]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iio/pressure/bmp280-core.c
Merge tag 'nfsd-4.12' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / iio / pressure / bmp280-core.c
1 /*
2 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3 * Copyright (c) 2012 Bosch Sensortec GmbH
4 * Copyright (c) 2012 Unixphere AB
5 * Copyright (c) 2014 Intel Corporation
6 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
7 *
8 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * Datasheet:
15 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
18 */
19
20 #define pr_fmt(fmt) "bmp280: " fmt
21
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
35
36 #include "bmp280.h"
37
38 /*
39 * These enums are used for indexing into the array of calibration
40 * coefficients for BMP180.
41 */
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
43
44 struct bmp180_calib {
45 s16 AC1;
46 s16 AC2;
47 s16 AC3;
48 u16 AC4;
49 u16 AC5;
50 u16 AC6;
51 s16 B1;
52 s16 B2;
53 s16 MB;
54 s16 MC;
55 s16 MD;
56 };
57
58 struct bmp280_data {
59 struct device *dev;
60 struct mutex lock;
61 struct regmap *regmap;
62 struct completion done;
63 bool use_eoc;
64 const struct bmp280_chip_info *chip_info;
65 struct bmp180_calib calib;
66 struct regulator *vddd;
67 struct regulator *vdda;
68 unsigned int start_up_time; /* in microseconds */
69
70 /* log of base 2 of oversampling rate */
71 u8 oversampling_press;
72 u8 oversampling_temp;
73 u8 oversampling_humid;
74
75 /*
76 * Carryover value from temperature conversion, used in pressure
77 * calculation.
78 */
79 s32 t_fine;
80 };
81
82 struct bmp280_chip_info {
83 const int *oversampling_temp_avail;
84 int num_oversampling_temp_avail;
85
86 const int *oversampling_press_avail;
87 int num_oversampling_press_avail;
88
89 const int *oversampling_humid_avail;
90 int num_oversampling_humid_avail;
91
92 int (*chip_config)(struct bmp280_data *);
93 int (*read_temp)(struct bmp280_data *, int *);
94 int (*read_press)(struct bmp280_data *, int *, int *);
95 int (*read_humid)(struct bmp280_data *, int *, int *);
96 };
97
98 /*
99 * These enums are used for indexing into the array of compensation
100 * parameters for BMP280.
101 */
102 enum { T1, T2, T3 };
103 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
104
105 static const struct iio_chan_spec bmp280_channels[] = {
106 {
107 .type = IIO_PRESSURE,
108 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
109 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
110 },
111 {
112 .type = IIO_TEMP,
113 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
114 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
115 },
116 {
117 .type = IIO_HUMIDITYRELATIVE,
118 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
119 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
120 },
121 };
122
123 /*
124 * Returns humidity in percent, resolution is 0.01 percent. Output value of
125 * "47445" represents 47445/1024 = 46.333 %RH.
126 *
127 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
128 */
129
130 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
131 s32 adc_humidity)
132 {
133 struct device *dev = data->dev;
134 unsigned int H1, H3, tmp;
135 int H2, H4, H5, H6, ret, var;
136
137 ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &H1);
138 if (ret < 0) {
139 dev_err(dev, "failed to read H1 comp value\n");
140 return ret;
141 }
142
143 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
144 if (ret < 0) {
145 dev_err(dev, "failed to read H2 comp value\n");
146 return ret;
147 }
148 H2 = sign_extend32(le16_to_cpu(tmp), 15);
149
150 ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &H3);
151 if (ret < 0) {
152 dev_err(dev, "failed to read H3 comp value\n");
153 return ret;
154 }
155
156 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
157 if (ret < 0) {
158 dev_err(dev, "failed to read H4 comp value\n");
159 return ret;
160 }
161 H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
162 (be16_to_cpu(tmp) & 0xf), 11);
163
164 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
165 if (ret < 0) {
166 dev_err(dev, "failed to read H5 comp value\n");
167 return ret;
168 }
169 H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
170
171 ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
172 if (ret < 0) {
173 dev_err(dev, "failed to read H6 comp value\n");
174 return ret;
175 }
176 H6 = sign_extend32(tmp, 7);
177
178 var = ((s32)data->t_fine) - (s32)76800;
179 var = ((((adc_humidity << 14) - (H4 << 20) - (H5 * var))
180 + (s32)16384) >> 15) * (((((((var * H6) >> 10)
181 * (((var * (s32)H3) >> 11) + (s32)32768)) >> 10)
182 + (s32)2097152) * H2 + 8192) >> 14);
183 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)H1) >> 4;
184
185 return var >> 12;
186 };
187
188 /*
189 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of
190 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global
191 * value.
192 *
193 * Taken from datasheet, Section 3.11.3, "Compensation formula".
194 */
195 static s32 bmp280_compensate_temp(struct bmp280_data *data,
196 s32 adc_temp)
197 {
198 int ret;
199 s32 var1, var2;
200 __le16 buf[BMP280_COMP_TEMP_REG_COUNT / 2];
201
202 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
203 buf, BMP280_COMP_TEMP_REG_COUNT);
204 if (ret < 0) {
205 dev_err(data->dev,
206 "failed to read temperature calibration parameters\n");
207 return ret;
208 }
209
210 /*
211 * The double casts are necessary because le16_to_cpu returns an
212 * unsigned 16-bit value. Casting that value directly to a
213 * signed 32-bit will not do proper sign extension.
214 *
215 * Conversely, T1 and P1 are unsigned values, so they can be
216 * cast straight to the larger type.
217 */
218 var1 = (((adc_temp >> 3) - ((s32)le16_to_cpu(buf[T1]) << 1)) *
219 ((s32)(s16)le16_to_cpu(buf[T2]))) >> 11;
220 var2 = (((((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1]))) *
221 ((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1])))) >> 12) *
222 ((s32)(s16)le16_to_cpu(buf[T3]))) >> 14;
223 data->t_fine = var1 + var2;
224
225 return (data->t_fine * 5 + 128) >> 8;
226 }
227
228 /*
229 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
230 * integer bits and 8 fractional bits). Output value of "24674867"
231 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
232 *
233 * Taken from datasheet, Section 3.11.3, "Compensation formula".
234 */
235 static u32 bmp280_compensate_press(struct bmp280_data *data,
236 s32 adc_press)
237 {
238 int ret;
239 s64 var1, var2, p;
240 __le16 buf[BMP280_COMP_PRESS_REG_COUNT / 2];
241
242 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
243 buf, BMP280_COMP_PRESS_REG_COUNT);
244 if (ret < 0) {
245 dev_err(data->dev,
246 "failed to read pressure calibration parameters\n");
247 return ret;
248 }
249
250 var1 = ((s64)data->t_fine) - 128000;
251 var2 = var1 * var1 * (s64)(s16)le16_to_cpu(buf[P6]);
252 var2 += (var1 * (s64)(s16)le16_to_cpu(buf[P5])) << 17;
253 var2 += ((s64)(s16)le16_to_cpu(buf[P4])) << 35;
254 var1 = ((var1 * var1 * (s64)(s16)le16_to_cpu(buf[P3])) >> 8) +
255 ((var1 * (s64)(s16)le16_to_cpu(buf[P2])) << 12);
256 var1 = ((((s64)1) << 47) + var1) * ((s64)le16_to_cpu(buf[P1])) >> 33;
257
258 if (var1 == 0)
259 return 0;
260
261 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
262 p = div64_s64(p, var1);
263 var1 = (((s64)(s16)le16_to_cpu(buf[P9])) * (p >> 13) * (p >> 13)) >> 25;
264 var2 = (((s64)(s16)le16_to_cpu(buf[P8])) * p) >> 19;
265 p = ((p + var1 + var2) >> 8) + (((s64)(s16)le16_to_cpu(buf[P7])) << 4);
266
267 return (u32)p;
268 }
269
270 static int bmp280_read_temp(struct bmp280_data *data,
271 int *val)
272 {
273 int ret;
274 __be32 tmp = 0;
275 s32 adc_temp, comp_temp;
276
277 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
278 (u8 *) &tmp, 3);
279 if (ret < 0) {
280 dev_err(data->dev, "failed to read temperature\n");
281 return ret;
282 }
283
284 adc_temp = be32_to_cpu(tmp) >> 12;
285 comp_temp = bmp280_compensate_temp(data, adc_temp);
286
287 /*
288 * val might be NULL if we're called by the read_press routine,
289 * who only cares about the carry over t_fine value.
290 */
291 if (val) {
292 *val = comp_temp * 10;
293 return IIO_VAL_INT;
294 }
295
296 return 0;
297 }
298
299 static int bmp280_read_press(struct bmp280_data *data,
300 int *val, int *val2)
301 {
302 int ret;
303 __be32 tmp = 0;
304 s32 adc_press;
305 u32 comp_press;
306
307 /* Read and compensate temperature so we get a reading of t_fine. */
308 ret = bmp280_read_temp(data, NULL);
309 if (ret < 0)
310 return ret;
311
312 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
313 (u8 *) &tmp, 3);
314 if (ret < 0) {
315 dev_err(data->dev, "failed to read pressure\n");
316 return ret;
317 }
318
319 adc_press = be32_to_cpu(tmp) >> 12;
320 comp_press = bmp280_compensate_press(data, adc_press);
321
322 *val = comp_press;
323 *val2 = 256000;
324
325 return IIO_VAL_FRACTIONAL;
326 }
327
328 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
329 {
330 int ret;
331 __be16 tmp = 0;
332 s32 adc_humidity;
333 u32 comp_humidity;
334
335 /* Read and compensate temperature so we get a reading of t_fine. */
336 ret = bmp280_read_temp(data, NULL);
337 if (ret < 0)
338 return ret;
339
340 ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
341 (u8 *) &tmp, 2);
342 if (ret < 0) {
343 dev_err(data->dev, "failed to read humidity\n");
344 return ret;
345 }
346
347 adc_humidity = be16_to_cpu(tmp);
348 comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
349
350 *val = comp_humidity;
351 *val2 = 1024;
352
353 return IIO_VAL_FRACTIONAL;
354 }
355
356 static int bmp280_read_raw(struct iio_dev *indio_dev,
357 struct iio_chan_spec const *chan,
358 int *val, int *val2, long mask)
359 {
360 int ret;
361 struct bmp280_data *data = iio_priv(indio_dev);
362
363 pm_runtime_get_sync(data->dev);
364 mutex_lock(&data->lock);
365
366 switch (mask) {
367 case IIO_CHAN_INFO_PROCESSED:
368 switch (chan->type) {
369 case IIO_HUMIDITYRELATIVE:
370 ret = data->chip_info->read_humid(data, val, val2);
371 break;
372 case IIO_PRESSURE:
373 ret = data->chip_info->read_press(data, val, val2);
374 break;
375 case IIO_TEMP:
376 ret = data->chip_info->read_temp(data, val);
377 break;
378 default:
379 ret = -EINVAL;
380 break;
381 }
382 break;
383 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
384 switch (chan->type) {
385 case IIO_HUMIDITYRELATIVE:
386 *val = 1 << data->oversampling_humid;
387 ret = IIO_VAL_INT;
388 break;
389 case IIO_PRESSURE:
390 *val = 1 << data->oversampling_press;
391 ret = IIO_VAL_INT;
392 break;
393 case IIO_TEMP:
394 *val = 1 << data->oversampling_temp;
395 ret = IIO_VAL_INT;
396 break;
397 default:
398 ret = -EINVAL;
399 break;
400 }
401 break;
402 default:
403 ret = -EINVAL;
404 break;
405 }
406
407 mutex_unlock(&data->lock);
408 pm_runtime_mark_last_busy(data->dev);
409 pm_runtime_put_autosuspend(data->dev);
410
411 return ret;
412 }
413
414 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
415 int val)
416 {
417 int i;
418 const int *avail = data->chip_info->oversampling_humid_avail;
419 const int n = data->chip_info->num_oversampling_humid_avail;
420
421 for (i = 0; i < n; i++) {
422 if (avail[i] == val) {
423 data->oversampling_humid = ilog2(val);
424
425 return data->chip_info->chip_config(data);
426 }
427 }
428 return -EINVAL;
429 }
430
431 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
432 int val)
433 {
434 int i;
435 const int *avail = data->chip_info->oversampling_temp_avail;
436 const int n = data->chip_info->num_oversampling_temp_avail;
437
438 for (i = 0; i < n; i++) {
439 if (avail[i] == val) {
440 data->oversampling_temp = ilog2(val);
441
442 return data->chip_info->chip_config(data);
443 }
444 }
445 return -EINVAL;
446 }
447
448 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
449 int val)
450 {
451 int i;
452 const int *avail = data->chip_info->oversampling_press_avail;
453 const int n = data->chip_info->num_oversampling_press_avail;
454
455 for (i = 0; i < n; i++) {
456 if (avail[i] == val) {
457 data->oversampling_press = ilog2(val);
458
459 return data->chip_info->chip_config(data);
460 }
461 }
462 return -EINVAL;
463 }
464
465 static int bmp280_write_raw(struct iio_dev *indio_dev,
466 struct iio_chan_spec const *chan,
467 int val, int val2, long mask)
468 {
469 int ret = 0;
470 struct bmp280_data *data = iio_priv(indio_dev);
471
472 switch (mask) {
473 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
474 pm_runtime_get_sync(data->dev);
475 mutex_lock(&data->lock);
476 switch (chan->type) {
477 case IIO_HUMIDITYRELATIVE:
478 ret = bmp280_write_oversampling_ratio_humid(data, val);
479 break;
480 case IIO_PRESSURE:
481 ret = bmp280_write_oversampling_ratio_press(data, val);
482 break;
483 case IIO_TEMP:
484 ret = bmp280_write_oversampling_ratio_temp(data, val);
485 break;
486 default:
487 ret = -EINVAL;
488 break;
489 }
490 mutex_unlock(&data->lock);
491 pm_runtime_mark_last_busy(data->dev);
492 pm_runtime_put_autosuspend(data->dev);
493 break;
494 default:
495 return -EINVAL;
496 }
497
498 return ret;
499 }
500
501 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
502 {
503 size_t len = 0;
504 int i;
505
506 for (i = 0; i < n; i++)
507 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
508
509 buf[len - 1] = '\n';
510
511 return len;
512 }
513
514 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
515 struct device_attribute *attr, char *buf)
516 {
517 struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
518
519 return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
520 data->chip_info->num_oversampling_temp_avail);
521 }
522
523 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
524 struct device_attribute *attr, char *buf)
525 {
526 struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
527
528 return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
529 data->chip_info->num_oversampling_press_avail);
530 }
531
532 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
533 S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
534
535 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
536 S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
537
538 static struct attribute *bmp280_attributes[] = {
539 &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
540 &iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
541 NULL,
542 };
543
544 static const struct attribute_group bmp280_attrs_group = {
545 .attrs = bmp280_attributes,
546 };
547
548 static const struct iio_info bmp280_info = {
549 .driver_module = THIS_MODULE,
550 .read_raw = &bmp280_read_raw,
551 .write_raw = &bmp280_write_raw,
552 .attrs = &bmp280_attrs_group,
553 };
554
555 static int bmp280_chip_config(struct bmp280_data *data)
556 {
557 int ret;
558 u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
559 BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
560
561 ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_MEAS,
562 BMP280_OSRS_TEMP_MASK |
563 BMP280_OSRS_PRESS_MASK |
564 BMP280_MODE_MASK,
565 osrs | BMP280_MODE_NORMAL);
566 if (ret < 0) {
567 dev_err(data->dev,
568 "failed to write ctrl_meas register\n");
569 return ret;
570 }
571
572 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
573 BMP280_FILTER_MASK,
574 BMP280_FILTER_4X);
575 if (ret < 0) {
576 dev_err(data->dev,
577 "failed to write config register\n");
578 return ret;
579 }
580
581 return ret;
582 }
583
584 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
585
586 static const struct bmp280_chip_info bmp280_chip_info = {
587 .oversampling_temp_avail = bmp280_oversampling_avail,
588 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
589
590 .oversampling_press_avail = bmp280_oversampling_avail,
591 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
592
593 .chip_config = bmp280_chip_config,
594 .read_temp = bmp280_read_temp,
595 .read_press = bmp280_read_press,
596 };
597
598 static int bme280_chip_config(struct bmp280_data *data)
599 {
600 int ret = bmp280_chip_config(data);
601 u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
602
603 if (ret < 0)
604 return ret;
605
606 return regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
607 BMP280_OSRS_HUMIDITY_MASK, osrs);
608 }
609
610 static const struct bmp280_chip_info bme280_chip_info = {
611 .oversampling_temp_avail = bmp280_oversampling_avail,
612 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
613
614 .oversampling_press_avail = bmp280_oversampling_avail,
615 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
616
617 .oversampling_humid_avail = bmp280_oversampling_avail,
618 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
619
620 .chip_config = bme280_chip_config,
621 .read_temp = bmp280_read_temp,
622 .read_press = bmp280_read_press,
623 .read_humid = bmp280_read_humid,
624 };
625
626 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
627 {
628 int ret;
629 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
630 unsigned int delay_us;
631 unsigned int ctrl;
632
633 if (data->use_eoc)
634 init_completion(&data->done);
635
636 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
637 if (ret)
638 return ret;
639
640 if (data->use_eoc) {
641 /*
642 * If we have a completion interrupt, use it, wait up to
643 * 100ms. The longest conversion time listed is 76.5 ms for
644 * advanced resolution mode.
645 */
646 ret = wait_for_completion_timeout(&data->done,
647 1 + msecs_to_jiffies(100));
648 if (!ret)
649 dev_err(data->dev, "timeout waiting for completion\n");
650 } else {
651 if (ctrl_meas == BMP180_MEAS_TEMP)
652 delay_us = 4500;
653 else
654 delay_us =
655 conversion_time_max[data->oversampling_press];
656
657 usleep_range(delay_us, delay_us + 1000);
658 }
659
660 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
661 if (ret)
662 return ret;
663
664 /* The value of this bit reset to "0" after conversion is complete */
665 if (ctrl & BMP180_MEAS_SCO)
666 return -EIO;
667
668 return 0;
669 }
670
671 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
672 {
673 int ret;
674 __be16 tmp = 0;
675
676 ret = bmp180_measure(data, BMP180_MEAS_TEMP);
677 if (ret)
678 return ret;
679
680 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
681 if (ret)
682 return ret;
683
684 *val = be16_to_cpu(tmp);
685
686 return 0;
687 }
688
689 static int bmp180_read_calib(struct bmp280_data *data,
690 struct bmp180_calib *calib)
691 {
692 int ret;
693 int i;
694 __be16 buf[BMP180_REG_CALIB_COUNT / 2];
695
696 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
697 sizeof(buf));
698
699 if (ret < 0)
700 return ret;
701
702 /* None of the words has the value 0 or 0xFFFF */
703 for (i = 0; i < ARRAY_SIZE(buf); i++) {
704 if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
705 return -EIO;
706 }
707
708 /* Toss the calibration data into the entropy pool */
709 add_device_randomness(buf, sizeof(buf));
710
711 calib->AC1 = be16_to_cpu(buf[AC1]);
712 calib->AC2 = be16_to_cpu(buf[AC2]);
713 calib->AC3 = be16_to_cpu(buf[AC3]);
714 calib->AC4 = be16_to_cpu(buf[AC4]);
715 calib->AC5 = be16_to_cpu(buf[AC5]);
716 calib->AC6 = be16_to_cpu(buf[AC6]);
717 calib->B1 = be16_to_cpu(buf[B1]);
718 calib->B2 = be16_to_cpu(buf[B2]);
719 calib->MB = be16_to_cpu(buf[MB]);
720 calib->MC = be16_to_cpu(buf[MC]);
721 calib->MD = be16_to_cpu(buf[MD]);
722
723 return 0;
724 }
725
726 /*
727 * Returns temperature in DegC, resolution is 0.1 DegC.
728 * t_fine carries fine temperature as global value.
729 *
730 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
731 */
732 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
733 {
734 s32 x1, x2;
735 struct bmp180_calib *calib = &data->calib;
736
737 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
738 x2 = (calib->MC << 11) / (x1 + calib->MD);
739 data->t_fine = x1 + x2;
740
741 return (data->t_fine + 8) >> 4;
742 }
743
744 static int bmp180_read_temp(struct bmp280_data *data, int *val)
745 {
746 int ret;
747 s32 adc_temp, comp_temp;
748
749 ret = bmp180_read_adc_temp(data, &adc_temp);
750 if (ret)
751 return ret;
752
753 comp_temp = bmp180_compensate_temp(data, adc_temp);
754
755 /*
756 * val might be NULL if we're called by the read_press routine,
757 * who only cares about the carry over t_fine value.
758 */
759 if (val) {
760 *val = comp_temp * 100;
761 return IIO_VAL_INT;
762 }
763
764 return 0;
765 }
766
767 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
768 {
769 int ret;
770 __be32 tmp = 0;
771 u8 oss = data->oversampling_press;
772
773 ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
774 if (ret)
775 return ret;
776
777 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
778 if (ret)
779 return ret;
780
781 *val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
782
783 return 0;
784 }
785
786 /*
787 * Returns pressure in Pa, resolution is 1 Pa.
788 *
789 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
790 */
791 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
792 {
793 s32 x1, x2, x3, p;
794 s32 b3, b6;
795 u32 b4, b7;
796 s32 oss = data->oversampling_press;
797 struct bmp180_calib *calib = &data->calib;
798
799 b6 = data->t_fine - 4000;
800 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
801 x2 = calib->AC2 * b6 >> 11;
802 x3 = x1 + x2;
803 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
804 x1 = calib->AC3 * b6 >> 13;
805 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
806 x3 = (x1 + x2 + 2) >> 2;
807 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
808 b7 = ((u32)adc_press - b3) * (50000 >> oss);
809 if (b7 < 0x80000000)
810 p = (b7 * 2) / b4;
811 else
812 p = (b7 / b4) * 2;
813
814 x1 = (p >> 8) * (p >> 8);
815 x1 = (x1 * 3038) >> 16;
816 x2 = (-7357 * p) >> 16;
817
818 return p + ((x1 + x2 + 3791) >> 4);
819 }
820
821 static int bmp180_read_press(struct bmp280_data *data,
822 int *val, int *val2)
823 {
824 int ret;
825 s32 adc_press;
826 u32 comp_press;
827
828 /* Read and compensate temperature so we get a reading of t_fine. */
829 ret = bmp180_read_temp(data, NULL);
830 if (ret)
831 return ret;
832
833 ret = bmp180_read_adc_press(data, &adc_press);
834 if (ret)
835 return ret;
836
837 comp_press = bmp180_compensate_press(data, adc_press);
838
839 *val = comp_press;
840 *val2 = 1000;
841
842 return IIO_VAL_FRACTIONAL;
843 }
844
845 static int bmp180_chip_config(struct bmp280_data *data)
846 {
847 return 0;
848 }
849
850 static const int bmp180_oversampling_temp_avail[] = { 1 };
851 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
852
853 static const struct bmp280_chip_info bmp180_chip_info = {
854 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
855 .num_oversampling_temp_avail =
856 ARRAY_SIZE(bmp180_oversampling_temp_avail),
857
858 .oversampling_press_avail = bmp180_oversampling_press_avail,
859 .num_oversampling_press_avail =
860 ARRAY_SIZE(bmp180_oversampling_press_avail),
861
862 .chip_config = bmp180_chip_config,
863 .read_temp = bmp180_read_temp,
864 .read_press = bmp180_read_press,
865 };
866
867 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
868 {
869 struct bmp280_data *data = d;
870
871 complete(&data->done);
872
873 return IRQ_HANDLED;
874 }
875
876 static int bmp085_fetch_eoc_irq(struct device *dev,
877 const char *name,
878 int irq,
879 struct bmp280_data *data)
880 {
881 unsigned long irq_trig;
882 int ret;
883
884 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
885 if (irq_trig != IRQF_TRIGGER_RISING) {
886 dev_err(dev, "non-rising trigger given for EOC interrupt, "
887 "trying to enforce it\n");
888 irq_trig = IRQF_TRIGGER_RISING;
889 }
890 ret = devm_request_threaded_irq(dev,
891 irq,
892 bmp085_eoc_irq,
893 NULL,
894 irq_trig,
895 name,
896 data);
897 if (ret) {
898 /* Bail out without IRQ but keep the driver in place */
899 dev_err(dev, "unable to request DRDY IRQ\n");
900 return 0;
901 }
902
903 data->use_eoc = true;
904 return 0;
905 }
906
907 int bmp280_common_probe(struct device *dev,
908 struct regmap *regmap,
909 unsigned int chip,
910 const char *name,
911 int irq)
912 {
913 int ret;
914 struct iio_dev *indio_dev;
915 struct bmp280_data *data;
916 unsigned int chip_id;
917 struct gpio_desc *gpiod;
918
919 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
920 if (!indio_dev)
921 return -ENOMEM;
922
923 data = iio_priv(indio_dev);
924 mutex_init(&data->lock);
925 data->dev = dev;
926
927 indio_dev->dev.parent = dev;
928 indio_dev->name = name;
929 indio_dev->channels = bmp280_channels;
930 indio_dev->info = &bmp280_info;
931 indio_dev->modes = INDIO_DIRECT_MODE;
932
933 switch (chip) {
934 case BMP180_CHIP_ID:
935 indio_dev->num_channels = 2;
936 data->chip_info = &bmp180_chip_info;
937 data->oversampling_press = ilog2(8);
938 data->oversampling_temp = ilog2(1);
939 data->start_up_time = 10000;
940 break;
941 case BMP280_CHIP_ID:
942 indio_dev->num_channels = 2;
943 data->chip_info = &bmp280_chip_info;
944 data->oversampling_press = ilog2(16);
945 data->oversampling_temp = ilog2(2);
946 data->start_up_time = 2000;
947 break;
948 case BME280_CHIP_ID:
949 indio_dev->num_channels = 3;
950 data->chip_info = &bme280_chip_info;
951 data->oversampling_press = ilog2(16);
952 data->oversampling_humid = ilog2(16);
953 data->oversampling_temp = ilog2(2);
954 data->start_up_time = 2000;
955 break;
956 default:
957 return -EINVAL;
958 }
959
960 /* Bring up regulators */
961 data->vddd = devm_regulator_get(dev, "vddd");
962 if (IS_ERR(data->vddd)) {
963 dev_err(dev, "failed to get VDDD regulator\n");
964 return PTR_ERR(data->vddd);
965 }
966 ret = regulator_enable(data->vddd);
967 if (ret) {
968 dev_err(dev, "failed to enable VDDD regulator\n");
969 return ret;
970 }
971 data->vdda = devm_regulator_get(dev, "vdda");
972 if (IS_ERR(data->vdda)) {
973 dev_err(dev, "failed to get VDDA regulator\n");
974 ret = PTR_ERR(data->vdda);
975 goto out_disable_vddd;
976 }
977 ret = regulator_enable(data->vdda);
978 if (ret) {
979 dev_err(dev, "failed to enable VDDA regulator\n");
980 goto out_disable_vddd;
981 }
982 /* Wait to make sure we started up properly */
983 usleep_range(data->start_up_time, data->start_up_time + 100);
984
985 /* Bring chip out of reset if there is an assigned GPIO line */
986 gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
987 /* Deassert the signal */
988 if (!IS_ERR(gpiod)) {
989 dev_info(dev, "release reset\n");
990 gpiod_set_value(gpiod, 0);
991 }
992
993 data->regmap = regmap;
994 ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
995 if (ret < 0)
996 goto out_disable_vdda;
997 if (chip_id != chip) {
998 dev_err(dev, "bad chip id: expected %x got %x\n",
999 chip, chip_id);
1000 ret = -EINVAL;
1001 goto out_disable_vdda;
1002 }
1003
1004 ret = data->chip_info->chip_config(data);
1005 if (ret < 0)
1006 goto out_disable_vdda;
1007
1008 dev_set_drvdata(dev, indio_dev);
1009
1010 /*
1011 * The BMP085 and BMP180 has calibration in an E2PROM, read it out
1012 * at probe time. It will not change.
1013 */
1014 if (chip_id == BMP180_CHIP_ID) {
1015 ret = bmp180_read_calib(data, &data->calib);
1016 if (ret < 0) {
1017 dev_err(data->dev,
1018 "failed to read calibration coefficients\n");
1019 goto out_disable_vdda;
1020 }
1021 }
1022
1023 /*
1024 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1025 * however as it happens, the BMP085 shares the chip ID of BMP180
1026 * so we look for an IRQ if we have that.
1027 */
1028 if (irq > 0 || (chip_id == BMP180_CHIP_ID)) {
1029 ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1030 if (ret)
1031 goto out_disable_vdda;
1032 }
1033
1034 /* Enable runtime PM */
1035 pm_runtime_get_noresume(dev);
1036 pm_runtime_set_active(dev);
1037 pm_runtime_enable(dev);
1038 /*
1039 * Set autosuspend to two orders of magnitude larger than the
1040 * start-up time.
1041 */
1042 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1043 pm_runtime_use_autosuspend(dev);
1044 pm_runtime_put(dev);
1045
1046 ret = iio_device_register(indio_dev);
1047 if (ret)
1048 goto out_runtime_pm_disable;
1049
1050
1051 return 0;
1052
1053 out_runtime_pm_disable:
1054 pm_runtime_get_sync(data->dev);
1055 pm_runtime_put_noidle(data->dev);
1056 pm_runtime_disable(data->dev);
1057 out_disable_vdda:
1058 regulator_disable(data->vdda);
1059 out_disable_vddd:
1060 regulator_disable(data->vddd);
1061 return ret;
1062 }
1063 EXPORT_SYMBOL(bmp280_common_probe);
1064
1065 int bmp280_common_remove(struct device *dev)
1066 {
1067 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1068 struct bmp280_data *data = iio_priv(indio_dev);
1069
1070 iio_device_unregister(indio_dev);
1071 pm_runtime_get_sync(data->dev);
1072 pm_runtime_put_noidle(data->dev);
1073 pm_runtime_disable(data->dev);
1074 regulator_disable(data->vdda);
1075 regulator_disable(data->vddd);
1076 return 0;
1077 }
1078 EXPORT_SYMBOL(bmp280_common_remove);
1079
1080 #ifdef CONFIG_PM
1081 static int bmp280_runtime_suspend(struct device *dev)
1082 {
1083 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1084 struct bmp280_data *data = iio_priv(indio_dev);
1085 int ret;
1086
1087 ret = regulator_disable(data->vdda);
1088 if (ret)
1089 return ret;
1090 return regulator_disable(data->vddd);
1091 }
1092
1093 static int bmp280_runtime_resume(struct device *dev)
1094 {
1095 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1096 struct bmp280_data *data = iio_priv(indio_dev);
1097 int ret;
1098
1099 ret = regulator_enable(data->vddd);
1100 if (ret)
1101 return ret;
1102 ret = regulator_enable(data->vdda);
1103 if (ret)
1104 return ret;
1105 usleep_range(data->start_up_time, data->start_up_time + 100);
1106 return data->chip_info->chip_config(data);
1107 }
1108 #endif /* CONFIG_PM */
1109
1110 const struct dev_pm_ops bmp280_dev_pm_ops = {
1111 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1112 pm_runtime_force_resume)
1113 SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1114 bmp280_runtime_resume, NULL)
1115 };
1116 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1117
1118 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1119 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1120 MODULE_LICENSE("GPL v2");