]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iio/magnetometer/ak8975.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-bionic-kernel.git] / drivers / iio / magnetometer / ak8975.c
1 /*
2 * A sensor driver for the magnetometer AK8975.
3 *
4 * Magnetic compass sensor driver for monitoring magnetic flux information.
5 *
6 * Copyright (c) 2010, NVIDIA Corporation.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
21 */
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/err.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/bitops.h>
32 #include <linux/gpio.h>
33 #include <linux/of_gpio.h>
34 #include <linux/acpi.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/pm_runtime.h>
37
38 #include <linux/iio/iio.h>
39 #include <linux/iio/sysfs.h>
40 #include <linux/iio/buffer.h>
41 #include <linux/iio/trigger.h>
42 #include <linux/iio/trigger_consumer.h>
43 #include <linux/iio/triggered_buffer.h>
44
45 #include <linux/iio/magnetometer/ak8975.h>
46
47 /*
48 * Register definitions, as well as various shifts and masks to get at the
49 * individual fields of the registers.
50 */
51 #define AK8975_REG_WIA 0x00
52 #define AK8975_DEVICE_ID 0x48
53
54 #define AK8975_REG_INFO 0x01
55
56 #define AK8975_REG_ST1 0x02
57 #define AK8975_REG_ST1_DRDY_SHIFT 0
58 #define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT)
59
60 #define AK8975_REG_HXL 0x03
61 #define AK8975_REG_HXH 0x04
62 #define AK8975_REG_HYL 0x05
63 #define AK8975_REG_HYH 0x06
64 #define AK8975_REG_HZL 0x07
65 #define AK8975_REG_HZH 0x08
66 #define AK8975_REG_ST2 0x09
67 #define AK8975_REG_ST2_DERR_SHIFT 2
68 #define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT)
69
70 #define AK8975_REG_ST2_HOFL_SHIFT 3
71 #define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT)
72
73 #define AK8975_REG_CNTL 0x0A
74 #define AK8975_REG_CNTL_MODE_SHIFT 0
75 #define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT)
76 #define AK8975_REG_CNTL_MODE_POWER_DOWN 0x00
77 #define AK8975_REG_CNTL_MODE_ONCE 0x01
78 #define AK8975_REG_CNTL_MODE_SELF_TEST 0x08
79 #define AK8975_REG_CNTL_MODE_FUSE_ROM 0x0F
80
81 #define AK8975_REG_RSVC 0x0B
82 #define AK8975_REG_ASTC 0x0C
83 #define AK8975_REG_TS1 0x0D
84 #define AK8975_REG_TS2 0x0E
85 #define AK8975_REG_I2CDIS 0x0F
86 #define AK8975_REG_ASAX 0x10
87 #define AK8975_REG_ASAY 0x11
88 #define AK8975_REG_ASAZ 0x12
89
90 #define AK8975_MAX_REGS AK8975_REG_ASAZ
91
92 /*
93 * AK09912 Register definitions
94 */
95 #define AK09912_REG_WIA1 0x00
96 #define AK09912_REG_WIA2 0x01
97 #define AK09912_DEVICE_ID 0x04
98 #define AK09911_DEVICE_ID 0x05
99
100 #define AK09911_REG_INFO1 0x02
101 #define AK09911_REG_INFO2 0x03
102
103 #define AK09912_REG_ST1 0x10
104
105 #define AK09912_REG_ST1_DRDY_SHIFT 0
106 #define AK09912_REG_ST1_DRDY_MASK (1 << AK09912_REG_ST1_DRDY_SHIFT)
107
108 #define AK09912_REG_HXL 0x11
109 #define AK09912_REG_HXH 0x12
110 #define AK09912_REG_HYL 0x13
111 #define AK09912_REG_HYH 0x14
112 #define AK09912_REG_HZL 0x15
113 #define AK09912_REG_HZH 0x16
114 #define AK09912_REG_TMPS 0x17
115
116 #define AK09912_REG_ST2 0x18
117 #define AK09912_REG_ST2_HOFL_SHIFT 3
118 #define AK09912_REG_ST2_HOFL_MASK (1 << AK09912_REG_ST2_HOFL_SHIFT)
119
120 #define AK09912_REG_CNTL1 0x30
121
122 #define AK09912_REG_CNTL2 0x31
123 #define AK09912_REG_CNTL_MODE_POWER_DOWN 0x00
124 #define AK09912_REG_CNTL_MODE_ONCE 0x01
125 #define AK09912_REG_CNTL_MODE_SELF_TEST 0x10
126 #define AK09912_REG_CNTL_MODE_FUSE_ROM 0x1F
127 #define AK09912_REG_CNTL2_MODE_SHIFT 0
128 #define AK09912_REG_CNTL2_MODE_MASK (0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
129
130 #define AK09912_REG_CNTL3 0x32
131
132 #define AK09912_REG_TS1 0x33
133 #define AK09912_REG_TS2 0x34
134 #define AK09912_REG_TS3 0x35
135 #define AK09912_REG_I2CDIS 0x36
136 #define AK09912_REG_TS4 0x37
137
138 #define AK09912_REG_ASAX 0x60
139 #define AK09912_REG_ASAY 0x61
140 #define AK09912_REG_ASAZ 0x62
141
142 #define AK09912_MAX_REGS AK09912_REG_ASAZ
143
144 /*
145 * Miscellaneous values.
146 */
147 #define AK8975_MAX_CONVERSION_TIMEOUT 500
148 #define AK8975_CONVERSION_DONE_POLL_TIME 10
149 #define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000)
150
151 /*
152 * Precalculate scale factor (in Gauss units) for each axis and
153 * store in the device data.
154 *
155 * This scale factor is axis-dependent, and is derived from 3 calibration
156 * factors ASA(x), ASA(y), and ASA(z).
157 *
158 * These ASA values are read from the sensor device at start of day, and
159 * cached in the device context struct.
160 *
161 * Adjusting the flux value with the sensitivity adjustment value should be
162 * done via the following formula:
163 *
164 * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
165 * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
166 * is the resultant adjusted value.
167 *
168 * We reduce the formula to:
169 *
170 * Hadj = H * (ASA + 128) / 256
171 *
172 * H is in the range of -4096 to 4095. The magnetometer has a range of
173 * +-1229uT. To go from the raw value to uT is:
174 *
175 * HuT = H * 1229/4096, or roughly, 3/10.
176 *
177 * Since 1uT = 0.01 gauss, our final scale factor becomes:
178 *
179 * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
180 * Hadj = H * ((ASA + 128) * 0.003) / 256
181 *
182 * Since ASA doesn't change, we cache the resultant scale factor into the
183 * device context in ak8975_setup().
184 *
185 * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
186 * multiply the stored scale value by 1e6.
187 */
188 static long ak8975_raw_to_gauss(u16 data)
189 {
190 return (((long)data + 128) * 3000) / 256;
191 }
192
193 /*
194 * For AK8963 and AK09911, same calculation, but the device is less sensitive:
195 *
196 * H is in the range of +-8190. The magnetometer has a range of
197 * +-4912uT. To go from the raw value to uT is:
198 *
199 * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
200 */
201
202 static long ak8963_09911_raw_to_gauss(u16 data)
203 {
204 return (((long)data + 128) * 6000) / 256;
205 }
206
207 /*
208 * For AK09912, same calculation, except the device is more sensitive:
209 *
210 * H is in the range of -32752 to 32752. The magnetometer has a range of
211 * +-4912uT. To go from the raw value to uT is:
212 *
213 * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
214 */
215 static long ak09912_raw_to_gauss(u16 data)
216 {
217 return (((long)data + 128) * 1500) / 256;
218 }
219
220 /* Compatible Asahi Kasei Compass parts */
221 enum asahi_compass_chipset {
222 AK8975,
223 AK8963,
224 AK09911,
225 AK09912,
226 AK_MAX_TYPE
227 };
228
229 enum ak_ctrl_reg_addr {
230 ST1,
231 ST2,
232 CNTL,
233 ASA_BASE,
234 MAX_REGS,
235 REGS_END,
236 };
237
238 enum ak_ctrl_reg_mask {
239 ST1_DRDY,
240 ST2_HOFL,
241 ST2_DERR,
242 CNTL_MODE,
243 MASK_END,
244 };
245
246 enum ak_ctrl_mode {
247 POWER_DOWN,
248 MODE_ONCE,
249 SELF_TEST,
250 FUSE_ROM,
251 MODE_END,
252 };
253
254 struct ak_def {
255 enum asahi_compass_chipset type;
256 long (*raw_to_gauss)(u16 data);
257 u16 range;
258 u8 ctrl_regs[REGS_END];
259 u8 ctrl_masks[MASK_END];
260 u8 ctrl_modes[MODE_END];
261 u8 data_regs[3];
262 };
263
264 static const struct ak_def ak_def_array[AK_MAX_TYPE] = {
265 {
266 .type = AK8975,
267 .raw_to_gauss = ak8975_raw_to_gauss,
268 .range = 4096,
269 .ctrl_regs = {
270 AK8975_REG_ST1,
271 AK8975_REG_ST2,
272 AK8975_REG_CNTL,
273 AK8975_REG_ASAX,
274 AK8975_MAX_REGS},
275 .ctrl_masks = {
276 AK8975_REG_ST1_DRDY_MASK,
277 AK8975_REG_ST2_HOFL_MASK,
278 AK8975_REG_ST2_DERR_MASK,
279 AK8975_REG_CNTL_MODE_MASK},
280 .ctrl_modes = {
281 AK8975_REG_CNTL_MODE_POWER_DOWN,
282 AK8975_REG_CNTL_MODE_ONCE,
283 AK8975_REG_CNTL_MODE_SELF_TEST,
284 AK8975_REG_CNTL_MODE_FUSE_ROM},
285 .data_regs = {
286 AK8975_REG_HXL,
287 AK8975_REG_HYL,
288 AK8975_REG_HZL},
289 },
290 {
291 .type = AK8963,
292 .raw_to_gauss = ak8963_09911_raw_to_gauss,
293 .range = 8190,
294 .ctrl_regs = {
295 AK8975_REG_ST1,
296 AK8975_REG_ST2,
297 AK8975_REG_CNTL,
298 AK8975_REG_ASAX,
299 AK8975_MAX_REGS},
300 .ctrl_masks = {
301 AK8975_REG_ST1_DRDY_MASK,
302 AK8975_REG_ST2_HOFL_MASK,
303 0,
304 AK8975_REG_CNTL_MODE_MASK},
305 .ctrl_modes = {
306 AK8975_REG_CNTL_MODE_POWER_DOWN,
307 AK8975_REG_CNTL_MODE_ONCE,
308 AK8975_REG_CNTL_MODE_SELF_TEST,
309 AK8975_REG_CNTL_MODE_FUSE_ROM},
310 .data_regs = {
311 AK8975_REG_HXL,
312 AK8975_REG_HYL,
313 AK8975_REG_HZL},
314 },
315 {
316 .type = AK09911,
317 .raw_to_gauss = ak8963_09911_raw_to_gauss,
318 .range = 8192,
319 .ctrl_regs = {
320 AK09912_REG_ST1,
321 AK09912_REG_ST2,
322 AK09912_REG_CNTL2,
323 AK09912_REG_ASAX,
324 AK09912_MAX_REGS},
325 .ctrl_masks = {
326 AK09912_REG_ST1_DRDY_MASK,
327 AK09912_REG_ST2_HOFL_MASK,
328 0,
329 AK09912_REG_CNTL2_MODE_MASK},
330 .ctrl_modes = {
331 AK09912_REG_CNTL_MODE_POWER_DOWN,
332 AK09912_REG_CNTL_MODE_ONCE,
333 AK09912_REG_CNTL_MODE_SELF_TEST,
334 AK09912_REG_CNTL_MODE_FUSE_ROM},
335 .data_regs = {
336 AK09912_REG_HXL,
337 AK09912_REG_HYL,
338 AK09912_REG_HZL},
339 },
340 {
341 .type = AK09912,
342 .raw_to_gauss = ak09912_raw_to_gauss,
343 .range = 32752,
344 .ctrl_regs = {
345 AK09912_REG_ST1,
346 AK09912_REG_ST2,
347 AK09912_REG_CNTL2,
348 AK09912_REG_ASAX,
349 AK09912_MAX_REGS},
350 .ctrl_masks = {
351 AK09912_REG_ST1_DRDY_MASK,
352 AK09912_REG_ST2_HOFL_MASK,
353 0,
354 AK09912_REG_CNTL2_MODE_MASK},
355 .ctrl_modes = {
356 AK09912_REG_CNTL_MODE_POWER_DOWN,
357 AK09912_REG_CNTL_MODE_ONCE,
358 AK09912_REG_CNTL_MODE_SELF_TEST,
359 AK09912_REG_CNTL_MODE_FUSE_ROM},
360 .data_regs = {
361 AK09912_REG_HXL,
362 AK09912_REG_HYL,
363 AK09912_REG_HZL},
364 }
365 };
366
367 /*
368 * Per-instance context data for the device.
369 */
370 struct ak8975_data {
371 struct i2c_client *client;
372 const struct ak_def *def;
373 struct mutex lock;
374 u8 asa[3];
375 long raw_to_gauss[3];
376 int eoc_gpio;
377 int eoc_irq;
378 wait_queue_head_t data_ready_queue;
379 unsigned long flags;
380 u8 cntl_cache;
381 struct iio_mount_matrix orientation;
382 struct regulator *vdd;
383 struct regulator *vid;
384 };
385
386 /* Enable attached power regulator if any. */
387 static int ak8975_power_on(const struct ak8975_data *data)
388 {
389 int ret;
390
391 ret = regulator_enable(data->vdd);
392 if (ret) {
393 dev_warn(&data->client->dev,
394 "Failed to enable specified Vdd supply\n");
395 return ret;
396 }
397 ret = regulator_enable(data->vid);
398 if (ret) {
399 dev_warn(&data->client->dev,
400 "Failed to enable specified Vid supply\n");
401 return ret;
402 }
403 /*
404 * According to the datasheet the power supply rise time i 200us
405 * and the minimum wait time before mode setting is 100us, in
406 * total 300 us. Add some margin and say minimum 500us here.
407 */
408 usleep_range(500, 1000);
409 return 0;
410 }
411
412 /* Disable attached power regulator if any. */
413 static void ak8975_power_off(const struct ak8975_data *data)
414 {
415 regulator_disable(data->vid);
416 regulator_disable(data->vdd);
417 }
418
419 /*
420 * Return 0 if the i2c device is the one we expect.
421 * return a negative error number otherwise
422 */
423 static int ak8975_who_i_am(struct i2c_client *client,
424 enum asahi_compass_chipset type)
425 {
426 u8 wia_val[2];
427 int ret;
428
429 /*
430 * Signature for each device:
431 * Device | WIA1 | WIA2
432 * AK09912 | DEVICE_ID | AK09912_DEVICE_ID
433 * AK09911 | DEVICE_ID | AK09911_DEVICE_ID
434 * AK8975 | DEVICE_ID | NA
435 * AK8963 | DEVICE_ID | NA
436 */
437 ret = i2c_smbus_read_i2c_block_data_or_emulated(
438 client, AK09912_REG_WIA1, 2, wia_val);
439 if (ret < 0) {
440 dev_err(&client->dev, "Error reading WIA\n");
441 return ret;
442 }
443
444 if (wia_val[0] != AK8975_DEVICE_ID)
445 return -ENODEV;
446
447 switch (type) {
448 case AK8975:
449 case AK8963:
450 return 0;
451 case AK09911:
452 if (wia_val[1] == AK09911_DEVICE_ID)
453 return 0;
454 break;
455 case AK09912:
456 if (wia_val[1] == AK09912_DEVICE_ID)
457 return 0;
458 break;
459 default:
460 dev_err(&client->dev, "Type %d unknown\n", type);
461 }
462 return -ENODEV;
463 }
464
465 /*
466 * Helper function to write to CNTL register.
467 */
468 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
469 {
470 u8 regval;
471 int ret;
472
473 regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
474 data->def->ctrl_modes[mode];
475 ret = i2c_smbus_write_byte_data(data->client,
476 data->def->ctrl_regs[CNTL], regval);
477 if (ret < 0) {
478 return ret;
479 }
480 data->cntl_cache = regval;
481 /* After mode change wait atleast 100us */
482 usleep_range(100, 500);
483
484 return 0;
485 }
486
487 /*
488 * Handle data ready irq
489 */
490 static irqreturn_t ak8975_irq_handler(int irq, void *data)
491 {
492 struct ak8975_data *ak8975 = data;
493
494 set_bit(0, &ak8975->flags);
495 wake_up(&ak8975->data_ready_queue);
496
497 return IRQ_HANDLED;
498 }
499
500 /*
501 * Install data ready interrupt handler
502 */
503 static int ak8975_setup_irq(struct ak8975_data *data)
504 {
505 struct i2c_client *client = data->client;
506 int rc;
507 int irq;
508
509 init_waitqueue_head(&data->data_ready_queue);
510 clear_bit(0, &data->flags);
511 if (client->irq)
512 irq = client->irq;
513 else
514 irq = gpio_to_irq(data->eoc_gpio);
515
516 rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
517 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
518 dev_name(&client->dev), data);
519 if (rc < 0) {
520 dev_err(&client->dev,
521 "irq %d request failed, (gpio %d): %d\n",
522 irq, data->eoc_gpio, rc);
523 return rc;
524 }
525
526 data->eoc_irq = irq;
527
528 return rc;
529 }
530
531
532 /*
533 * Perform some start-of-day setup, including reading the asa calibration
534 * values and caching them.
535 */
536 static int ak8975_setup(struct i2c_client *client)
537 {
538 struct iio_dev *indio_dev = i2c_get_clientdata(client);
539 struct ak8975_data *data = iio_priv(indio_dev);
540 int ret;
541
542 /* Write the fused rom access mode. */
543 ret = ak8975_set_mode(data, FUSE_ROM);
544 if (ret < 0) {
545 dev_err(&client->dev, "Error in setting fuse access mode\n");
546 return ret;
547 }
548
549 /* Get asa data and store in the device data. */
550 ret = i2c_smbus_read_i2c_block_data_or_emulated(
551 client, data->def->ctrl_regs[ASA_BASE],
552 3, data->asa);
553 if (ret < 0) {
554 dev_err(&client->dev, "Not able to read asa data\n");
555 return ret;
556 }
557
558 /* After reading fuse ROM data set power-down mode */
559 ret = ak8975_set_mode(data, POWER_DOWN);
560 if (ret < 0) {
561 dev_err(&client->dev, "Error in setting power-down mode\n");
562 return ret;
563 }
564
565 if (data->eoc_gpio > 0 || client->irq > 0) {
566 ret = ak8975_setup_irq(data);
567 if (ret < 0) {
568 dev_err(&client->dev,
569 "Error setting data ready interrupt\n");
570 return ret;
571 }
572 }
573
574 data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
575 data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
576 data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
577
578 return 0;
579 }
580
581 static int wait_conversion_complete_gpio(struct ak8975_data *data)
582 {
583 struct i2c_client *client = data->client;
584 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
585 int ret;
586
587 /* Wait for the conversion to complete. */
588 while (timeout_ms) {
589 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
590 if (gpio_get_value(data->eoc_gpio))
591 break;
592 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
593 }
594 if (!timeout_ms) {
595 dev_err(&client->dev, "Conversion timeout happened\n");
596 return -EINVAL;
597 }
598
599 ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
600 if (ret < 0)
601 dev_err(&client->dev, "Error in reading ST1\n");
602
603 return ret;
604 }
605
606 static int wait_conversion_complete_polled(struct ak8975_data *data)
607 {
608 struct i2c_client *client = data->client;
609 u8 read_status;
610 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
611 int ret;
612
613 /* Wait for the conversion to complete. */
614 while (timeout_ms) {
615 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
616 ret = i2c_smbus_read_byte_data(client,
617 data->def->ctrl_regs[ST1]);
618 if (ret < 0) {
619 dev_err(&client->dev, "Error in reading ST1\n");
620 return ret;
621 }
622 read_status = ret;
623 if (read_status)
624 break;
625 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
626 }
627 if (!timeout_ms) {
628 dev_err(&client->dev, "Conversion timeout happened\n");
629 return -EINVAL;
630 }
631
632 return read_status;
633 }
634
635 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
636 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
637 {
638 int ret;
639
640 ret = wait_event_timeout(data->data_ready_queue,
641 test_bit(0, &data->flags),
642 AK8975_DATA_READY_TIMEOUT);
643 clear_bit(0, &data->flags);
644
645 return ret > 0 ? 0 : -ETIME;
646 }
647
648 static int ak8975_start_read_axis(struct ak8975_data *data,
649 const struct i2c_client *client)
650 {
651 /* Set up the device for taking a sample. */
652 int ret = ak8975_set_mode(data, MODE_ONCE);
653
654 if (ret < 0) {
655 dev_err(&client->dev, "Error in setting operating mode\n");
656 return ret;
657 }
658
659 /* Wait for the conversion to complete. */
660 if (data->eoc_irq)
661 ret = wait_conversion_complete_interrupt(data);
662 else if (gpio_is_valid(data->eoc_gpio))
663 ret = wait_conversion_complete_gpio(data);
664 else
665 ret = wait_conversion_complete_polled(data);
666 if (ret < 0)
667 return ret;
668
669 /* This will be executed only for non-interrupt based waiting case */
670 if (ret & data->def->ctrl_masks[ST1_DRDY]) {
671 ret = i2c_smbus_read_byte_data(client,
672 data->def->ctrl_regs[ST2]);
673 if (ret < 0) {
674 dev_err(&client->dev, "Error in reading ST2\n");
675 return ret;
676 }
677 if (ret & (data->def->ctrl_masks[ST2_DERR] |
678 data->def->ctrl_masks[ST2_HOFL])) {
679 dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
680 return -EINVAL;
681 }
682 }
683
684 return 0;
685 }
686
687 /* Retrieve raw flux value for one of the x, y, or z axis. */
688 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
689 {
690 struct ak8975_data *data = iio_priv(indio_dev);
691 const struct i2c_client *client = data->client;
692 const struct ak_def *def = data->def;
693 __le16 rval;
694 u16 buff;
695 int ret;
696
697 pm_runtime_get_sync(&data->client->dev);
698
699 mutex_lock(&data->lock);
700
701 ret = ak8975_start_read_axis(data, client);
702 if (ret)
703 goto exit;
704
705 ret = i2c_smbus_read_i2c_block_data_or_emulated(
706 client, def->data_regs[index],
707 sizeof(rval), (u8*)&rval);
708 if (ret < 0)
709 goto exit;
710
711 mutex_unlock(&data->lock);
712
713 pm_runtime_mark_last_busy(&data->client->dev);
714 pm_runtime_put_autosuspend(&data->client->dev);
715
716 /* Swap bytes and convert to valid range. */
717 buff = le16_to_cpu(rval);
718 *val = clamp_t(s16, buff, -def->range, def->range);
719 return IIO_VAL_INT;
720
721 exit:
722 mutex_unlock(&data->lock);
723 dev_err(&client->dev, "Error in reading axis\n");
724 return ret;
725 }
726
727 static int ak8975_read_raw(struct iio_dev *indio_dev,
728 struct iio_chan_spec const *chan,
729 int *val, int *val2,
730 long mask)
731 {
732 struct ak8975_data *data = iio_priv(indio_dev);
733
734 switch (mask) {
735 case IIO_CHAN_INFO_RAW:
736 return ak8975_read_axis(indio_dev, chan->address, val);
737 case IIO_CHAN_INFO_SCALE:
738 *val = 0;
739 *val2 = data->raw_to_gauss[chan->address];
740 return IIO_VAL_INT_PLUS_MICRO;
741 }
742 return -EINVAL;
743 }
744
745 static const struct iio_mount_matrix *
746 ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
747 const struct iio_chan_spec *chan)
748 {
749 return &((struct ak8975_data *)iio_priv(indio_dev))->orientation;
750 }
751
752 static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
753 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
754 { },
755 };
756
757 #define AK8975_CHANNEL(axis, index) \
758 { \
759 .type = IIO_MAGN, \
760 .modified = 1, \
761 .channel2 = IIO_MOD_##axis, \
762 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
763 BIT(IIO_CHAN_INFO_SCALE), \
764 .address = index, \
765 .scan_index = index, \
766 .scan_type = { \
767 .sign = 's', \
768 .realbits = 16, \
769 .storagebits = 16, \
770 .endianness = IIO_CPU \
771 }, \
772 .ext_info = ak8975_ext_info, \
773 }
774
775 static const struct iio_chan_spec ak8975_channels[] = {
776 AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
777 IIO_CHAN_SOFT_TIMESTAMP(3),
778 };
779
780 static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
781
782 static const struct iio_info ak8975_info = {
783 .read_raw = &ak8975_read_raw,
784 .driver_module = THIS_MODULE,
785 };
786
787 static const struct acpi_device_id ak_acpi_match[] = {
788 {"AK8975", AK8975},
789 {"AK8963", AK8963},
790 {"INVN6500", AK8963},
791 {"AK09911", AK09911},
792 {"AK09912", AK09912},
793 { },
794 };
795 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
796
797 static const char *ak8975_match_acpi_device(struct device *dev,
798 enum asahi_compass_chipset *chipset)
799 {
800 const struct acpi_device_id *id;
801
802 id = acpi_match_device(dev->driver->acpi_match_table, dev);
803 if (!id)
804 return NULL;
805 *chipset = (int)id->driver_data;
806
807 return dev_name(dev);
808 }
809
810 static void ak8975_fill_buffer(struct iio_dev *indio_dev)
811 {
812 struct ak8975_data *data = iio_priv(indio_dev);
813 const struct i2c_client *client = data->client;
814 const struct ak_def *def = data->def;
815 int ret;
816 s16 buff[8]; /* 3 x 16 bits axis values + 1 aligned 64 bits timestamp */
817 __le16 fval[3];
818
819 mutex_lock(&data->lock);
820
821 ret = ak8975_start_read_axis(data, client);
822 if (ret)
823 goto unlock;
824
825 /*
826 * For each axis, read the flux value from the appropriate register
827 * (the register is specified in the iio device attributes).
828 */
829 ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
830 def->data_regs[0],
831 3 * sizeof(fval[0]),
832 (u8 *)fval);
833 if (ret < 0)
834 goto unlock;
835
836 mutex_unlock(&data->lock);
837
838 /* Clamp to valid range. */
839 buff[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
840 buff[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
841 buff[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
842
843 iio_push_to_buffers_with_timestamp(indio_dev, buff,
844 iio_get_time_ns(indio_dev));
845 return;
846
847 unlock:
848 mutex_unlock(&data->lock);
849 dev_err(&client->dev, "Error in reading axes block\n");
850 }
851
852 static irqreturn_t ak8975_handle_trigger(int irq, void *p)
853 {
854 const struct iio_poll_func *pf = p;
855 struct iio_dev *indio_dev = pf->indio_dev;
856
857 ak8975_fill_buffer(indio_dev);
858 iio_trigger_notify_done(indio_dev->trig);
859 return IRQ_HANDLED;
860 }
861
862 static int ak8975_probe(struct i2c_client *client,
863 const struct i2c_device_id *id)
864 {
865 struct ak8975_data *data;
866 struct iio_dev *indio_dev;
867 int eoc_gpio;
868 int err;
869 const char *name = NULL;
870 enum asahi_compass_chipset chipset = AK_MAX_TYPE;
871 const struct ak8975_platform_data *pdata =
872 dev_get_platdata(&client->dev);
873
874 /* Grab and set up the supplied GPIO. */
875 if (pdata)
876 eoc_gpio = pdata->eoc_gpio;
877 else if (client->dev.of_node)
878 eoc_gpio = of_get_gpio(client->dev.of_node, 0);
879 else
880 eoc_gpio = -1;
881
882 if (eoc_gpio == -EPROBE_DEFER)
883 return -EPROBE_DEFER;
884
885 /* We may not have a GPIO based IRQ to scan, that is fine, we will
886 poll if so */
887 if (gpio_is_valid(eoc_gpio)) {
888 err = devm_gpio_request_one(&client->dev, eoc_gpio,
889 GPIOF_IN, "ak_8975");
890 if (err < 0) {
891 dev_err(&client->dev,
892 "failed to request GPIO %d, error %d\n",
893 eoc_gpio, err);
894 return err;
895 }
896 }
897
898 /* Register with IIO */
899 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
900 if (indio_dev == NULL)
901 return -ENOMEM;
902
903 data = iio_priv(indio_dev);
904 i2c_set_clientdata(client, indio_dev);
905
906 data->client = client;
907 data->eoc_gpio = eoc_gpio;
908 data->eoc_irq = 0;
909
910 if (!pdata) {
911 err = of_iio_read_mount_matrix(&client->dev,
912 "mount-matrix",
913 &data->orientation);
914 if (err)
915 return err;
916 } else
917 data->orientation = pdata->orientation;
918
919 /* id will be NULL when enumerated via ACPI */
920 if (id) {
921 chipset = (enum asahi_compass_chipset)(id->driver_data);
922 name = id->name;
923 } else if (ACPI_HANDLE(&client->dev)) {
924 name = ak8975_match_acpi_device(&client->dev, &chipset);
925 if (!name)
926 return -ENODEV;
927 } else
928 return -ENOSYS;
929
930 if (chipset >= AK_MAX_TYPE) {
931 dev_err(&client->dev, "AKM device type unsupported: %d\n",
932 chipset);
933 return -ENODEV;
934 }
935
936 data->def = &ak_def_array[chipset];
937
938 /* Fetch the regulators */
939 data->vdd = devm_regulator_get(&client->dev, "vdd");
940 if (IS_ERR(data->vdd))
941 return PTR_ERR(data->vdd);
942 data->vid = devm_regulator_get(&client->dev, "vid");
943 if (IS_ERR(data->vid))
944 return PTR_ERR(data->vid);
945
946 err = ak8975_power_on(data);
947 if (err)
948 return err;
949
950 err = ak8975_who_i_am(client, data->def->type);
951 if (err < 0) {
952 dev_err(&client->dev, "Unexpected device\n");
953 goto power_off;
954 }
955 dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
956
957 /* Perform some basic start-of-day setup of the device. */
958 err = ak8975_setup(client);
959 if (err < 0) {
960 dev_err(&client->dev, "%s initialization fails\n", name);
961 goto power_off;
962 }
963
964 mutex_init(&data->lock);
965 indio_dev->dev.parent = &client->dev;
966 indio_dev->channels = ak8975_channels;
967 indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
968 indio_dev->info = &ak8975_info;
969 indio_dev->available_scan_masks = ak8975_scan_masks;
970 indio_dev->modes = INDIO_DIRECT_MODE;
971 indio_dev->name = name;
972
973 err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
974 NULL);
975 if (err) {
976 dev_err(&client->dev, "triggered buffer setup failed\n");
977 goto power_off;
978 }
979
980 err = iio_device_register(indio_dev);
981 if (err) {
982 dev_err(&client->dev, "device register failed\n");
983 goto cleanup_buffer;
984 }
985
986 /* Enable runtime PM */
987 pm_runtime_get_noresume(&client->dev);
988 pm_runtime_set_active(&client->dev);
989 pm_runtime_enable(&client->dev);
990 /*
991 * The device comes online in 500us, so add two orders of magnitude
992 * of delay before autosuspending: 50 ms.
993 */
994 pm_runtime_set_autosuspend_delay(&client->dev, 50);
995 pm_runtime_use_autosuspend(&client->dev);
996 pm_runtime_put(&client->dev);
997
998 return 0;
999
1000 cleanup_buffer:
1001 iio_triggered_buffer_cleanup(indio_dev);
1002 power_off:
1003 ak8975_power_off(data);
1004 return err;
1005 }
1006
1007 static int ak8975_remove(struct i2c_client *client)
1008 {
1009 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1010 struct ak8975_data *data = iio_priv(indio_dev);
1011
1012 pm_runtime_get_sync(&client->dev);
1013 pm_runtime_put_noidle(&client->dev);
1014 pm_runtime_disable(&client->dev);
1015 iio_device_unregister(indio_dev);
1016 iio_triggered_buffer_cleanup(indio_dev);
1017 ak8975_set_mode(data, POWER_DOWN);
1018 ak8975_power_off(data);
1019
1020 return 0;
1021 }
1022
1023 #ifdef CONFIG_PM
1024 static int ak8975_runtime_suspend(struct device *dev)
1025 {
1026 struct i2c_client *client = to_i2c_client(dev);
1027 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1028 struct ak8975_data *data = iio_priv(indio_dev);
1029 int ret;
1030
1031 /* Set the device in power down if it wasn't already */
1032 ret = ak8975_set_mode(data, POWER_DOWN);
1033 if (ret < 0) {
1034 dev_err(&client->dev, "Error in setting power-down mode\n");
1035 return ret;
1036 }
1037 /* Next cut the regulators */
1038 ak8975_power_off(data);
1039
1040 return 0;
1041 }
1042
1043 static int ak8975_runtime_resume(struct device *dev)
1044 {
1045 struct i2c_client *client = to_i2c_client(dev);
1046 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1047 struct ak8975_data *data = iio_priv(indio_dev);
1048 int ret;
1049
1050 /* Take up the regulators */
1051 ak8975_power_on(data);
1052 /*
1053 * We come up in powered down mode, the reading routines will
1054 * put us in the mode to read values later.
1055 */
1056 ret = ak8975_set_mode(data, POWER_DOWN);
1057 if (ret < 0) {
1058 dev_err(&client->dev, "Error in setting power-down mode\n");
1059 return ret;
1060 }
1061
1062 return 0;
1063 }
1064 #endif /* CONFIG_PM */
1065
1066 static const struct dev_pm_ops ak8975_dev_pm_ops = {
1067 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1068 pm_runtime_force_resume)
1069 SET_RUNTIME_PM_OPS(ak8975_runtime_suspend,
1070 ak8975_runtime_resume, NULL)
1071 };
1072
1073 static const struct i2c_device_id ak8975_id[] = {
1074 {"ak8975", AK8975},
1075 {"ak8963", AK8963},
1076 {"AK8963", AK8963},
1077 {"ak09911", AK09911},
1078 {"ak09912", AK09912},
1079 {}
1080 };
1081
1082 MODULE_DEVICE_TABLE(i2c, ak8975_id);
1083
1084 static const struct of_device_id ak8975_of_match[] = {
1085 { .compatible = "asahi-kasei,ak8975", },
1086 { .compatible = "ak8975", },
1087 { .compatible = "asahi-kasei,ak8963", },
1088 { .compatible = "ak8963", },
1089 { .compatible = "asahi-kasei,ak09911", },
1090 { .compatible = "ak09911", },
1091 { .compatible = "asahi-kasei,ak09912", },
1092 { .compatible = "ak09912", },
1093 {}
1094 };
1095 MODULE_DEVICE_TABLE(of, ak8975_of_match);
1096
1097 static struct i2c_driver ak8975_driver = {
1098 .driver = {
1099 .name = "ak8975",
1100 .pm = &ak8975_dev_pm_ops,
1101 .of_match_table = of_match_ptr(ak8975_of_match),
1102 .acpi_match_table = ACPI_PTR(ak_acpi_match),
1103 },
1104 .probe = ak8975_probe,
1105 .remove = ak8975_remove,
1106 .id_table = ak8975_id,
1107 };
1108 module_i2c_driver(ak8975_driver);
1109
1110 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1111 MODULE_DESCRIPTION("AK8975 magnetometer driver");
1112 MODULE_LICENSE("GPL");