth1394_priv *priv = netdev_priv(dev);
832 u64 dest_hw;
833 unsigned short ret = 0;
834
835 /* Setup our hw addresses. We use these to build the ethernet header. */
836 if (destid == (LOCAL_BUS | ALL_NODES))
837 dest_hw = ~0ULL; /* broadcast */
838 else
839 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
840 priv->host->csr.guid_lo);
841
842 /* If this is an ARP packet, convert it. First, we want to make
843 * use of some of the fields, since they tell us a little bit
844 * about the sending machine. */
845 if (ether_type == htons(ETH_P_ARP)) {
846 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
847 struct arphdr *arp = (struct arphdr *)skb->data;
848 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
849 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
850 ntohl(arp1394->fifo_lo);
851 u8 max_rec = min(priv->host->csr.max_rec,
852 (u8)(arp1394->max_rec));
853 int sspd = arp1394->sspd;
854 u16 maxpayload;
855 struct eth1394_node_ref *node;
856 struct eth1394_node_info *node_info;
857 __be64 guid;
858
859 /* Sanity check. MacOSX seems to be sending us 131 in this
860 * field (atleast on my Panther G5). Not sure why. */
861 if (sspd > 5 || sspd < 0)
862 sspd = 0;
863
864 maxpayload = min(eth1394_speedto_maxpayload[sspd],
865 (u16)(1 << (max_rec + 1)));
866
867 guid = get_unaligned(&arp1394->s_uniq_id);
868 node = eth1394_find_node_guid(&priv->ip_node_list,
869 be64_to_cpu(guid));
870 if (!node)
871 return 0;
872
873 node_info =
874 (struct eth1394_node_info *)node->ud->device.driver_data;
875
876 /* Update our speed/payload/fifo_offset table */
877 node_info->maxpayload = maxpayload;
878 node_info->sspd = sspd;
879 node_info->fifo = fifo_addr;
880
881 /* Now that we're done with the 1394 specific stuff, we'll
882 * need to alter some of the data. Believe it or not, all
883 * that needs to be done is sender_IP_address needs to be
884 * moved, the destination hardware address get stuffed
885 * in and the hardware address length set to 8.
886 *
887 * IMPORTANT: The code below overwrites 1394 specific data
888 * needed above so keep the munging of the data for the
889 * higher level IP stack last. */
890
891 arp->ar_hln = 8;
892 arp_ptr += arp->ar_hln; /* skip over sender unique id */
893 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
894 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
895
896 if (arp->ar_op == htons(ARPOP_REQUEST))
897 memset(arp_ptr, 0, sizeof(u64));
898 else
899 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
900 }
901
902 /* Now add the ethernet header. */
903 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
904 skb->len) >= 0)
905 ret = ether1394_type_trans(skb, dev);
906
907 return ret;
908 }
909
910 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
911 {
912 struct fragment_info *fi;
913 int end = offset + len;
914
915 list_for_each_entry(fi, frag_list, list)
916 if (offset < fi->offset + fi->len && end > fi->offset)
917 return 1;
918
919 return 0;
920 }
921
922 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
923 {
924 struct partial_datagram *pd;
925
926 list_for_each_entry(pd, pdgl, list)
927 if (pd->dgl == dgl)
928 return &pd->list;
929
930 return NULL;
931 }
932
933 /* Assumes that new fragment does not overlap any existing fragments */
934 static int new_fragment(struct list_head *frag_info, int offset, int len)
935 {
936 struct list_head *lh;
937 struct fragment_info *fi, *fi2, *new;
938
939 list_for_each(lh, frag_info) {
940 fi = list_entry(lh, struct fragment_info, list);
941 if (fi->offset + fi->len == offset) {
942 /* The new fragment can be tacked on to the end */
943 fi->len += len;
944 /* Did the new fragment plug a hole? */
945 fi2 = list_entry(lh->next, struct fragment_info, list);
946 if (fi->offset + fi->len == fi2->offset) {
947 /* glue fragments together */
948 fi->len += fi2->len;
949 list_del(lh->next);
950 kfree(fi2);
951 }
952 return 0;
953 } else if (offset + len == fi->offset) {
954 /* The new fragment can be tacked on to the beginning */
955 fi->offset = offset;
956 fi->len += len;
957 /* Did the new fragment plug a hole? */
958 fi2 = list_entry(lh->prev, struct fragment_info, list);
959 if (fi2->offset + fi2->len == fi->offset) {
960 /* glue fragments together */
961 fi2->len += fi->len;
962 list_del(lh);
963 kfree(fi);
964 }
965 return 0;
966 } else if (offset > fi->offset + fi->len) {
967 break;
968 } else if (offset + len < fi->offset) {
969 lh = lh->prev;
970 break;
971 }
972 }
973
974 new = kmalloc(sizeof(*new), GFP_ATOMIC);
975 if (!new)
976 return -ENOMEM;
977
978 new->offset = offset;
979 new->len = len;
980
981 list_add(&new->list, lh);
982 return 0;
983 }
984
985 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
986 int dgl, int dg_size, char *frag_buf,
987 int frag_off, int frag_len)
988 {
989 struct partial_datagram *new;
990
991 new = kmalloc(sizeof(*new), GFP_ATOMIC);
992 if (!new)
993 return -ENOMEM;
994
995 INIT_LIST_HEAD(&new->frag_info);
996
997 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
998 kfree(new);
999 return -ENOMEM;
1000 }
1001
1002 new->dgl = dgl;
1003 new->dg_size = dg_size;
1004
1005 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1006 if (!new->skb) {
1007 struct fragment_info *fi = list_entry(new->frag_info.next,
1008 struct fragment_info,
1009 list);
1010 kfree(fi);
1011 kfree(new);
1012 return -ENOMEM;
1013 }
1014
1015 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1016 new->pbuf = skb_put(new->skb, dg_size);
1017 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1018
1019 list_add(&new->list, pdgl);
1020 return 0;
1021 }
1022
1023 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1024 char *frag_buf, int frag_off, int frag_len)
1025 {
1026 struct partial_datagram *pd =
1027 list_entry(lh, struct partial_datagram, list);
1028
1029 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1030 return -ENOMEM;
1031
1032 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1033
1034 /* Move list entry to beginnig of list so that oldest partial
1035 * datagrams percolate to the end of the list */
1036 list_move(lh, pdgl);
1037 return 0;
1038 }
1039
1040 static int is_datagram_complete(struct list_head *lh, int dg_size)
1041 {
1042 struct partial_datagram *pd;
1043 struct fragment_info *fi;
1044
1045 pd = list_entry(lh, struct partial_datagram, list);
1046 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1047
1048 return (fi->len == dg_size);
1049 }
1050
1051 /* Packet reception. We convert the IP1394 encapsulation header to an
1052 * ethernet header, and fill it with some of our other fields. This is
1053 * an incoming packet from the 1394 bus. */
1054 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1055 char *buf, int len)
1056 {
1057 struct sk_buff *skb;
1058 unsigned long flags;
1059 struct eth1394_priv *priv = netdev_priv(dev);
1060 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1061 u16 ether_type = 0; /* initialized to clear warning */
1062 int hdr_len;
1063 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1064 struct eth1394_node_info *node_info;
1065
1066 if (!ud) {
1067 struct eth1394_node_ref *node;
1068 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1069 if (unlikely(!node)) {
1070 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1071 "lookup failure: " NODE_BUS_FMT,
1072 NODE_BUS_ARGS(priv->host, srcid));
1073 priv->stats.rx_dropped++;
1074 return -1;
1075 }
1076 ud = node->ud;
1077
1078 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1079 }
1080
1081 node_info = (struct eth1394_node_info *)ud->device.driver_data;
1082
1083 /* First, did we receive a fragmented or unfragmented datagram? */
1084 hdr->words.word1 = ntohs(hdr->words.word1);
1085
1086 hdr_len = hdr_type_len[hdr->common.lf];
1087
1088 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1089 /* An unfragmented datagram has been received by the ieee1394
1090 * bus. Build an skbuff around it so we can pass it to the
1091 * high level network layer. */
1092
1093 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1094 if (unlikely(!skb)) {
1095 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1096 priv->stats.rx_dropped++;
1097 return -1;
1098 }
1099 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1100 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1101 len - hdr_len);
1102 ether_type = hdr->uf.ether_type;
1103 } else {
1104 /* A datagram fragment has been received, now the fun begins. */
1105
1106 struct list_head *pdgl, *lh;
1107 struct partial_datagram *pd;
1108 int fg_off;
1109 int fg_len = len - hdr_len;
1110 int dg_size;
1111 int dgl;
1112 int retval;
1113 struct pdg_list *pdg = &(node_info->pdg);
1114
1115 hdr->words.word3 = ntohs(hdr->words.word3);
1116 /* The 4th header word is reserved so no need to do ntohs() */
1117
1118 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1119 ether_type = hdr->ff.ether_type;
1120 dgl = hdr->ff.dgl;
1121 dg_size = hdr->ff.dg_size + 1;
1122 fg_off = 0;
1123 } else {
1124 hdr->words.word2 = ntohs(hdr->words.word2);
1125 dgl = hdr->sf.dgl;
1126 dg_size = hdr->sf.dg_size + 1;
1127 fg_off = hdr->sf.fg_off;
1128 }
1129 spin_lock_irqsave(&pdg->lock, flags);
1130
1131 pdgl = &(pdg->list);
1132 lh = find_partial_datagram(pdgl, dgl);
1133
1134 if (lh == NULL) {
1135 while (pdg->sz >= max_partial_datagrams) {
1136 /* remove the oldest */
1137 purge_partial_datagram(pdgl->prev);
1138 pdg->sz--;
1139 }
1140
1141 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1142 buf + hdr_len, fg_off,
1143 fg_len);
1144 if (retval < 0) {
1145 spin_unlock_irqrestore(&pdg->lock, flags);
1146 goto bad_proto;
1147 }
1148 pdg->sz++;
1149 lh = find_partial_datagram(pdgl, dgl);
1150 } else {
1151 struct partial_datagram *pd;
1152
1153 pd = list_entry(lh, struct partial_datagram, list);
1154
1155 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1156 /* Overlapping fragments, obliterate old
1157 * datagram and start new one. */
1158 purge_partial_datagram(lh);
1159 retval = new_partial_datagram(dev, pdgl, dgl,
1160 dg_size,
1161 buf + hdr_len,
1162 fg_off, fg_len);
1163 if (retval < 0) {
1164 pdg->sz--;
1165 spin_unlock_irqrestore(&pdg->lock, flags);
1166 goto bad_proto;
1167 }
1168 } else {
1169 retval = update_partial_datagram(pdgl, lh,
1170 buf + hdr_len,
1171 fg_off, fg_len);
1172 if (retval < 0) {
1173 /* Couldn't save off fragment anyway
1174 * so might as well obliterate the
1175 * datagram now. */
1176 purge_partial_datagram(lh);
1177 pdg->sz--;
1178 spin_unlock_irqrestore(&pdg->lock, flags);
1179 goto bad_proto;
1180 }
1181 } /* fragment overlap */
1182 } /* new datagram or add to existing one */
1183
1184 pd = list_entry(lh, struct partial_datagram, list);
1185
1186 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1187 pd->ether_type = ether_type;
1188
1189 if (is_datagram_complete(lh, dg_size)) {
1190 ether_type = pd->ether_type;
1191 pdg->sz--;
1192 skb = skb_get(pd->skb);
1193 purge_partial_datagram(lh);
1194 spin_unlock_irqrestore(&pdg->lock, flags);
1195 } else {
1196 /* Datagram is not complete, we're done for the
1197 * moment. */
1198 spin_unlock_irqrestore(&pdg->lock, flags);
1199 return 0;
1200 }
1201 } /* unframgented datagram or fragmented one */
1202
1203 /* Write metadata, and then pass to the receive level */
1204 skb->dev = dev;
1205 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1206
1207 /* Parse the encapsulation header. This actually does the job of
1208 * converting to an ethernet frame header, aswell as arp
1209 * conversion if needed. ARP conversion is easier in this
1210 * direction, since we are using ethernet as our backend. */
1211 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1212 ether_type);
1213
1214 spin_lock_irqsave(&priv->lock, flags);
1215
1216 if (!skb->protocol) {
1217 priv->stats.rx_errors++;
1218 priv->stats.rx_dropped++;
1219 dev_kfree_skb_any(skb);
1220 goto bad_proto;
1221 }
1222
1223 if (netif_rx(skb) == NET_RX_DROP) {
1224 priv->stats.rx_errors++;
1225 priv->stats.rx_dropped++;
1226 goto bad_proto;
1227 }
1228
1229 /* Statistics */
1230 priv->stats.rx_packets++;
1231 priv->stats.rx_bytes += skb->len;
1232
1233 bad_proto:
1234 if (netif_queue_stopped(dev))
1235 netif_wake_queue(dev);
1236 spin_unlock_irqrestore(&priv->lock, flags);
1237
1238 dev->last_rx = jiffies;
1239
1240 return 0;
1241 }
1242
1243 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1244 quadlet_t *data, u64 addr, size_t len, u16 flags)
1245 {
1246 struct eth1394_host_info *hi;
1247
1248 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1249 if (unlikely(!hi)) {
1250 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1251 host->id);
1252 return RCODE_ADDRESS_ERROR;
1253 }
1254
1255 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1256 return RCODE_ADDRESS_ERROR;
1257 else
1258 return RCODE_COMPLETE;
1259 }
1260
1261 static void ether1394_iso(struct hpsb_iso *iso)
1262 {
1263 quadlet_t *data;
1264 char *buf;
1265 struct eth1394_host_info *hi;
1266 struct net_device *dev;
1267 struct eth1394_priv *priv;
1268 unsigned int len;
1269 u32 specifier_id;
1270 u16 source_id;
1271 int i;
1272 int nready;
1273
1274 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1275 if (unlikely(!hi)) {
1276 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1277 iso->host->id);
1278 return;
1279 }
1280
1281 dev = hi->dev;
1282
1283 nready = hpsb_iso_n_ready(iso);
1284 for (i = 0; i < nready; i++) {
1285 struct hpsb_iso_packet_info *info =
1286 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1287 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1288
1289 /* skip over GASP header */
1290 buf = (char *)data + 8;
1291 len = info->len - 8;
1292
1293 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1294 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1295 source_id = be32_to_cpu(data[0]) >> 16;
1296
1297 priv = netdev_priv(dev);
1298
1299 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1300 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1301 /* This packet is not for us */
1302 continue;
1303 }
1304 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1305 buf, len);
1306 }
1307
1308 hpsb_iso_recv_release_packets(iso, i);
1309
1310 dev->last_rx = jiffies;
1311 }
1312
1313 /******************************************
1314 * Datagram transmission code
1315 ******************************************/
1316
1317 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1318 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1319 * needs to be munged a bit. The remainder of the arphdr is formatted based
1320 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1321 * judge.
1322 *
1323 * Now that the EUI is used for the hardware address all we need to do to make
1324 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1325 * speed, and unicast FIFO address information between the sender_unique_id
1326 * and the IP addresses.
1327 */
1328 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1329 struct net_device *dev)
1330 {
1331 struct eth1394_priv *priv = netdev_priv(dev);
1332 struct arphdr *arp = (struct arphdr *)skb->data;
1333 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1334 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1335
1336 arp1394->hw_addr_len = 16;
1337 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1338 arp1394->max_rec = priv->host->csr.max_rec;
1339 arp1394->sspd = priv->host->csr.lnk_spd;
1340 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1341 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1342 }
1343
1344 /* We need to encapsulate the standard header with our own. We use the
1345 * ethernet header's proto for our own. */
1346 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1347 __be16 proto,
1348 union eth1394_hdr *hdr,
1349 u16 dg_size, u16 dgl)
1350 {
1351 unsigned int adj_max_payload =
1352 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1353
1354 /* Does it all fit in one packet? */
1355 if (dg_size <= adj_max_payload) {
1356 hdr->uf.lf = ETH1394_HDR_LF_UF;
1357 hdr->uf.ether_type = proto;
1358 } else {
1359 hdr->ff.lf = ETH1394_HDR_LF_FF;
1360 hdr->ff.ether_type = proto;
1361 hdr->ff.dg_size = dg_size - 1;
1362 hdr->ff.dgl = dgl;
1363 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1364 }
1365 return (dg_size + adj_max_payload - 1) / adj_max_payload;
1366 }
1367
1368 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1369 unsigned int max_payload,
1370 union eth1394_hdr *hdr)
1371 {
1372 union eth1394_hdr *bufhdr;
1373 int ftype = hdr->common.lf;
1374 int hdrsz = hdr_type_len[ftype];
1375 unsigned int adj_max_payload = max_payload - hdrsz;
1376
1377 switch (ftype) {
1378 case ETH1394_HDR_LF_UF:
1379 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1380 bufhdr->words.word1 = htons(hdr->words.word1);
1381 bufhdr->words.word2 = hdr->words.word2;
1382 break;
1383
1384 case ETH1394_HDR_LF_FF:
1385 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1386 bufhdr->words.word1 = htons(hdr->words.word1);
1387 bufhdr->words.word2 = hdr->words.word2;
1388 bufhdr->words.word3 = htons(hdr->words.word3);
1389 bufhdr->words.word4 = 0;
1390
1391 /* Set frag type here for future interior fragments */
1392 hdr->common.lf = ETH1394_HDR_LF_IF;
1393 hdr->sf.fg_off = 0;
1394 break;
1395
1396 default:
1397 hdr->sf.fg_off += adj_max_payload;
1398 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1399 if (max_payload >= skb->len)
1400 hdr->common.lf = ETH1394_HDR_LF_LF;
1401 bufhdr->words.word1 = htons(hdr->words.word1);
1402 bufhdr->words.word2 = htons(hdr->words.word2);
1403 bufhdr->words.word3 = htons(hdr->words.word3);
1404 bufhdr->words.word4 = 0;
1405 }
1406 return min(max_payload, skb->len);
1407 }
1408
1409 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1410 {
1411 struct hpsb_packet *p;
1412
1413 p = hpsb_alloc_packet(0);
1414 if (p) {
1415 p->host = host;
1416 p->generation = get_hpsb_generation(host);
1417 p->type = hpsb_async;
1418 }
1419 return p;
1420 }
1421
1422 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1423 struct hpsb_host *host, nodeid_t node,
1424 u64 addr, void *data, int tx_len)
1425 {
1426 p->node_id = node;
1427
1428 if (hpsb_get_tlabel(p))
1429 return -EAGAIN;
1430
1431 p->tcode = TCODE_WRITEB;
1432 p->header_size = 16;
1433 p->expect_response = 1;
1434 p->header[0] =
1435 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1436 p->header[1] = host->node_id << 16 | addr >> 32;
1437 p->header[2] = addr & 0xffffffff;
1438 p->header[3] = tx_len << 16;
1439 p->data_size = (tx_len + 3) & ~3;
1440 p->data = data;
1441
1442 return 0;
1443 }
1444
1445 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1446 struct eth1394_priv *priv,
1447 struct sk_buff *skb, int length)
1448 {
1449 p->header_size = 4;
1450 p->tcode = TCODE_STREAM_DATA;
1451
1452 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1453 TCODE_STREAM_DATA << 4;
1454 p->data_size = length;
1455 p->data = (quadlet_t *)skb->data - 2;
1456 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1457 ETHER1394_GASP_SPECIFIER_ID_HI);
1458 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1459 ETHER1394_GASP_VERSION);
1460
1461 p->speed_code = priv->bc_sspd;
1462
1463 /* prevent hpsb_send_packet() from overriding our speed code */
1464 p->node_id = LOCAL_BUS | ALL_NODES;
1465 }
1466
1467 static void ether1394_free_packet(struct hpsb_packet *packet)
1468 {
1469 if (packet->tcode != TCODE_STREAM_DATA)
1470 hpsb_free_tlabel(packet);
1471 hpsb_free_packet(packet);
1472 }
1473
1474 static void ether1394_complete_cb(void *__ptask);
1475
1476 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1477 {
1478 struct eth1394_priv *priv = ptask->priv;
1479 struct hpsb_packet *packet = NULL;
1480
1481 packet = ether1394_alloc_common_packet(priv->host);
1482 if (!packet)
1483 return -ENOMEM;
1484
1485 if (ptask->tx_type == ETH1394_GASP) {
1486 int length = tx_len + 2 * sizeof(quadlet_t);
1487
1488 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1489 } else if (ether1394_prep_write_packet(packet, priv->host,
1490 ptask->dest_node,
1491 ptask->addr, ptask->skb->data,
1492 tx_len)) {
1493 hpsb_free_packet(packet);
1494 return -EAGAIN;
1495 }
1496
1497 ptask->packet = packet;
1498 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1499 ptask);
1500
1501 if (hpsb_send_packet(packet) < 0) {
1502 ether1394_free_packet(packet);
1503 return -EIO;
1504 }
1505
1506 return 0;
1507 }
1508
1509 /* Task function to be run when a datagram transmission is completed */
1510 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1511 {
1512 struct sk_buff *skb = ptask->skb;
1513 struct eth1394_priv *priv = netdev_priv(skb->dev);
1514 unsigned long flags;
1515
1516 /* Statistics */
1517 spin_lock_irqsave(&priv->lock, flags);
1518 if (fail) {
1519 priv->stats.tx_dropped++;
1520 priv->stats.tx_errors++;
1521 } else {
1522 priv->stats.tx_bytes += skb->len;
1523 priv->stats.tx_packets++;
1524 }
1525 spin_unlock_irqrestore(&priv->lock, flags);
1526
1527 dev_kfree_skb_any(skb);
1528 kmem_cache_free(packet_task_cache, ptask);
1529 }
1530
1531 /* Callback for when a packet has been sent and the status of that packet is
1532 * known */
1533 static void ether1394_complete_cb(void *__ptask)
1534 {
1535 struct packet_task *ptask = (struct packet_task *)__ptask;
1536 struct hpsb_packet *packet = ptask->packet;
1537 int fail = 0;
1538
1539 if (packet->tcode != TCODE_STREAM_DATA)
1540 fail = hpsb_packet_success(packet);
1541
1542 ether1394_free_packet(packet);
1543
1544 ptask->outstanding_pkts--;
1545 if (ptask->outstanding_pkts > 0 && !fail) {
1546 int tx_len, err;
1547
1548 /* Add the encapsulation header to the fragment */
1549 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1550 &ptask->hdr);
1551 err = ether1394_send_packet(ptask, tx_len);
1552 if (err) {
1553 if (err == -EAGAIN)
1554 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1555
1556 ether1394_dg_complete(ptask, 1);
1557 }
1558 } else {
1559 ether1394_dg_complete(ptask, fail);
1560 }
1561 }
1562
1563 /* Transmit a packet (called by kernel) */
1564 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1565 {
1566 struct eth1394hdr hdr_buf;
1567 struct eth1394_priv *priv = netdev_priv(dev);
1568 __be16 proto;
1569 unsigned long flags;
1570 nodeid_t dest_node;
1571 eth1394_tx_type tx_type;
1572 unsigned int tx_len;
1573 unsigned int max_payload;
1574 u16 dg_size;
1575 u16 dgl;
1576 struct packet_task *ptask;
1577 struct eth1394_node_ref *node;
1578 struct eth1394_node_info *node_info = NULL;
1579
1580 ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1581 if (ptask == NULL)
1582 goto fail;
1583
1584 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1585 * it does not set our validity bit. We need to compensate for
1586 * that somewhere else, but not in eth1394. */
1587 #if 0
1588 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1589 goto fail;
1590 #endif
1591
1592 skb = skb_share_check(skb, GFP_ATOMIC);
1593 if (!skb)
1594 goto fail;
1595
1596 /* Get rid of the fake eth1394 header, but first make a copy.
1597 * We might need to rebuild the header on tx failure. */
1598 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1599 skb_pull(skb, ETH1394_HLEN);
1600
1601 proto = hdr_buf.h_proto;
1602 dg_size = skb->len;
1603
1604 /* Set the transmission type for the packet. ARP packets and IP
1605 * broadcast packets are sent via GASP. */
1606 if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1607 proto == htons(ETH_P_ARP) ||
1608 (proto == htons(ETH_P_IP) &&
1609 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1610 tx_type = ETH1394_GASP;
1611 dest_node = LOCAL_BUS | ALL_NODES;
1612 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1613 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1614 dgl = priv->bc_dgl;
1615 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1616 priv->bc_dgl++;
1617 } else {
1618 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1619
1620 node = eth1394_find_node_guid(&priv->ip_node_list,
1621 be64_to_cpu(guid));
1622 if (!node)
1623 goto fail;
1624
1625 node_info =
1626 (struct eth1394_node_info *)node->ud->device.driver_data;
1627 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1628 goto fail;
1629
1630 dest_node = node->ud->ne->nodeid;
1631 max_payload = node_info->maxpayload;
1632 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1633
1634 dgl = node_info->dgl;
1635 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1636 node_info->dgl++;
1637 tx_type = ETH1394_WRREQ;
1638 }
1639
1640 /* If this is an ARP packet, convert it */
1641 if (proto == htons(ETH_P_ARP))
1642 ether1394_arp_to_1394arp(skb, dev);
1643
1644 ptask->hdr.words.word1 = 0;
1645 ptask->hdr.words.word2 = 0;
1646 ptask->hdr.words.word3 = 0;
1647 ptask->hdr.words.word4 = 0;
1648 ptask->skb = skb;
1649 ptask->priv = priv;
1650 ptask->tx_type = tx_type;
1651
1652 if (tx_type != ETH1394_GASP) {
1653 u64 addr;
1654
1655 spin_lock_irqsave(&priv->lock, flags);
1656 addr = node_info->fifo;
1657 spin_unlock_irqrestore(&priv->lock, flags);
1658
1659 ptask->addr = addr;
1660 ptask->dest_node = dest_node;
1661 }
1662
1663 ptask->tx_type = tx_type;
1664 ptask->max_payload = max_payload;
1665 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1666 proto, &ptask->hdr, dg_size, dgl);
1667
1668 /* Add the encapsulation header to the fragment */
1669 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1670 dev->trans_start = jiffies;
1671 if (ether1394_send_packet(ptask, tx_len)) {
1672 if (dest_node == (LOCAL_BUS | ALL_NODES))
1673 goto fail;
1674
1675 /* At this point we want to restore the packet. When we return
1676 * here with NETDEV_TX_BUSY we will get another entrance in this
1677 * routine with the same skb and we need it to look the same.
1678 * So we pull 4 more bytes, then build the header again. */
1679 skb_pull(skb, 4);
1680 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1681 hdr_buf.h_dest, NULL, 0);
1682
1683 /* Most failures of ether1394_send_packet are recoverable. */
1684 netif_stop_queue(dev);
1685 priv->wake_node = dest_node;
1686 schedule_work(&priv->wake);
1687 kmem_cache_free(packet_task_cache, ptask);
1688 return NETDEV_TX_BUSY;
1689 }
1690
1691 return NETDEV_TX_OK;
1692 fail:
1693 if (ptask)
1694 kmem_cache_free(packet_task_cache, ptask);
1695
1696 if (skb != NULL)
1697 dev_kfree_skb(skb);
1698
1699 spin_lock_irqsave(&priv->lock, flags);
1700 priv->stats.tx_dropped++;
1701 priv->stats.tx_errors++;
1702 spin_unlock_irqrestore(&priv->lock, flags);
1703
1704 /*
1705 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1706 * causes serious problems" here, allegedly. Before that patch,
1707 * -ERRNO was returned which is not appropriate under Linux 2.6.
1708 * Perhaps more needs to be done? Stop the queue in serious
1709 * conditions and restart it elsewhere?
1710 */
1711 /* return NETDEV_TX_BUSY; */
1712 return NETDEV_TX_OK;
1713 }
1714
1715 static void ether1394_get_drvinfo(struct net_device *dev,
1716 struct ethtool_drvinfo *info)
1717 {
1718 strcpy(info->driver, driver_name);
1719 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1720 }
1721
1722 static struct ethtool_ops ethtool_ops = {
1723 .get_drvinfo = ether1394_get_drvinfo
1724 };
1725
1726 static int __init ether1394_init_module(void)
1727 {
1728 int err;
1729
1730 packet_task_cache = kmem_cache_create("packet_task",
1731 sizeof(struct packet_task),
1732 0, 0, NULL);
1733 if (!packet_task_cache)
1734 return -ENOMEM;
1735
1736 hpsb_register_highlevel(&eth1394_highlevel);
1737 err = hpsb_register_protocol(&eth1394_proto_driver);
1738 if (err) {
1739 hpsb_unregister_highlevel(&eth1394_highlevel);
1740 kmem_cache_destroy(packet_task_cache);
1741 }
1742 return err;
1743 }
1744
1745 static void __exit ether1394_exit_module(void)
1746 {
1747 hpsb_unregister_protocol(&eth1394_proto_driver);
1748 hpsb_unregister_highlevel(&eth1394_highlevel);
1749 kmem_cache_destroy(packet_task_cache);
1750 }
1751
1752 module_init(ether1394_init_module);
1753 module_exit(ether1394_exit_module);