]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iio/accel/bmc150-accel-core.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / drivers / iio / accel / bmc150-accel-core.c
1 /*
2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3 * - BMC150
4 * - BMI055
5 * - BMA255
6 * - BMA250E
7 * - BMA222E
8 * - BMA280
9 *
10 * Copyright (c) 2014, Intel Corporation.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 */
21
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38
39 #include "bmc150-accel.h"
40
41 #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
43
44 #define BMC150_ACCEL_REG_CHIP_ID 0x00
45
46 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
52
53 #define BMC150_ACCEL_REG_PMU_LPW 0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT 5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
58
59 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
60
61 #define BMC150_ACCEL_DEF_RANGE_2G 0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G 0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G 0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
65
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW 0x10
68 #define BMC150_ACCEL_DEF_BW 125
69
70 #define BMC150_ACCEL_REG_RESET 0x14
71 #define BMC150_ACCEL_RESET_VAL 0xB6
72
73 #define BMC150_ACCEL_REG_INT_MAP_0 0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
75
76 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
80
81 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
85
86 #define BMC150_ACCEL_REG_INT_EN_0 0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
90
91 #define BMC150_ACCEL_REG_INT_EN_1 0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
95
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
98
99 #define BMC150_ACCEL_REG_INT_5 0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
101
102 #define BMC150_ACCEL_REG_INT_6 0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
104
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
109
110 #define BMC150_ACCEL_REG_XOUT_L 0x02
111
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
113
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
116 #define BMC150_ACCEL_SLEEP_1_MS 0x06
117 #define BMC150_ACCEL_SLEEP_2_MS 0x07
118 #define BMC150_ACCEL_SLEEP_4_MS 0x08
119 #define BMC150_ACCEL_SLEEP_6_MS 0x09
120 #define BMC150_ACCEL_SLEEP_10_MS 0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS 0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS 0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS 0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS 0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
126
127 #define BMC150_ACCEL_REG_TEMP 0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL 24
129
130 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
132
133 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH 32
138
139 enum bmc150_accel_axis {
140 AXIS_X,
141 AXIS_Y,
142 AXIS_Z,
143 AXIS_MAX,
144 };
145
146 enum bmc150_power_modes {
147 BMC150_ACCEL_SLEEP_MODE_NORMAL,
148 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149 BMC150_ACCEL_SLEEP_MODE_LPM,
150 BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152
153 struct bmc150_scale_info {
154 int scale;
155 u8 reg_range;
156 };
157
158 struct bmc150_accel_chip_info {
159 const char *name;
160 u8 chip_id;
161 const struct iio_chan_spec *channels;
162 int num_channels;
163 const struct bmc150_scale_info scale_table[4];
164 };
165
166 struct bmc150_accel_interrupt {
167 const struct bmc150_accel_interrupt_info *info;
168 atomic_t users;
169 };
170
171 struct bmc150_accel_trigger {
172 struct bmc150_accel_data *data;
173 struct iio_trigger *indio_trig;
174 int (*setup)(struct bmc150_accel_trigger *t, bool state);
175 int intr;
176 bool enabled;
177 };
178
179 enum bmc150_accel_interrupt_id {
180 BMC150_ACCEL_INT_DATA_READY,
181 BMC150_ACCEL_INT_ANY_MOTION,
182 BMC150_ACCEL_INT_WATERMARK,
183 BMC150_ACCEL_INTERRUPTS,
184 };
185
186 enum bmc150_accel_trigger_id {
187 BMC150_ACCEL_TRIGGER_DATA_READY,
188 BMC150_ACCEL_TRIGGER_ANY_MOTION,
189 BMC150_ACCEL_TRIGGERS,
190 };
191
192 struct bmc150_accel_data {
193 struct regmap *regmap;
194 int irq;
195 struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196 atomic_t active_intr;
197 struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
198 struct mutex mutex;
199 u8 fifo_mode, watermark;
200 s16 buffer[8];
201 u8 bw_bits;
202 u32 slope_dur;
203 u32 slope_thres;
204 u32 range;
205 int ev_enable_state;
206 int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
207 const struct bmc150_accel_chip_info *chip_info;
208 };
209
210 static const struct {
211 int val;
212 int val2;
213 u8 bw_bits;
214 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
215 {31, 260000, 0x09},
216 {62, 500000, 0x0A},
217 {125, 0, 0x0B},
218 {250, 0, 0x0C},
219 {500, 0, 0x0D},
220 {1000, 0, 0x0E},
221 {2000, 0, 0x0F} };
222
223 static const struct {
224 int bw_bits;
225 int msec;
226 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
227 {0x09, 32},
228 {0x0A, 16},
229 {0x0B, 8},
230 {0x0C, 4},
231 {0x0D, 2},
232 {0x0E, 1},
233 {0x0F, 1} };
234
235 static const struct {
236 int sleep_dur;
237 u8 reg_value;
238 } bmc150_accel_sleep_value_table[] = { {0, 0},
239 {500, BMC150_ACCEL_SLEEP_500_MICRO},
240 {1000, BMC150_ACCEL_SLEEP_1_MS},
241 {2000, BMC150_ACCEL_SLEEP_2_MS},
242 {4000, BMC150_ACCEL_SLEEP_4_MS},
243 {6000, BMC150_ACCEL_SLEEP_6_MS},
244 {10000, BMC150_ACCEL_SLEEP_10_MS},
245 {25000, BMC150_ACCEL_SLEEP_25_MS},
246 {50000, BMC150_ACCEL_SLEEP_50_MS},
247 {100000, BMC150_ACCEL_SLEEP_100_MS},
248 {500000, BMC150_ACCEL_SLEEP_500_MS},
249 {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
250
251 const struct regmap_config bmc150_regmap_conf = {
252 .reg_bits = 8,
253 .val_bits = 8,
254 .max_register = 0x3f,
255 };
256 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
257
258 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
259 enum bmc150_power_modes mode,
260 int dur_us)
261 {
262 struct device *dev = regmap_get_device(data->regmap);
263 int i;
264 int ret;
265 u8 lpw_bits;
266 int dur_val = -1;
267
268 if (dur_us > 0) {
269 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
270 ++i) {
271 if (bmc150_accel_sleep_value_table[i].sleep_dur ==
272 dur_us)
273 dur_val =
274 bmc150_accel_sleep_value_table[i].reg_value;
275 }
276 } else {
277 dur_val = 0;
278 }
279
280 if (dur_val < 0)
281 return -EINVAL;
282
283 lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
284 lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
285
286 dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
287
288 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
289 if (ret < 0) {
290 dev_err(dev, "Error writing reg_pmu_lpw\n");
291 return ret;
292 }
293
294 return 0;
295 }
296
297 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
298 int val2)
299 {
300 int i;
301 int ret;
302
303 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
304 if (bmc150_accel_samp_freq_table[i].val == val &&
305 bmc150_accel_samp_freq_table[i].val2 == val2) {
306 ret = regmap_write(data->regmap,
307 BMC150_ACCEL_REG_PMU_BW,
308 bmc150_accel_samp_freq_table[i].bw_bits);
309 if (ret < 0)
310 return ret;
311
312 data->bw_bits =
313 bmc150_accel_samp_freq_table[i].bw_bits;
314 return 0;
315 }
316 }
317
318 return -EINVAL;
319 }
320
321 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
322 {
323 struct device *dev = regmap_get_device(data->regmap);
324 int ret;
325
326 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
327 data->slope_thres);
328 if (ret < 0) {
329 dev_err(dev, "Error writing reg_int_6\n");
330 return ret;
331 }
332
333 ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
334 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
335 if (ret < 0) {
336 dev_err(dev, "Error updating reg_int_5\n");
337 return ret;
338 }
339
340 dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
341 data->slope_dur);
342
343 return ret;
344 }
345
346 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
347 bool state)
348 {
349 if (state)
350 return bmc150_accel_update_slope(t->data);
351
352 return 0;
353 }
354
355 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
356 int *val2)
357 {
358 int i;
359
360 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
361 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
362 *val = bmc150_accel_samp_freq_table[i].val;
363 *val2 = bmc150_accel_samp_freq_table[i].val2;
364 return IIO_VAL_INT_PLUS_MICRO;
365 }
366 }
367
368 return -EINVAL;
369 }
370
371 #ifdef CONFIG_PM
372 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
373 {
374 int i;
375
376 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
377 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
378 return bmc150_accel_sample_upd_time[i].msec;
379 }
380
381 return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
382 }
383
384 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
385 {
386 struct device *dev = regmap_get_device(data->regmap);
387 int ret;
388
389 if (on) {
390 ret = pm_runtime_get_sync(dev);
391 } else {
392 pm_runtime_mark_last_busy(dev);
393 ret = pm_runtime_put_autosuspend(dev);
394 }
395
396 if (ret < 0) {
397 dev_err(dev,
398 "Failed: bmc150_accel_set_power_state for %d\n", on);
399 if (on)
400 pm_runtime_put_noidle(dev);
401
402 return ret;
403 }
404
405 return 0;
406 }
407 #else
408 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
409 {
410 return 0;
411 }
412 #endif
413
414 static const struct bmc150_accel_interrupt_info {
415 u8 map_reg;
416 u8 map_bitmask;
417 u8 en_reg;
418 u8 en_bitmask;
419 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
420 { /* data ready interrupt */
421 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
422 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
423 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
424 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
425 },
426 { /* motion interrupt */
427 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
428 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
429 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
430 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
431 BMC150_ACCEL_INT_EN_BIT_SLP_Y |
432 BMC150_ACCEL_INT_EN_BIT_SLP_Z
433 },
434 { /* fifo watermark interrupt */
435 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
436 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
437 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
438 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
439 },
440 };
441
442 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
443 struct bmc150_accel_data *data)
444 {
445 int i;
446
447 for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
448 data->interrupts[i].info = &bmc150_accel_interrupts[i];
449 }
450
451 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
452 bool state)
453 {
454 struct device *dev = regmap_get_device(data->regmap);
455 struct bmc150_accel_interrupt *intr = &data->interrupts[i];
456 const struct bmc150_accel_interrupt_info *info = intr->info;
457 int ret;
458
459 if (state) {
460 if (atomic_inc_return(&intr->users) > 1)
461 return 0;
462 } else {
463 if (atomic_dec_return(&intr->users) > 0)
464 return 0;
465 }
466
467 /*
468 * We will expect the enable and disable to do operation in reverse
469 * order. This will happen here anyway, as our resume operation uses
470 * sync mode runtime pm calls. The suspend operation will be delayed
471 * by autosuspend delay.
472 * So the disable operation will still happen in reverse order of
473 * enable operation. When runtime pm is disabled the mode is always on,
474 * so sequence doesn't matter.
475 */
476 ret = bmc150_accel_set_power_state(data, state);
477 if (ret < 0)
478 return ret;
479
480 /* map the interrupt to the appropriate pins */
481 ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
482 (state ? info->map_bitmask : 0));
483 if (ret < 0) {
484 dev_err(dev, "Error updating reg_int_map\n");
485 goto out_fix_power_state;
486 }
487
488 /* enable/disable the interrupt */
489 ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
490 (state ? info->en_bitmask : 0));
491 if (ret < 0) {
492 dev_err(dev, "Error updating reg_int_en\n");
493 goto out_fix_power_state;
494 }
495
496 if (state)
497 atomic_inc(&data->active_intr);
498 else
499 atomic_dec(&data->active_intr);
500
501 return 0;
502
503 out_fix_power_state:
504 bmc150_accel_set_power_state(data, false);
505 return ret;
506 }
507
508 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
509 {
510 struct device *dev = regmap_get_device(data->regmap);
511 int ret, i;
512
513 for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
514 if (data->chip_info->scale_table[i].scale == val) {
515 ret = regmap_write(data->regmap,
516 BMC150_ACCEL_REG_PMU_RANGE,
517 data->chip_info->scale_table[i].reg_range);
518 if (ret < 0) {
519 dev_err(dev, "Error writing pmu_range\n");
520 return ret;
521 }
522
523 data->range = data->chip_info->scale_table[i].reg_range;
524 return 0;
525 }
526 }
527
528 return -EINVAL;
529 }
530
531 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
532 {
533 struct device *dev = regmap_get_device(data->regmap);
534 int ret;
535 unsigned int value;
536
537 mutex_lock(&data->mutex);
538
539 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
540 if (ret < 0) {
541 dev_err(dev, "Error reading reg_temp\n");
542 mutex_unlock(&data->mutex);
543 return ret;
544 }
545 *val = sign_extend32(value, 7);
546
547 mutex_unlock(&data->mutex);
548
549 return IIO_VAL_INT;
550 }
551
552 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
553 struct iio_chan_spec const *chan,
554 int *val)
555 {
556 struct device *dev = regmap_get_device(data->regmap);
557 int ret;
558 int axis = chan->scan_index;
559 __le16 raw_val;
560
561 mutex_lock(&data->mutex);
562 ret = bmc150_accel_set_power_state(data, true);
563 if (ret < 0) {
564 mutex_unlock(&data->mutex);
565 return ret;
566 }
567
568 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
569 &raw_val, sizeof(raw_val));
570 if (ret < 0) {
571 dev_err(dev, "Error reading axis %d\n", axis);
572 bmc150_accel_set_power_state(data, false);
573 mutex_unlock(&data->mutex);
574 return ret;
575 }
576 *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
577 chan->scan_type.realbits - 1);
578 ret = bmc150_accel_set_power_state(data, false);
579 mutex_unlock(&data->mutex);
580 if (ret < 0)
581 return ret;
582
583 return IIO_VAL_INT;
584 }
585
586 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
587 struct iio_chan_spec const *chan,
588 int *val, int *val2, long mask)
589 {
590 struct bmc150_accel_data *data = iio_priv(indio_dev);
591 int ret;
592
593 switch (mask) {
594 case IIO_CHAN_INFO_RAW:
595 switch (chan->type) {
596 case IIO_TEMP:
597 return bmc150_accel_get_temp(data, val);
598 case IIO_ACCEL:
599 if (iio_buffer_enabled(indio_dev))
600 return -EBUSY;
601 else
602 return bmc150_accel_get_axis(data, chan, val);
603 default:
604 return -EINVAL;
605 }
606 case IIO_CHAN_INFO_OFFSET:
607 if (chan->type == IIO_TEMP) {
608 *val = BMC150_ACCEL_TEMP_CENTER_VAL;
609 return IIO_VAL_INT;
610 } else {
611 return -EINVAL;
612 }
613 case IIO_CHAN_INFO_SCALE:
614 *val = 0;
615 switch (chan->type) {
616 case IIO_TEMP:
617 *val2 = 500000;
618 return IIO_VAL_INT_PLUS_MICRO;
619 case IIO_ACCEL:
620 {
621 int i;
622 const struct bmc150_scale_info *si;
623 int st_size = ARRAY_SIZE(data->chip_info->scale_table);
624
625 for (i = 0; i < st_size; ++i) {
626 si = &data->chip_info->scale_table[i];
627 if (si->reg_range == data->range) {
628 *val2 = si->scale;
629 return IIO_VAL_INT_PLUS_MICRO;
630 }
631 }
632 return -EINVAL;
633 }
634 default:
635 return -EINVAL;
636 }
637 case IIO_CHAN_INFO_SAMP_FREQ:
638 mutex_lock(&data->mutex);
639 ret = bmc150_accel_get_bw(data, val, val2);
640 mutex_unlock(&data->mutex);
641 return ret;
642 default:
643 return -EINVAL;
644 }
645 }
646
647 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
648 struct iio_chan_spec const *chan,
649 int val, int val2, long mask)
650 {
651 struct bmc150_accel_data *data = iio_priv(indio_dev);
652 int ret;
653
654 switch (mask) {
655 case IIO_CHAN_INFO_SAMP_FREQ:
656 mutex_lock(&data->mutex);
657 ret = bmc150_accel_set_bw(data, val, val2);
658 mutex_unlock(&data->mutex);
659 break;
660 case IIO_CHAN_INFO_SCALE:
661 if (val)
662 return -EINVAL;
663
664 mutex_lock(&data->mutex);
665 ret = bmc150_accel_set_scale(data, val2);
666 mutex_unlock(&data->mutex);
667 return ret;
668 default:
669 ret = -EINVAL;
670 }
671
672 return ret;
673 }
674
675 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
676 const struct iio_chan_spec *chan,
677 enum iio_event_type type,
678 enum iio_event_direction dir,
679 enum iio_event_info info,
680 int *val, int *val2)
681 {
682 struct bmc150_accel_data *data = iio_priv(indio_dev);
683
684 *val2 = 0;
685 switch (info) {
686 case IIO_EV_INFO_VALUE:
687 *val = data->slope_thres;
688 break;
689 case IIO_EV_INFO_PERIOD:
690 *val = data->slope_dur;
691 break;
692 default:
693 return -EINVAL;
694 }
695
696 return IIO_VAL_INT;
697 }
698
699 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
700 const struct iio_chan_spec *chan,
701 enum iio_event_type type,
702 enum iio_event_direction dir,
703 enum iio_event_info info,
704 int val, int val2)
705 {
706 struct bmc150_accel_data *data = iio_priv(indio_dev);
707
708 if (data->ev_enable_state)
709 return -EBUSY;
710
711 switch (info) {
712 case IIO_EV_INFO_VALUE:
713 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
714 break;
715 case IIO_EV_INFO_PERIOD:
716 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
717 break;
718 default:
719 return -EINVAL;
720 }
721
722 return 0;
723 }
724
725 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
726 const struct iio_chan_spec *chan,
727 enum iio_event_type type,
728 enum iio_event_direction dir)
729 {
730 struct bmc150_accel_data *data = iio_priv(indio_dev);
731
732 return data->ev_enable_state;
733 }
734
735 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
736 const struct iio_chan_spec *chan,
737 enum iio_event_type type,
738 enum iio_event_direction dir,
739 int state)
740 {
741 struct bmc150_accel_data *data = iio_priv(indio_dev);
742 int ret;
743
744 if (state == data->ev_enable_state)
745 return 0;
746
747 mutex_lock(&data->mutex);
748
749 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
750 state);
751 if (ret < 0) {
752 mutex_unlock(&data->mutex);
753 return ret;
754 }
755
756 data->ev_enable_state = state;
757 mutex_unlock(&data->mutex);
758
759 return 0;
760 }
761
762 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
763 struct iio_trigger *trig)
764 {
765 struct bmc150_accel_data *data = iio_priv(indio_dev);
766 int i;
767
768 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
769 if (data->triggers[i].indio_trig == trig)
770 return 0;
771 }
772
773 return -EINVAL;
774 }
775
776 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
777 struct device_attribute *attr,
778 char *buf)
779 {
780 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
781 struct bmc150_accel_data *data = iio_priv(indio_dev);
782 int wm;
783
784 mutex_lock(&data->mutex);
785 wm = data->watermark;
786 mutex_unlock(&data->mutex);
787
788 return sprintf(buf, "%d\n", wm);
789 }
790
791 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
792 struct device_attribute *attr,
793 char *buf)
794 {
795 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
796 struct bmc150_accel_data *data = iio_priv(indio_dev);
797 bool state;
798
799 mutex_lock(&data->mutex);
800 state = data->fifo_mode;
801 mutex_unlock(&data->mutex);
802
803 return sprintf(buf, "%d\n", state);
804 }
805
806 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
807 static IIO_CONST_ATTR(hwfifo_watermark_max,
808 __stringify(BMC150_ACCEL_FIFO_LENGTH));
809 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
810 bmc150_accel_get_fifo_state, NULL, 0);
811 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
812 bmc150_accel_get_fifo_watermark, NULL, 0);
813
814 static const struct attribute *bmc150_accel_fifo_attributes[] = {
815 &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
816 &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
817 &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
818 &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
819 NULL,
820 };
821
822 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
823 {
824 struct bmc150_accel_data *data = iio_priv(indio_dev);
825
826 if (val > BMC150_ACCEL_FIFO_LENGTH)
827 val = BMC150_ACCEL_FIFO_LENGTH;
828
829 mutex_lock(&data->mutex);
830 data->watermark = val;
831 mutex_unlock(&data->mutex);
832
833 return 0;
834 }
835
836 /*
837 * We must read at least one full frame in one burst, otherwise the rest of the
838 * frame data is discarded.
839 */
840 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
841 char *buffer, int samples)
842 {
843 struct device *dev = regmap_get_device(data->regmap);
844 int sample_length = 3 * 2;
845 int ret;
846 int total_length = samples * sample_length;
847 int i;
848 size_t step = regmap_get_raw_read_max(data->regmap);
849
850 if (!step || step > total_length)
851 step = total_length;
852 else if (step < total_length)
853 step = sample_length;
854
855 /*
856 * Seems we have a bus with size limitation so we have to execute
857 * multiple reads
858 */
859 for (i = 0; i < total_length; i += step) {
860 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
861 &buffer[i], step);
862 if (ret)
863 break;
864 }
865
866 if (ret)
867 dev_err(dev,
868 "Error transferring data from fifo in single steps of %zu\n",
869 step);
870
871 return ret;
872 }
873
874 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
875 unsigned samples, bool irq)
876 {
877 struct bmc150_accel_data *data = iio_priv(indio_dev);
878 struct device *dev = regmap_get_device(data->regmap);
879 int ret, i;
880 u8 count;
881 u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
882 int64_t tstamp;
883 uint64_t sample_period;
884 unsigned int val;
885
886 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
887 if (ret < 0) {
888 dev_err(dev, "Error reading reg_fifo_status\n");
889 return ret;
890 }
891
892 count = val & 0x7F;
893
894 if (!count)
895 return 0;
896
897 /*
898 * If we getting called from IRQ handler we know the stored timestamp is
899 * fairly accurate for the last stored sample. Otherwise, if we are
900 * called as a result of a read operation from userspace and hence
901 * before the watermark interrupt was triggered, take a timestamp
902 * now. We can fall anywhere in between two samples so the error in this
903 * case is at most one sample period.
904 */
905 if (!irq) {
906 data->old_timestamp = data->timestamp;
907 data->timestamp = iio_get_time_ns(indio_dev);
908 }
909
910 /*
911 * Approximate timestamps for each of the sample based on the sampling
912 * frequency, timestamp for last sample and number of samples.
913 *
914 * Note that we can't use the current bandwidth settings to compute the
915 * sample period because the sample rate varies with the device
916 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
917 * small variation adds when we store a large number of samples and
918 * creates significant jitter between the last and first samples in
919 * different batches (e.g. 32ms vs 21ms).
920 *
921 * To avoid this issue we compute the actual sample period ourselves
922 * based on the timestamp delta between the last two flush operations.
923 */
924 sample_period = (data->timestamp - data->old_timestamp);
925 do_div(sample_period, count);
926 tstamp = data->timestamp - (count - 1) * sample_period;
927
928 if (samples && count > samples)
929 count = samples;
930
931 ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
932 if (ret)
933 return ret;
934
935 /*
936 * Ideally we want the IIO core to handle the demux when running in fifo
937 * mode but not when running in triggered buffer mode. Unfortunately
938 * this does not seem to be possible, so stick with driver demux for
939 * now.
940 */
941 for (i = 0; i < count; i++) {
942 u16 sample[8];
943 int j, bit;
944
945 j = 0;
946 for_each_set_bit(bit, indio_dev->active_scan_mask,
947 indio_dev->masklength)
948 memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
949
950 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
951
952 tstamp += sample_period;
953 }
954
955 return count;
956 }
957
958 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
959 {
960 struct bmc150_accel_data *data = iio_priv(indio_dev);
961 int ret;
962
963 mutex_lock(&data->mutex);
964 ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
965 mutex_unlock(&data->mutex);
966
967 return ret;
968 }
969
970 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
971 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
972
973 static struct attribute *bmc150_accel_attributes[] = {
974 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
975 NULL,
976 };
977
978 static const struct attribute_group bmc150_accel_attrs_group = {
979 .attrs = bmc150_accel_attributes,
980 };
981
982 static const struct iio_event_spec bmc150_accel_event = {
983 .type = IIO_EV_TYPE_ROC,
984 .dir = IIO_EV_DIR_EITHER,
985 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
986 BIT(IIO_EV_INFO_ENABLE) |
987 BIT(IIO_EV_INFO_PERIOD)
988 };
989
990 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
991 .type = IIO_ACCEL, \
992 .modified = 1, \
993 .channel2 = IIO_MOD_##_axis, \
994 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
995 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
996 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
997 .scan_index = AXIS_##_axis, \
998 .scan_type = { \
999 .sign = 's', \
1000 .realbits = (bits), \
1001 .storagebits = 16, \
1002 .shift = 16 - (bits), \
1003 .endianness = IIO_LE, \
1004 }, \
1005 .event_spec = &bmc150_accel_event, \
1006 .num_event_specs = 1 \
1007 }
1008
1009 #define BMC150_ACCEL_CHANNELS(bits) { \
1010 { \
1011 .type = IIO_TEMP, \
1012 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1013 BIT(IIO_CHAN_INFO_SCALE) | \
1014 BIT(IIO_CHAN_INFO_OFFSET), \
1015 .scan_index = -1, \
1016 }, \
1017 BMC150_ACCEL_CHANNEL(X, bits), \
1018 BMC150_ACCEL_CHANNEL(Y, bits), \
1019 BMC150_ACCEL_CHANNEL(Z, bits), \
1020 IIO_CHAN_SOFT_TIMESTAMP(3), \
1021 }
1022
1023 static const struct iio_chan_spec bma222e_accel_channels[] =
1024 BMC150_ACCEL_CHANNELS(8);
1025 static const struct iio_chan_spec bma250e_accel_channels[] =
1026 BMC150_ACCEL_CHANNELS(10);
1027 static const struct iio_chan_spec bmc150_accel_channels[] =
1028 BMC150_ACCEL_CHANNELS(12);
1029 static const struct iio_chan_spec bma280_accel_channels[] =
1030 BMC150_ACCEL_CHANNELS(14);
1031
1032 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1033 [bmc150] = {
1034 .name = "BMC150A",
1035 .chip_id = 0xFA,
1036 .channels = bmc150_accel_channels,
1037 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1038 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1039 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1040 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1041 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1042 },
1043 [bmi055] = {
1044 .name = "BMI055A",
1045 .chip_id = 0xFA,
1046 .channels = bmc150_accel_channels,
1047 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1048 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1049 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1050 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1051 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1052 },
1053 [bma255] = {
1054 .name = "BMA0255",
1055 .chip_id = 0xFA,
1056 .channels = bmc150_accel_channels,
1057 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1058 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1059 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1060 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1061 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1062 },
1063 [bma250e] = {
1064 .name = "BMA250E",
1065 .chip_id = 0xF9,
1066 .channels = bma250e_accel_channels,
1067 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1068 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1069 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1070 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1071 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1072 },
1073 [bma222e] = {
1074 .name = "BMA222E",
1075 .chip_id = 0xF8,
1076 .channels = bma222e_accel_channels,
1077 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1078 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1079 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1080 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1081 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1082 },
1083 [bma280] = {
1084 .name = "BMA0280",
1085 .chip_id = 0xFB,
1086 .channels = bma280_accel_channels,
1087 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1088 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1089 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1090 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1091 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1092 },
1093 };
1094
1095 static const struct iio_info bmc150_accel_info = {
1096 .attrs = &bmc150_accel_attrs_group,
1097 .read_raw = bmc150_accel_read_raw,
1098 .write_raw = bmc150_accel_write_raw,
1099 .read_event_value = bmc150_accel_read_event,
1100 .write_event_value = bmc150_accel_write_event,
1101 .write_event_config = bmc150_accel_write_event_config,
1102 .read_event_config = bmc150_accel_read_event_config,
1103 .driver_module = THIS_MODULE,
1104 };
1105
1106 static const struct iio_info bmc150_accel_info_fifo = {
1107 .attrs = &bmc150_accel_attrs_group,
1108 .read_raw = bmc150_accel_read_raw,
1109 .write_raw = bmc150_accel_write_raw,
1110 .read_event_value = bmc150_accel_read_event,
1111 .write_event_value = bmc150_accel_write_event,
1112 .write_event_config = bmc150_accel_write_event_config,
1113 .read_event_config = bmc150_accel_read_event_config,
1114 .validate_trigger = bmc150_accel_validate_trigger,
1115 .hwfifo_set_watermark = bmc150_accel_set_watermark,
1116 .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1117 .driver_module = THIS_MODULE,
1118 };
1119
1120 static const unsigned long bmc150_accel_scan_masks[] = {
1121 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1122 0};
1123
1124 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1125 {
1126 struct iio_poll_func *pf = p;
1127 struct iio_dev *indio_dev = pf->indio_dev;
1128 struct bmc150_accel_data *data = iio_priv(indio_dev);
1129 int ret;
1130
1131 mutex_lock(&data->mutex);
1132 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1133 data->buffer, AXIS_MAX * 2);
1134 mutex_unlock(&data->mutex);
1135 if (ret < 0)
1136 goto err_read;
1137
1138 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1139 pf->timestamp);
1140 err_read:
1141 iio_trigger_notify_done(indio_dev->trig);
1142
1143 return IRQ_HANDLED;
1144 }
1145
1146 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1147 {
1148 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1149 struct bmc150_accel_data *data = t->data;
1150 struct device *dev = regmap_get_device(data->regmap);
1151 int ret;
1152
1153 /* new data interrupts don't need ack */
1154 if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1155 return 0;
1156
1157 mutex_lock(&data->mutex);
1158 /* clear any latched interrupt */
1159 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1160 BMC150_ACCEL_INT_MODE_LATCH_INT |
1161 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1162 mutex_unlock(&data->mutex);
1163 if (ret < 0) {
1164 dev_err(dev, "Error writing reg_int_rst_latch\n");
1165 return ret;
1166 }
1167
1168 return 0;
1169 }
1170
1171 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1172 bool state)
1173 {
1174 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1175 struct bmc150_accel_data *data = t->data;
1176 int ret;
1177
1178 mutex_lock(&data->mutex);
1179
1180 if (t->enabled == state) {
1181 mutex_unlock(&data->mutex);
1182 return 0;
1183 }
1184
1185 if (t->setup) {
1186 ret = t->setup(t, state);
1187 if (ret < 0) {
1188 mutex_unlock(&data->mutex);
1189 return ret;
1190 }
1191 }
1192
1193 ret = bmc150_accel_set_interrupt(data, t->intr, state);
1194 if (ret < 0) {
1195 mutex_unlock(&data->mutex);
1196 return ret;
1197 }
1198
1199 t->enabled = state;
1200
1201 mutex_unlock(&data->mutex);
1202
1203 return ret;
1204 }
1205
1206 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1207 .set_trigger_state = bmc150_accel_trigger_set_state,
1208 .try_reenable = bmc150_accel_trig_try_reen,
1209 .owner = THIS_MODULE,
1210 };
1211
1212 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1213 {
1214 struct bmc150_accel_data *data = iio_priv(indio_dev);
1215 struct device *dev = regmap_get_device(data->regmap);
1216 int dir;
1217 int ret;
1218 unsigned int val;
1219
1220 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1221 if (ret < 0) {
1222 dev_err(dev, "Error reading reg_int_status_2\n");
1223 return ret;
1224 }
1225
1226 if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1227 dir = IIO_EV_DIR_FALLING;
1228 else
1229 dir = IIO_EV_DIR_RISING;
1230
1231 if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1232 iio_push_event(indio_dev,
1233 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234 0,
1235 IIO_MOD_X,
1236 IIO_EV_TYPE_ROC,
1237 dir),
1238 data->timestamp);
1239
1240 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1241 iio_push_event(indio_dev,
1242 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1243 0,
1244 IIO_MOD_Y,
1245 IIO_EV_TYPE_ROC,
1246 dir),
1247 data->timestamp);
1248
1249 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1250 iio_push_event(indio_dev,
1251 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1252 0,
1253 IIO_MOD_Z,
1254 IIO_EV_TYPE_ROC,
1255 dir),
1256 data->timestamp);
1257
1258 return ret;
1259 }
1260
1261 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1262 {
1263 struct iio_dev *indio_dev = private;
1264 struct bmc150_accel_data *data = iio_priv(indio_dev);
1265 struct device *dev = regmap_get_device(data->regmap);
1266 bool ack = false;
1267 int ret;
1268
1269 mutex_lock(&data->mutex);
1270
1271 if (data->fifo_mode) {
1272 ret = __bmc150_accel_fifo_flush(indio_dev,
1273 BMC150_ACCEL_FIFO_LENGTH, true);
1274 if (ret > 0)
1275 ack = true;
1276 }
1277
1278 if (data->ev_enable_state) {
1279 ret = bmc150_accel_handle_roc_event(indio_dev);
1280 if (ret > 0)
1281 ack = true;
1282 }
1283
1284 if (ack) {
1285 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1286 BMC150_ACCEL_INT_MODE_LATCH_INT |
1287 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1288 if (ret)
1289 dev_err(dev, "Error writing reg_int_rst_latch\n");
1290
1291 ret = IRQ_HANDLED;
1292 } else {
1293 ret = IRQ_NONE;
1294 }
1295
1296 mutex_unlock(&data->mutex);
1297
1298 return ret;
1299 }
1300
1301 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1302 {
1303 struct iio_dev *indio_dev = private;
1304 struct bmc150_accel_data *data = iio_priv(indio_dev);
1305 bool ack = false;
1306 int i;
1307
1308 data->old_timestamp = data->timestamp;
1309 data->timestamp = iio_get_time_ns(indio_dev);
1310
1311 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1312 if (data->triggers[i].enabled) {
1313 iio_trigger_poll(data->triggers[i].indio_trig);
1314 ack = true;
1315 break;
1316 }
1317 }
1318
1319 if (data->ev_enable_state || data->fifo_mode)
1320 return IRQ_WAKE_THREAD;
1321
1322 if (ack)
1323 return IRQ_HANDLED;
1324
1325 return IRQ_NONE;
1326 }
1327
1328 static const struct {
1329 int intr;
1330 const char *name;
1331 int (*setup)(struct bmc150_accel_trigger *t, bool state);
1332 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1333 {
1334 .intr = 0,
1335 .name = "%s-dev%d",
1336 },
1337 {
1338 .intr = 1,
1339 .name = "%s-any-motion-dev%d",
1340 .setup = bmc150_accel_any_motion_setup,
1341 },
1342 };
1343
1344 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1345 int from)
1346 {
1347 int i;
1348
1349 for (i = from; i >= 0; i--) {
1350 if (data->triggers[i].indio_trig) {
1351 iio_trigger_unregister(data->triggers[i].indio_trig);
1352 data->triggers[i].indio_trig = NULL;
1353 }
1354 }
1355 }
1356
1357 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1358 struct bmc150_accel_data *data)
1359 {
1360 struct device *dev = regmap_get_device(data->regmap);
1361 int i, ret;
1362
1363 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1364 struct bmc150_accel_trigger *t = &data->triggers[i];
1365
1366 t->indio_trig = devm_iio_trigger_alloc(dev,
1367 bmc150_accel_triggers[i].name,
1368 indio_dev->name,
1369 indio_dev->id);
1370 if (!t->indio_trig) {
1371 ret = -ENOMEM;
1372 break;
1373 }
1374
1375 t->indio_trig->dev.parent = dev;
1376 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1377 t->intr = bmc150_accel_triggers[i].intr;
1378 t->data = data;
1379 t->setup = bmc150_accel_triggers[i].setup;
1380 iio_trigger_set_drvdata(t->indio_trig, t);
1381
1382 ret = iio_trigger_register(t->indio_trig);
1383 if (ret)
1384 break;
1385 }
1386
1387 if (ret)
1388 bmc150_accel_unregister_triggers(data, i - 1);
1389
1390 return ret;
1391 }
1392
1393 #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
1394 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
1395 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
1396
1397 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1398 {
1399 struct device *dev = regmap_get_device(data->regmap);
1400 u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1401 int ret;
1402
1403 ret = regmap_write(data->regmap, reg, data->fifo_mode);
1404 if (ret < 0) {
1405 dev_err(dev, "Error writing reg_fifo_config1\n");
1406 return ret;
1407 }
1408
1409 if (!data->fifo_mode)
1410 return 0;
1411
1412 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1413 data->watermark);
1414 if (ret < 0)
1415 dev_err(dev, "Error writing reg_fifo_config0\n");
1416
1417 return ret;
1418 }
1419
1420 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1421 {
1422 struct bmc150_accel_data *data = iio_priv(indio_dev);
1423
1424 return bmc150_accel_set_power_state(data, true);
1425 }
1426
1427 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1428 {
1429 struct bmc150_accel_data *data = iio_priv(indio_dev);
1430 int ret = 0;
1431
1432 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1433 return iio_triggered_buffer_postenable(indio_dev);
1434
1435 mutex_lock(&data->mutex);
1436
1437 if (!data->watermark)
1438 goto out;
1439
1440 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1441 true);
1442 if (ret)
1443 goto out;
1444
1445 data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1446
1447 ret = bmc150_accel_fifo_set_mode(data);
1448 if (ret) {
1449 data->fifo_mode = 0;
1450 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1451 false);
1452 }
1453
1454 out:
1455 mutex_unlock(&data->mutex);
1456
1457 return ret;
1458 }
1459
1460 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1461 {
1462 struct bmc150_accel_data *data = iio_priv(indio_dev);
1463
1464 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1465 return iio_triggered_buffer_predisable(indio_dev);
1466
1467 mutex_lock(&data->mutex);
1468
1469 if (!data->fifo_mode)
1470 goto out;
1471
1472 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1473 __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1474 data->fifo_mode = 0;
1475 bmc150_accel_fifo_set_mode(data);
1476
1477 out:
1478 mutex_unlock(&data->mutex);
1479
1480 return 0;
1481 }
1482
1483 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1484 {
1485 struct bmc150_accel_data *data = iio_priv(indio_dev);
1486
1487 return bmc150_accel_set_power_state(data, false);
1488 }
1489
1490 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1491 .preenable = bmc150_accel_buffer_preenable,
1492 .postenable = bmc150_accel_buffer_postenable,
1493 .predisable = bmc150_accel_buffer_predisable,
1494 .postdisable = bmc150_accel_buffer_postdisable,
1495 };
1496
1497 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1498 {
1499 struct device *dev = regmap_get_device(data->regmap);
1500 int ret, i;
1501 unsigned int val;
1502
1503 /*
1504 * Reset chip to get it in a known good state. A delay of 1.8ms after
1505 * reset is required according to the data sheets of supported chips.
1506 */
1507 regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1508 BMC150_ACCEL_RESET_VAL);
1509 usleep_range(1800, 2500);
1510
1511 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1512 if (ret < 0) {
1513 dev_err(dev, "Error: Reading chip id\n");
1514 return ret;
1515 }
1516
1517 dev_dbg(dev, "Chip Id %x\n", val);
1518 for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1519 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1520 data->chip_info = &bmc150_accel_chip_info_tbl[i];
1521 break;
1522 }
1523 }
1524
1525 if (!data->chip_info) {
1526 dev_err(dev, "Invalid chip %x\n", val);
1527 return -ENODEV;
1528 }
1529
1530 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1531 if (ret < 0)
1532 return ret;
1533
1534 /* Set Bandwidth */
1535 ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1536 if (ret < 0)
1537 return ret;
1538
1539 /* Set Default Range */
1540 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1541 BMC150_ACCEL_DEF_RANGE_4G);
1542 if (ret < 0) {
1543 dev_err(dev, "Error writing reg_pmu_range\n");
1544 return ret;
1545 }
1546
1547 data->range = BMC150_ACCEL_DEF_RANGE_4G;
1548
1549 /* Set default slope duration and thresholds */
1550 data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1551 data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1552 ret = bmc150_accel_update_slope(data);
1553 if (ret < 0)
1554 return ret;
1555
1556 /* Set default as latched interrupts */
1557 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1558 BMC150_ACCEL_INT_MODE_LATCH_INT |
1559 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1560 if (ret < 0) {
1561 dev_err(dev, "Error writing reg_int_rst_latch\n");
1562 return ret;
1563 }
1564
1565 return 0;
1566 }
1567
1568 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1569 const char *name, bool block_supported)
1570 {
1571 struct bmc150_accel_data *data;
1572 struct iio_dev *indio_dev;
1573 int ret;
1574
1575 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1576 if (!indio_dev)
1577 return -ENOMEM;
1578
1579 data = iio_priv(indio_dev);
1580 dev_set_drvdata(dev, indio_dev);
1581 data->irq = irq;
1582
1583 data->regmap = regmap;
1584
1585 ret = bmc150_accel_chip_init(data);
1586 if (ret < 0)
1587 return ret;
1588
1589 mutex_init(&data->mutex);
1590
1591 indio_dev->dev.parent = dev;
1592 indio_dev->channels = data->chip_info->channels;
1593 indio_dev->num_channels = data->chip_info->num_channels;
1594 indio_dev->name = name ? name : data->chip_info->name;
1595 indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1596 indio_dev->modes = INDIO_DIRECT_MODE;
1597 indio_dev->info = &bmc150_accel_info;
1598
1599 ret = iio_triggered_buffer_setup(indio_dev,
1600 &iio_pollfunc_store_time,
1601 bmc150_accel_trigger_handler,
1602 &bmc150_accel_buffer_ops);
1603 if (ret < 0) {
1604 dev_err(dev, "Failed: iio triggered buffer setup\n");
1605 return ret;
1606 }
1607
1608 if (data->irq > 0) {
1609 ret = devm_request_threaded_irq(
1610 dev, data->irq,
1611 bmc150_accel_irq_handler,
1612 bmc150_accel_irq_thread_handler,
1613 IRQF_TRIGGER_RISING,
1614 BMC150_ACCEL_IRQ_NAME,
1615 indio_dev);
1616 if (ret)
1617 goto err_buffer_cleanup;
1618
1619 /*
1620 * Set latched mode interrupt. While certain interrupts are
1621 * non-latched regardless of this settings (e.g. new data) we
1622 * want to use latch mode when we can to prevent interrupt
1623 * flooding.
1624 */
1625 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1626 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1627 if (ret < 0) {
1628 dev_err(dev, "Error writing reg_int_rst_latch\n");
1629 goto err_buffer_cleanup;
1630 }
1631
1632 bmc150_accel_interrupts_setup(indio_dev, data);
1633
1634 ret = bmc150_accel_triggers_setup(indio_dev, data);
1635 if (ret)
1636 goto err_buffer_cleanup;
1637
1638 if (block_supported) {
1639 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1640 indio_dev->info = &bmc150_accel_info_fifo;
1641 iio_buffer_set_attrs(indio_dev->buffer,
1642 bmc150_accel_fifo_attributes);
1643 }
1644 }
1645
1646 ret = pm_runtime_set_active(dev);
1647 if (ret)
1648 goto err_trigger_unregister;
1649
1650 pm_runtime_enable(dev);
1651 pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1652 pm_runtime_use_autosuspend(dev);
1653
1654 ret = iio_device_register(indio_dev);
1655 if (ret < 0) {
1656 dev_err(dev, "Unable to register iio device\n");
1657 goto err_trigger_unregister;
1658 }
1659
1660 return 0;
1661
1662 err_trigger_unregister:
1663 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1664 err_buffer_cleanup:
1665 iio_triggered_buffer_cleanup(indio_dev);
1666
1667 return ret;
1668 }
1669 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1670
1671 int bmc150_accel_core_remove(struct device *dev)
1672 {
1673 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1674 struct bmc150_accel_data *data = iio_priv(indio_dev);
1675
1676 iio_device_unregister(indio_dev);
1677
1678 pm_runtime_disable(dev);
1679 pm_runtime_set_suspended(dev);
1680 pm_runtime_put_noidle(dev);
1681
1682 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1683
1684 iio_triggered_buffer_cleanup(indio_dev);
1685
1686 mutex_lock(&data->mutex);
1687 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1688 mutex_unlock(&data->mutex);
1689
1690 return 0;
1691 }
1692 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1693
1694 #ifdef CONFIG_PM_SLEEP
1695 static int bmc150_accel_suspend(struct device *dev)
1696 {
1697 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1698 struct bmc150_accel_data *data = iio_priv(indio_dev);
1699
1700 mutex_lock(&data->mutex);
1701 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1702 mutex_unlock(&data->mutex);
1703
1704 return 0;
1705 }
1706
1707 static int bmc150_accel_resume(struct device *dev)
1708 {
1709 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1710 struct bmc150_accel_data *data = iio_priv(indio_dev);
1711
1712 mutex_lock(&data->mutex);
1713 if (atomic_read(&data->active_intr))
1714 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1715 bmc150_accel_fifo_set_mode(data);
1716 mutex_unlock(&data->mutex);
1717
1718 return 0;
1719 }
1720 #endif
1721
1722 #ifdef CONFIG_PM
1723 static int bmc150_accel_runtime_suspend(struct device *dev)
1724 {
1725 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1726 struct bmc150_accel_data *data = iio_priv(indio_dev);
1727 int ret;
1728
1729 dev_dbg(dev, __func__);
1730 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1731 if (ret < 0)
1732 return -EAGAIN;
1733
1734 return 0;
1735 }
1736
1737 static int bmc150_accel_runtime_resume(struct device *dev)
1738 {
1739 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1740 struct bmc150_accel_data *data = iio_priv(indio_dev);
1741 int ret;
1742 int sleep_val;
1743
1744 dev_dbg(dev, __func__);
1745
1746 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1747 if (ret < 0)
1748 return ret;
1749 ret = bmc150_accel_fifo_set_mode(data);
1750 if (ret < 0)
1751 return ret;
1752
1753 sleep_val = bmc150_accel_get_startup_times(data);
1754 if (sleep_val < 20)
1755 usleep_range(sleep_val * 1000, 20000);
1756 else
1757 msleep_interruptible(sleep_val);
1758
1759 return 0;
1760 }
1761 #endif
1762
1763 const struct dev_pm_ops bmc150_accel_pm_ops = {
1764 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1765 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1766 bmc150_accel_runtime_resume, NULL)
1767 };
1768 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1769
1770 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1771 MODULE_LICENSE("GPL v2");
1772 MODULE_DESCRIPTION("BMC150 accelerometer driver");