]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iio/adc/xilinx-xadc-core.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / drivers / iio / adc / xilinx-xadc-core.c
1 /*
2 * Xilinx XADC driver
3 *
4 * Copyright 2013-2014 Analog Devices Inc.
5 * Author: Lars-Peter Clauen <lars@metafoo.de>
6 *
7 * Licensed under the GPL-2.
8 *
9 * Documentation for the parts can be found at:
10 * - XADC hardmacro: Xilinx UG480
11 * - ZYNQ XADC interface: Xilinx UG585
12 * - AXI XADC interface: Xilinx PG019
13 */
14
15 #include <linux/clk.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34
35 #include "xilinx-xadc.h"
36
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG 0x00
41 #define XADC_ZYNQ_REG_INTSTS 0x04
42 #define XADC_ZYNQ_REG_INTMSK 0x08
43 #define XADC_ZYNQ_REG_STATUS 0x0c
44 #define XADC_ZYNQ_REG_CFIFO 0x10
45 #define XADC_ZYNQ_REG_DFIFO 0x14
46 #define XADC_ZYNQ_REG_CTL 0x18
47
48 #define XADC_ZYNQ_CFG_ENABLE BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
53 #define XADC_ZYNQ_CFG_WEDGE BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x) (x)
62
63 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK 0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET 0
67
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
72 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
76 #define XADC_ZYNQ_STATUS_OT BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
78
79 #define XADC_ZYNQ_CTL_RESET BIT(4)
80
81 #define XADC_ZYNQ_CMD_NOP 0x00
82 #define XADC_ZYNQ_CMD_READ 0x01
83 #define XADC_ZYNQ_CMD_WRITE 0x02
84
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET 0x00
89 #define XADC_AXI_REG_STATUS 0x04
90 #define XADC_AXI_REG_ALARM_STATUS 0x08
91 #define XADC_AXI_REG_CONVST 0x0c
92 #define XADC_AXI_REG_XADC_RESET 0x10
93 #define XADC_AXI_REG_GIER 0x5c
94 #define XADC_AXI_REG_IPISR 0x60
95 #define XADC_AXI_REG_IPIER 0x68
96 #define XADC_AXI_ADC_REG_OFFSET 0x200
97
98 #define XADC_AXI_RESET_MAGIC 0xa
99 #define XADC_AXI_GIER_ENABLE BIT(31)
100
101 #define XADC_AXI_INT_EOS BIT(4)
102 #define XADC_AXI_INT_ALARM_MASK 0x3c0f
103
104 #define XADC_FLAGS_BUFFERED BIT(0)
105
106 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
107 uint32_t val)
108 {
109 writel(val, xadc->base + reg);
110 }
111
112 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
113 uint32_t *val)
114 {
115 *val = readl(xadc->base + reg);
116 }
117
118 /*
119 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
120 * XADC. Reads and writes to the XADC register are performed by submitting a
121 * request to the command FIFO (CFIFO), once the request has been completed the
122 * result can be read from the data FIFO (DFIFO). The method currently used in
123 * this driver is to submit the request for a read/write operation, then go to
124 * sleep and wait for an interrupt that signals that a response is available in
125 * the data FIFO.
126 */
127
128 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
129 unsigned int n)
130 {
131 unsigned int i;
132
133 for (i = 0; i < n; i++)
134 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
135 }
136
137 static void xadc_zynq_drain_fifo(struct xadc *xadc)
138 {
139 uint32_t status, tmp;
140
141 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
142
143 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
144 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
145 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
146 }
147 }
148
149 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
150 unsigned int val)
151 {
152 xadc->zynq_intmask &= ~mask;
153 xadc->zynq_intmask |= val;
154
155 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
156 xadc->zynq_intmask | xadc->zynq_masked_alarm);
157 }
158
159 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
160 uint16_t val)
161 {
162 uint32_t cmd[1];
163 uint32_t tmp;
164 int ret;
165
166 spin_lock_irq(&xadc->lock);
167 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
168 XADC_ZYNQ_INT_DFIFO_GTH);
169
170 reinit_completion(&xadc->completion);
171
172 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
173 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
174 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
175 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
176 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
177 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
178
179 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
180 spin_unlock_irq(&xadc->lock);
181
182 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
183 if (ret == 0)
184 ret = -EIO;
185 else
186 ret = 0;
187
188 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
189
190 return ret;
191 }
192
193 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
194 uint16_t *val)
195 {
196 uint32_t cmd[2];
197 uint32_t resp, tmp;
198 int ret;
199
200 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
201 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
202
203 spin_lock_irq(&xadc->lock);
204 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
205 XADC_ZYNQ_INT_DFIFO_GTH);
206 xadc_zynq_drain_fifo(xadc);
207 reinit_completion(&xadc->completion);
208
209 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
210 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
211 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
212 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
213 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
214
215 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
216 spin_unlock_irq(&xadc->lock);
217 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
218 if (ret == 0)
219 ret = -EIO;
220 if (ret < 0)
221 return ret;
222
223 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
224 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
225
226 *val = resp & 0xffff;
227
228 return 0;
229 }
230
231 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
232 {
233 return ((alarm & 0x80) >> 4) |
234 ((alarm & 0x78) << 1) |
235 (alarm & 0x07);
236 }
237
238 /*
239 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
240 * threshold condition go way from within the interrupt handler, this means as
241 * soon as a threshold condition is present we would enter the interrupt handler
242 * again and again. To work around this we mask all active thresholds interrupts
243 * in the interrupt handler and start a timer. In this timer we poll the
244 * interrupt status and only if the interrupt is inactive we unmask it again.
245 */
246 static void xadc_zynq_unmask_worker(struct work_struct *work)
247 {
248 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
249 unsigned int misc_sts, unmask;
250
251 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
252
253 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
254
255 spin_lock_irq(&xadc->lock);
256
257 /* Clear those bits which are not active anymore */
258 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
259 xadc->zynq_masked_alarm &= misc_sts;
260
261 /* Also clear those which are masked out anyway */
262 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
263
264 /* Clear the interrupts before we unmask them */
265 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
266
267 xadc_zynq_update_intmsk(xadc, 0, 0);
268
269 spin_unlock_irq(&xadc->lock);
270
271 /* if still pending some alarm re-trigger the timer */
272 if (xadc->zynq_masked_alarm) {
273 schedule_delayed_work(&xadc->zynq_unmask_work,
274 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
275 }
276
277 }
278
279 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
280 {
281 struct iio_dev *indio_dev = devid;
282 struct xadc *xadc = iio_priv(indio_dev);
283 uint32_t status;
284
285 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
286
287 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
288
289 if (!status)
290 return IRQ_NONE;
291
292 spin_lock(&xadc->lock);
293
294 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
295
296 if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
297 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
298 XADC_ZYNQ_INT_DFIFO_GTH);
299 complete(&xadc->completion);
300 }
301
302 status &= XADC_ZYNQ_INT_ALARM_MASK;
303 if (status) {
304 xadc->zynq_masked_alarm |= status;
305 /*
306 * mask the current event interrupt,
307 * unmask it when the interrupt is no more active.
308 */
309 xadc_zynq_update_intmsk(xadc, 0, 0);
310
311 xadc_handle_events(indio_dev,
312 xadc_zynq_transform_alarm(status));
313
314 /* unmask the required interrupts in timer. */
315 schedule_delayed_work(&xadc->zynq_unmask_work,
316 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
317 }
318 spin_unlock(&xadc->lock);
319
320 return IRQ_HANDLED;
321 }
322
323 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
324 #define XADC_ZYNQ_IGAP_DEFAULT 20
325
326 static int xadc_zynq_setup(struct platform_device *pdev,
327 struct iio_dev *indio_dev, int irq)
328 {
329 struct xadc *xadc = iio_priv(indio_dev);
330 unsigned long pcap_rate;
331 unsigned int tck_div;
332 unsigned int div;
333 unsigned int igap;
334 unsigned int tck_rate;
335
336 /* TODO: Figure out how to make igap and tck_rate configurable */
337 igap = XADC_ZYNQ_IGAP_DEFAULT;
338 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
339
340 xadc->zynq_intmask = ~0;
341
342 pcap_rate = clk_get_rate(xadc->clk);
343
344 if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
345 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
346 if (tck_rate > pcap_rate / 2) {
347 div = 2;
348 } else {
349 div = pcap_rate / tck_rate;
350 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
351 div++;
352 }
353
354 if (div <= 3)
355 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
356 else if (div <= 7)
357 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
358 else if (div <= 15)
359 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
360 else
361 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
362
363 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
364 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
365 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
366 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
367 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
368 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
369 tck_div | XADC_ZYNQ_CFG_IGAP(igap));
370
371 return 0;
372 }
373
374 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
375 {
376 unsigned int div;
377 uint32_t val;
378
379 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
380
381 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
382 case XADC_ZYNQ_CFG_TCKRATE_DIV4:
383 div = 4;
384 break;
385 case XADC_ZYNQ_CFG_TCKRATE_DIV8:
386 div = 8;
387 break;
388 case XADC_ZYNQ_CFG_TCKRATE_DIV16:
389 div = 16;
390 break;
391 default:
392 div = 2;
393 break;
394 }
395
396 return clk_get_rate(xadc->clk) / div;
397 }
398
399 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
400 {
401 unsigned long flags;
402 uint32_t status;
403
404 /* Move OT to bit 7 */
405 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
406
407 spin_lock_irqsave(&xadc->lock, flags);
408
409 /* Clear previous interrupts if any. */
410 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
411 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
412
413 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
414 ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
415
416 spin_unlock_irqrestore(&xadc->lock, flags);
417 }
418
419 static const struct xadc_ops xadc_zynq_ops = {
420 .read = xadc_zynq_read_adc_reg,
421 .write = xadc_zynq_write_adc_reg,
422 .setup = xadc_zynq_setup,
423 .get_dclk_rate = xadc_zynq_get_dclk_rate,
424 .interrupt_handler = xadc_zynq_interrupt_handler,
425 .update_alarm = xadc_zynq_update_alarm,
426 };
427
428 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
429 uint16_t *val)
430 {
431 uint32_t val32;
432
433 xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
434 *val = val32 & 0xffff;
435
436 return 0;
437 }
438
439 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
440 uint16_t val)
441 {
442 xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
443
444 return 0;
445 }
446
447 static int xadc_axi_setup(struct platform_device *pdev,
448 struct iio_dev *indio_dev, int irq)
449 {
450 struct xadc *xadc = iio_priv(indio_dev);
451
452 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
453 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
454
455 return 0;
456 }
457
458 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
459 {
460 struct iio_dev *indio_dev = devid;
461 struct xadc *xadc = iio_priv(indio_dev);
462 uint32_t status, mask;
463 unsigned int events;
464
465 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
466 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
467 status &= mask;
468
469 if (!status)
470 return IRQ_NONE;
471
472 if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
473 iio_trigger_poll(xadc->trigger);
474
475 if (status & XADC_AXI_INT_ALARM_MASK) {
476 /*
477 * The order of the bits in the AXI-XADC status register does
478 * not match the order of the bits in the XADC alarm enable
479 * register. xadc_handle_events() expects the events to be in
480 * the same order as the XADC alarm enable register.
481 */
482 events = (status & 0x000e) >> 1;
483 events |= (status & 0x0001) << 3;
484 events |= (status & 0x3c00) >> 6;
485 xadc_handle_events(indio_dev, events);
486 }
487
488 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
489
490 return IRQ_HANDLED;
491 }
492
493 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
494 {
495 uint32_t val;
496 unsigned long flags;
497
498 /*
499 * The order of the bits in the AXI-XADC status register does not match
500 * the order of the bits in the XADC alarm enable register. We get
501 * passed the alarm mask in the same order as in the XADC alarm enable
502 * register.
503 */
504 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
505 ((alarm & 0xf0) << 6);
506
507 spin_lock_irqsave(&xadc->lock, flags);
508 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
509 val &= ~XADC_AXI_INT_ALARM_MASK;
510 val |= alarm;
511 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
512 spin_unlock_irqrestore(&xadc->lock, flags);
513 }
514
515 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
516 {
517 return clk_get_rate(xadc->clk);
518 }
519
520 static const struct xadc_ops xadc_axi_ops = {
521 .read = xadc_axi_read_adc_reg,
522 .write = xadc_axi_write_adc_reg,
523 .setup = xadc_axi_setup,
524 .get_dclk_rate = xadc_axi_get_dclk,
525 .update_alarm = xadc_axi_update_alarm,
526 .interrupt_handler = xadc_axi_interrupt_handler,
527 .flags = XADC_FLAGS_BUFFERED,
528 };
529
530 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
531 uint16_t mask, uint16_t val)
532 {
533 uint16_t tmp;
534 int ret;
535
536 ret = _xadc_read_adc_reg(xadc, reg, &tmp);
537 if (ret)
538 return ret;
539
540 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
541 }
542
543 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
544 uint16_t mask, uint16_t val)
545 {
546 int ret;
547
548 mutex_lock(&xadc->mutex);
549 ret = _xadc_update_adc_reg(xadc, reg, mask, val);
550 mutex_unlock(&xadc->mutex);
551
552 return ret;
553 }
554
555 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
556 {
557 return xadc->ops->get_dclk_rate(xadc);
558 }
559
560 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
561 const unsigned long *mask)
562 {
563 struct xadc *xadc = iio_priv(indio_dev);
564 unsigned int n;
565
566 n = bitmap_weight(mask, indio_dev->masklength);
567
568 kfree(xadc->data);
569 xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
570 if (!xadc->data)
571 return -ENOMEM;
572
573 return 0;
574 }
575
576 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
577 {
578 switch (scan_index) {
579 case 5:
580 return XADC_REG_VCCPINT;
581 case 6:
582 return XADC_REG_VCCPAUX;
583 case 7:
584 return XADC_REG_VCCO_DDR;
585 case 8:
586 return XADC_REG_TEMP;
587 case 9:
588 return XADC_REG_VCCINT;
589 case 10:
590 return XADC_REG_VCCAUX;
591 case 11:
592 return XADC_REG_VPVN;
593 case 12:
594 return XADC_REG_VREFP;
595 case 13:
596 return XADC_REG_VREFN;
597 case 14:
598 return XADC_REG_VCCBRAM;
599 default:
600 return XADC_REG_VAUX(scan_index - 16);
601 }
602 }
603
604 static irqreturn_t xadc_trigger_handler(int irq, void *p)
605 {
606 struct iio_poll_func *pf = p;
607 struct iio_dev *indio_dev = pf->indio_dev;
608 struct xadc *xadc = iio_priv(indio_dev);
609 unsigned int chan;
610 int i, j;
611
612 if (!xadc->data)
613 goto out;
614
615 j = 0;
616 for_each_set_bit(i, indio_dev->active_scan_mask,
617 indio_dev->masklength) {
618 chan = xadc_scan_index_to_channel(i);
619 xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
620 j++;
621 }
622
623 iio_push_to_buffers(indio_dev, xadc->data);
624
625 out:
626 iio_trigger_notify_done(indio_dev->trig);
627
628 return IRQ_HANDLED;
629 }
630
631 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
632 {
633 struct xadc *xadc = iio_trigger_get_drvdata(trigger);
634 unsigned long flags;
635 unsigned int convst;
636 unsigned int val;
637 int ret = 0;
638
639 mutex_lock(&xadc->mutex);
640
641 if (state) {
642 /* Only one of the two triggers can be active at the a time. */
643 if (xadc->trigger != NULL) {
644 ret = -EBUSY;
645 goto err_out;
646 } else {
647 xadc->trigger = trigger;
648 if (trigger == xadc->convst_trigger)
649 convst = XADC_CONF0_EC;
650 else
651 convst = 0;
652 }
653 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
654 convst);
655 if (ret)
656 goto err_out;
657 } else {
658 xadc->trigger = NULL;
659 }
660
661 spin_lock_irqsave(&xadc->lock, flags);
662 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
663 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
664 if (state)
665 val |= XADC_AXI_INT_EOS;
666 else
667 val &= ~XADC_AXI_INT_EOS;
668 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
669 spin_unlock_irqrestore(&xadc->lock, flags);
670
671 err_out:
672 mutex_unlock(&xadc->mutex);
673
674 return ret;
675 }
676
677 static const struct iio_trigger_ops xadc_trigger_ops = {
678 .owner = THIS_MODULE,
679 .set_trigger_state = &xadc_trigger_set_state,
680 };
681
682 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
683 const char *name)
684 {
685 struct iio_trigger *trig;
686 int ret;
687
688 trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
689 indio_dev->id, name);
690 if (trig == NULL)
691 return ERR_PTR(-ENOMEM);
692
693 trig->dev.parent = indio_dev->dev.parent;
694 trig->ops = &xadc_trigger_ops;
695 iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
696
697 ret = iio_trigger_register(trig);
698 if (ret)
699 goto error_free_trig;
700
701 return trig;
702
703 error_free_trig:
704 iio_trigger_free(trig);
705 return ERR_PTR(ret);
706 }
707
708 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
709 {
710 uint16_t val;
711
712 switch (seq_mode) {
713 case XADC_CONF1_SEQ_SIMULTANEOUS:
714 case XADC_CONF1_SEQ_INDEPENDENT:
715 val = XADC_CONF2_PD_ADC_B;
716 break;
717 default:
718 val = 0;
719 break;
720 }
721
722 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
723 val);
724 }
725
726 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
727 {
728 unsigned int aux_scan_mode = scan_mode >> 16;
729
730 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
731 return XADC_CONF1_SEQ_SIMULTANEOUS;
732
733 if ((aux_scan_mode & 0xff00) == 0 ||
734 (aux_scan_mode & 0x00ff) == 0)
735 return XADC_CONF1_SEQ_CONTINUOUS;
736
737 return XADC_CONF1_SEQ_SIMULTANEOUS;
738 }
739
740 static int xadc_postdisable(struct iio_dev *indio_dev)
741 {
742 struct xadc *xadc = iio_priv(indio_dev);
743 unsigned long scan_mask;
744 int ret;
745 int i;
746
747 scan_mask = 1; /* Run calibration as part of the sequence */
748 for (i = 0; i < indio_dev->num_channels; i++)
749 scan_mask |= BIT(indio_dev->channels[i].scan_index);
750
751 /* Enable all channels and calibration */
752 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
753 if (ret)
754 return ret;
755
756 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
757 if (ret)
758 return ret;
759
760 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
761 XADC_CONF1_SEQ_CONTINUOUS);
762 if (ret)
763 return ret;
764
765 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
766 }
767
768 static int xadc_preenable(struct iio_dev *indio_dev)
769 {
770 struct xadc *xadc = iio_priv(indio_dev);
771 unsigned long scan_mask;
772 int seq_mode;
773 int ret;
774
775 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
776 XADC_CONF1_SEQ_DEFAULT);
777 if (ret)
778 goto err;
779
780 scan_mask = *indio_dev->active_scan_mask;
781 seq_mode = xadc_get_seq_mode(xadc, scan_mask);
782
783 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
784 if (ret)
785 goto err;
786
787 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
788 if (ret)
789 goto err;
790
791 ret = xadc_power_adc_b(xadc, seq_mode);
792 if (ret)
793 goto err;
794
795 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
796 seq_mode);
797 if (ret)
798 goto err;
799
800 return 0;
801 err:
802 xadc_postdisable(indio_dev);
803 return ret;
804 }
805
806 static struct iio_buffer_setup_ops xadc_buffer_ops = {
807 .preenable = &xadc_preenable,
808 .postenable = &iio_triggered_buffer_postenable,
809 .predisable = &iio_triggered_buffer_predisable,
810 .postdisable = &xadc_postdisable,
811 };
812
813 static int xadc_read_raw(struct iio_dev *indio_dev,
814 struct iio_chan_spec const *chan, int *val, int *val2, long info)
815 {
816 struct xadc *xadc = iio_priv(indio_dev);
817 unsigned int div;
818 uint16_t val16;
819 int ret;
820
821 switch (info) {
822 case IIO_CHAN_INFO_RAW:
823 if (iio_buffer_enabled(indio_dev))
824 return -EBUSY;
825 ret = xadc_read_adc_reg(xadc, chan->address, &val16);
826 if (ret < 0)
827 return ret;
828
829 val16 >>= 4;
830 if (chan->scan_type.sign == 'u')
831 *val = val16;
832 else
833 *val = sign_extend32(val16, 11);
834
835 return IIO_VAL_INT;
836 case IIO_CHAN_INFO_SCALE:
837 switch (chan->type) {
838 case IIO_VOLTAGE:
839 /* V = (val * 3.0) / 4096 */
840 switch (chan->address) {
841 case XADC_REG_VCCINT:
842 case XADC_REG_VCCAUX:
843 case XADC_REG_VREFP:
844 case XADC_REG_VCCBRAM:
845 case XADC_REG_VCCPINT:
846 case XADC_REG_VCCPAUX:
847 case XADC_REG_VCCO_DDR:
848 *val = 3000;
849 break;
850 default:
851 *val = 1000;
852 break;
853 }
854 *val2 = 12;
855 return IIO_VAL_FRACTIONAL_LOG2;
856 case IIO_TEMP:
857 /* Temp in C = (val * 503.975) / 4096 - 273.15 */
858 *val = 503975;
859 *val2 = 12;
860 return IIO_VAL_FRACTIONAL_LOG2;
861 default:
862 return -EINVAL;
863 }
864 case IIO_CHAN_INFO_OFFSET:
865 /* Only the temperature channel has an offset */
866 *val = -((273150 << 12) / 503975);
867 return IIO_VAL_INT;
868 case IIO_CHAN_INFO_SAMP_FREQ:
869 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
870 if (ret)
871 return ret;
872
873 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
874 if (div < 2)
875 div = 2;
876
877 *val = xadc_get_dclk_rate(xadc) / div / 26;
878
879 return IIO_VAL_INT;
880 default:
881 return -EINVAL;
882 }
883 }
884
885 static int xadc_write_raw(struct iio_dev *indio_dev,
886 struct iio_chan_spec const *chan, int val, int val2, long info)
887 {
888 struct xadc *xadc = iio_priv(indio_dev);
889 unsigned long clk_rate = xadc_get_dclk_rate(xadc);
890 unsigned int div;
891
892 if (info != IIO_CHAN_INFO_SAMP_FREQ)
893 return -EINVAL;
894
895 if (val <= 0)
896 return -EINVAL;
897
898 /* Max. 150 kSPS */
899 if (val > 150000)
900 val = 150000;
901
902 val *= 26;
903
904 /* Min 1MHz */
905 if (val < 1000000)
906 val = 1000000;
907
908 /*
909 * We want to round down, but only if we do not exceed the 150 kSPS
910 * limit.
911 */
912 div = clk_rate / val;
913 if (clk_rate / div / 26 > 150000)
914 div++;
915 if (div < 2)
916 div = 2;
917 else if (div > 0xff)
918 div = 0xff;
919
920 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
921 div << XADC_CONF2_DIV_OFFSET);
922 }
923
924 static const struct iio_event_spec xadc_temp_events[] = {
925 {
926 .type = IIO_EV_TYPE_THRESH,
927 .dir = IIO_EV_DIR_RISING,
928 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
929 BIT(IIO_EV_INFO_VALUE) |
930 BIT(IIO_EV_INFO_HYSTERESIS),
931 },
932 };
933
934 /* Separate values for upper and lower thresholds, but only a shared enabled */
935 static const struct iio_event_spec xadc_voltage_events[] = {
936 {
937 .type = IIO_EV_TYPE_THRESH,
938 .dir = IIO_EV_DIR_RISING,
939 .mask_separate = BIT(IIO_EV_INFO_VALUE),
940 }, {
941 .type = IIO_EV_TYPE_THRESH,
942 .dir = IIO_EV_DIR_FALLING,
943 .mask_separate = BIT(IIO_EV_INFO_VALUE),
944 }, {
945 .type = IIO_EV_TYPE_THRESH,
946 .dir = IIO_EV_DIR_EITHER,
947 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
948 },
949 };
950
951 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
952 .type = IIO_TEMP, \
953 .indexed = 1, \
954 .channel = (_chan), \
955 .address = (_addr), \
956 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
957 BIT(IIO_CHAN_INFO_SCALE) | \
958 BIT(IIO_CHAN_INFO_OFFSET), \
959 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
960 .event_spec = xadc_temp_events, \
961 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
962 .scan_index = (_scan_index), \
963 .scan_type = { \
964 .sign = 'u', \
965 .realbits = 12, \
966 .storagebits = 16, \
967 .shift = 4, \
968 .endianness = IIO_CPU, \
969 }, \
970 }
971
972 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
973 .type = IIO_VOLTAGE, \
974 .indexed = 1, \
975 .channel = (_chan), \
976 .address = (_addr), \
977 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
978 BIT(IIO_CHAN_INFO_SCALE), \
979 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
980 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
981 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
982 .scan_index = (_scan_index), \
983 .scan_type = { \
984 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
985 .realbits = 12, \
986 .storagebits = 16, \
987 .shift = 4, \
988 .endianness = IIO_CPU, \
989 }, \
990 .extend_name = _ext, \
991 }
992
993 static const struct iio_chan_spec xadc_channels[] = {
994 XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
995 XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
996 XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
997 XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
998 XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
999 XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1000 XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1001 XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1002 XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1003 XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1004 XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1005 XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1006 XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1007 XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1008 XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1009 XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1010 XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1011 XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1012 XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1013 XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1014 XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1015 XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1016 XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1017 XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1018 XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1019 XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1020 };
1021
1022 static const struct iio_info xadc_info = {
1023 .read_raw = &xadc_read_raw,
1024 .write_raw = &xadc_write_raw,
1025 .read_event_config = &xadc_read_event_config,
1026 .write_event_config = &xadc_write_event_config,
1027 .read_event_value = &xadc_read_event_value,
1028 .write_event_value = &xadc_write_event_value,
1029 .update_scan_mode = &xadc_update_scan_mode,
1030 .driver_module = THIS_MODULE,
1031 };
1032
1033 static const struct of_device_id xadc_of_match_table[] = {
1034 { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1035 { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1036 { },
1037 };
1038 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1039
1040 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1041 unsigned int *conf)
1042 {
1043 struct xadc *xadc = iio_priv(indio_dev);
1044 struct iio_chan_spec *channels, *chan;
1045 struct device_node *chan_node, *child;
1046 unsigned int num_channels;
1047 const char *external_mux;
1048 u32 ext_mux_chan;
1049 int reg;
1050 int ret;
1051
1052 *conf = 0;
1053
1054 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1055 if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1056 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1057 else if (strcasecmp(external_mux, "single") == 0)
1058 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1059 else if (strcasecmp(external_mux, "dual") == 0)
1060 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1061 else
1062 return -EINVAL;
1063
1064 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1065 ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1066 &ext_mux_chan);
1067 if (ret < 0)
1068 return ret;
1069
1070 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1071 if (ext_mux_chan == 0)
1072 ext_mux_chan = XADC_REG_VPVN;
1073 else if (ext_mux_chan <= 16)
1074 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1075 else
1076 return -EINVAL;
1077 } else {
1078 if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1079 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1080 else
1081 return -EINVAL;
1082 }
1083
1084 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1085 }
1086
1087 channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1088 if (!channels)
1089 return -ENOMEM;
1090
1091 num_channels = 9;
1092 chan = &channels[9];
1093
1094 chan_node = of_get_child_by_name(np, "xlnx,channels");
1095 if (chan_node) {
1096 for_each_child_of_node(chan_node, child) {
1097 if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1098 of_node_put(child);
1099 break;
1100 }
1101
1102 ret = of_property_read_u32(child, "reg", &reg);
1103 if (ret || reg > 16)
1104 continue;
1105
1106 if (of_property_read_bool(child, "xlnx,bipolar"))
1107 chan->scan_type.sign = 's';
1108
1109 if (reg == 0) {
1110 chan->scan_index = 11;
1111 chan->address = XADC_REG_VPVN;
1112 } else {
1113 chan->scan_index = 15 + reg;
1114 chan->address = XADC_REG_VAUX(reg - 1);
1115 }
1116 num_channels++;
1117 chan++;
1118 }
1119 }
1120 of_node_put(chan_node);
1121
1122 indio_dev->num_channels = num_channels;
1123 indio_dev->channels = krealloc(channels, sizeof(*channels) *
1124 num_channels, GFP_KERNEL);
1125 /* If we can't resize the channels array, just use the original */
1126 if (!indio_dev->channels)
1127 indio_dev->channels = channels;
1128
1129 return 0;
1130 }
1131
1132 static int xadc_probe(struct platform_device *pdev)
1133 {
1134 const struct of_device_id *id;
1135 struct iio_dev *indio_dev;
1136 unsigned int bipolar_mask;
1137 struct resource *mem;
1138 unsigned int conf0;
1139 struct xadc *xadc;
1140 int ret;
1141 int irq;
1142 int i;
1143
1144 if (!pdev->dev.of_node)
1145 return -ENODEV;
1146
1147 id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1148 if (!id)
1149 return -EINVAL;
1150
1151 irq = platform_get_irq(pdev, 0);
1152 if (irq <= 0)
1153 return -ENXIO;
1154
1155 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1156 if (!indio_dev)
1157 return -ENOMEM;
1158
1159 xadc = iio_priv(indio_dev);
1160 xadc->ops = id->data;
1161 init_completion(&xadc->completion);
1162 mutex_init(&xadc->mutex);
1163 spin_lock_init(&xadc->lock);
1164 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1165
1166 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1167 xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1168 if (IS_ERR(xadc->base))
1169 return PTR_ERR(xadc->base);
1170
1171 indio_dev->dev.parent = &pdev->dev;
1172 indio_dev->dev.of_node = pdev->dev.of_node;
1173 indio_dev->name = "xadc";
1174 indio_dev->modes = INDIO_DIRECT_MODE;
1175 indio_dev->info = &xadc_info;
1176
1177 ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1178 if (ret)
1179 goto err_device_free;
1180
1181 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1182 ret = iio_triggered_buffer_setup(indio_dev,
1183 &iio_pollfunc_store_time, &xadc_trigger_handler,
1184 &xadc_buffer_ops);
1185 if (ret)
1186 goto err_device_free;
1187
1188 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1189 if (IS_ERR(xadc->convst_trigger)) {
1190 ret = PTR_ERR(xadc->convst_trigger);
1191 goto err_triggered_buffer_cleanup;
1192 }
1193 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1194 "samplerate");
1195 if (IS_ERR(xadc->samplerate_trigger)) {
1196 ret = PTR_ERR(xadc->samplerate_trigger);
1197 goto err_free_convst_trigger;
1198 }
1199 }
1200
1201 xadc->clk = devm_clk_get(&pdev->dev, NULL);
1202 if (IS_ERR(xadc->clk)) {
1203 ret = PTR_ERR(xadc->clk);
1204 goto err_free_samplerate_trigger;
1205 }
1206 clk_prepare_enable(xadc->clk);
1207
1208 ret = xadc->ops->setup(pdev, indio_dev, irq);
1209 if (ret)
1210 goto err_free_samplerate_trigger;
1211
1212 ret = request_irq(irq, xadc->ops->interrupt_handler, 0,
1213 dev_name(&pdev->dev), indio_dev);
1214 if (ret)
1215 goto err_clk_disable_unprepare;
1216
1217 for (i = 0; i < 16; i++)
1218 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1219 &xadc->threshold[i]);
1220
1221 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1222 if (ret)
1223 goto err_free_irq;
1224
1225 bipolar_mask = 0;
1226 for (i = 0; i < indio_dev->num_channels; i++) {
1227 if (indio_dev->channels[i].scan_type.sign == 's')
1228 bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1229 }
1230
1231 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1232 if (ret)
1233 goto err_free_irq;
1234 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1235 bipolar_mask >> 16);
1236 if (ret)
1237 goto err_free_irq;
1238
1239 /* Disable all alarms */
1240 xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1241 XADC_CONF1_ALARM_MASK);
1242
1243 /* Set thresholds to min/max */
1244 for (i = 0; i < 16; i++) {
1245 /*
1246 * Set max voltage threshold and both temperature thresholds to
1247 * 0xffff, min voltage threshold to 0.
1248 */
1249 if (i % 8 < 4 || i == 7)
1250 xadc->threshold[i] = 0xffff;
1251 else
1252 xadc->threshold[i] = 0;
1253 xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1254 xadc->threshold[i]);
1255 }
1256
1257 /* Go to non-buffered mode */
1258 xadc_postdisable(indio_dev);
1259
1260 ret = iio_device_register(indio_dev);
1261 if (ret)
1262 goto err_free_irq;
1263
1264 platform_set_drvdata(pdev, indio_dev);
1265
1266 return 0;
1267
1268 err_free_irq:
1269 free_irq(irq, indio_dev);
1270 err_free_samplerate_trigger:
1271 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1272 iio_trigger_free(xadc->samplerate_trigger);
1273 err_free_convst_trigger:
1274 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1275 iio_trigger_free(xadc->convst_trigger);
1276 err_triggered_buffer_cleanup:
1277 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1278 iio_triggered_buffer_cleanup(indio_dev);
1279 err_clk_disable_unprepare:
1280 clk_disable_unprepare(xadc->clk);
1281 err_device_free:
1282 kfree(indio_dev->channels);
1283
1284 return ret;
1285 }
1286
1287 static int xadc_remove(struct platform_device *pdev)
1288 {
1289 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1290 struct xadc *xadc = iio_priv(indio_dev);
1291 int irq = platform_get_irq(pdev, 0);
1292
1293 iio_device_unregister(indio_dev);
1294 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1295 iio_trigger_free(xadc->samplerate_trigger);
1296 iio_trigger_free(xadc->convst_trigger);
1297 iio_triggered_buffer_cleanup(indio_dev);
1298 }
1299 free_irq(irq, indio_dev);
1300 clk_disable_unprepare(xadc->clk);
1301 cancel_delayed_work(&xadc->zynq_unmask_work);
1302 kfree(xadc->data);
1303 kfree(indio_dev->channels);
1304
1305 return 0;
1306 }
1307
1308 static struct platform_driver xadc_driver = {
1309 .probe = xadc_probe,
1310 .remove = xadc_remove,
1311 .driver = {
1312 .name = "xadc",
1313 .of_match_table = xadc_of_match_table,
1314 },
1315 };
1316 module_platform_driver(xadc_driver);
1317
1318 MODULE_LICENSE("GPL v2");
1319 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1320 MODULE_DESCRIPTION("Xilinx XADC IIO driver");