]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iio/pressure/st_pressure_core.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / iio / pressure / st_pressure_core.c
1 /*
2 * STMicroelectronics pressures driver
3 *
4 * Copyright 2013 STMicroelectronics Inc.
5 *
6 * Denis Ciocca <denis.ciocca@st.com>
7 *
8 * Licensed under the GPL-2.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/mutex.h>
17 #include <linux/interrupt.h>
18 #include <linux/i2c.h>
19 #include <linux/gpio.h>
20 #include <linux/irq.h>
21 #include <linux/delay.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/buffer.h>
26 #include <asm/unaligned.h>
27
28 #include <linux/iio/common/st_sensors.h>
29 #include "st_pressure.h"
30
31 /*
32 * About determining pressure scaling factors
33 * ------------------------------------------
34 *
35 * Datasheets specify typical pressure sensitivity so that pressure is computed
36 * according to the following equation :
37 * pressure[mBar] = raw / sensitivity
38 * where :
39 * raw the 24 bits long raw sampled pressure
40 * sensitivity a scaling factor specified by the datasheet in LSB/mBar
41 *
42 * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be
43 * computed according to :
44 * pressure[kPascal] = pressure[mBar] / 10
45 * = raw / (sensitivity * 10) (1)
46 *
47 * Finally, st_press_read_raw() returns pressure scaling factor as an
48 * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part.
49 * Therefore, from (1), "gain" becomes :
50 * gain = 10^9 / (sensitivity * 10)
51 * = 10^8 / sensitivity
52 *
53 * About determining temperature scaling factors and offsets
54 * ---------------------------------------------------------
55 *
56 * Datasheets specify typical temperature sensitivity and offset so that
57 * temperature is computed according to the following equation :
58 * temp[Celsius] = offset[Celsius] + (raw / sensitivity)
59 * where :
60 * raw the 16 bits long raw sampled temperature
61 * offset a constant specified by the datasheet in degree Celsius
62 * (sometimes zero)
63 * sensitivity a scaling factor specified by the datasheet in LSB/Celsius
64 *
65 * IIO ABI expects temperature to be expressed as milli degree Celsius such as
66 * user space should compute temperature according to :
67 * temp[mCelsius] = temp[Celsius] * 10^3
68 * = (offset[Celsius] + (raw / sensitivity)) * 10^3
69 * = ((offset[Celsius] * sensitivity) + raw) *
70 * (10^3 / sensitivity) (2)
71 *
72 * IIO ABI expects user space to apply offset and scaling factors to raw samples
73 * according to :
74 * temp[mCelsius] = (OFFSET + raw) * SCALE
75 * where :
76 * OFFSET an arbitrary constant exposed by device
77 * SCALE an arbitrary scaling factor exposed by device
78 *
79 * Matching OFFSET and SCALE with members of (2) gives :
80 * OFFSET = offset[Celsius] * sensitivity (3)
81 * SCALE = 10^3 / sensitivity (4)
82 *
83 * st_press_read_raw() returns temperature scaling factor as an
84 * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator.
85 * Therefore, from (3), "gain2" becomes :
86 * gain2 = sensitivity
87 *
88 * When declared within channel, i.e. for a non zero specified offset,
89 * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as :
90 * numerator = OFFSET * 10^3
91 * denominator = 10^3
92 * giving from (4):
93 * numerator = offset[Celsius] * 10^3 * sensitivity
94 * = offset[mCelsius] * gain2
95 */
96
97 #define MCELSIUS_PER_CELSIUS 1000
98
99 /* Default pressure sensitivity */
100 #define ST_PRESS_LSB_PER_MBAR 4096UL
101 #define ST_PRESS_KPASCAL_NANO_SCALE (100000000UL / \
102 ST_PRESS_LSB_PER_MBAR)
103
104 /* Default temperature sensitivity */
105 #define ST_PRESS_LSB_PER_CELSIUS 480UL
106 #define ST_PRESS_MILLI_CELSIUS_OFFSET 42500UL
107
108 /* FULLSCALE */
109 #define ST_PRESS_FS_AVL_1100MB 1100
110 #define ST_PRESS_FS_AVL_1260MB 1260
111
112 #define ST_PRESS_1_OUT_XL_ADDR 0x28
113 #define ST_TEMP_1_OUT_L_ADDR 0x2b
114
115 /* LPS001WP pressure resolution */
116 #define ST_PRESS_LPS001WP_LSB_PER_MBAR 16UL
117 /* LPS001WP temperature resolution */
118 #define ST_PRESS_LPS001WP_LSB_PER_CELSIUS 64UL
119 /* LPS001WP pressure gain */
120 #define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
121 (100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
122 /* LPS001WP pressure and temp L addresses */
123 #define ST_PRESS_LPS001WP_OUT_L_ADDR 0x28
124 #define ST_TEMP_LPS001WP_OUT_L_ADDR 0x2a
125
126 /* LPS25H pressure and temp L addresses */
127 #define ST_PRESS_LPS25H_OUT_XL_ADDR 0x28
128 #define ST_TEMP_LPS25H_OUT_L_ADDR 0x2b
129
130 /* LPS22HB temperature sensitivity */
131 #define ST_PRESS_LPS22HB_LSB_PER_CELSIUS 100UL
132
133 static const struct iio_chan_spec st_press_1_channels[] = {
134 {
135 .type = IIO_PRESSURE,
136 .address = ST_PRESS_1_OUT_XL_ADDR,
137 .scan_index = 0,
138 .scan_type = {
139 .sign = 's',
140 .realbits = 24,
141 .storagebits = 32,
142 .endianness = IIO_LE,
143 },
144 .info_mask_separate =
145 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
146 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
147 },
148 {
149 .type = IIO_TEMP,
150 .address = ST_TEMP_1_OUT_L_ADDR,
151 .scan_index = 1,
152 .scan_type = {
153 .sign = 's',
154 .realbits = 16,
155 .storagebits = 16,
156 .endianness = IIO_LE,
157 },
158 .info_mask_separate =
159 BIT(IIO_CHAN_INFO_RAW) |
160 BIT(IIO_CHAN_INFO_SCALE) |
161 BIT(IIO_CHAN_INFO_OFFSET),
162 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
163 },
164 IIO_CHAN_SOFT_TIMESTAMP(2)
165 };
166
167 static const struct iio_chan_spec st_press_lps001wp_channels[] = {
168 {
169 .type = IIO_PRESSURE,
170 .address = ST_PRESS_LPS001WP_OUT_L_ADDR,
171 .scan_index = 0,
172 .scan_type = {
173 .sign = 's',
174 .realbits = 16,
175 .storagebits = 16,
176 .endianness = IIO_LE,
177 },
178 .info_mask_separate =
179 BIT(IIO_CHAN_INFO_RAW) |
180 BIT(IIO_CHAN_INFO_SCALE),
181 },
182 {
183 .type = IIO_TEMP,
184 .address = ST_TEMP_LPS001WP_OUT_L_ADDR,
185 .scan_index = 1,
186 .scan_type = {
187 .sign = 's',
188 .realbits = 16,
189 .storagebits = 16,
190 .endianness = IIO_LE,
191 },
192 .info_mask_separate =
193 BIT(IIO_CHAN_INFO_RAW) |
194 BIT(IIO_CHAN_INFO_SCALE),
195 },
196 IIO_CHAN_SOFT_TIMESTAMP(2)
197 };
198
199 static const struct iio_chan_spec st_press_lps22hb_channels[] = {
200 {
201 .type = IIO_PRESSURE,
202 .address = ST_PRESS_1_OUT_XL_ADDR,
203 .scan_index = 0,
204 .scan_type = {
205 .sign = 's',
206 .realbits = 24,
207 .storagebits = 32,
208 .endianness = IIO_LE,
209 },
210 .info_mask_separate =
211 BIT(IIO_CHAN_INFO_RAW) |
212 BIT(IIO_CHAN_INFO_SCALE),
213 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
214 },
215 {
216 .type = IIO_TEMP,
217 .address = ST_TEMP_1_OUT_L_ADDR,
218 .scan_index = 1,
219 .scan_type = {
220 .sign = 's',
221 .realbits = 16,
222 .storagebits = 16,
223 .endianness = IIO_LE,
224 },
225 .info_mask_separate =
226 BIT(IIO_CHAN_INFO_RAW) |
227 BIT(IIO_CHAN_INFO_SCALE),
228 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
229 },
230 IIO_CHAN_SOFT_TIMESTAMP(2)
231 };
232
233 static const struct st_sensor_settings st_press_sensors_settings[] = {
234 {
235 /*
236 * CUSTOM VALUES FOR LPS331AP SENSOR
237 * See LPS331AP datasheet:
238 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf
239 */
240 .wai = 0xbb,
241 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
242 .sensors_supported = {
243 [0] = LPS331AP_PRESS_DEV_NAME,
244 },
245 .ch = (struct iio_chan_spec *)st_press_1_channels,
246 .num_ch = ARRAY_SIZE(st_press_1_channels),
247 .odr = {
248 .addr = 0x20,
249 .mask = 0x70,
250 .odr_avl = {
251 { .hz = 1, .value = 0x01 },
252 { .hz = 7, .value = 0x05 },
253 { .hz = 13, .value = 0x06 },
254 { .hz = 25, .value = 0x07 },
255 },
256 },
257 .pw = {
258 .addr = 0x20,
259 .mask = 0x80,
260 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
261 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
262 },
263 .fs = {
264 .addr = 0x23,
265 .mask = 0x30,
266 .fs_avl = {
267 /*
268 * Pressure and temperature sensitivity values
269 * as defined in table 3 of LPS331AP datasheet.
270 */
271 [0] = {
272 .num = ST_PRESS_FS_AVL_1260MB,
273 .gain = ST_PRESS_KPASCAL_NANO_SCALE,
274 .gain2 = ST_PRESS_LSB_PER_CELSIUS,
275 },
276 },
277 },
278 .bdu = {
279 .addr = 0x20,
280 .mask = 0x04,
281 },
282 .drdy_irq = {
283 .addr = 0x22,
284 .mask_int1 = 0x04,
285 .mask_int2 = 0x20,
286 .addr_ihl = 0x22,
287 .mask_ihl = 0x80,
288 .addr_od = 0x22,
289 .mask_od = 0x40,
290 .addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
291 },
292 .multi_read_bit = true,
293 .bootime = 2,
294 },
295 {
296 /*
297 * CUSTOM VALUES FOR LPS001WP SENSOR
298 */
299 .wai = 0xba,
300 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
301 .sensors_supported = {
302 [0] = LPS001WP_PRESS_DEV_NAME,
303 },
304 .ch = (struct iio_chan_spec *)st_press_lps001wp_channels,
305 .num_ch = ARRAY_SIZE(st_press_lps001wp_channels),
306 .odr = {
307 .addr = 0x20,
308 .mask = 0x30,
309 .odr_avl = {
310 { .hz = 1, .value = 0x01 },
311 { .hz = 7, .value = 0x02 },
312 { .hz = 13, .value = 0x03 },
313 },
314 },
315 .pw = {
316 .addr = 0x20,
317 .mask = 0x40,
318 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
319 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
320 },
321 .fs = {
322 .fs_avl = {
323 /*
324 * Pressure and temperature resolution values
325 * as defined in table 3 of LPS001WP datasheet.
326 */
327 [0] = {
328 .num = ST_PRESS_FS_AVL_1100MB,
329 .gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
330 .gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
331 },
332 },
333 },
334 .bdu = {
335 .addr = 0x20,
336 .mask = 0x04,
337 },
338 .drdy_irq = {
339 .addr = 0,
340 },
341 .multi_read_bit = true,
342 .bootime = 2,
343 },
344 {
345 /*
346 * CUSTOM VALUES FOR LPS25H SENSOR
347 * See LPS25H datasheet:
348 * http://www2.st.com/resource/en/datasheet/lps25h.pdf
349 */
350 .wai = 0xbd,
351 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
352 .sensors_supported = {
353 [0] = LPS25H_PRESS_DEV_NAME,
354 },
355 .ch = (struct iio_chan_spec *)st_press_1_channels,
356 .num_ch = ARRAY_SIZE(st_press_1_channels),
357 .odr = {
358 .addr = 0x20,
359 .mask = 0x70,
360 .odr_avl = {
361 { .hz = 1, .value = 0x01 },
362 { .hz = 7, .value = 0x02 },
363 { .hz = 13, .value = 0x03 },
364 { .hz = 25, .value = 0x04 },
365 },
366 },
367 .pw = {
368 .addr = 0x20,
369 .mask = 0x80,
370 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
371 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
372 },
373 .fs = {
374 .fs_avl = {
375 /*
376 * Pressure and temperature sensitivity values
377 * as defined in table 3 of LPS25H datasheet.
378 */
379 [0] = {
380 .num = ST_PRESS_FS_AVL_1260MB,
381 .gain = ST_PRESS_KPASCAL_NANO_SCALE,
382 .gain2 = ST_PRESS_LSB_PER_CELSIUS,
383 },
384 },
385 },
386 .bdu = {
387 .addr = 0x20,
388 .mask = 0x04,
389 },
390 .drdy_irq = {
391 .addr = 0x23,
392 .mask_int1 = 0x01,
393 .mask_int2 = 0x10,
394 .addr_ihl = 0x22,
395 .mask_ihl = 0x80,
396 .addr_od = 0x22,
397 .mask_od = 0x40,
398 .addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
399 },
400 .multi_read_bit = true,
401 .bootime = 2,
402 },
403 {
404 /*
405 * CUSTOM VALUES FOR LPS22HB SENSOR
406 * See LPS22HB datasheet:
407 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf
408 */
409 .wai = 0xb1,
410 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
411 .sensors_supported = {
412 [0] = LPS22HB_PRESS_DEV_NAME,
413 },
414 .ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
415 .num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
416 .odr = {
417 .addr = 0x10,
418 .mask = 0x70,
419 .odr_avl = {
420 { .hz = 1, .value = 0x01 },
421 { .hz = 10, .value = 0x02 },
422 { .hz = 25, .value = 0x03 },
423 { .hz = 50, .value = 0x04 },
424 { .hz = 75, .value = 0x05 },
425 },
426 },
427 .pw = {
428 .addr = 0x10,
429 .mask = 0x70,
430 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
431 },
432 .fs = {
433 .fs_avl = {
434 /*
435 * Pressure and temperature sensitivity values
436 * as defined in table 3 of LPS22HB datasheet.
437 */
438 [0] = {
439 .num = ST_PRESS_FS_AVL_1260MB,
440 .gain = ST_PRESS_KPASCAL_NANO_SCALE,
441 .gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
442 },
443 },
444 },
445 .bdu = {
446 .addr = 0x10,
447 .mask = 0x02,
448 },
449 .drdy_irq = {
450 .addr = 0x12,
451 .mask_int1 = 0x04,
452 .mask_int2 = 0x08,
453 .addr_ihl = 0x12,
454 .mask_ihl = 0x80,
455 .addr_od = 0x12,
456 .mask_od = 0x40,
457 .addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
458 },
459 .multi_read_bit = true,
460 .bootime = 2,
461 },
462 };
463
464 static int st_press_write_raw(struct iio_dev *indio_dev,
465 struct iio_chan_spec const *ch,
466 int val,
467 int val2,
468 long mask)
469 {
470 int err;
471
472 switch (mask) {
473 case IIO_CHAN_INFO_SAMP_FREQ:
474 if (val2)
475 return -EINVAL;
476 mutex_lock(&indio_dev->mlock);
477 err = st_sensors_set_odr(indio_dev, val);
478 mutex_unlock(&indio_dev->mlock);
479 return err;
480 default:
481 return -EINVAL;
482 }
483 }
484
485 static int st_press_read_raw(struct iio_dev *indio_dev,
486 struct iio_chan_spec const *ch, int *val,
487 int *val2, long mask)
488 {
489 int err;
490 struct st_sensor_data *press_data = iio_priv(indio_dev);
491
492 switch (mask) {
493 case IIO_CHAN_INFO_RAW:
494 err = st_sensors_read_info_raw(indio_dev, ch, val);
495 if (err < 0)
496 goto read_error;
497
498 return IIO_VAL_INT;
499 case IIO_CHAN_INFO_SCALE:
500 switch (ch->type) {
501 case IIO_PRESSURE:
502 *val = 0;
503 *val2 = press_data->current_fullscale->gain;
504 return IIO_VAL_INT_PLUS_NANO;
505 case IIO_TEMP:
506 *val = MCELSIUS_PER_CELSIUS;
507 *val2 = press_data->current_fullscale->gain2;
508 return IIO_VAL_FRACTIONAL;
509 default:
510 err = -EINVAL;
511 goto read_error;
512 }
513
514 case IIO_CHAN_INFO_OFFSET:
515 switch (ch->type) {
516 case IIO_TEMP:
517 *val = ST_PRESS_MILLI_CELSIUS_OFFSET *
518 press_data->current_fullscale->gain2;
519 *val2 = MCELSIUS_PER_CELSIUS;
520 break;
521 default:
522 err = -EINVAL;
523 goto read_error;
524 }
525
526 return IIO_VAL_FRACTIONAL;
527 case IIO_CHAN_INFO_SAMP_FREQ:
528 *val = press_data->odr;
529 return IIO_VAL_INT;
530 default:
531 return -EINVAL;
532 }
533
534 read_error:
535 return err;
536 }
537
538 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
539
540 static struct attribute *st_press_attributes[] = {
541 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
542 NULL,
543 };
544
545 static const struct attribute_group st_press_attribute_group = {
546 .attrs = st_press_attributes,
547 };
548
549 static const struct iio_info press_info = {
550 .driver_module = THIS_MODULE,
551 .attrs = &st_press_attribute_group,
552 .read_raw = &st_press_read_raw,
553 .write_raw = &st_press_write_raw,
554 .debugfs_reg_access = &st_sensors_debugfs_reg_access,
555 };
556
557 #ifdef CONFIG_IIO_TRIGGER
558 static const struct iio_trigger_ops st_press_trigger_ops = {
559 .owner = THIS_MODULE,
560 .set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
561 .validate_device = st_sensors_validate_device,
562 };
563 #define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
564 #else
565 #define ST_PRESS_TRIGGER_OPS NULL
566 #endif
567
568 int st_press_common_probe(struct iio_dev *indio_dev)
569 {
570 struct st_sensor_data *press_data = iio_priv(indio_dev);
571 struct st_sensors_platform_data *pdata =
572 (struct st_sensors_platform_data *)press_data->dev->platform_data;
573 int irq = press_data->get_irq_data_ready(indio_dev);
574 int err;
575
576 indio_dev->modes = INDIO_DIRECT_MODE;
577 indio_dev->info = &press_info;
578 mutex_init(&press_data->tb.buf_lock);
579
580 err = st_sensors_power_enable(indio_dev);
581 if (err)
582 return err;
583
584 err = st_sensors_check_device_support(indio_dev,
585 ARRAY_SIZE(st_press_sensors_settings),
586 st_press_sensors_settings);
587 if (err < 0)
588 goto st_press_power_off;
589
590 /*
591 * Skip timestamping channel while declaring available channels to
592 * common st_sensor layer. Look at st_sensors_get_buffer_element() to
593 * see how timestamps are explicitly pushed as last samples block
594 * element.
595 */
596 press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
597 press_data->multiread_bit = press_data->sensor_settings->multi_read_bit;
598 indio_dev->channels = press_data->sensor_settings->ch;
599 indio_dev->num_channels = press_data->sensor_settings->num_ch;
600
601 press_data->current_fullscale =
602 (struct st_sensor_fullscale_avl *)
603 &press_data->sensor_settings->fs.fs_avl[0];
604
605 press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;
606
607 /* Some devices don't support a data ready pin. */
608 if (!pdata && press_data->sensor_settings->drdy_irq.addr)
609 pdata = (struct st_sensors_platform_data *)&default_press_pdata;
610
611 err = st_sensors_init_sensor(indio_dev, press_data->dev->platform_data);
612 if (err < 0)
613 goto st_press_power_off;
614
615 err = st_press_allocate_ring(indio_dev);
616 if (err < 0)
617 goto st_press_power_off;
618
619 if (irq > 0) {
620 err = st_sensors_allocate_trigger(indio_dev,
621 ST_PRESS_TRIGGER_OPS);
622 if (err < 0)
623 goto st_press_probe_trigger_error;
624 }
625
626 err = iio_device_register(indio_dev);
627 if (err)
628 goto st_press_device_register_error;
629
630 dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
631 indio_dev->name);
632
633 return err;
634
635 st_press_device_register_error:
636 if (irq > 0)
637 st_sensors_deallocate_trigger(indio_dev);
638 st_press_probe_trigger_error:
639 st_press_deallocate_ring(indio_dev);
640 st_press_power_off:
641 st_sensors_power_disable(indio_dev);
642
643 return err;
644 }
645 EXPORT_SYMBOL(st_press_common_probe);
646
647 void st_press_common_remove(struct iio_dev *indio_dev)
648 {
649 struct st_sensor_data *press_data = iio_priv(indio_dev);
650
651 st_sensors_power_disable(indio_dev);
652
653 iio_device_unregister(indio_dev);
654 if (press_data->get_irq_data_ready(indio_dev) > 0)
655 st_sensors_deallocate_trigger(indio_dev);
656
657 st_press_deallocate_ring(indio_dev);
658 }
659 EXPORT_SYMBOL(st_press_common_remove);
660
661 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
662 MODULE_DESCRIPTION("STMicroelectronics pressures driver");
663 MODULE_LICENSE("GPL v2");