]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iio/adc/stm32-adc.c
Merge tag 'nfs-for-4.13-4' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / drivers / iio / adc / stm32-adc.c
1 /*
2 * This file is part of STM32 ADC driver
3 *
4 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
5 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
6 *
7 * License type: GPLv2
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License version 2 as published by
11 * the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/timer/stm32-timer-trigger.h>
29 #include <linux/iio/trigger.h>
30 #include <linux/iio/trigger_consumer.h>
31 #include <linux/iio/triggered_buffer.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/iopoll.h>
35 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39
40 #include "stm32-adc-core.h"
41
42 /* STM32F4 - Registers for each ADC instance */
43 #define STM32F4_ADC_SR 0x00
44 #define STM32F4_ADC_CR1 0x04
45 #define STM32F4_ADC_CR2 0x08
46 #define STM32F4_ADC_SMPR1 0x0C
47 #define STM32F4_ADC_SMPR2 0x10
48 #define STM32F4_ADC_HTR 0x24
49 #define STM32F4_ADC_LTR 0x28
50 #define STM32F4_ADC_SQR1 0x2C
51 #define STM32F4_ADC_SQR2 0x30
52 #define STM32F4_ADC_SQR3 0x34
53 #define STM32F4_ADC_JSQR 0x38
54 #define STM32F4_ADC_JDR1 0x3C
55 #define STM32F4_ADC_JDR2 0x40
56 #define STM32F4_ADC_JDR3 0x44
57 #define STM32F4_ADC_JDR4 0x48
58 #define STM32F4_ADC_DR 0x4C
59
60 /* STM32F4_ADC_SR - bit fields */
61 #define STM32F4_STRT BIT(4)
62 #define STM32F4_EOC BIT(1)
63
64 /* STM32F4_ADC_CR1 - bit fields */
65 #define STM32F4_RES_SHIFT 24
66 #define STM32F4_RES_MASK GENMASK(25, 24)
67 #define STM32F4_SCAN BIT(8)
68 #define STM32F4_EOCIE BIT(5)
69
70 /* STM32F4_ADC_CR2 - bit fields */
71 #define STM32F4_SWSTART BIT(30)
72 #define STM32F4_EXTEN_SHIFT 28
73 #define STM32F4_EXTEN_MASK GENMASK(29, 28)
74 #define STM32F4_EXTSEL_SHIFT 24
75 #define STM32F4_EXTSEL_MASK GENMASK(27, 24)
76 #define STM32F4_EOCS BIT(10)
77 #define STM32F4_DDS BIT(9)
78 #define STM32F4_DMA BIT(8)
79 #define STM32F4_ADON BIT(0)
80
81 /* STM32H7 - Registers for each ADC instance */
82 #define STM32H7_ADC_ISR 0x00
83 #define STM32H7_ADC_IER 0x04
84 #define STM32H7_ADC_CR 0x08
85 #define STM32H7_ADC_CFGR 0x0C
86 #define STM32H7_ADC_PCSEL 0x1C
87 #define STM32H7_ADC_SQR1 0x30
88 #define STM32H7_ADC_SQR2 0x34
89 #define STM32H7_ADC_SQR3 0x38
90 #define STM32H7_ADC_SQR4 0x3C
91 #define STM32H7_ADC_DR 0x40
92 #define STM32H7_ADC_CALFACT 0xC4
93 #define STM32H7_ADC_CALFACT2 0xC8
94
95 /* STM32H7_ADC_ISR - bit fields */
96 #define STM32H7_EOC BIT(2)
97 #define STM32H7_ADRDY BIT(0)
98
99 /* STM32H7_ADC_IER - bit fields */
100 #define STM32H7_EOCIE STM32H7_EOC
101
102 /* STM32H7_ADC_CR - bit fields */
103 #define STM32H7_ADCAL BIT(31)
104 #define STM32H7_ADCALDIF BIT(30)
105 #define STM32H7_DEEPPWD BIT(29)
106 #define STM32H7_ADVREGEN BIT(28)
107 #define STM32H7_LINCALRDYW6 BIT(27)
108 #define STM32H7_LINCALRDYW5 BIT(26)
109 #define STM32H7_LINCALRDYW4 BIT(25)
110 #define STM32H7_LINCALRDYW3 BIT(24)
111 #define STM32H7_LINCALRDYW2 BIT(23)
112 #define STM32H7_LINCALRDYW1 BIT(22)
113 #define STM32H7_ADCALLIN BIT(16)
114 #define STM32H7_BOOST BIT(8)
115 #define STM32H7_ADSTP BIT(4)
116 #define STM32H7_ADSTART BIT(2)
117 #define STM32H7_ADDIS BIT(1)
118 #define STM32H7_ADEN BIT(0)
119
120 /* STM32H7_ADC_CFGR bit fields */
121 #define STM32H7_EXTEN_SHIFT 10
122 #define STM32H7_EXTEN_MASK GENMASK(11, 10)
123 #define STM32H7_EXTSEL_SHIFT 5
124 #define STM32H7_EXTSEL_MASK GENMASK(9, 5)
125 #define STM32H7_RES_SHIFT 2
126 #define STM32H7_RES_MASK GENMASK(4, 2)
127 #define STM32H7_DMNGT_SHIFT 0
128 #define STM32H7_DMNGT_MASK GENMASK(1, 0)
129
130 enum stm32h7_adc_dmngt {
131 STM32H7_DMNGT_DR_ONLY, /* Regular data in DR only */
132 STM32H7_DMNGT_DMA_ONESHOT, /* DMA one shot mode */
133 STM32H7_DMNGT_DFSDM, /* DFSDM mode */
134 STM32H7_DMNGT_DMA_CIRC, /* DMA circular mode */
135 };
136
137 /* STM32H7_ADC_CALFACT - bit fields */
138 #define STM32H7_CALFACT_D_SHIFT 16
139 #define STM32H7_CALFACT_D_MASK GENMASK(26, 16)
140 #define STM32H7_CALFACT_S_SHIFT 0
141 #define STM32H7_CALFACT_S_MASK GENMASK(10, 0)
142
143 /* STM32H7_ADC_CALFACT2 - bit fields */
144 #define STM32H7_LINCALFACT_SHIFT 0
145 #define STM32H7_LINCALFACT_MASK GENMASK(29, 0)
146
147 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
148 #define STM32H7_LINCALFACT_NUM 6
149
150 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
151 #define STM32H7_BOOST_CLKRATE 20000000UL
152
153 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
154 #define STM32_ADC_TIMEOUT_US 100000
155 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
156
157 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
158
159 /* External trigger enable */
160 enum stm32_adc_exten {
161 STM32_EXTEN_SWTRIG,
162 STM32_EXTEN_HWTRIG_RISING_EDGE,
163 STM32_EXTEN_HWTRIG_FALLING_EDGE,
164 STM32_EXTEN_HWTRIG_BOTH_EDGES,
165 };
166
167 /* extsel - trigger mux selection value */
168 enum stm32_adc_extsel {
169 STM32_EXT0,
170 STM32_EXT1,
171 STM32_EXT2,
172 STM32_EXT3,
173 STM32_EXT4,
174 STM32_EXT5,
175 STM32_EXT6,
176 STM32_EXT7,
177 STM32_EXT8,
178 STM32_EXT9,
179 STM32_EXT10,
180 STM32_EXT11,
181 STM32_EXT12,
182 STM32_EXT13,
183 STM32_EXT14,
184 STM32_EXT15,
185 };
186
187 /**
188 * struct stm32_adc_trig_info - ADC trigger info
189 * @name: name of the trigger, corresponding to its source
190 * @extsel: trigger selection
191 */
192 struct stm32_adc_trig_info {
193 const char *name;
194 enum stm32_adc_extsel extsel;
195 };
196
197 /**
198 * struct stm32_adc_calib - optional adc calibration data
199 * @calfact_s: Calibration offset for single ended channels
200 * @calfact_d: Calibration offset in differential
201 * @lincalfact: Linearity calibration factor
202 */
203 struct stm32_adc_calib {
204 u32 calfact_s;
205 u32 calfact_d;
206 u32 lincalfact[STM32H7_LINCALFACT_NUM];
207 };
208
209 /**
210 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
211 * @reg: register offset
212 * @mask: bitfield mask
213 * @shift: left shift
214 */
215 struct stm32_adc_regs {
216 int reg;
217 int mask;
218 int shift;
219 };
220
221 /**
222 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
223 * @dr: data register offset
224 * @ier_eoc: interrupt enable register & eocie bitfield
225 * @isr_eoc: interrupt status register & eoc bitfield
226 * @sqr: reference to sequence registers array
227 * @exten: trigger control register & bitfield
228 * @extsel: trigger selection register & bitfield
229 * @res: resolution selection register & bitfield
230 */
231 struct stm32_adc_regspec {
232 const u32 dr;
233 const struct stm32_adc_regs ier_eoc;
234 const struct stm32_adc_regs isr_eoc;
235 const struct stm32_adc_regs *sqr;
236 const struct stm32_adc_regs exten;
237 const struct stm32_adc_regs extsel;
238 const struct stm32_adc_regs res;
239 };
240
241 struct stm32_adc;
242
243 /**
244 * stm32_adc_cfg - stm32 compatible configuration data
245 * @regs: registers descriptions
246 * @adc_info: per instance input channels definitions
247 * @trigs: external trigger sources
248 * @clk_required: clock is required
249 * @selfcalib: optional routine for self-calibration
250 * @prepare: optional prepare routine (power-up, enable)
251 * @start_conv: routine to start conversions
252 * @stop_conv: routine to stop conversions
253 * @unprepare: optional unprepare routine (disable, power-down)
254 */
255 struct stm32_adc_cfg {
256 const struct stm32_adc_regspec *regs;
257 const struct stm32_adc_info *adc_info;
258 struct stm32_adc_trig_info *trigs;
259 bool clk_required;
260 int (*selfcalib)(struct stm32_adc *);
261 int (*prepare)(struct stm32_adc *);
262 void (*start_conv)(struct stm32_adc *, bool dma);
263 void (*stop_conv)(struct stm32_adc *);
264 void (*unprepare)(struct stm32_adc *);
265 };
266
267 /**
268 * struct stm32_adc - private data of each ADC IIO instance
269 * @common: reference to ADC block common data
270 * @offset: ADC instance register offset in ADC block
271 * @cfg: compatible configuration data
272 * @completion: end of single conversion completion
273 * @buffer: data buffer
274 * @clk: clock for this adc instance
275 * @irq: interrupt for this adc instance
276 * @lock: spinlock
277 * @bufi: data buffer index
278 * @num_conv: expected number of scan conversions
279 * @res: data resolution (e.g. RES bitfield value)
280 * @trigger_polarity: external trigger polarity (e.g. exten)
281 * @dma_chan: dma channel
282 * @rx_buf: dma rx buffer cpu address
283 * @rx_dma_buf: dma rx buffer bus address
284 * @rx_buf_sz: dma rx buffer size
285 * @pcsel bitmask to preselect channels on some devices
286 * @cal: optional calibration data on some devices
287 */
288 struct stm32_adc {
289 struct stm32_adc_common *common;
290 u32 offset;
291 const struct stm32_adc_cfg *cfg;
292 struct completion completion;
293 u16 buffer[STM32_ADC_MAX_SQ];
294 struct clk *clk;
295 int irq;
296 spinlock_t lock; /* interrupt lock */
297 unsigned int bufi;
298 unsigned int num_conv;
299 u32 res;
300 u32 trigger_polarity;
301 struct dma_chan *dma_chan;
302 u8 *rx_buf;
303 dma_addr_t rx_dma_buf;
304 unsigned int rx_buf_sz;
305 u32 pcsel;
306 struct stm32_adc_calib cal;
307 };
308
309 /**
310 * struct stm32_adc_chan_spec - specification of stm32 adc channel
311 * @type: IIO channel type
312 * @channel: channel number (single ended)
313 * @name: channel name (single ended)
314 */
315 struct stm32_adc_chan_spec {
316 enum iio_chan_type type;
317 int channel;
318 const char *name;
319 };
320
321 /**
322 * struct stm32_adc_info - stm32 ADC, per instance config data
323 * @channels: Reference to stm32 channels spec
324 * @max_channels: Number of channels
325 * @resolutions: available resolutions
326 * @num_res: number of available resolutions
327 */
328 struct stm32_adc_info {
329 const struct stm32_adc_chan_spec *channels;
330 int max_channels;
331 const unsigned int *resolutions;
332 const unsigned int num_res;
333 };
334
335 /*
336 * Input definitions common for all instances:
337 * stm32f4 can have up to 16 channels
338 * stm32h7 can have up to 20 channels
339 */
340 static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
341 { IIO_VOLTAGE, 0, "in0" },
342 { IIO_VOLTAGE, 1, "in1" },
343 { IIO_VOLTAGE, 2, "in2" },
344 { IIO_VOLTAGE, 3, "in3" },
345 { IIO_VOLTAGE, 4, "in4" },
346 { IIO_VOLTAGE, 5, "in5" },
347 { IIO_VOLTAGE, 6, "in6" },
348 { IIO_VOLTAGE, 7, "in7" },
349 { IIO_VOLTAGE, 8, "in8" },
350 { IIO_VOLTAGE, 9, "in9" },
351 { IIO_VOLTAGE, 10, "in10" },
352 { IIO_VOLTAGE, 11, "in11" },
353 { IIO_VOLTAGE, 12, "in12" },
354 { IIO_VOLTAGE, 13, "in13" },
355 { IIO_VOLTAGE, 14, "in14" },
356 { IIO_VOLTAGE, 15, "in15" },
357 { IIO_VOLTAGE, 16, "in16" },
358 { IIO_VOLTAGE, 17, "in17" },
359 { IIO_VOLTAGE, 18, "in18" },
360 { IIO_VOLTAGE, 19, "in19" },
361 };
362
363 static const unsigned int stm32f4_adc_resolutions[] = {
364 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
365 12, 10, 8, 6,
366 };
367
368 static const struct stm32_adc_info stm32f4_adc_info = {
369 .channels = stm32_adc_channels,
370 .max_channels = 16,
371 .resolutions = stm32f4_adc_resolutions,
372 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
373 };
374
375 static const unsigned int stm32h7_adc_resolutions[] = {
376 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
377 16, 14, 12, 10, 8,
378 };
379
380 static const struct stm32_adc_info stm32h7_adc_info = {
381 .channels = stm32_adc_channels,
382 .max_channels = 20,
383 .resolutions = stm32h7_adc_resolutions,
384 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
385 };
386
387 /**
388 * stm32f4_sq - describe regular sequence registers
389 * - L: sequence len (register & bit field)
390 * - SQ1..SQ16: sequence entries (register & bit field)
391 */
392 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
393 /* L: len bit field description to be kept as first element */
394 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
395 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
396 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
397 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
398 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
399 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
400 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
401 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
402 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
403 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
404 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
405 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
406 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
407 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
408 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
409 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
410 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
411 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
412 };
413
414 /* STM32F4 external trigger sources for all instances */
415 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
416 { TIM1_CH1, STM32_EXT0 },
417 { TIM1_CH2, STM32_EXT1 },
418 { TIM1_CH3, STM32_EXT2 },
419 { TIM2_CH2, STM32_EXT3 },
420 { TIM2_CH3, STM32_EXT4 },
421 { TIM2_CH4, STM32_EXT5 },
422 { TIM2_TRGO, STM32_EXT6 },
423 { TIM3_CH1, STM32_EXT7 },
424 { TIM3_TRGO, STM32_EXT8 },
425 { TIM4_CH4, STM32_EXT9 },
426 { TIM5_CH1, STM32_EXT10 },
427 { TIM5_CH2, STM32_EXT11 },
428 { TIM5_CH3, STM32_EXT12 },
429 { TIM8_CH1, STM32_EXT13 },
430 { TIM8_TRGO, STM32_EXT14 },
431 {}, /* sentinel */
432 };
433
434 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
435 .dr = STM32F4_ADC_DR,
436 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
437 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
438 .sqr = stm32f4_sq,
439 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
440 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
441 STM32F4_EXTSEL_SHIFT },
442 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
443 };
444
445 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
446 /* L: len bit field description to be kept as first element */
447 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
448 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
449 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
450 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
451 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
452 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
453 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
454 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
455 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
456 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
457 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
458 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
459 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
460 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
461 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
462 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
463 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
464 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
465 };
466
467 /* STM32H7 external trigger sources for all instances */
468 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
469 { TIM1_CH1, STM32_EXT0 },
470 { TIM1_CH2, STM32_EXT1 },
471 { TIM1_CH3, STM32_EXT2 },
472 { TIM2_CH2, STM32_EXT3 },
473 { TIM3_TRGO, STM32_EXT4 },
474 { TIM4_CH4, STM32_EXT5 },
475 { TIM8_TRGO, STM32_EXT7 },
476 { TIM8_TRGO2, STM32_EXT8 },
477 { TIM1_TRGO, STM32_EXT9 },
478 { TIM1_TRGO2, STM32_EXT10 },
479 { TIM2_TRGO, STM32_EXT11 },
480 { TIM4_TRGO, STM32_EXT12 },
481 { TIM6_TRGO, STM32_EXT13 },
482 { TIM3_CH4, STM32_EXT15 },
483 {},
484 };
485
486 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
487 .dr = STM32H7_ADC_DR,
488 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
489 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
490 .sqr = stm32h7_sq,
491 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
492 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
493 STM32H7_EXTSEL_SHIFT },
494 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
495 };
496
497 /**
498 * STM32 ADC registers access routines
499 * @adc: stm32 adc instance
500 * @reg: reg offset in adc instance
501 *
502 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
503 * for adc1, adc2 and adc3.
504 */
505 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
506 {
507 return readl_relaxed(adc->common->base + adc->offset + reg);
508 }
509
510 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
511
512 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
513 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
514 cond, sleep_us, timeout_us)
515
516 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
517 {
518 return readw_relaxed(adc->common->base + adc->offset + reg);
519 }
520
521 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
522 {
523 writel_relaxed(val, adc->common->base + adc->offset + reg);
524 }
525
526 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
527 {
528 unsigned long flags;
529
530 spin_lock_irqsave(&adc->lock, flags);
531 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
532 spin_unlock_irqrestore(&adc->lock, flags);
533 }
534
535 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
536 {
537 unsigned long flags;
538
539 spin_lock_irqsave(&adc->lock, flags);
540 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
541 spin_unlock_irqrestore(&adc->lock, flags);
542 }
543
544 /**
545 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
546 * @adc: stm32 adc instance
547 */
548 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
549 {
550 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
551 adc->cfg->regs->ier_eoc.mask);
552 };
553
554 /**
555 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
556 * @adc: stm32 adc instance
557 */
558 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
559 {
560 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
561 adc->cfg->regs->ier_eoc.mask);
562 }
563
564 static void stm32_adc_set_res(struct stm32_adc *adc)
565 {
566 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
567 u32 val;
568
569 val = stm32_adc_readl(adc, res->reg);
570 val = (val & ~res->mask) | (adc->res << res->shift);
571 stm32_adc_writel(adc, res->reg, val);
572 }
573
574 /**
575 * stm32f4_adc_start_conv() - Start conversions for regular channels.
576 * @adc: stm32 adc instance
577 * @dma: use dma to transfer conversion result
578 *
579 * Start conversions for regular channels.
580 * Also take care of normal or DMA mode. Circular DMA may be used for regular
581 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
582 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
583 */
584 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
585 {
586 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
587
588 if (dma)
589 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
590 STM32F4_DMA | STM32F4_DDS);
591
592 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
593
594 /* Wait for Power-up time (tSTAB from datasheet) */
595 usleep_range(2, 3);
596
597 /* Software start ? (e.g. trigger detection disabled ?) */
598 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
599 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
600 }
601
602 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
603 {
604 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
605 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
606
607 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
608 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
609 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
610 }
611
612 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
613 {
614 enum stm32h7_adc_dmngt dmngt;
615 unsigned long flags;
616 u32 val;
617
618 if (dma)
619 dmngt = STM32H7_DMNGT_DMA_CIRC;
620 else
621 dmngt = STM32H7_DMNGT_DR_ONLY;
622
623 spin_lock_irqsave(&adc->lock, flags);
624 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
625 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
626 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
627 spin_unlock_irqrestore(&adc->lock, flags);
628
629 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
630 }
631
632 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
633 {
634 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
635 int ret;
636 u32 val;
637
638 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
639
640 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
641 !(val & (STM32H7_ADSTART)),
642 100, STM32_ADC_TIMEOUT_US);
643 if (ret)
644 dev_warn(&indio_dev->dev, "stop failed\n");
645
646 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
647 }
648
649 static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
650 {
651 /* Exit deep power down, then enable ADC voltage regulator */
652 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
653 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
654
655 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
656 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
657
658 /* Wait for startup time */
659 usleep_range(10, 20);
660 }
661
662 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
663 {
664 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
665
666 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
667 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
668 }
669
670 static int stm32h7_adc_enable(struct stm32_adc *adc)
671 {
672 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
673 int ret;
674 u32 val;
675
676 /* Clear ADRDY by writing one, then enable ADC */
677 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
678 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
679
680 /* Poll for ADRDY to be set (after adc startup time) */
681 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
682 val & STM32H7_ADRDY,
683 100, STM32_ADC_TIMEOUT_US);
684 if (ret) {
685 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
686 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
687 }
688
689 return ret;
690 }
691
692 static void stm32h7_adc_disable(struct stm32_adc *adc)
693 {
694 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
695 int ret;
696 u32 val;
697
698 /* Disable ADC and wait until it's effectively disabled */
699 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
700 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
701 !(val & STM32H7_ADEN), 100,
702 STM32_ADC_TIMEOUT_US);
703 if (ret)
704 dev_warn(&indio_dev->dev, "Failed to disable\n");
705 }
706
707 /**
708 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
709 * @adc: stm32 adc instance
710 */
711 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
712 {
713 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
714 int i, ret;
715 u32 lincalrdyw_mask, val;
716
717 /* Enable adc so LINCALRDYW1..6 bits are writable */
718 ret = stm32h7_adc_enable(adc);
719 if (ret)
720 return ret;
721
722 /* Read linearity calibration */
723 lincalrdyw_mask = STM32H7_LINCALRDYW6;
724 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
725 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
726 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
727
728 /* Poll: wait calib data to be ready in CALFACT2 register */
729 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
730 !(val & lincalrdyw_mask),
731 100, STM32_ADC_TIMEOUT_US);
732 if (ret) {
733 dev_err(&indio_dev->dev, "Failed to read calfact\n");
734 goto disable;
735 }
736
737 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
738 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
739 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
740
741 lincalrdyw_mask >>= 1;
742 }
743
744 /* Read offset calibration */
745 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
746 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
747 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
748 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
749 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
750
751 disable:
752 stm32h7_adc_disable(adc);
753
754 return ret;
755 }
756
757 /**
758 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
759 * @adc: stm32 adc instance
760 * Note: ADC must be enabled, with no on-going conversions.
761 */
762 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
763 {
764 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
765 int i, ret;
766 u32 lincalrdyw_mask, val;
767
768 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
769 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
770 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
771
772 lincalrdyw_mask = STM32H7_LINCALRDYW6;
773 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
774 /*
775 * Write saved calibration data to shadow registers:
776 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
777 * data write. Then poll to wait for complete transfer.
778 */
779 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
780 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
781 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
782 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
783 val & lincalrdyw_mask,
784 100, STM32_ADC_TIMEOUT_US);
785 if (ret) {
786 dev_err(&indio_dev->dev, "Failed to write calfact\n");
787 return ret;
788 }
789
790 /*
791 * Read back calibration data, has two effects:
792 * - It ensures bits LINCALRDYW[6..1] are kept cleared
793 * for next time calibration needs to be restored.
794 * - BTW, bit clear triggers a read, then check data has been
795 * correctly written.
796 */
797 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
798 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
799 !(val & lincalrdyw_mask),
800 100, STM32_ADC_TIMEOUT_US);
801 if (ret) {
802 dev_err(&indio_dev->dev, "Failed to read calfact\n");
803 return ret;
804 }
805 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
806 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
807 dev_err(&indio_dev->dev, "calfact not consistent\n");
808 return -EIO;
809 }
810
811 lincalrdyw_mask >>= 1;
812 }
813
814 return 0;
815 }
816
817 /**
818 * Fixed timeout value for ADC calibration.
819 * worst cases:
820 * - low clock frequency
821 * - maximum prescalers
822 * Calibration requires:
823 * - 131,072 ADC clock cycle for the linear calibration
824 * - 20 ADC clock cycle for the offset calibration
825 *
826 * Set to 100ms for now
827 */
828 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
829
830 /**
831 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
832 * @adc: stm32 adc instance
833 * Exit from power down, calibrate ADC, then return to power down.
834 */
835 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
836 {
837 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
838 int ret;
839 u32 val;
840
841 stm32h7_adc_exit_pwr_down(adc);
842
843 /*
844 * Select calibration mode:
845 * - Offset calibration for single ended inputs
846 * - No linearity calibration (do it later, before reading it)
847 */
848 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
849 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
850
851 /* Start calibration, then wait for completion */
852 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
853 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
854 !(val & STM32H7_ADCAL), 100,
855 STM32H7_ADC_CALIB_TIMEOUT_US);
856 if (ret) {
857 dev_err(&indio_dev->dev, "calibration failed\n");
858 goto pwr_dwn;
859 }
860
861 /*
862 * Select calibration mode, then start calibration:
863 * - Offset calibration for differential input
864 * - Linearity calibration (needs to be done only once for single/diff)
865 * will run simultaneously with offset calibration.
866 */
867 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
868 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
869 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
870 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
871 !(val & STM32H7_ADCAL), 100,
872 STM32H7_ADC_CALIB_TIMEOUT_US);
873 if (ret) {
874 dev_err(&indio_dev->dev, "calibration failed\n");
875 goto pwr_dwn;
876 }
877
878 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
879 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
880
881 /* Read calibration result for future reference */
882 ret = stm32h7_adc_read_selfcalib(adc);
883
884 pwr_dwn:
885 stm32h7_adc_enter_pwr_down(adc);
886
887 return ret;
888 }
889
890 /**
891 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
892 * @adc: stm32 adc instance
893 * Leave power down mode.
894 * Enable ADC.
895 * Restore calibration data.
896 * Pre-select channels that may be used in PCSEL (required by input MUX / IO).
897 */
898 static int stm32h7_adc_prepare(struct stm32_adc *adc)
899 {
900 int ret;
901
902 stm32h7_adc_exit_pwr_down(adc);
903
904 ret = stm32h7_adc_enable(adc);
905 if (ret)
906 goto pwr_dwn;
907
908 ret = stm32h7_adc_restore_selfcalib(adc);
909 if (ret)
910 goto disable;
911
912 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
913
914 return 0;
915
916 disable:
917 stm32h7_adc_disable(adc);
918 pwr_dwn:
919 stm32h7_adc_enter_pwr_down(adc);
920
921 return ret;
922 }
923
924 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
925 {
926 stm32h7_adc_disable(adc);
927 stm32h7_adc_enter_pwr_down(adc);
928 }
929
930 /**
931 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
932 * @indio_dev: IIO device
933 * @scan_mask: channels to be converted
934 *
935 * Conversion sequence :
936 * Configure ADC scan sequence based on selected channels in scan_mask.
937 * Add channels to SQR registers, from scan_mask LSB to MSB, then
938 * program sequence len.
939 */
940 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
941 const unsigned long *scan_mask)
942 {
943 struct stm32_adc *adc = iio_priv(indio_dev);
944 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
945 const struct iio_chan_spec *chan;
946 u32 val, bit;
947 int i = 0;
948
949 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
950 chan = indio_dev->channels + bit;
951 /*
952 * Assign one channel per SQ entry in regular
953 * sequence, starting with SQ1.
954 */
955 i++;
956 if (i > STM32_ADC_MAX_SQ)
957 return -EINVAL;
958
959 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
960 __func__, chan->channel, i);
961
962 val = stm32_adc_readl(adc, sqr[i].reg);
963 val &= ~sqr[i].mask;
964 val |= chan->channel << sqr[i].shift;
965 stm32_adc_writel(adc, sqr[i].reg, val);
966 }
967
968 if (!i)
969 return -EINVAL;
970
971 /* Sequence len */
972 val = stm32_adc_readl(adc, sqr[0].reg);
973 val &= ~sqr[0].mask;
974 val |= ((i - 1) << sqr[0].shift);
975 stm32_adc_writel(adc, sqr[0].reg, val);
976
977 return 0;
978 }
979
980 /**
981 * stm32_adc_get_trig_extsel() - Get external trigger selection
982 * @trig: trigger
983 *
984 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
985 */
986 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
987 struct iio_trigger *trig)
988 {
989 struct stm32_adc *adc = iio_priv(indio_dev);
990 int i;
991
992 /* lookup triggers registered by stm32 timer trigger driver */
993 for (i = 0; adc->cfg->trigs[i].name; i++) {
994 /**
995 * Checking both stm32 timer trigger type and trig name
996 * should be safe against arbitrary trigger names.
997 */
998 if (is_stm32_timer_trigger(trig) &&
999 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1000 return adc->cfg->trigs[i].extsel;
1001 }
1002 }
1003
1004 return -EINVAL;
1005 }
1006
1007 /**
1008 * stm32_adc_set_trig() - Set a regular trigger
1009 * @indio_dev: IIO device
1010 * @trig: IIO trigger
1011 *
1012 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1013 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1014 * - if HW trigger enabled, set source & polarity
1015 */
1016 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1017 struct iio_trigger *trig)
1018 {
1019 struct stm32_adc *adc = iio_priv(indio_dev);
1020 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1021 unsigned long flags;
1022 int ret;
1023
1024 if (trig) {
1025 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1026 if (ret < 0)
1027 return ret;
1028
1029 /* set trigger source and polarity (default to rising edge) */
1030 extsel = ret;
1031 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1032 }
1033
1034 spin_lock_irqsave(&adc->lock, flags);
1035 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1036 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1037 val |= exten << adc->cfg->regs->exten.shift;
1038 val |= extsel << adc->cfg->regs->extsel.shift;
1039 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1040 spin_unlock_irqrestore(&adc->lock, flags);
1041
1042 return 0;
1043 }
1044
1045 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1046 const struct iio_chan_spec *chan,
1047 unsigned int type)
1048 {
1049 struct stm32_adc *adc = iio_priv(indio_dev);
1050
1051 adc->trigger_polarity = type;
1052
1053 return 0;
1054 }
1055
1056 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1057 const struct iio_chan_spec *chan)
1058 {
1059 struct stm32_adc *adc = iio_priv(indio_dev);
1060
1061 return adc->trigger_polarity;
1062 }
1063
1064 static const char * const stm32_trig_pol_items[] = {
1065 "rising-edge", "falling-edge", "both-edges",
1066 };
1067
1068 static const struct iio_enum stm32_adc_trig_pol = {
1069 .items = stm32_trig_pol_items,
1070 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1071 .get = stm32_adc_get_trig_pol,
1072 .set = stm32_adc_set_trig_pol,
1073 };
1074
1075 /**
1076 * stm32_adc_single_conv() - Performs a single conversion
1077 * @indio_dev: IIO device
1078 * @chan: IIO channel
1079 * @res: conversion result
1080 *
1081 * The function performs a single conversion on a given channel:
1082 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1083 * - Use SW trigger
1084 * - Start conversion, then wait for interrupt completion.
1085 */
1086 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1087 const struct iio_chan_spec *chan,
1088 int *res)
1089 {
1090 struct stm32_adc *adc = iio_priv(indio_dev);
1091 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1092 long timeout;
1093 u32 val;
1094 int ret;
1095
1096 reinit_completion(&adc->completion);
1097
1098 adc->bufi = 0;
1099
1100 if (adc->cfg->prepare) {
1101 ret = adc->cfg->prepare(adc);
1102 if (ret)
1103 return ret;
1104 }
1105
1106 /* Program chan number in regular sequence (SQ1) */
1107 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1108 val &= ~regs->sqr[1].mask;
1109 val |= chan->channel << regs->sqr[1].shift;
1110 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1111
1112 /* Set regular sequence len (0 for 1 conversion) */
1113 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1114
1115 /* Trigger detection disabled (conversion can be launched in SW) */
1116 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1117
1118 stm32_adc_conv_irq_enable(adc);
1119
1120 adc->cfg->start_conv(adc, false);
1121
1122 timeout = wait_for_completion_interruptible_timeout(
1123 &adc->completion, STM32_ADC_TIMEOUT);
1124 if (timeout == 0) {
1125 ret = -ETIMEDOUT;
1126 } else if (timeout < 0) {
1127 ret = timeout;
1128 } else {
1129 *res = adc->buffer[0];
1130 ret = IIO_VAL_INT;
1131 }
1132
1133 adc->cfg->stop_conv(adc);
1134
1135 stm32_adc_conv_irq_disable(adc);
1136
1137 if (adc->cfg->unprepare)
1138 adc->cfg->unprepare(adc);
1139
1140 return ret;
1141 }
1142
1143 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1144 struct iio_chan_spec const *chan,
1145 int *val, int *val2, long mask)
1146 {
1147 struct stm32_adc *adc = iio_priv(indio_dev);
1148 int ret;
1149
1150 switch (mask) {
1151 case IIO_CHAN_INFO_RAW:
1152 ret = iio_device_claim_direct_mode(indio_dev);
1153 if (ret)
1154 return ret;
1155 if (chan->type == IIO_VOLTAGE)
1156 ret = stm32_adc_single_conv(indio_dev, chan, val);
1157 else
1158 ret = -EINVAL;
1159 iio_device_release_direct_mode(indio_dev);
1160 return ret;
1161
1162 case IIO_CHAN_INFO_SCALE:
1163 *val = adc->common->vref_mv;
1164 *val2 = chan->scan_type.realbits;
1165 return IIO_VAL_FRACTIONAL_LOG2;
1166
1167 default:
1168 return -EINVAL;
1169 }
1170 }
1171
1172 static irqreturn_t stm32_adc_isr(int irq, void *data)
1173 {
1174 struct stm32_adc *adc = data;
1175 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1176 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1177 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1178
1179 if (status & regs->isr_eoc.mask) {
1180 /* Reading DR also clears EOC status flag */
1181 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1182 if (iio_buffer_enabled(indio_dev)) {
1183 adc->bufi++;
1184 if (adc->bufi >= adc->num_conv) {
1185 stm32_adc_conv_irq_disable(adc);
1186 iio_trigger_poll(indio_dev->trig);
1187 }
1188 } else {
1189 complete(&adc->completion);
1190 }
1191 return IRQ_HANDLED;
1192 }
1193
1194 return IRQ_NONE;
1195 }
1196
1197 /**
1198 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1199 * @indio_dev: IIO device
1200 * @trig: new trigger
1201 *
1202 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1203 * driver, -EINVAL otherwise.
1204 */
1205 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1206 struct iio_trigger *trig)
1207 {
1208 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1209 }
1210
1211 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1212 {
1213 struct stm32_adc *adc = iio_priv(indio_dev);
1214 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1215
1216 /*
1217 * dma cyclic transfers are used, buffer is split into two periods.
1218 * There should be :
1219 * - always one buffer (period) dma is working on
1220 * - one buffer (period) driver can push with iio_trigger_poll().
1221 */
1222 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1223 adc->rx_buf_sz = watermark * 2;
1224
1225 return 0;
1226 }
1227
1228 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1229 const unsigned long *scan_mask)
1230 {
1231 struct stm32_adc *adc = iio_priv(indio_dev);
1232 int ret;
1233
1234 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1235
1236 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1237 if (ret)
1238 return ret;
1239
1240 return 0;
1241 }
1242
1243 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1244 const struct of_phandle_args *iiospec)
1245 {
1246 int i;
1247
1248 for (i = 0; i < indio_dev->num_channels; i++)
1249 if (indio_dev->channels[i].channel == iiospec->args[0])
1250 return i;
1251
1252 return -EINVAL;
1253 }
1254
1255 /**
1256 * stm32_adc_debugfs_reg_access - read or write register value
1257 *
1258 * To read a value from an ADC register:
1259 * echo [ADC reg offset] > direct_reg_access
1260 * cat direct_reg_access
1261 *
1262 * To write a value in a ADC register:
1263 * echo [ADC_reg_offset] [value] > direct_reg_access
1264 */
1265 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1266 unsigned reg, unsigned writeval,
1267 unsigned *readval)
1268 {
1269 struct stm32_adc *adc = iio_priv(indio_dev);
1270
1271 if (!readval)
1272 stm32_adc_writel(adc, reg, writeval);
1273 else
1274 *readval = stm32_adc_readl(adc, reg);
1275
1276 return 0;
1277 }
1278
1279 static const struct iio_info stm32_adc_iio_info = {
1280 .read_raw = stm32_adc_read_raw,
1281 .validate_trigger = stm32_adc_validate_trigger,
1282 .hwfifo_set_watermark = stm32_adc_set_watermark,
1283 .update_scan_mode = stm32_adc_update_scan_mode,
1284 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1285 .of_xlate = stm32_adc_of_xlate,
1286 .driver_module = THIS_MODULE,
1287 };
1288
1289 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1290 {
1291 struct dma_tx_state state;
1292 enum dma_status status;
1293
1294 status = dmaengine_tx_status(adc->dma_chan,
1295 adc->dma_chan->cookie,
1296 &state);
1297 if (status == DMA_IN_PROGRESS) {
1298 /* Residue is size in bytes from end of buffer */
1299 unsigned int i = adc->rx_buf_sz - state.residue;
1300 unsigned int size;
1301
1302 /* Return available bytes */
1303 if (i >= adc->bufi)
1304 size = i - adc->bufi;
1305 else
1306 size = adc->rx_buf_sz + i - adc->bufi;
1307
1308 return size;
1309 }
1310
1311 return 0;
1312 }
1313
1314 static void stm32_adc_dma_buffer_done(void *data)
1315 {
1316 struct iio_dev *indio_dev = data;
1317
1318 iio_trigger_poll_chained(indio_dev->trig);
1319 }
1320
1321 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1322 {
1323 struct stm32_adc *adc = iio_priv(indio_dev);
1324 struct dma_async_tx_descriptor *desc;
1325 dma_cookie_t cookie;
1326 int ret;
1327
1328 if (!adc->dma_chan)
1329 return 0;
1330
1331 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1332 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1333
1334 /* Prepare a DMA cyclic transaction */
1335 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1336 adc->rx_dma_buf,
1337 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1338 DMA_DEV_TO_MEM,
1339 DMA_PREP_INTERRUPT);
1340 if (!desc)
1341 return -EBUSY;
1342
1343 desc->callback = stm32_adc_dma_buffer_done;
1344 desc->callback_param = indio_dev;
1345
1346 cookie = dmaengine_submit(desc);
1347 ret = dma_submit_error(cookie);
1348 if (ret) {
1349 dmaengine_terminate_all(adc->dma_chan);
1350 return ret;
1351 }
1352
1353 /* Issue pending DMA requests */
1354 dma_async_issue_pending(adc->dma_chan);
1355
1356 return 0;
1357 }
1358
1359 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1360 {
1361 struct stm32_adc *adc = iio_priv(indio_dev);
1362 int ret;
1363
1364 if (adc->cfg->prepare) {
1365 ret = adc->cfg->prepare(adc);
1366 if (ret)
1367 return ret;
1368 }
1369
1370 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1371 if (ret) {
1372 dev_err(&indio_dev->dev, "Can't set trigger\n");
1373 goto err_unprepare;
1374 }
1375
1376 ret = stm32_adc_dma_start(indio_dev);
1377 if (ret) {
1378 dev_err(&indio_dev->dev, "Can't start dma\n");
1379 goto err_clr_trig;
1380 }
1381
1382 ret = iio_triggered_buffer_postenable(indio_dev);
1383 if (ret < 0)
1384 goto err_stop_dma;
1385
1386 /* Reset adc buffer index */
1387 adc->bufi = 0;
1388
1389 if (!adc->dma_chan)
1390 stm32_adc_conv_irq_enable(adc);
1391
1392 adc->cfg->start_conv(adc, !!adc->dma_chan);
1393
1394 return 0;
1395
1396 err_stop_dma:
1397 if (adc->dma_chan)
1398 dmaengine_terminate_all(adc->dma_chan);
1399 err_clr_trig:
1400 stm32_adc_set_trig(indio_dev, NULL);
1401 err_unprepare:
1402 if (adc->cfg->unprepare)
1403 adc->cfg->unprepare(adc);
1404
1405 return ret;
1406 }
1407
1408 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1409 {
1410 struct stm32_adc *adc = iio_priv(indio_dev);
1411 int ret;
1412
1413 adc->cfg->stop_conv(adc);
1414 if (!adc->dma_chan)
1415 stm32_adc_conv_irq_disable(adc);
1416
1417 ret = iio_triggered_buffer_predisable(indio_dev);
1418 if (ret < 0)
1419 dev_err(&indio_dev->dev, "predisable failed\n");
1420
1421 if (adc->dma_chan)
1422 dmaengine_terminate_all(adc->dma_chan);
1423
1424 if (stm32_adc_set_trig(indio_dev, NULL))
1425 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1426
1427 if (adc->cfg->unprepare)
1428 adc->cfg->unprepare(adc);
1429
1430 return ret;
1431 }
1432
1433 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1434 .postenable = &stm32_adc_buffer_postenable,
1435 .predisable = &stm32_adc_buffer_predisable,
1436 };
1437
1438 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1439 {
1440 struct iio_poll_func *pf = p;
1441 struct iio_dev *indio_dev = pf->indio_dev;
1442 struct stm32_adc *adc = iio_priv(indio_dev);
1443
1444 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1445
1446 if (!adc->dma_chan) {
1447 /* reset buffer index */
1448 adc->bufi = 0;
1449 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1450 pf->timestamp);
1451 } else {
1452 int residue = stm32_adc_dma_residue(adc);
1453
1454 while (residue >= indio_dev->scan_bytes) {
1455 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1456
1457 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1458 pf->timestamp);
1459 residue -= indio_dev->scan_bytes;
1460 adc->bufi += indio_dev->scan_bytes;
1461 if (adc->bufi >= adc->rx_buf_sz)
1462 adc->bufi = 0;
1463 }
1464 }
1465
1466 iio_trigger_notify_done(indio_dev->trig);
1467
1468 /* re-enable eoc irq */
1469 if (!adc->dma_chan)
1470 stm32_adc_conv_irq_enable(adc);
1471
1472 return IRQ_HANDLED;
1473 }
1474
1475 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1476 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1477 {
1478 .name = "trigger_polarity_available",
1479 .shared = IIO_SHARED_BY_ALL,
1480 .read = iio_enum_available_read,
1481 .private = (uintptr_t)&stm32_adc_trig_pol,
1482 },
1483 {},
1484 };
1485
1486 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1487 {
1488 struct device_node *node = indio_dev->dev.of_node;
1489 struct stm32_adc *adc = iio_priv(indio_dev);
1490 unsigned int i;
1491 u32 res;
1492
1493 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1494 res = adc->cfg->adc_info->resolutions[0];
1495
1496 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1497 if (res == adc->cfg->adc_info->resolutions[i])
1498 break;
1499 if (i >= adc->cfg->adc_info->num_res) {
1500 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1501 return -EINVAL;
1502 }
1503
1504 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1505 adc->res = i;
1506
1507 return 0;
1508 }
1509
1510 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1511 struct iio_chan_spec *chan,
1512 const struct stm32_adc_chan_spec *channel,
1513 int scan_index)
1514 {
1515 struct stm32_adc *adc = iio_priv(indio_dev);
1516
1517 chan->type = channel->type;
1518 chan->channel = channel->channel;
1519 chan->datasheet_name = channel->name;
1520 chan->scan_index = scan_index;
1521 chan->indexed = 1;
1522 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1523 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
1524 chan->scan_type.sign = 'u';
1525 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1526 chan->scan_type.storagebits = 16;
1527 chan->ext_info = stm32_adc_ext_info;
1528
1529 /* pre-build selected channels mask */
1530 adc->pcsel |= BIT(chan->channel);
1531 }
1532
1533 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1534 {
1535 struct device_node *node = indio_dev->dev.of_node;
1536 struct stm32_adc *adc = iio_priv(indio_dev);
1537 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1538 struct property *prop;
1539 const __be32 *cur;
1540 struct iio_chan_spec *channels;
1541 int scan_index = 0, num_channels;
1542 u32 val;
1543
1544 num_channels = of_property_count_u32_elems(node, "st,adc-channels");
1545 if (num_channels < 0 ||
1546 num_channels >= adc_info->max_channels) {
1547 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1548 return num_channels < 0 ? num_channels : -EINVAL;
1549 }
1550
1551 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1552 sizeof(struct iio_chan_spec), GFP_KERNEL);
1553 if (!channels)
1554 return -ENOMEM;
1555
1556 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1557 if (val >= adc_info->max_channels) {
1558 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1559 return -EINVAL;
1560 }
1561 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1562 &adc_info->channels[val],
1563 scan_index);
1564 scan_index++;
1565 }
1566
1567 indio_dev->num_channels = scan_index;
1568 indio_dev->channels = channels;
1569
1570 return 0;
1571 }
1572
1573 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1574 {
1575 struct stm32_adc *adc = iio_priv(indio_dev);
1576 struct dma_slave_config config;
1577 int ret;
1578
1579 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1580 if (!adc->dma_chan)
1581 return 0;
1582
1583 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1584 STM32_DMA_BUFFER_SIZE,
1585 &adc->rx_dma_buf, GFP_KERNEL);
1586 if (!adc->rx_buf) {
1587 ret = -ENOMEM;
1588 goto err_release;
1589 }
1590
1591 /* Configure DMA channel to read data register */
1592 memset(&config, 0, sizeof(config));
1593 config.src_addr = (dma_addr_t)adc->common->phys_base;
1594 config.src_addr += adc->offset + adc->cfg->regs->dr;
1595 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1596
1597 ret = dmaengine_slave_config(adc->dma_chan, &config);
1598 if (ret)
1599 goto err_free;
1600
1601 return 0;
1602
1603 err_free:
1604 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1605 adc->rx_buf, adc->rx_dma_buf);
1606 err_release:
1607 dma_release_channel(adc->dma_chan);
1608
1609 return ret;
1610 }
1611
1612 static int stm32_adc_probe(struct platform_device *pdev)
1613 {
1614 struct iio_dev *indio_dev;
1615 struct device *dev = &pdev->dev;
1616 struct stm32_adc *adc;
1617 int ret;
1618
1619 if (!pdev->dev.of_node)
1620 return -ENODEV;
1621
1622 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1623 if (!indio_dev)
1624 return -ENOMEM;
1625
1626 adc = iio_priv(indio_dev);
1627 adc->common = dev_get_drvdata(pdev->dev.parent);
1628 spin_lock_init(&adc->lock);
1629 init_completion(&adc->completion);
1630 adc->cfg = (const struct stm32_adc_cfg *)
1631 of_match_device(dev->driver->of_match_table, dev)->data;
1632
1633 indio_dev->name = dev_name(&pdev->dev);
1634 indio_dev->dev.parent = &pdev->dev;
1635 indio_dev->dev.of_node = pdev->dev.of_node;
1636 indio_dev->info = &stm32_adc_iio_info;
1637 indio_dev->modes = INDIO_DIRECT_MODE;
1638
1639 platform_set_drvdata(pdev, adc);
1640
1641 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1642 if (ret != 0) {
1643 dev_err(&pdev->dev, "missing reg property\n");
1644 return -EINVAL;
1645 }
1646
1647 adc->irq = platform_get_irq(pdev, 0);
1648 if (adc->irq < 0) {
1649 dev_err(&pdev->dev, "failed to get irq\n");
1650 return adc->irq;
1651 }
1652
1653 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1654 0, pdev->name, adc);
1655 if (ret) {
1656 dev_err(&pdev->dev, "failed to request IRQ\n");
1657 return ret;
1658 }
1659
1660 adc->clk = devm_clk_get(&pdev->dev, NULL);
1661 if (IS_ERR(adc->clk)) {
1662 ret = PTR_ERR(adc->clk);
1663 if (ret == -ENOENT && !adc->cfg->clk_required) {
1664 adc->clk = NULL;
1665 } else {
1666 dev_err(&pdev->dev, "Can't get clock\n");
1667 return ret;
1668 }
1669 }
1670
1671 if (adc->clk) {
1672 ret = clk_prepare_enable(adc->clk);
1673 if (ret < 0) {
1674 dev_err(&pdev->dev, "clk enable failed\n");
1675 return ret;
1676 }
1677 }
1678
1679 ret = stm32_adc_of_get_resolution(indio_dev);
1680 if (ret < 0)
1681 goto err_clk_disable;
1682 stm32_adc_set_res(adc);
1683
1684 if (adc->cfg->selfcalib) {
1685 ret = adc->cfg->selfcalib(adc);
1686 if (ret)
1687 goto err_clk_disable;
1688 }
1689
1690 ret = stm32_adc_chan_of_init(indio_dev);
1691 if (ret < 0)
1692 goto err_clk_disable;
1693
1694 ret = stm32_adc_dma_request(indio_dev);
1695 if (ret < 0)
1696 goto err_clk_disable;
1697
1698 ret = iio_triggered_buffer_setup(indio_dev,
1699 &iio_pollfunc_store_time,
1700 &stm32_adc_trigger_handler,
1701 &stm32_adc_buffer_setup_ops);
1702 if (ret) {
1703 dev_err(&pdev->dev, "buffer setup failed\n");
1704 goto err_dma_disable;
1705 }
1706
1707 ret = iio_device_register(indio_dev);
1708 if (ret) {
1709 dev_err(&pdev->dev, "iio dev register failed\n");
1710 goto err_buffer_cleanup;
1711 }
1712
1713 return 0;
1714
1715 err_buffer_cleanup:
1716 iio_triggered_buffer_cleanup(indio_dev);
1717
1718 err_dma_disable:
1719 if (adc->dma_chan) {
1720 dma_free_coherent(adc->dma_chan->device->dev,
1721 STM32_DMA_BUFFER_SIZE,
1722 adc->rx_buf, adc->rx_dma_buf);
1723 dma_release_channel(adc->dma_chan);
1724 }
1725 err_clk_disable:
1726 if (adc->clk)
1727 clk_disable_unprepare(adc->clk);
1728
1729 return ret;
1730 }
1731
1732 static int stm32_adc_remove(struct platform_device *pdev)
1733 {
1734 struct stm32_adc *adc = platform_get_drvdata(pdev);
1735 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1736
1737 iio_device_unregister(indio_dev);
1738 iio_triggered_buffer_cleanup(indio_dev);
1739 if (adc->dma_chan) {
1740 dma_free_coherent(adc->dma_chan->device->dev,
1741 STM32_DMA_BUFFER_SIZE,
1742 adc->rx_buf, adc->rx_dma_buf);
1743 dma_release_channel(adc->dma_chan);
1744 }
1745 if (adc->clk)
1746 clk_disable_unprepare(adc->clk);
1747
1748 return 0;
1749 }
1750
1751 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1752 .regs = &stm32f4_adc_regspec,
1753 .adc_info = &stm32f4_adc_info,
1754 .trigs = stm32f4_adc_trigs,
1755 .clk_required = true,
1756 .start_conv = stm32f4_adc_start_conv,
1757 .stop_conv = stm32f4_adc_stop_conv,
1758 };
1759
1760 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1761 .regs = &stm32h7_adc_regspec,
1762 .adc_info = &stm32h7_adc_info,
1763 .trigs = stm32h7_adc_trigs,
1764 .selfcalib = stm32h7_adc_selfcalib,
1765 .start_conv = stm32h7_adc_start_conv,
1766 .stop_conv = stm32h7_adc_stop_conv,
1767 .prepare = stm32h7_adc_prepare,
1768 .unprepare = stm32h7_adc_unprepare,
1769 };
1770
1771 static const struct of_device_id stm32_adc_of_match[] = {
1772 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1773 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1774 {},
1775 };
1776 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1777
1778 static struct platform_driver stm32_adc_driver = {
1779 .probe = stm32_adc_probe,
1780 .remove = stm32_adc_remove,
1781 .driver = {
1782 .name = "stm32-adc",
1783 .of_match_table = stm32_adc_of_match,
1784 },
1785 };
1786 module_platform_driver(stm32_adc_driver);
1787
1788 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1789 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1790 MODULE_LICENSE("GPL v2");
1791 MODULE_ALIAS("platform:stm32-adc");