]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iio/magnetometer/ak8975.c
ASoC: omap-dmic: Use devm_clk_get
[mirror_ubuntu-artful-kernel.git] / drivers / iio / magnetometer / ak8975.c
1 /*
2 * A sensor driver for the magnetometer AK8975.
3 *
4 * Magnetic compass sensor driver for monitoring magnetic flux information.
5 *
6 * Copyright (c) 2010, NVIDIA Corporation.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
21 */
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/err.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/bitops.h>
32 #include <linux/gpio.h>
33 #include <linux/of_gpio.h>
34 #include <linux/acpi.h>
35
36 #include <linux/iio/iio.h>
37 #include <linux/iio/sysfs.h>
38 /*
39 * Register definitions, as well as various shifts and masks to get at the
40 * individual fields of the registers.
41 */
42 #define AK8975_REG_WIA 0x00
43 #define AK8975_DEVICE_ID 0x48
44
45 #define AK8975_REG_INFO 0x01
46
47 #define AK8975_REG_ST1 0x02
48 #define AK8975_REG_ST1_DRDY_SHIFT 0
49 #define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT)
50
51 #define AK8975_REG_HXL 0x03
52 #define AK8975_REG_HXH 0x04
53 #define AK8975_REG_HYL 0x05
54 #define AK8975_REG_HYH 0x06
55 #define AK8975_REG_HZL 0x07
56 #define AK8975_REG_HZH 0x08
57 #define AK8975_REG_ST2 0x09
58 #define AK8975_REG_ST2_DERR_SHIFT 2
59 #define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT)
60
61 #define AK8975_REG_ST2_HOFL_SHIFT 3
62 #define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT)
63
64 #define AK8975_REG_CNTL 0x0A
65 #define AK8975_REG_CNTL_MODE_SHIFT 0
66 #define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT)
67 #define AK8975_REG_CNTL_MODE_POWER_DOWN 0
68 #define AK8975_REG_CNTL_MODE_ONCE 1
69 #define AK8975_REG_CNTL_MODE_SELF_TEST 8
70 #define AK8975_REG_CNTL_MODE_FUSE_ROM 0xF
71
72 #define AK8975_REG_RSVC 0x0B
73 #define AK8975_REG_ASTC 0x0C
74 #define AK8975_REG_TS1 0x0D
75 #define AK8975_REG_TS2 0x0E
76 #define AK8975_REG_I2CDIS 0x0F
77 #define AK8975_REG_ASAX 0x10
78 #define AK8975_REG_ASAY 0x11
79 #define AK8975_REG_ASAZ 0x12
80
81 #define AK8975_MAX_REGS AK8975_REG_ASAZ
82
83 /*
84 * Miscellaneous values.
85 */
86 #define AK8975_MAX_CONVERSION_TIMEOUT 500
87 #define AK8975_CONVERSION_DONE_POLL_TIME 10
88 #define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000)
89 #define RAW_TO_GAUSS_8975(asa) ((((asa) + 128) * 3000) / 256)
90 #define RAW_TO_GAUSS_8963(asa) ((((asa) + 128) * 6000) / 256)
91
92 /* Compatible Asahi Kasei Compass parts */
93 enum asahi_compass_chipset {
94 AK8975,
95 AK8963,
96 };
97
98 /*
99 * Per-instance context data for the device.
100 */
101 struct ak8975_data {
102 struct i2c_client *client;
103 struct attribute_group attrs;
104 struct mutex lock;
105 u8 asa[3];
106 long raw_to_gauss[3];
107 u8 reg_cache[AK8975_MAX_REGS];
108 int eoc_gpio;
109 int eoc_irq;
110 wait_queue_head_t data_ready_queue;
111 unsigned long flags;
112 enum asahi_compass_chipset chipset;
113 };
114
115 static const int ak8975_index_to_reg[] = {
116 AK8975_REG_HXL, AK8975_REG_HYL, AK8975_REG_HZL,
117 };
118
119 /*
120 * Helper function to write to the I2C device's registers.
121 */
122 static int ak8975_write_data(struct i2c_client *client,
123 u8 reg, u8 val, u8 mask, u8 shift)
124 {
125 struct iio_dev *indio_dev = i2c_get_clientdata(client);
126 struct ak8975_data *data = iio_priv(indio_dev);
127 u8 regval;
128 int ret;
129
130 regval = (data->reg_cache[reg] & ~mask) | (val << shift);
131 ret = i2c_smbus_write_byte_data(client, reg, regval);
132 if (ret < 0) {
133 dev_err(&client->dev, "Write to device fails status %x\n", ret);
134 return ret;
135 }
136 data->reg_cache[reg] = regval;
137
138 return 0;
139 }
140
141 /*
142 * Handle data ready irq
143 */
144 static irqreturn_t ak8975_irq_handler(int irq, void *data)
145 {
146 struct ak8975_data *ak8975 = data;
147
148 set_bit(0, &ak8975->flags);
149 wake_up(&ak8975->data_ready_queue);
150
151 return IRQ_HANDLED;
152 }
153
154 /*
155 * Install data ready interrupt handler
156 */
157 static int ak8975_setup_irq(struct ak8975_data *data)
158 {
159 struct i2c_client *client = data->client;
160 int rc;
161 int irq;
162
163 if (client->irq)
164 irq = client->irq;
165 else
166 irq = gpio_to_irq(data->eoc_gpio);
167
168 rc = request_irq(irq, ak8975_irq_handler,
169 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
170 dev_name(&client->dev), data);
171 if (rc < 0) {
172 dev_err(&client->dev,
173 "irq %d request failed, (gpio %d): %d\n",
174 irq, data->eoc_gpio, rc);
175 return rc;
176 }
177
178 init_waitqueue_head(&data->data_ready_queue);
179 clear_bit(0, &data->flags);
180 data->eoc_irq = irq;
181
182 return rc;
183 }
184
185
186 /*
187 * Perform some start-of-day setup, including reading the asa calibration
188 * values and caching them.
189 */
190 static int ak8975_setup(struct i2c_client *client)
191 {
192 struct iio_dev *indio_dev = i2c_get_clientdata(client);
193 struct ak8975_data *data = iio_priv(indio_dev);
194 u8 device_id;
195 int ret;
196
197 /* Confirm that the device we're talking to is really an AK8975. */
198 ret = i2c_smbus_read_byte_data(client, AK8975_REG_WIA);
199 if (ret < 0) {
200 dev_err(&client->dev, "Error reading WIA\n");
201 return ret;
202 }
203 device_id = ret;
204 if (device_id != AK8975_DEVICE_ID) {
205 dev_err(&client->dev, "Device ak8975 not found\n");
206 return -ENODEV;
207 }
208
209 /* Write the fused rom access mode. */
210 ret = ak8975_write_data(client,
211 AK8975_REG_CNTL,
212 AK8975_REG_CNTL_MODE_FUSE_ROM,
213 AK8975_REG_CNTL_MODE_MASK,
214 AK8975_REG_CNTL_MODE_SHIFT);
215 if (ret < 0) {
216 dev_err(&client->dev, "Error in setting fuse access mode\n");
217 return ret;
218 }
219
220 /* Get asa data and store in the device data. */
221 ret = i2c_smbus_read_i2c_block_data(client, AK8975_REG_ASAX,
222 3, data->asa);
223 if (ret < 0) {
224 dev_err(&client->dev, "Not able to read asa data\n");
225 return ret;
226 }
227
228 /* After reading fuse ROM data set power-down mode */
229 ret = ak8975_write_data(client,
230 AK8975_REG_CNTL,
231 AK8975_REG_CNTL_MODE_POWER_DOWN,
232 AK8975_REG_CNTL_MODE_MASK,
233 AK8975_REG_CNTL_MODE_SHIFT);
234
235 if (data->eoc_gpio > 0 || client->irq) {
236 ret = ak8975_setup_irq(data);
237 if (ret < 0) {
238 dev_err(&client->dev,
239 "Error setting data ready interrupt\n");
240 return ret;
241 }
242 }
243
244 if (ret < 0) {
245 dev_err(&client->dev, "Error in setting power-down mode\n");
246 return ret;
247 }
248
249 /*
250 * Precalculate scale factor (in Gauss units) for each axis and
251 * store in the device data.
252 *
253 * This scale factor is axis-dependent, and is derived from 3 calibration
254 * factors ASA(x), ASA(y), and ASA(z).
255 *
256 * These ASA values are read from the sensor device at start of day, and
257 * cached in the device context struct.
258 *
259 * Adjusting the flux value with the sensitivity adjustment value should be
260 * done via the following formula:
261 *
262 * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
263 *
264 * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
265 * is the resultant adjusted value.
266 *
267 * We reduce the formula to:
268 *
269 * Hadj = H * (ASA + 128) / 256
270 *
271 * H is in the range of -4096 to 4095. The magnetometer has a range of
272 * +-1229uT. To go from the raw value to uT is:
273 *
274 * HuT = H * 1229/4096, or roughly, 3/10.
275 *
276 * Since 1uT = 0.01 gauss, our final scale factor becomes:
277 *
278 * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
279 * Hadj = H * ((ASA + 128) * 0.003) / 256
280 *
281 * Since ASA doesn't change, we cache the resultant scale factor into the
282 * device context in ak8975_setup().
283 */
284 if (data->chipset == AK8963) {
285 /*
286 * H range is +-8190 and magnetometer range is +-4912.
287 * So HuT using the above explanation for 8975,
288 * 4912/8190 = ~ 6/10.
289 * So the Hadj should use 6/10 instead of 3/10.
290 */
291 data->raw_to_gauss[0] = RAW_TO_GAUSS_8963(data->asa[0]);
292 data->raw_to_gauss[1] = RAW_TO_GAUSS_8963(data->asa[1]);
293 data->raw_to_gauss[2] = RAW_TO_GAUSS_8963(data->asa[2]);
294 } else {
295 data->raw_to_gauss[0] = RAW_TO_GAUSS_8975(data->asa[0]);
296 data->raw_to_gauss[1] = RAW_TO_GAUSS_8975(data->asa[1]);
297 data->raw_to_gauss[2] = RAW_TO_GAUSS_8975(data->asa[2]);
298 }
299
300 return 0;
301 }
302
303 static int wait_conversion_complete_gpio(struct ak8975_data *data)
304 {
305 struct i2c_client *client = data->client;
306 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
307 int ret;
308
309 /* Wait for the conversion to complete. */
310 while (timeout_ms) {
311 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
312 if (gpio_get_value(data->eoc_gpio))
313 break;
314 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
315 }
316 if (!timeout_ms) {
317 dev_err(&client->dev, "Conversion timeout happened\n");
318 return -EINVAL;
319 }
320
321 ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST1);
322 if (ret < 0)
323 dev_err(&client->dev, "Error in reading ST1\n");
324
325 return ret;
326 }
327
328 static int wait_conversion_complete_polled(struct ak8975_data *data)
329 {
330 struct i2c_client *client = data->client;
331 u8 read_status;
332 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
333 int ret;
334
335 /* Wait for the conversion to complete. */
336 while (timeout_ms) {
337 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
338 ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST1);
339 if (ret < 0) {
340 dev_err(&client->dev, "Error in reading ST1\n");
341 return ret;
342 }
343 read_status = ret;
344 if (read_status)
345 break;
346 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
347 }
348 if (!timeout_ms) {
349 dev_err(&client->dev, "Conversion timeout happened\n");
350 return -EINVAL;
351 }
352
353 return read_status;
354 }
355
356 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
357 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
358 {
359 int ret;
360
361 ret = wait_event_timeout(data->data_ready_queue,
362 test_bit(0, &data->flags),
363 AK8975_DATA_READY_TIMEOUT);
364 clear_bit(0, &data->flags);
365
366 return ret > 0 ? 0 : -ETIME;
367 }
368
369 /*
370 * Emits the raw flux value for the x, y, or z axis.
371 */
372 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
373 {
374 struct ak8975_data *data = iio_priv(indio_dev);
375 struct i2c_client *client = data->client;
376 u16 meas_reg;
377 s16 raw;
378 int ret;
379
380 mutex_lock(&data->lock);
381
382 /* Set up the device for taking a sample. */
383 ret = ak8975_write_data(client,
384 AK8975_REG_CNTL,
385 AK8975_REG_CNTL_MODE_ONCE,
386 AK8975_REG_CNTL_MODE_MASK,
387 AK8975_REG_CNTL_MODE_SHIFT);
388 if (ret < 0) {
389 dev_err(&client->dev, "Error in setting operating mode\n");
390 goto exit;
391 }
392
393 /* Wait for the conversion to complete. */
394 if (data->eoc_irq)
395 ret = wait_conversion_complete_interrupt(data);
396 else if (gpio_is_valid(data->eoc_gpio))
397 ret = wait_conversion_complete_gpio(data);
398 else
399 ret = wait_conversion_complete_polled(data);
400 if (ret < 0)
401 goto exit;
402
403 /* This will be executed only for non-interrupt based waiting case */
404 if (ret & AK8975_REG_ST1_DRDY_MASK) {
405 ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST2);
406 if (ret < 0) {
407 dev_err(&client->dev, "Error in reading ST2\n");
408 goto exit;
409 }
410 if (ret & (AK8975_REG_ST2_DERR_MASK |
411 AK8975_REG_ST2_HOFL_MASK)) {
412 dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
413 ret = -EINVAL;
414 goto exit;
415 }
416 }
417
418 /* Read the flux value from the appropriate register
419 (the register is specified in the iio device attributes). */
420 ret = i2c_smbus_read_word_data(client, ak8975_index_to_reg[index]);
421 if (ret < 0) {
422 dev_err(&client->dev, "Read axis data fails\n");
423 goto exit;
424 }
425 meas_reg = ret;
426
427 mutex_unlock(&data->lock);
428
429 /* Endian conversion of the measured values. */
430 raw = (s16) (le16_to_cpu(meas_reg));
431
432 /* Clamp to valid range. */
433 raw = clamp_t(s16, raw, -4096, 4095);
434 *val = raw;
435 return IIO_VAL_INT;
436
437 exit:
438 mutex_unlock(&data->lock);
439 return ret;
440 }
441
442 static int ak8975_read_raw(struct iio_dev *indio_dev,
443 struct iio_chan_spec const *chan,
444 int *val, int *val2,
445 long mask)
446 {
447 struct ak8975_data *data = iio_priv(indio_dev);
448
449 switch (mask) {
450 case IIO_CHAN_INFO_RAW:
451 return ak8975_read_axis(indio_dev, chan->address, val);
452 case IIO_CHAN_INFO_SCALE:
453 *val = 0;
454 *val2 = data->raw_to_gauss[chan->address];
455 return IIO_VAL_INT_PLUS_MICRO;
456 }
457 return -EINVAL;
458 }
459
460 #define AK8975_CHANNEL(axis, index) \
461 { \
462 .type = IIO_MAGN, \
463 .modified = 1, \
464 .channel2 = IIO_MOD_##axis, \
465 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
466 BIT(IIO_CHAN_INFO_SCALE), \
467 .address = index, \
468 }
469
470 static const struct iio_chan_spec ak8975_channels[] = {
471 AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
472 };
473
474 static const struct iio_info ak8975_info = {
475 .read_raw = &ak8975_read_raw,
476 .driver_module = THIS_MODULE,
477 };
478
479 static const struct acpi_device_id ak_acpi_match[] = {
480 {"AK8975", AK8975},
481 {"AK8963", AK8963},
482 {"INVN6500", AK8963},
483 { },
484 };
485 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
486
487 static char *ak8975_match_acpi_device(struct device *dev,
488 enum asahi_compass_chipset *chipset)
489 {
490 const struct acpi_device_id *id;
491
492 id = acpi_match_device(dev->driver->acpi_match_table, dev);
493 if (!id)
494 return NULL;
495 *chipset = (int)id->driver_data;
496
497 return (char *)dev_name(dev);
498 }
499
500 static int ak8975_probe(struct i2c_client *client,
501 const struct i2c_device_id *id)
502 {
503 struct ak8975_data *data;
504 struct iio_dev *indio_dev;
505 int eoc_gpio;
506 int err;
507 char *name = NULL;
508
509 /* Grab and set up the supplied GPIO. */
510 if (client->dev.platform_data)
511 eoc_gpio = *(int *)(client->dev.platform_data);
512 else if (client->dev.of_node)
513 eoc_gpio = of_get_gpio(client->dev.of_node, 0);
514 else
515 eoc_gpio = -1;
516
517 if (eoc_gpio == -EPROBE_DEFER)
518 return -EPROBE_DEFER;
519
520 /* We may not have a GPIO based IRQ to scan, that is fine, we will
521 poll if so */
522 if (gpio_is_valid(eoc_gpio)) {
523 err = gpio_request_one(eoc_gpio, GPIOF_IN, "ak_8975");
524 if (err < 0) {
525 dev_err(&client->dev,
526 "failed to request GPIO %d, error %d\n",
527 eoc_gpio, err);
528 goto exit;
529 }
530 }
531
532 /* Register with IIO */
533 indio_dev = iio_device_alloc(sizeof(*data));
534 if (indio_dev == NULL) {
535 err = -ENOMEM;
536 goto exit_gpio;
537 }
538 data = iio_priv(indio_dev);
539 i2c_set_clientdata(client, indio_dev);
540
541 data->client = client;
542 data->eoc_gpio = eoc_gpio;
543 data->eoc_irq = 0;
544
545 /* id will be NULL when enumerated via ACPI */
546 if (id) {
547 data->chipset =
548 (enum asahi_compass_chipset)(id->driver_data);
549 name = (char *) id->name;
550 } else if (ACPI_HANDLE(&client->dev))
551 name = ak8975_match_acpi_device(&client->dev, &data->chipset);
552 else {
553 err = -ENOSYS;
554 goto exit_free_iio;
555 }
556 dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
557
558 /* Perform some basic start-of-day setup of the device. */
559 err = ak8975_setup(client);
560 if (err < 0) {
561 dev_err(&client->dev, "AK8975 initialization fails\n");
562 goto exit_free_iio;
563 }
564
565 data->client = client;
566 mutex_init(&data->lock);
567 data->eoc_gpio = eoc_gpio;
568 indio_dev->dev.parent = &client->dev;
569 indio_dev->channels = ak8975_channels;
570 indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
571 indio_dev->info = &ak8975_info;
572 indio_dev->modes = INDIO_DIRECT_MODE;
573 indio_dev->name = name;
574 err = iio_device_register(indio_dev);
575 if (err < 0)
576 goto exit_free_iio;
577
578 return 0;
579
580 exit_free_iio:
581 iio_device_free(indio_dev);
582 if (data->eoc_irq)
583 free_irq(data->eoc_irq, data);
584 exit_gpio:
585 if (gpio_is_valid(eoc_gpio))
586 gpio_free(eoc_gpio);
587 exit:
588 return err;
589 }
590
591 static int ak8975_remove(struct i2c_client *client)
592 {
593 struct iio_dev *indio_dev = i2c_get_clientdata(client);
594 struct ak8975_data *data = iio_priv(indio_dev);
595
596 iio_device_unregister(indio_dev);
597
598 if (data->eoc_irq)
599 free_irq(data->eoc_irq, data);
600
601 if (gpio_is_valid(data->eoc_gpio))
602 gpio_free(data->eoc_gpio);
603
604 iio_device_free(indio_dev);
605
606 return 0;
607 }
608
609 static const struct i2c_device_id ak8975_id[] = {
610 {"ak8975", AK8975},
611 {"ak8963", AK8963},
612 {}
613 };
614
615 MODULE_DEVICE_TABLE(i2c, ak8975_id);
616
617 static const struct of_device_id ak8975_of_match[] = {
618 { .compatible = "asahi-kasei,ak8975", },
619 { .compatible = "ak8975", },
620 { }
621 };
622 MODULE_DEVICE_TABLE(of, ak8975_of_match);
623
624 static struct i2c_driver ak8975_driver = {
625 .driver = {
626 .name = "ak8975",
627 .of_match_table = ak8975_of_match,
628 .acpi_match_table = ACPI_PTR(ak_acpi_match),
629 },
630 .probe = ak8975_probe,
631 .remove = ak8975_remove,
632 .id_table = ak8975_id,
633 };
634 module_i2c_driver(ak8975_driver);
635
636 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
637 MODULE_DESCRIPTION("AK8975 magnetometer driver");
638 MODULE_LICENSE("GPL");