]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/iio/adc/stm32-adc.c
Merge tag 'iio-for-4.15a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-kernels.git] / drivers / iio / adc / stm32-adc.c
1 /*
2 * This file is part of STM32 ADC driver
3 *
4 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
5 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
6 *
7 * License type: GPLv2
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License version 2 as published by
11 * the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/timer/stm32-lptim-trigger.h>
29 #include <linux/iio/timer/stm32-timer-trigger.h>
30 #include <linux/iio/trigger.h>
31 #include <linux/iio/trigger_consumer.h>
32 #include <linux/iio/triggered_buffer.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/module.h>
37 #include <linux/platform_device.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40
41 #include "stm32-adc-core.h"
42
43 /* STM32F4 - Registers for each ADC instance */
44 #define STM32F4_ADC_SR 0x00
45 #define STM32F4_ADC_CR1 0x04
46 #define STM32F4_ADC_CR2 0x08
47 #define STM32F4_ADC_SMPR1 0x0C
48 #define STM32F4_ADC_SMPR2 0x10
49 #define STM32F4_ADC_HTR 0x24
50 #define STM32F4_ADC_LTR 0x28
51 #define STM32F4_ADC_SQR1 0x2C
52 #define STM32F4_ADC_SQR2 0x30
53 #define STM32F4_ADC_SQR3 0x34
54 #define STM32F4_ADC_JSQR 0x38
55 #define STM32F4_ADC_JDR1 0x3C
56 #define STM32F4_ADC_JDR2 0x40
57 #define STM32F4_ADC_JDR3 0x44
58 #define STM32F4_ADC_JDR4 0x48
59 #define STM32F4_ADC_DR 0x4C
60
61 /* STM32F4_ADC_SR - bit fields */
62 #define STM32F4_STRT BIT(4)
63 #define STM32F4_EOC BIT(1)
64
65 /* STM32F4_ADC_CR1 - bit fields */
66 #define STM32F4_RES_SHIFT 24
67 #define STM32F4_RES_MASK GENMASK(25, 24)
68 #define STM32F4_SCAN BIT(8)
69 #define STM32F4_EOCIE BIT(5)
70
71 /* STM32F4_ADC_CR2 - bit fields */
72 #define STM32F4_SWSTART BIT(30)
73 #define STM32F4_EXTEN_SHIFT 28
74 #define STM32F4_EXTEN_MASK GENMASK(29, 28)
75 #define STM32F4_EXTSEL_SHIFT 24
76 #define STM32F4_EXTSEL_MASK GENMASK(27, 24)
77 #define STM32F4_EOCS BIT(10)
78 #define STM32F4_DDS BIT(9)
79 #define STM32F4_DMA BIT(8)
80 #define STM32F4_ADON BIT(0)
81
82 /* STM32H7 - Registers for each ADC instance */
83 #define STM32H7_ADC_ISR 0x00
84 #define STM32H7_ADC_IER 0x04
85 #define STM32H7_ADC_CR 0x08
86 #define STM32H7_ADC_CFGR 0x0C
87 #define STM32H7_ADC_SMPR1 0x14
88 #define STM32H7_ADC_SMPR2 0x18
89 #define STM32H7_ADC_PCSEL 0x1C
90 #define STM32H7_ADC_SQR1 0x30
91 #define STM32H7_ADC_SQR2 0x34
92 #define STM32H7_ADC_SQR3 0x38
93 #define STM32H7_ADC_SQR4 0x3C
94 #define STM32H7_ADC_DR 0x40
95 #define STM32H7_ADC_CALFACT 0xC4
96 #define STM32H7_ADC_CALFACT2 0xC8
97
98 /* STM32H7_ADC_ISR - bit fields */
99 #define STM32H7_EOC BIT(2)
100 #define STM32H7_ADRDY BIT(0)
101
102 /* STM32H7_ADC_IER - bit fields */
103 #define STM32H7_EOCIE STM32H7_EOC
104
105 /* STM32H7_ADC_CR - bit fields */
106 #define STM32H7_ADCAL BIT(31)
107 #define STM32H7_ADCALDIF BIT(30)
108 #define STM32H7_DEEPPWD BIT(29)
109 #define STM32H7_ADVREGEN BIT(28)
110 #define STM32H7_LINCALRDYW6 BIT(27)
111 #define STM32H7_LINCALRDYW5 BIT(26)
112 #define STM32H7_LINCALRDYW4 BIT(25)
113 #define STM32H7_LINCALRDYW3 BIT(24)
114 #define STM32H7_LINCALRDYW2 BIT(23)
115 #define STM32H7_LINCALRDYW1 BIT(22)
116 #define STM32H7_ADCALLIN BIT(16)
117 #define STM32H7_BOOST BIT(8)
118 #define STM32H7_ADSTP BIT(4)
119 #define STM32H7_ADSTART BIT(2)
120 #define STM32H7_ADDIS BIT(1)
121 #define STM32H7_ADEN BIT(0)
122
123 /* STM32H7_ADC_CFGR bit fields */
124 #define STM32H7_EXTEN_SHIFT 10
125 #define STM32H7_EXTEN_MASK GENMASK(11, 10)
126 #define STM32H7_EXTSEL_SHIFT 5
127 #define STM32H7_EXTSEL_MASK GENMASK(9, 5)
128 #define STM32H7_RES_SHIFT 2
129 #define STM32H7_RES_MASK GENMASK(4, 2)
130 #define STM32H7_DMNGT_SHIFT 0
131 #define STM32H7_DMNGT_MASK GENMASK(1, 0)
132
133 enum stm32h7_adc_dmngt {
134 STM32H7_DMNGT_DR_ONLY, /* Regular data in DR only */
135 STM32H7_DMNGT_DMA_ONESHOT, /* DMA one shot mode */
136 STM32H7_DMNGT_DFSDM, /* DFSDM mode */
137 STM32H7_DMNGT_DMA_CIRC, /* DMA circular mode */
138 };
139
140 /* STM32H7_ADC_CALFACT - bit fields */
141 #define STM32H7_CALFACT_D_SHIFT 16
142 #define STM32H7_CALFACT_D_MASK GENMASK(26, 16)
143 #define STM32H7_CALFACT_S_SHIFT 0
144 #define STM32H7_CALFACT_S_MASK GENMASK(10, 0)
145
146 /* STM32H7_ADC_CALFACT2 - bit fields */
147 #define STM32H7_LINCALFACT_SHIFT 0
148 #define STM32H7_LINCALFACT_MASK GENMASK(29, 0)
149
150 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
151 #define STM32H7_LINCALFACT_NUM 6
152
153 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
154 #define STM32H7_BOOST_CLKRATE 20000000UL
155
156 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
157 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
158 #define STM32_ADC_TIMEOUT_US 100000
159 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
160
161 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
162
163 /* External trigger enable */
164 enum stm32_adc_exten {
165 STM32_EXTEN_SWTRIG,
166 STM32_EXTEN_HWTRIG_RISING_EDGE,
167 STM32_EXTEN_HWTRIG_FALLING_EDGE,
168 STM32_EXTEN_HWTRIG_BOTH_EDGES,
169 };
170
171 /* extsel - trigger mux selection value */
172 enum stm32_adc_extsel {
173 STM32_EXT0,
174 STM32_EXT1,
175 STM32_EXT2,
176 STM32_EXT3,
177 STM32_EXT4,
178 STM32_EXT5,
179 STM32_EXT6,
180 STM32_EXT7,
181 STM32_EXT8,
182 STM32_EXT9,
183 STM32_EXT10,
184 STM32_EXT11,
185 STM32_EXT12,
186 STM32_EXT13,
187 STM32_EXT14,
188 STM32_EXT15,
189 STM32_EXT16,
190 STM32_EXT17,
191 STM32_EXT18,
192 STM32_EXT19,
193 STM32_EXT20,
194 };
195
196 /**
197 * struct stm32_adc_trig_info - ADC trigger info
198 * @name: name of the trigger, corresponding to its source
199 * @extsel: trigger selection
200 */
201 struct stm32_adc_trig_info {
202 const char *name;
203 enum stm32_adc_extsel extsel;
204 };
205
206 /**
207 * struct stm32_adc_calib - optional adc calibration data
208 * @calfact_s: Calibration offset for single ended channels
209 * @calfact_d: Calibration offset in differential
210 * @lincalfact: Linearity calibration factor
211 */
212 struct stm32_adc_calib {
213 u32 calfact_s;
214 u32 calfact_d;
215 u32 lincalfact[STM32H7_LINCALFACT_NUM];
216 };
217
218 /**
219 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
220 * @reg: register offset
221 * @mask: bitfield mask
222 * @shift: left shift
223 */
224 struct stm32_adc_regs {
225 int reg;
226 int mask;
227 int shift;
228 };
229
230 /**
231 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
232 * @dr: data register offset
233 * @ier_eoc: interrupt enable register & eocie bitfield
234 * @isr_eoc: interrupt status register & eoc bitfield
235 * @sqr: reference to sequence registers array
236 * @exten: trigger control register & bitfield
237 * @extsel: trigger selection register & bitfield
238 * @res: resolution selection register & bitfield
239 * @smpr: smpr1 & smpr2 registers offset array
240 * @smp_bits: smpr1 & smpr2 index and bitfields
241 */
242 struct stm32_adc_regspec {
243 const u32 dr;
244 const struct stm32_adc_regs ier_eoc;
245 const struct stm32_adc_regs isr_eoc;
246 const struct stm32_adc_regs *sqr;
247 const struct stm32_adc_regs exten;
248 const struct stm32_adc_regs extsel;
249 const struct stm32_adc_regs res;
250 const u32 smpr[2];
251 const struct stm32_adc_regs *smp_bits;
252 };
253
254 struct stm32_adc;
255
256 /**
257 * stm32_adc_cfg - stm32 compatible configuration data
258 * @regs: registers descriptions
259 * @adc_info: per instance input channels definitions
260 * @trigs: external trigger sources
261 * @clk_required: clock is required
262 * @selfcalib: optional routine for self-calibration
263 * @prepare: optional prepare routine (power-up, enable)
264 * @start_conv: routine to start conversions
265 * @stop_conv: routine to stop conversions
266 * @unprepare: optional unprepare routine (disable, power-down)
267 * @smp_cycles: programmable sampling time (ADC clock cycles)
268 */
269 struct stm32_adc_cfg {
270 const struct stm32_adc_regspec *regs;
271 const struct stm32_adc_info *adc_info;
272 struct stm32_adc_trig_info *trigs;
273 bool clk_required;
274 int (*selfcalib)(struct stm32_adc *);
275 int (*prepare)(struct stm32_adc *);
276 void (*start_conv)(struct stm32_adc *, bool dma);
277 void (*stop_conv)(struct stm32_adc *);
278 void (*unprepare)(struct stm32_adc *);
279 const unsigned int *smp_cycles;
280 };
281
282 /**
283 * struct stm32_adc - private data of each ADC IIO instance
284 * @common: reference to ADC block common data
285 * @offset: ADC instance register offset in ADC block
286 * @cfg: compatible configuration data
287 * @completion: end of single conversion completion
288 * @buffer: data buffer
289 * @clk: clock for this adc instance
290 * @irq: interrupt for this adc instance
291 * @lock: spinlock
292 * @bufi: data buffer index
293 * @num_conv: expected number of scan conversions
294 * @res: data resolution (e.g. RES bitfield value)
295 * @trigger_polarity: external trigger polarity (e.g. exten)
296 * @dma_chan: dma channel
297 * @rx_buf: dma rx buffer cpu address
298 * @rx_dma_buf: dma rx buffer bus address
299 * @rx_buf_sz: dma rx buffer size
300 * @pcsel bitmask to preselect channels on some devices
301 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
302 * @cal: optional calibration data on some devices
303 */
304 struct stm32_adc {
305 struct stm32_adc_common *common;
306 u32 offset;
307 const struct stm32_adc_cfg *cfg;
308 struct completion completion;
309 u16 buffer[STM32_ADC_MAX_SQ];
310 struct clk *clk;
311 int irq;
312 spinlock_t lock; /* interrupt lock */
313 unsigned int bufi;
314 unsigned int num_conv;
315 u32 res;
316 u32 trigger_polarity;
317 struct dma_chan *dma_chan;
318 u8 *rx_buf;
319 dma_addr_t rx_dma_buf;
320 unsigned int rx_buf_sz;
321 u32 pcsel;
322 u32 smpr_val[2];
323 struct stm32_adc_calib cal;
324 };
325
326 /**
327 * struct stm32_adc_chan_spec - specification of stm32 adc channel
328 * @type: IIO channel type
329 * @channel: channel number (single ended)
330 * @name: channel name (single ended)
331 */
332 struct stm32_adc_chan_spec {
333 enum iio_chan_type type;
334 int channel;
335 const char *name;
336 };
337
338 /**
339 * struct stm32_adc_info - stm32 ADC, per instance config data
340 * @channels: Reference to stm32 channels spec
341 * @max_channels: Number of channels
342 * @resolutions: available resolutions
343 * @num_res: number of available resolutions
344 */
345 struct stm32_adc_info {
346 const struct stm32_adc_chan_spec *channels;
347 int max_channels;
348 const unsigned int *resolutions;
349 const unsigned int num_res;
350 };
351
352 /*
353 * Input definitions common for all instances:
354 * stm32f4 can have up to 16 channels
355 * stm32h7 can have up to 20 channels
356 */
357 static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
358 { IIO_VOLTAGE, 0, "in0" },
359 { IIO_VOLTAGE, 1, "in1" },
360 { IIO_VOLTAGE, 2, "in2" },
361 { IIO_VOLTAGE, 3, "in3" },
362 { IIO_VOLTAGE, 4, "in4" },
363 { IIO_VOLTAGE, 5, "in5" },
364 { IIO_VOLTAGE, 6, "in6" },
365 { IIO_VOLTAGE, 7, "in7" },
366 { IIO_VOLTAGE, 8, "in8" },
367 { IIO_VOLTAGE, 9, "in9" },
368 { IIO_VOLTAGE, 10, "in10" },
369 { IIO_VOLTAGE, 11, "in11" },
370 { IIO_VOLTAGE, 12, "in12" },
371 { IIO_VOLTAGE, 13, "in13" },
372 { IIO_VOLTAGE, 14, "in14" },
373 { IIO_VOLTAGE, 15, "in15" },
374 { IIO_VOLTAGE, 16, "in16" },
375 { IIO_VOLTAGE, 17, "in17" },
376 { IIO_VOLTAGE, 18, "in18" },
377 { IIO_VOLTAGE, 19, "in19" },
378 };
379
380 static const unsigned int stm32f4_adc_resolutions[] = {
381 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
382 12, 10, 8, 6,
383 };
384
385 static const struct stm32_adc_info stm32f4_adc_info = {
386 .channels = stm32_adc_channels,
387 .max_channels = 16,
388 .resolutions = stm32f4_adc_resolutions,
389 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
390 };
391
392 static const unsigned int stm32h7_adc_resolutions[] = {
393 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
394 16, 14, 12, 10, 8,
395 };
396
397 static const struct stm32_adc_info stm32h7_adc_info = {
398 .channels = stm32_adc_channels,
399 .max_channels = 20,
400 .resolutions = stm32h7_adc_resolutions,
401 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
402 };
403
404 /**
405 * stm32f4_sq - describe regular sequence registers
406 * - L: sequence len (register & bit field)
407 * - SQ1..SQ16: sequence entries (register & bit field)
408 */
409 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
410 /* L: len bit field description to be kept as first element */
411 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
412 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
413 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
414 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
415 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
416 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
417 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
418 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
419 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
420 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
421 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
422 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
423 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
424 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
425 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
426 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
427 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
428 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
429 };
430
431 /* STM32F4 external trigger sources for all instances */
432 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
433 { TIM1_CH1, STM32_EXT0 },
434 { TIM1_CH2, STM32_EXT1 },
435 { TIM1_CH3, STM32_EXT2 },
436 { TIM2_CH2, STM32_EXT3 },
437 { TIM2_CH3, STM32_EXT4 },
438 { TIM2_CH4, STM32_EXT5 },
439 { TIM2_TRGO, STM32_EXT6 },
440 { TIM3_CH1, STM32_EXT7 },
441 { TIM3_TRGO, STM32_EXT8 },
442 { TIM4_CH4, STM32_EXT9 },
443 { TIM5_CH1, STM32_EXT10 },
444 { TIM5_CH2, STM32_EXT11 },
445 { TIM5_CH3, STM32_EXT12 },
446 { TIM8_CH1, STM32_EXT13 },
447 { TIM8_TRGO, STM32_EXT14 },
448 {}, /* sentinel */
449 };
450
451 /**
452 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
453 * Sorted so it can be indexed by channel number.
454 */
455 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
456 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
457 { 1, GENMASK(2, 0), 0 },
458 { 1, GENMASK(5, 3), 3 },
459 { 1, GENMASK(8, 6), 6 },
460 { 1, GENMASK(11, 9), 9 },
461 { 1, GENMASK(14, 12), 12 },
462 { 1, GENMASK(17, 15), 15 },
463 { 1, GENMASK(20, 18), 18 },
464 { 1, GENMASK(23, 21), 21 },
465 { 1, GENMASK(26, 24), 24 },
466 { 1, GENMASK(29, 27), 27 },
467 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
468 { 0, GENMASK(2, 0), 0 },
469 { 0, GENMASK(5, 3), 3 },
470 { 0, GENMASK(8, 6), 6 },
471 { 0, GENMASK(11, 9), 9 },
472 { 0, GENMASK(14, 12), 12 },
473 { 0, GENMASK(17, 15), 15 },
474 { 0, GENMASK(20, 18), 18 },
475 { 0, GENMASK(23, 21), 21 },
476 { 0, GENMASK(26, 24), 24 },
477 };
478
479 /* STM32F4 programmable sampling time (ADC clock cycles) */
480 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
481 3, 15, 28, 56, 84, 112, 144, 480,
482 };
483
484 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
485 .dr = STM32F4_ADC_DR,
486 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
487 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
488 .sqr = stm32f4_sq,
489 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
490 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
491 STM32F4_EXTSEL_SHIFT },
492 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
493 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
494 .smp_bits = stm32f4_smp_bits,
495 };
496
497 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
498 /* L: len bit field description to be kept as first element */
499 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
500 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
501 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
502 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
503 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
504 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
505 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
506 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
507 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
508 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
509 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
510 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
511 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
512 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
513 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
514 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
515 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
516 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
517 };
518
519 /* STM32H7 external trigger sources for all instances */
520 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
521 { TIM1_CH1, STM32_EXT0 },
522 { TIM1_CH2, STM32_EXT1 },
523 { TIM1_CH3, STM32_EXT2 },
524 { TIM2_CH2, STM32_EXT3 },
525 { TIM3_TRGO, STM32_EXT4 },
526 { TIM4_CH4, STM32_EXT5 },
527 { TIM8_TRGO, STM32_EXT7 },
528 { TIM8_TRGO2, STM32_EXT8 },
529 { TIM1_TRGO, STM32_EXT9 },
530 { TIM1_TRGO2, STM32_EXT10 },
531 { TIM2_TRGO, STM32_EXT11 },
532 { TIM4_TRGO, STM32_EXT12 },
533 { TIM6_TRGO, STM32_EXT13 },
534 { TIM3_CH4, STM32_EXT15 },
535 { LPTIM1_OUT, STM32_EXT18 },
536 { LPTIM2_OUT, STM32_EXT19 },
537 { LPTIM3_OUT, STM32_EXT20 },
538 {},
539 };
540
541 /**
542 * stm32h7_smp_bits - describe sampling time register index & bit fields
543 * Sorted so it can be indexed by channel number.
544 */
545 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
546 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
547 { 0, GENMASK(2, 0), 0 },
548 { 0, GENMASK(5, 3), 3 },
549 { 0, GENMASK(8, 6), 6 },
550 { 0, GENMASK(11, 9), 9 },
551 { 0, GENMASK(14, 12), 12 },
552 { 0, GENMASK(17, 15), 15 },
553 { 0, GENMASK(20, 18), 18 },
554 { 0, GENMASK(23, 21), 21 },
555 { 0, GENMASK(26, 24), 24 },
556 { 0, GENMASK(29, 27), 27 },
557 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
558 { 1, GENMASK(2, 0), 0 },
559 { 1, GENMASK(5, 3), 3 },
560 { 1, GENMASK(8, 6), 6 },
561 { 1, GENMASK(11, 9), 9 },
562 { 1, GENMASK(14, 12), 12 },
563 { 1, GENMASK(17, 15), 15 },
564 { 1, GENMASK(20, 18), 18 },
565 { 1, GENMASK(23, 21), 21 },
566 { 1, GENMASK(26, 24), 24 },
567 { 1, GENMASK(29, 27), 27 },
568 };
569
570 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
571 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
572 1, 2, 8, 16, 32, 64, 387, 810,
573 };
574
575 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
576 .dr = STM32H7_ADC_DR,
577 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
578 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
579 .sqr = stm32h7_sq,
580 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
581 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
582 STM32H7_EXTSEL_SHIFT },
583 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
584 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
585 .smp_bits = stm32h7_smp_bits,
586 };
587
588 /**
589 * STM32 ADC registers access routines
590 * @adc: stm32 adc instance
591 * @reg: reg offset in adc instance
592 *
593 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
594 * for adc1, adc2 and adc3.
595 */
596 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
597 {
598 return readl_relaxed(adc->common->base + adc->offset + reg);
599 }
600
601 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
602
603 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
604 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
605 cond, sleep_us, timeout_us)
606
607 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
608 {
609 return readw_relaxed(adc->common->base + adc->offset + reg);
610 }
611
612 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
613 {
614 writel_relaxed(val, adc->common->base + adc->offset + reg);
615 }
616
617 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
618 {
619 unsigned long flags;
620
621 spin_lock_irqsave(&adc->lock, flags);
622 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
623 spin_unlock_irqrestore(&adc->lock, flags);
624 }
625
626 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
627 {
628 unsigned long flags;
629
630 spin_lock_irqsave(&adc->lock, flags);
631 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
632 spin_unlock_irqrestore(&adc->lock, flags);
633 }
634
635 /**
636 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
637 * @adc: stm32 adc instance
638 */
639 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
640 {
641 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
642 adc->cfg->regs->ier_eoc.mask);
643 };
644
645 /**
646 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
647 * @adc: stm32 adc instance
648 */
649 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
650 {
651 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
652 adc->cfg->regs->ier_eoc.mask);
653 }
654
655 static void stm32_adc_set_res(struct stm32_adc *adc)
656 {
657 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
658 u32 val;
659
660 val = stm32_adc_readl(adc, res->reg);
661 val = (val & ~res->mask) | (adc->res << res->shift);
662 stm32_adc_writel(adc, res->reg, val);
663 }
664
665 /**
666 * stm32f4_adc_start_conv() - Start conversions for regular channels.
667 * @adc: stm32 adc instance
668 * @dma: use dma to transfer conversion result
669 *
670 * Start conversions for regular channels.
671 * Also take care of normal or DMA mode. Circular DMA may be used for regular
672 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
673 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
674 */
675 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
676 {
677 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
678
679 if (dma)
680 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
681 STM32F4_DMA | STM32F4_DDS);
682
683 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
684
685 /* Wait for Power-up time (tSTAB from datasheet) */
686 usleep_range(2, 3);
687
688 /* Software start ? (e.g. trigger detection disabled ?) */
689 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
690 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
691 }
692
693 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
694 {
695 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
696 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
697
698 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
699 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
700 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
701 }
702
703 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
704 {
705 enum stm32h7_adc_dmngt dmngt;
706 unsigned long flags;
707 u32 val;
708
709 if (dma)
710 dmngt = STM32H7_DMNGT_DMA_CIRC;
711 else
712 dmngt = STM32H7_DMNGT_DR_ONLY;
713
714 spin_lock_irqsave(&adc->lock, flags);
715 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
716 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
717 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
718 spin_unlock_irqrestore(&adc->lock, flags);
719
720 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
721 }
722
723 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
724 {
725 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
726 int ret;
727 u32 val;
728
729 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
730
731 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
732 !(val & (STM32H7_ADSTART)),
733 100, STM32_ADC_TIMEOUT_US);
734 if (ret)
735 dev_warn(&indio_dev->dev, "stop failed\n");
736
737 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
738 }
739
740 static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
741 {
742 /* Exit deep power down, then enable ADC voltage regulator */
743 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
744 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
745
746 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
747 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
748
749 /* Wait for startup time */
750 usleep_range(10, 20);
751 }
752
753 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
754 {
755 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
756
757 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
758 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
759 }
760
761 static int stm32h7_adc_enable(struct stm32_adc *adc)
762 {
763 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
764 int ret;
765 u32 val;
766
767 /* Clear ADRDY by writing one, then enable ADC */
768 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
769 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
770
771 /* Poll for ADRDY to be set (after adc startup time) */
772 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
773 val & STM32H7_ADRDY,
774 100, STM32_ADC_TIMEOUT_US);
775 if (ret) {
776 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
777 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
778 }
779
780 return ret;
781 }
782
783 static void stm32h7_adc_disable(struct stm32_adc *adc)
784 {
785 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
786 int ret;
787 u32 val;
788
789 /* Disable ADC and wait until it's effectively disabled */
790 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
791 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
792 !(val & STM32H7_ADEN), 100,
793 STM32_ADC_TIMEOUT_US);
794 if (ret)
795 dev_warn(&indio_dev->dev, "Failed to disable\n");
796 }
797
798 /**
799 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
800 * @adc: stm32 adc instance
801 */
802 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
803 {
804 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
805 int i, ret;
806 u32 lincalrdyw_mask, val;
807
808 /* Enable adc so LINCALRDYW1..6 bits are writable */
809 ret = stm32h7_adc_enable(adc);
810 if (ret)
811 return ret;
812
813 /* Read linearity calibration */
814 lincalrdyw_mask = STM32H7_LINCALRDYW6;
815 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
816 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
817 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
818
819 /* Poll: wait calib data to be ready in CALFACT2 register */
820 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
821 !(val & lincalrdyw_mask),
822 100, STM32_ADC_TIMEOUT_US);
823 if (ret) {
824 dev_err(&indio_dev->dev, "Failed to read calfact\n");
825 goto disable;
826 }
827
828 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
829 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
830 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
831
832 lincalrdyw_mask >>= 1;
833 }
834
835 /* Read offset calibration */
836 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
837 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
838 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
839 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
840 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
841
842 disable:
843 stm32h7_adc_disable(adc);
844
845 return ret;
846 }
847
848 /**
849 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
850 * @adc: stm32 adc instance
851 * Note: ADC must be enabled, with no on-going conversions.
852 */
853 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
854 {
855 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
856 int i, ret;
857 u32 lincalrdyw_mask, val;
858
859 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
860 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
861 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
862
863 lincalrdyw_mask = STM32H7_LINCALRDYW6;
864 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
865 /*
866 * Write saved calibration data to shadow registers:
867 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
868 * data write. Then poll to wait for complete transfer.
869 */
870 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
871 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
872 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
873 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
874 val & lincalrdyw_mask,
875 100, STM32_ADC_TIMEOUT_US);
876 if (ret) {
877 dev_err(&indio_dev->dev, "Failed to write calfact\n");
878 return ret;
879 }
880
881 /*
882 * Read back calibration data, has two effects:
883 * - It ensures bits LINCALRDYW[6..1] are kept cleared
884 * for next time calibration needs to be restored.
885 * - BTW, bit clear triggers a read, then check data has been
886 * correctly written.
887 */
888 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
889 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
890 !(val & lincalrdyw_mask),
891 100, STM32_ADC_TIMEOUT_US);
892 if (ret) {
893 dev_err(&indio_dev->dev, "Failed to read calfact\n");
894 return ret;
895 }
896 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
897 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
898 dev_err(&indio_dev->dev, "calfact not consistent\n");
899 return -EIO;
900 }
901
902 lincalrdyw_mask >>= 1;
903 }
904
905 return 0;
906 }
907
908 /**
909 * Fixed timeout value for ADC calibration.
910 * worst cases:
911 * - low clock frequency
912 * - maximum prescalers
913 * Calibration requires:
914 * - 131,072 ADC clock cycle for the linear calibration
915 * - 20 ADC clock cycle for the offset calibration
916 *
917 * Set to 100ms for now
918 */
919 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
920
921 /**
922 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
923 * @adc: stm32 adc instance
924 * Exit from power down, calibrate ADC, then return to power down.
925 */
926 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
927 {
928 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
929 int ret;
930 u32 val;
931
932 stm32h7_adc_exit_pwr_down(adc);
933
934 /*
935 * Select calibration mode:
936 * - Offset calibration for single ended inputs
937 * - No linearity calibration (do it later, before reading it)
938 */
939 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
940 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
941
942 /* Start calibration, then wait for completion */
943 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
944 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
945 !(val & STM32H7_ADCAL), 100,
946 STM32H7_ADC_CALIB_TIMEOUT_US);
947 if (ret) {
948 dev_err(&indio_dev->dev, "calibration failed\n");
949 goto pwr_dwn;
950 }
951
952 /*
953 * Select calibration mode, then start calibration:
954 * - Offset calibration for differential input
955 * - Linearity calibration (needs to be done only once for single/diff)
956 * will run simultaneously with offset calibration.
957 */
958 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
959 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
960 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
961 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
962 !(val & STM32H7_ADCAL), 100,
963 STM32H7_ADC_CALIB_TIMEOUT_US);
964 if (ret) {
965 dev_err(&indio_dev->dev, "calibration failed\n");
966 goto pwr_dwn;
967 }
968
969 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
970 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
971
972 /* Read calibration result for future reference */
973 ret = stm32h7_adc_read_selfcalib(adc);
974
975 pwr_dwn:
976 stm32h7_adc_enter_pwr_down(adc);
977
978 return ret;
979 }
980
981 /**
982 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
983 * @adc: stm32 adc instance
984 * Leave power down mode.
985 * Enable ADC.
986 * Restore calibration data.
987 * Pre-select channels that may be used in PCSEL (required by input MUX / IO).
988 */
989 static int stm32h7_adc_prepare(struct stm32_adc *adc)
990 {
991 int ret;
992
993 stm32h7_adc_exit_pwr_down(adc);
994
995 ret = stm32h7_adc_enable(adc);
996 if (ret)
997 goto pwr_dwn;
998
999 ret = stm32h7_adc_restore_selfcalib(adc);
1000 if (ret)
1001 goto disable;
1002
1003 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1004
1005 return 0;
1006
1007 disable:
1008 stm32h7_adc_disable(adc);
1009 pwr_dwn:
1010 stm32h7_adc_enter_pwr_down(adc);
1011
1012 return ret;
1013 }
1014
1015 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
1016 {
1017 stm32h7_adc_disable(adc);
1018 stm32h7_adc_enter_pwr_down(adc);
1019 }
1020
1021 /**
1022 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1023 * @indio_dev: IIO device
1024 * @scan_mask: channels to be converted
1025 *
1026 * Conversion sequence :
1027 * Apply sampling time settings for all channels.
1028 * Configure ADC scan sequence based on selected channels in scan_mask.
1029 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1030 * program sequence len.
1031 */
1032 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1033 const unsigned long *scan_mask)
1034 {
1035 struct stm32_adc *adc = iio_priv(indio_dev);
1036 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1037 const struct iio_chan_spec *chan;
1038 u32 val, bit;
1039 int i = 0;
1040
1041 /* Apply sampling time settings */
1042 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1043 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1044
1045 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1046 chan = indio_dev->channels + bit;
1047 /*
1048 * Assign one channel per SQ entry in regular
1049 * sequence, starting with SQ1.
1050 */
1051 i++;
1052 if (i > STM32_ADC_MAX_SQ)
1053 return -EINVAL;
1054
1055 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1056 __func__, chan->channel, i);
1057
1058 val = stm32_adc_readl(adc, sqr[i].reg);
1059 val &= ~sqr[i].mask;
1060 val |= chan->channel << sqr[i].shift;
1061 stm32_adc_writel(adc, sqr[i].reg, val);
1062 }
1063
1064 if (!i)
1065 return -EINVAL;
1066
1067 /* Sequence len */
1068 val = stm32_adc_readl(adc, sqr[0].reg);
1069 val &= ~sqr[0].mask;
1070 val |= ((i - 1) << sqr[0].shift);
1071 stm32_adc_writel(adc, sqr[0].reg, val);
1072
1073 return 0;
1074 }
1075
1076 /**
1077 * stm32_adc_get_trig_extsel() - Get external trigger selection
1078 * @trig: trigger
1079 *
1080 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1081 */
1082 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1083 struct iio_trigger *trig)
1084 {
1085 struct stm32_adc *adc = iio_priv(indio_dev);
1086 int i;
1087
1088 /* lookup triggers registered by stm32 timer trigger driver */
1089 for (i = 0; adc->cfg->trigs[i].name; i++) {
1090 /**
1091 * Checking both stm32 timer trigger type and trig name
1092 * should be safe against arbitrary trigger names.
1093 */
1094 if ((is_stm32_timer_trigger(trig) ||
1095 is_stm32_lptim_trigger(trig)) &&
1096 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1097 return adc->cfg->trigs[i].extsel;
1098 }
1099 }
1100
1101 return -EINVAL;
1102 }
1103
1104 /**
1105 * stm32_adc_set_trig() - Set a regular trigger
1106 * @indio_dev: IIO device
1107 * @trig: IIO trigger
1108 *
1109 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1110 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1111 * - if HW trigger enabled, set source & polarity
1112 */
1113 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1114 struct iio_trigger *trig)
1115 {
1116 struct stm32_adc *adc = iio_priv(indio_dev);
1117 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1118 unsigned long flags;
1119 int ret;
1120
1121 if (trig) {
1122 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1123 if (ret < 0)
1124 return ret;
1125
1126 /* set trigger source and polarity (default to rising edge) */
1127 extsel = ret;
1128 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1129 }
1130
1131 spin_lock_irqsave(&adc->lock, flags);
1132 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1133 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1134 val |= exten << adc->cfg->regs->exten.shift;
1135 val |= extsel << adc->cfg->regs->extsel.shift;
1136 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1137 spin_unlock_irqrestore(&adc->lock, flags);
1138
1139 return 0;
1140 }
1141
1142 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1143 const struct iio_chan_spec *chan,
1144 unsigned int type)
1145 {
1146 struct stm32_adc *adc = iio_priv(indio_dev);
1147
1148 adc->trigger_polarity = type;
1149
1150 return 0;
1151 }
1152
1153 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1154 const struct iio_chan_spec *chan)
1155 {
1156 struct stm32_adc *adc = iio_priv(indio_dev);
1157
1158 return adc->trigger_polarity;
1159 }
1160
1161 static const char * const stm32_trig_pol_items[] = {
1162 "rising-edge", "falling-edge", "both-edges",
1163 };
1164
1165 static const struct iio_enum stm32_adc_trig_pol = {
1166 .items = stm32_trig_pol_items,
1167 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1168 .get = stm32_adc_get_trig_pol,
1169 .set = stm32_adc_set_trig_pol,
1170 };
1171
1172 /**
1173 * stm32_adc_single_conv() - Performs a single conversion
1174 * @indio_dev: IIO device
1175 * @chan: IIO channel
1176 * @res: conversion result
1177 *
1178 * The function performs a single conversion on a given channel:
1179 * - Apply sampling time settings
1180 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1181 * - Use SW trigger
1182 * - Start conversion, then wait for interrupt completion.
1183 */
1184 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1185 const struct iio_chan_spec *chan,
1186 int *res)
1187 {
1188 struct stm32_adc *adc = iio_priv(indio_dev);
1189 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1190 long timeout;
1191 u32 val;
1192 int ret;
1193
1194 reinit_completion(&adc->completion);
1195
1196 adc->bufi = 0;
1197
1198 if (adc->cfg->prepare) {
1199 ret = adc->cfg->prepare(adc);
1200 if (ret)
1201 return ret;
1202 }
1203
1204 /* Apply sampling time settings */
1205 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1206 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1207
1208 /* Program chan number in regular sequence (SQ1) */
1209 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1210 val &= ~regs->sqr[1].mask;
1211 val |= chan->channel << regs->sqr[1].shift;
1212 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1213
1214 /* Set regular sequence len (0 for 1 conversion) */
1215 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1216
1217 /* Trigger detection disabled (conversion can be launched in SW) */
1218 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1219
1220 stm32_adc_conv_irq_enable(adc);
1221
1222 adc->cfg->start_conv(adc, false);
1223
1224 timeout = wait_for_completion_interruptible_timeout(
1225 &adc->completion, STM32_ADC_TIMEOUT);
1226 if (timeout == 0) {
1227 ret = -ETIMEDOUT;
1228 } else if (timeout < 0) {
1229 ret = timeout;
1230 } else {
1231 *res = adc->buffer[0];
1232 ret = IIO_VAL_INT;
1233 }
1234
1235 adc->cfg->stop_conv(adc);
1236
1237 stm32_adc_conv_irq_disable(adc);
1238
1239 if (adc->cfg->unprepare)
1240 adc->cfg->unprepare(adc);
1241
1242 return ret;
1243 }
1244
1245 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1246 struct iio_chan_spec const *chan,
1247 int *val, int *val2, long mask)
1248 {
1249 struct stm32_adc *adc = iio_priv(indio_dev);
1250 int ret;
1251
1252 switch (mask) {
1253 case IIO_CHAN_INFO_RAW:
1254 ret = iio_device_claim_direct_mode(indio_dev);
1255 if (ret)
1256 return ret;
1257 if (chan->type == IIO_VOLTAGE)
1258 ret = stm32_adc_single_conv(indio_dev, chan, val);
1259 else
1260 ret = -EINVAL;
1261 iio_device_release_direct_mode(indio_dev);
1262 return ret;
1263
1264 case IIO_CHAN_INFO_SCALE:
1265 *val = adc->common->vref_mv;
1266 *val2 = chan->scan_type.realbits;
1267 return IIO_VAL_FRACTIONAL_LOG2;
1268
1269 default:
1270 return -EINVAL;
1271 }
1272 }
1273
1274 static irqreturn_t stm32_adc_isr(int irq, void *data)
1275 {
1276 struct stm32_adc *adc = data;
1277 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1278 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1279 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1280
1281 if (status & regs->isr_eoc.mask) {
1282 /* Reading DR also clears EOC status flag */
1283 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1284 if (iio_buffer_enabled(indio_dev)) {
1285 adc->bufi++;
1286 if (adc->bufi >= adc->num_conv) {
1287 stm32_adc_conv_irq_disable(adc);
1288 iio_trigger_poll(indio_dev->trig);
1289 }
1290 } else {
1291 complete(&adc->completion);
1292 }
1293 return IRQ_HANDLED;
1294 }
1295
1296 return IRQ_NONE;
1297 }
1298
1299 /**
1300 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1301 * @indio_dev: IIO device
1302 * @trig: new trigger
1303 *
1304 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1305 * driver, -EINVAL otherwise.
1306 */
1307 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1308 struct iio_trigger *trig)
1309 {
1310 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1311 }
1312
1313 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1314 {
1315 struct stm32_adc *adc = iio_priv(indio_dev);
1316 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1317
1318 /*
1319 * dma cyclic transfers are used, buffer is split into two periods.
1320 * There should be :
1321 * - always one buffer (period) dma is working on
1322 * - one buffer (period) driver can push with iio_trigger_poll().
1323 */
1324 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1325 adc->rx_buf_sz = watermark * 2;
1326
1327 return 0;
1328 }
1329
1330 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1331 const unsigned long *scan_mask)
1332 {
1333 struct stm32_adc *adc = iio_priv(indio_dev);
1334 int ret;
1335
1336 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1337
1338 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1339 if (ret)
1340 return ret;
1341
1342 return 0;
1343 }
1344
1345 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1346 const struct of_phandle_args *iiospec)
1347 {
1348 int i;
1349
1350 for (i = 0; i < indio_dev->num_channels; i++)
1351 if (indio_dev->channels[i].channel == iiospec->args[0])
1352 return i;
1353
1354 return -EINVAL;
1355 }
1356
1357 /**
1358 * stm32_adc_debugfs_reg_access - read or write register value
1359 *
1360 * To read a value from an ADC register:
1361 * echo [ADC reg offset] > direct_reg_access
1362 * cat direct_reg_access
1363 *
1364 * To write a value in a ADC register:
1365 * echo [ADC_reg_offset] [value] > direct_reg_access
1366 */
1367 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1368 unsigned reg, unsigned writeval,
1369 unsigned *readval)
1370 {
1371 struct stm32_adc *adc = iio_priv(indio_dev);
1372
1373 if (!readval)
1374 stm32_adc_writel(adc, reg, writeval);
1375 else
1376 *readval = stm32_adc_readl(adc, reg);
1377
1378 return 0;
1379 }
1380
1381 static const struct iio_info stm32_adc_iio_info = {
1382 .read_raw = stm32_adc_read_raw,
1383 .validate_trigger = stm32_adc_validate_trigger,
1384 .hwfifo_set_watermark = stm32_adc_set_watermark,
1385 .update_scan_mode = stm32_adc_update_scan_mode,
1386 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1387 .of_xlate = stm32_adc_of_xlate,
1388 };
1389
1390 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1391 {
1392 struct dma_tx_state state;
1393 enum dma_status status;
1394
1395 status = dmaengine_tx_status(adc->dma_chan,
1396 adc->dma_chan->cookie,
1397 &state);
1398 if (status == DMA_IN_PROGRESS) {
1399 /* Residue is size in bytes from end of buffer */
1400 unsigned int i = adc->rx_buf_sz - state.residue;
1401 unsigned int size;
1402
1403 /* Return available bytes */
1404 if (i >= adc->bufi)
1405 size = i - adc->bufi;
1406 else
1407 size = adc->rx_buf_sz + i - adc->bufi;
1408
1409 return size;
1410 }
1411
1412 return 0;
1413 }
1414
1415 static void stm32_adc_dma_buffer_done(void *data)
1416 {
1417 struct iio_dev *indio_dev = data;
1418
1419 iio_trigger_poll_chained(indio_dev->trig);
1420 }
1421
1422 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1423 {
1424 struct stm32_adc *adc = iio_priv(indio_dev);
1425 struct dma_async_tx_descriptor *desc;
1426 dma_cookie_t cookie;
1427 int ret;
1428
1429 if (!adc->dma_chan)
1430 return 0;
1431
1432 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1433 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1434
1435 /* Prepare a DMA cyclic transaction */
1436 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1437 adc->rx_dma_buf,
1438 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1439 DMA_DEV_TO_MEM,
1440 DMA_PREP_INTERRUPT);
1441 if (!desc)
1442 return -EBUSY;
1443
1444 desc->callback = stm32_adc_dma_buffer_done;
1445 desc->callback_param = indio_dev;
1446
1447 cookie = dmaengine_submit(desc);
1448 ret = dma_submit_error(cookie);
1449 if (ret) {
1450 dmaengine_terminate_all(adc->dma_chan);
1451 return ret;
1452 }
1453
1454 /* Issue pending DMA requests */
1455 dma_async_issue_pending(adc->dma_chan);
1456
1457 return 0;
1458 }
1459
1460 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1461 {
1462 struct stm32_adc *adc = iio_priv(indio_dev);
1463 int ret;
1464
1465 if (adc->cfg->prepare) {
1466 ret = adc->cfg->prepare(adc);
1467 if (ret)
1468 return ret;
1469 }
1470
1471 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1472 if (ret) {
1473 dev_err(&indio_dev->dev, "Can't set trigger\n");
1474 goto err_unprepare;
1475 }
1476
1477 ret = stm32_adc_dma_start(indio_dev);
1478 if (ret) {
1479 dev_err(&indio_dev->dev, "Can't start dma\n");
1480 goto err_clr_trig;
1481 }
1482
1483 ret = iio_triggered_buffer_postenable(indio_dev);
1484 if (ret < 0)
1485 goto err_stop_dma;
1486
1487 /* Reset adc buffer index */
1488 adc->bufi = 0;
1489
1490 if (!adc->dma_chan)
1491 stm32_adc_conv_irq_enable(adc);
1492
1493 adc->cfg->start_conv(adc, !!adc->dma_chan);
1494
1495 return 0;
1496
1497 err_stop_dma:
1498 if (adc->dma_chan)
1499 dmaengine_terminate_all(adc->dma_chan);
1500 err_clr_trig:
1501 stm32_adc_set_trig(indio_dev, NULL);
1502 err_unprepare:
1503 if (adc->cfg->unprepare)
1504 adc->cfg->unprepare(adc);
1505
1506 return ret;
1507 }
1508
1509 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1510 {
1511 struct stm32_adc *adc = iio_priv(indio_dev);
1512 int ret;
1513
1514 adc->cfg->stop_conv(adc);
1515 if (!adc->dma_chan)
1516 stm32_adc_conv_irq_disable(adc);
1517
1518 ret = iio_triggered_buffer_predisable(indio_dev);
1519 if (ret < 0)
1520 dev_err(&indio_dev->dev, "predisable failed\n");
1521
1522 if (adc->dma_chan)
1523 dmaengine_terminate_all(adc->dma_chan);
1524
1525 if (stm32_adc_set_trig(indio_dev, NULL))
1526 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1527
1528 if (adc->cfg->unprepare)
1529 adc->cfg->unprepare(adc);
1530
1531 return ret;
1532 }
1533
1534 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1535 .postenable = &stm32_adc_buffer_postenable,
1536 .predisable = &stm32_adc_buffer_predisable,
1537 };
1538
1539 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1540 {
1541 struct iio_poll_func *pf = p;
1542 struct iio_dev *indio_dev = pf->indio_dev;
1543 struct stm32_adc *adc = iio_priv(indio_dev);
1544
1545 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1546
1547 if (!adc->dma_chan) {
1548 /* reset buffer index */
1549 adc->bufi = 0;
1550 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1551 pf->timestamp);
1552 } else {
1553 int residue = stm32_adc_dma_residue(adc);
1554
1555 while (residue >= indio_dev->scan_bytes) {
1556 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1557
1558 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1559 pf->timestamp);
1560 residue -= indio_dev->scan_bytes;
1561 adc->bufi += indio_dev->scan_bytes;
1562 if (adc->bufi >= adc->rx_buf_sz)
1563 adc->bufi = 0;
1564 }
1565 }
1566
1567 iio_trigger_notify_done(indio_dev->trig);
1568
1569 /* re-enable eoc irq */
1570 if (!adc->dma_chan)
1571 stm32_adc_conv_irq_enable(adc);
1572
1573 return IRQ_HANDLED;
1574 }
1575
1576 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1577 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1578 {
1579 .name = "trigger_polarity_available",
1580 .shared = IIO_SHARED_BY_ALL,
1581 .read = iio_enum_available_read,
1582 .private = (uintptr_t)&stm32_adc_trig_pol,
1583 },
1584 {},
1585 };
1586
1587 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1588 {
1589 struct device_node *node = indio_dev->dev.of_node;
1590 struct stm32_adc *adc = iio_priv(indio_dev);
1591 unsigned int i;
1592 u32 res;
1593
1594 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1595 res = adc->cfg->adc_info->resolutions[0];
1596
1597 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1598 if (res == adc->cfg->adc_info->resolutions[i])
1599 break;
1600 if (i >= adc->cfg->adc_info->num_res) {
1601 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1602 return -EINVAL;
1603 }
1604
1605 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1606 adc->res = i;
1607
1608 return 0;
1609 }
1610
1611 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1612 {
1613 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1614 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1615 unsigned int smp, r = smpr->reg;
1616
1617 /* Determine sampling time (ADC clock cycles) */
1618 period_ns = NSEC_PER_SEC / adc->common->rate;
1619 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1620 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1621 break;
1622 if (smp > STM32_ADC_MAX_SMP)
1623 smp = STM32_ADC_MAX_SMP;
1624
1625 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1626 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1627 }
1628
1629 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1630 struct iio_chan_spec *chan,
1631 const struct stm32_adc_chan_spec *channel,
1632 int scan_index, u32 smp)
1633 {
1634 struct stm32_adc *adc = iio_priv(indio_dev);
1635
1636 chan->type = channel->type;
1637 chan->channel = channel->channel;
1638 chan->datasheet_name = channel->name;
1639 chan->scan_index = scan_index;
1640 chan->indexed = 1;
1641 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1642 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
1643 chan->scan_type.sign = 'u';
1644 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1645 chan->scan_type.storagebits = 16;
1646 chan->ext_info = stm32_adc_ext_info;
1647
1648 /* Prepare sampling time settings */
1649 stm32_adc_smpr_init(adc, chan->channel, smp);
1650
1651 /* pre-build selected channels mask */
1652 adc->pcsel |= BIT(chan->channel);
1653 }
1654
1655 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1656 {
1657 struct device_node *node = indio_dev->dev.of_node;
1658 struct stm32_adc *adc = iio_priv(indio_dev);
1659 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1660 struct property *prop;
1661 const __be32 *cur;
1662 struct iio_chan_spec *channels;
1663 int scan_index = 0, num_channels, ret;
1664 u32 val, smp = 0;
1665
1666 num_channels = of_property_count_u32_elems(node, "st,adc-channels");
1667 if (num_channels < 0 ||
1668 num_channels >= adc_info->max_channels) {
1669 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1670 return num_channels < 0 ? num_channels : -EINVAL;
1671 }
1672
1673 /* Optional sample time is provided either for each, or all channels */
1674 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1675 if (ret > 1 && ret != num_channels) {
1676 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1677 return -EINVAL;
1678 }
1679
1680 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1681 sizeof(struct iio_chan_spec), GFP_KERNEL);
1682 if (!channels)
1683 return -ENOMEM;
1684
1685 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1686 if (val >= adc_info->max_channels) {
1687 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1688 return -EINVAL;
1689 }
1690
1691 /*
1692 * Using of_property_read_u32_index(), smp value will only be
1693 * modified if valid u32 value can be decoded. This allows to
1694 * get either no value, 1 shared value for all indexes, or one
1695 * value per channel.
1696 */
1697 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1698 scan_index, &smp);
1699
1700 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1701 &adc_info->channels[val],
1702 scan_index, smp);
1703 scan_index++;
1704 }
1705
1706 indio_dev->num_channels = scan_index;
1707 indio_dev->channels = channels;
1708
1709 return 0;
1710 }
1711
1712 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1713 {
1714 struct stm32_adc *adc = iio_priv(indio_dev);
1715 struct dma_slave_config config;
1716 int ret;
1717
1718 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1719 if (!adc->dma_chan)
1720 return 0;
1721
1722 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1723 STM32_DMA_BUFFER_SIZE,
1724 &adc->rx_dma_buf, GFP_KERNEL);
1725 if (!adc->rx_buf) {
1726 ret = -ENOMEM;
1727 goto err_release;
1728 }
1729
1730 /* Configure DMA channel to read data register */
1731 memset(&config, 0, sizeof(config));
1732 config.src_addr = (dma_addr_t)adc->common->phys_base;
1733 config.src_addr += adc->offset + adc->cfg->regs->dr;
1734 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1735
1736 ret = dmaengine_slave_config(adc->dma_chan, &config);
1737 if (ret)
1738 goto err_free;
1739
1740 return 0;
1741
1742 err_free:
1743 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1744 adc->rx_buf, adc->rx_dma_buf);
1745 err_release:
1746 dma_release_channel(adc->dma_chan);
1747
1748 return ret;
1749 }
1750
1751 static int stm32_adc_probe(struct platform_device *pdev)
1752 {
1753 struct iio_dev *indio_dev;
1754 struct device *dev = &pdev->dev;
1755 struct stm32_adc *adc;
1756 int ret;
1757
1758 if (!pdev->dev.of_node)
1759 return -ENODEV;
1760
1761 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1762 if (!indio_dev)
1763 return -ENOMEM;
1764
1765 adc = iio_priv(indio_dev);
1766 adc->common = dev_get_drvdata(pdev->dev.parent);
1767 spin_lock_init(&adc->lock);
1768 init_completion(&adc->completion);
1769 adc->cfg = (const struct stm32_adc_cfg *)
1770 of_match_device(dev->driver->of_match_table, dev)->data;
1771
1772 indio_dev->name = dev_name(&pdev->dev);
1773 indio_dev->dev.parent = &pdev->dev;
1774 indio_dev->dev.of_node = pdev->dev.of_node;
1775 indio_dev->info = &stm32_adc_iio_info;
1776 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1777
1778 platform_set_drvdata(pdev, adc);
1779
1780 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1781 if (ret != 0) {
1782 dev_err(&pdev->dev, "missing reg property\n");
1783 return -EINVAL;
1784 }
1785
1786 adc->irq = platform_get_irq(pdev, 0);
1787 if (adc->irq < 0) {
1788 dev_err(&pdev->dev, "failed to get irq\n");
1789 return adc->irq;
1790 }
1791
1792 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1793 0, pdev->name, adc);
1794 if (ret) {
1795 dev_err(&pdev->dev, "failed to request IRQ\n");
1796 return ret;
1797 }
1798
1799 adc->clk = devm_clk_get(&pdev->dev, NULL);
1800 if (IS_ERR(adc->clk)) {
1801 ret = PTR_ERR(adc->clk);
1802 if (ret == -ENOENT && !adc->cfg->clk_required) {
1803 adc->clk = NULL;
1804 } else {
1805 dev_err(&pdev->dev, "Can't get clock\n");
1806 return ret;
1807 }
1808 }
1809
1810 if (adc->clk) {
1811 ret = clk_prepare_enable(adc->clk);
1812 if (ret < 0) {
1813 dev_err(&pdev->dev, "clk enable failed\n");
1814 return ret;
1815 }
1816 }
1817
1818 ret = stm32_adc_of_get_resolution(indio_dev);
1819 if (ret < 0)
1820 goto err_clk_disable;
1821 stm32_adc_set_res(adc);
1822
1823 if (adc->cfg->selfcalib) {
1824 ret = adc->cfg->selfcalib(adc);
1825 if (ret)
1826 goto err_clk_disable;
1827 }
1828
1829 ret = stm32_adc_chan_of_init(indio_dev);
1830 if (ret < 0)
1831 goto err_clk_disable;
1832
1833 ret = stm32_adc_dma_request(indio_dev);
1834 if (ret < 0)
1835 goto err_clk_disable;
1836
1837 ret = iio_triggered_buffer_setup(indio_dev,
1838 &iio_pollfunc_store_time,
1839 &stm32_adc_trigger_handler,
1840 &stm32_adc_buffer_setup_ops);
1841 if (ret) {
1842 dev_err(&pdev->dev, "buffer setup failed\n");
1843 goto err_dma_disable;
1844 }
1845
1846 ret = iio_device_register(indio_dev);
1847 if (ret) {
1848 dev_err(&pdev->dev, "iio dev register failed\n");
1849 goto err_buffer_cleanup;
1850 }
1851
1852 return 0;
1853
1854 err_buffer_cleanup:
1855 iio_triggered_buffer_cleanup(indio_dev);
1856
1857 err_dma_disable:
1858 if (adc->dma_chan) {
1859 dma_free_coherent(adc->dma_chan->device->dev,
1860 STM32_DMA_BUFFER_SIZE,
1861 adc->rx_buf, adc->rx_dma_buf);
1862 dma_release_channel(adc->dma_chan);
1863 }
1864 err_clk_disable:
1865 if (adc->clk)
1866 clk_disable_unprepare(adc->clk);
1867
1868 return ret;
1869 }
1870
1871 static int stm32_adc_remove(struct platform_device *pdev)
1872 {
1873 struct stm32_adc *adc = platform_get_drvdata(pdev);
1874 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1875
1876 iio_device_unregister(indio_dev);
1877 iio_triggered_buffer_cleanup(indio_dev);
1878 if (adc->dma_chan) {
1879 dma_free_coherent(adc->dma_chan->device->dev,
1880 STM32_DMA_BUFFER_SIZE,
1881 adc->rx_buf, adc->rx_dma_buf);
1882 dma_release_channel(adc->dma_chan);
1883 }
1884 if (adc->clk)
1885 clk_disable_unprepare(adc->clk);
1886
1887 return 0;
1888 }
1889
1890 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1891 .regs = &stm32f4_adc_regspec,
1892 .adc_info = &stm32f4_adc_info,
1893 .trigs = stm32f4_adc_trigs,
1894 .clk_required = true,
1895 .start_conv = stm32f4_adc_start_conv,
1896 .stop_conv = stm32f4_adc_stop_conv,
1897 .smp_cycles = stm32f4_adc_smp_cycles,
1898 };
1899
1900 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1901 .regs = &stm32h7_adc_regspec,
1902 .adc_info = &stm32h7_adc_info,
1903 .trigs = stm32h7_adc_trigs,
1904 .selfcalib = stm32h7_adc_selfcalib,
1905 .start_conv = stm32h7_adc_start_conv,
1906 .stop_conv = stm32h7_adc_stop_conv,
1907 .prepare = stm32h7_adc_prepare,
1908 .unprepare = stm32h7_adc_unprepare,
1909 .smp_cycles = stm32h7_adc_smp_cycles,
1910 };
1911
1912 static const struct of_device_id stm32_adc_of_match[] = {
1913 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1914 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1915 {},
1916 };
1917 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1918
1919 static struct platform_driver stm32_adc_driver = {
1920 .probe = stm32_adc_probe,
1921 .remove = stm32_adc_remove,
1922 .driver = {
1923 .name = "stm32-adc",
1924 .of_match_table = stm32_adc_of_match,
1925 },
1926 };
1927 module_platform_driver(stm32_adc_driver);
1928
1929 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1930 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1931 MODULE_LICENSE("GPL v2");
1932 MODULE_ALIAS("platform:stm32-adc");