]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iio/adc/qcom-vadc-common.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-bionic-kernel.git] / drivers / iio / adc / qcom-vadc-common.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bug.h>
3 #include <linux/kernel.h>
4 #include <linux/bitops.h>
5 #include <linux/math64.h>
6 #include <linux/log2.h>
7 #include <linux/err.h>
8
9 #include "qcom-vadc-common.h"
10
11 /* Voltage to temperature */
12 static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = {
13 {1758, -40},
14 {1742, -35},
15 {1719, -30},
16 {1691, -25},
17 {1654, -20},
18 {1608, -15},
19 {1551, -10},
20 {1483, -5},
21 {1404, 0},
22 {1315, 5},
23 {1218, 10},
24 {1114, 15},
25 {1007, 20},
26 {900, 25},
27 {795, 30},
28 {696, 35},
29 {605, 40},
30 {522, 45},
31 {448, 50},
32 {383, 55},
33 {327, 60},
34 {278, 65},
35 {237, 70},
36 {202, 75},
37 {172, 80},
38 {146, 85},
39 {125, 90},
40 {107, 95},
41 {92, 100},
42 {79, 105},
43 {68, 110},
44 {59, 115},
45 {51, 120},
46 {44, 125}
47 };
48
49 static int qcom_vadc_map_voltage_temp(const struct vadc_map_pt *pts,
50 u32 tablesize, s32 input, s64 *output)
51 {
52 bool descending = 1;
53 u32 i = 0;
54
55 if (!pts)
56 return -EINVAL;
57
58 /* Check if table is descending or ascending */
59 if (tablesize > 1) {
60 if (pts[0].x < pts[1].x)
61 descending = 0;
62 }
63
64 while (i < tablesize) {
65 if ((descending) && (pts[i].x < input)) {
66 /* table entry is less than measured*/
67 /* value and table is descending, stop */
68 break;
69 } else if ((!descending) &&
70 (pts[i].x > input)) {
71 /* table entry is greater than measured*/
72 /*value and table is ascending, stop */
73 break;
74 }
75 i++;
76 }
77
78 if (i == 0) {
79 *output = pts[0].y;
80 } else if (i == tablesize) {
81 *output = pts[tablesize - 1].y;
82 } else {
83 /* result is between search_index and search_index-1 */
84 /* interpolate linearly */
85 *output = (((s32)((pts[i].y - pts[i - 1].y) *
86 (input - pts[i - 1].x)) /
87 (pts[i].x - pts[i - 1].x)) +
88 pts[i - 1].y);
89 }
90
91 return 0;
92 }
93
94 static void qcom_vadc_scale_calib(const struct vadc_linear_graph *calib_graph,
95 u16 adc_code,
96 bool absolute,
97 s64 *scale_voltage)
98 {
99 *scale_voltage = (adc_code - calib_graph->gnd);
100 *scale_voltage *= calib_graph->dx;
101 *scale_voltage = div64_s64(*scale_voltage, calib_graph->dy);
102 if (absolute)
103 *scale_voltage += calib_graph->dx;
104
105 if (*scale_voltage < 0)
106 *scale_voltage = 0;
107 }
108
109 static int qcom_vadc_scale_volt(const struct vadc_linear_graph *calib_graph,
110 const struct vadc_prescale_ratio *prescale,
111 bool absolute, u16 adc_code,
112 int *result_uv)
113 {
114 s64 voltage = 0, result = 0;
115
116 qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
117
118 voltage = voltage * prescale->den;
119 result = div64_s64(voltage, prescale->num);
120 *result_uv = result;
121
122 return 0;
123 }
124
125 static int qcom_vadc_scale_therm(const struct vadc_linear_graph *calib_graph,
126 const struct vadc_prescale_ratio *prescale,
127 bool absolute, u16 adc_code,
128 int *result_mdec)
129 {
130 s64 voltage = 0, result = 0;
131 int ret;
132
133 qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
134
135 if (absolute)
136 voltage = div64_s64(voltage, 1000);
137
138 ret = qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb,
139 ARRAY_SIZE(adcmap_100k_104ef_104fb),
140 voltage, &result);
141 if (ret)
142 return ret;
143
144 result *= 1000;
145 *result_mdec = result;
146
147 return 0;
148 }
149
150 static int qcom_vadc_scale_die_temp(const struct vadc_linear_graph *calib_graph,
151 const struct vadc_prescale_ratio *prescale,
152 bool absolute,
153 u16 adc_code, int *result_mdec)
154 {
155 s64 voltage = 0;
156 u64 temp; /* Temporary variable for do_div */
157
158 qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
159
160 if (voltage > 0) {
161 temp = voltage * prescale->den;
162 do_div(temp, prescale->num * 2);
163 voltage = temp;
164 } else {
165 voltage = 0;
166 }
167
168 voltage -= KELVINMIL_CELSIUSMIL;
169 *result_mdec = voltage;
170
171 return 0;
172 }
173
174 static int qcom_vadc_scale_chg_temp(const struct vadc_linear_graph *calib_graph,
175 const struct vadc_prescale_ratio *prescale,
176 bool absolute,
177 u16 adc_code, int *result_mdec)
178 {
179 s64 voltage = 0, result = 0;
180
181 qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
182
183 voltage = voltage * prescale->den;
184 voltage = div64_s64(voltage, prescale->num);
185 voltage = ((PMI_CHG_SCALE_1) * (voltage * 2));
186 voltage = (voltage + PMI_CHG_SCALE_2);
187 result = div64_s64(voltage, 1000000);
188 *result_mdec = result;
189
190 return 0;
191 }
192
193 int qcom_vadc_scale(enum vadc_scale_fn_type scaletype,
194 const struct vadc_linear_graph *calib_graph,
195 const struct vadc_prescale_ratio *prescale,
196 bool absolute,
197 u16 adc_code, int *result)
198 {
199 switch (scaletype) {
200 case SCALE_DEFAULT:
201 return qcom_vadc_scale_volt(calib_graph, prescale,
202 absolute, adc_code,
203 result);
204 case SCALE_THERM_100K_PULLUP:
205 case SCALE_XOTHERM:
206 return qcom_vadc_scale_therm(calib_graph, prescale,
207 absolute, adc_code,
208 result);
209 case SCALE_PMIC_THERM:
210 return qcom_vadc_scale_die_temp(calib_graph, prescale,
211 absolute, adc_code,
212 result);
213 case SCALE_PMI_CHG_TEMP:
214 return qcom_vadc_scale_chg_temp(calib_graph, prescale,
215 absolute, adc_code,
216 result);
217 default:
218 return -EINVAL;
219 }
220 }
221 EXPORT_SYMBOL(qcom_vadc_scale);
222
223 int qcom_vadc_decimation_from_dt(u32 value)
224 {
225 if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN ||
226 value > VADC_DECIMATION_MAX)
227 return -EINVAL;
228
229 return __ffs64(value / VADC_DECIMATION_MIN);
230 }
231 EXPORT_SYMBOL(qcom_vadc_decimation_from_dt);