]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/core/addr.c
cpufreq: intel_pstate: report correct CPU frequencies during trace
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / core / addr.c
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51
52 #include "core_priv.h"
53
54 struct addr_req {
55 struct list_head list;
56 struct sockaddr_storage src_addr;
57 struct sockaddr_storage dst_addr;
58 struct rdma_dev_addr *addr;
59 struct rdma_addr_client *client;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 int status;
65 u32 seq;
66 };
67
68 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
69
70 static void process_req(struct work_struct *work);
71
72 static DEFINE_MUTEX(lock);
73 static LIST_HEAD(req_list);
74 static DECLARE_DELAYED_WORK(work, process_req);
75 static struct workqueue_struct *addr_wq;
76
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 .len = sizeof(struct rdma_nla_ls_gid)},
80 };
81
82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
83 {
84 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
85 int ret;
86
87 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
88 return false;
89
90 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
91 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
92 if (ret)
93 return false;
94
95 return true;
96 }
97
98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
99 {
100 const struct nlattr *head, *curr;
101 union ib_gid gid;
102 struct addr_req *req;
103 int len, rem;
104 int found = 0;
105
106 head = (const struct nlattr *)nlmsg_data(nlh);
107 len = nlmsg_len(nlh);
108
109 nla_for_each_attr(curr, head, len, rem) {
110 if (curr->nla_type == LS_NLA_TYPE_DGID)
111 memcpy(&gid, nla_data(curr), nla_len(curr));
112 }
113
114 mutex_lock(&lock);
115 list_for_each_entry(req, &req_list, list) {
116 if (nlh->nlmsg_seq != req->seq)
117 continue;
118 /* We set the DGID part, the rest was set earlier */
119 rdma_addr_set_dgid(req->addr, &gid);
120 req->status = 0;
121 found = 1;
122 break;
123 }
124 mutex_unlock(&lock);
125
126 if (!found)
127 pr_info("Couldn't find request waiting for DGID: %pI6\n",
128 &gid);
129 }
130
131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
132 struct netlink_callback *cb)
133 {
134 const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
135
136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 !(NETLINK_CB(skb).sk) ||
138 !netlink_capable(skb, CAP_NET_ADMIN))
139 return -EPERM;
140
141 if (ib_nl_is_good_ip_resp(nlh))
142 ib_nl_process_good_ip_rsep(nlh);
143
144 return skb->len;
145 }
146
147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
148 const void *daddr,
149 u32 seq, u16 family)
150 {
151 struct sk_buff *skb = NULL;
152 struct nlmsghdr *nlh;
153 struct rdma_ls_ip_resolve_header *header;
154 void *data;
155 size_t size;
156 int attrtype;
157 int len;
158
159 if (family == AF_INET) {
160 size = sizeof(struct in_addr);
161 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
162 } else {
163 size = sizeof(struct in6_addr);
164 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
165 }
166
167 len = nla_total_size(sizeof(size));
168 len += NLMSG_ALIGN(sizeof(*header));
169
170 skb = nlmsg_new(len, GFP_KERNEL);
171 if (!skb)
172 return -ENOMEM;
173
174 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
175 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
176 if (!data) {
177 nlmsg_free(skb);
178 return -ENODATA;
179 }
180
181 /* Construct the family header first */
182 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
183 header->ifindex = dev_addr->bound_dev_if;
184 nla_put(skb, attrtype, size, daddr);
185
186 /* Repair the nlmsg header length */
187 nlmsg_end(skb, nlh);
188 ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
189
190 /* Make the request retry, so when we get the response from userspace
191 * we will have something.
192 */
193 return -ENODATA;
194 }
195
196 int rdma_addr_size(struct sockaddr *addr)
197 {
198 switch (addr->sa_family) {
199 case AF_INET:
200 return sizeof(struct sockaddr_in);
201 case AF_INET6:
202 return sizeof(struct sockaddr_in6);
203 case AF_IB:
204 return sizeof(struct sockaddr_ib);
205 default:
206 return 0;
207 }
208 }
209 EXPORT_SYMBOL(rdma_addr_size);
210
211 static struct rdma_addr_client self;
212
213 void rdma_addr_register_client(struct rdma_addr_client *client)
214 {
215 atomic_set(&client->refcount, 1);
216 init_completion(&client->comp);
217 }
218 EXPORT_SYMBOL(rdma_addr_register_client);
219
220 static inline void put_client(struct rdma_addr_client *client)
221 {
222 if (atomic_dec_and_test(&client->refcount))
223 complete(&client->comp);
224 }
225
226 void rdma_addr_unregister_client(struct rdma_addr_client *client)
227 {
228 put_client(client);
229 wait_for_completion(&client->comp);
230 }
231 EXPORT_SYMBOL(rdma_addr_unregister_client);
232
233 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
234 const unsigned char *dst_dev_addr)
235 {
236 dev_addr->dev_type = dev->type;
237 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
238 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
239 if (dst_dev_addr)
240 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
241 dev_addr->bound_dev_if = dev->ifindex;
242 return 0;
243 }
244 EXPORT_SYMBOL(rdma_copy_addr);
245
246 int rdma_translate_ip(const struct sockaddr *addr,
247 struct rdma_dev_addr *dev_addr,
248 u16 *vlan_id)
249 {
250 struct net_device *dev;
251 int ret = -EADDRNOTAVAIL;
252
253 if (dev_addr->bound_dev_if) {
254 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
255 if (!dev)
256 return -ENODEV;
257 ret = rdma_copy_addr(dev_addr, dev, NULL);
258 dev_put(dev);
259 return ret;
260 }
261
262 switch (addr->sa_family) {
263 case AF_INET:
264 dev = ip_dev_find(dev_addr->net,
265 ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
266
267 if (!dev)
268 return ret;
269
270 ret = rdma_copy_addr(dev_addr, dev, NULL);
271 dev_addr->bound_dev_if = dev->ifindex;
272 if (vlan_id)
273 *vlan_id = rdma_vlan_dev_vlan_id(dev);
274 dev_put(dev);
275 break;
276 #if IS_ENABLED(CONFIG_IPV6)
277 case AF_INET6:
278 rcu_read_lock();
279 for_each_netdev_rcu(dev_addr->net, dev) {
280 if (ipv6_chk_addr(dev_addr->net,
281 &((const struct sockaddr_in6 *)addr)->sin6_addr,
282 dev, 1)) {
283 ret = rdma_copy_addr(dev_addr, dev, NULL);
284 dev_addr->bound_dev_if = dev->ifindex;
285 if (vlan_id)
286 *vlan_id = rdma_vlan_dev_vlan_id(dev);
287 break;
288 }
289 }
290 rcu_read_unlock();
291 break;
292 #endif
293 }
294 return ret;
295 }
296 EXPORT_SYMBOL(rdma_translate_ip);
297
298 static void set_timeout(unsigned long time)
299 {
300 unsigned long delay;
301
302 delay = time - jiffies;
303 if ((long)delay < 0)
304 delay = 0;
305
306 mod_delayed_work(addr_wq, &work, delay);
307 }
308
309 static void queue_req(struct addr_req *req)
310 {
311 struct addr_req *temp_req;
312
313 mutex_lock(&lock);
314 list_for_each_entry_reverse(temp_req, &req_list, list) {
315 if (time_after_eq(req->timeout, temp_req->timeout))
316 break;
317 }
318
319 list_add(&req->list, &temp_req->list);
320
321 if (req_list.next == &req->list)
322 set_timeout(req->timeout);
323 mutex_unlock(&lock);
324 }
325
326 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
327 const void *daddr, u32 seq, u16 family)
328 {
329 if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
330 return -EADDRNOTAVAIL;
331
332 /* We fill in what we can, the response will fill the rest */
333 rdma_copy_addr(dev_addr, dst->dev, NULL);
334 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
335 }
336
337 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
338 const void *daddr)
339 {
340 struct neighbour *n;
341 int ret;
342
343 n = dst_neigh_lookup(dst, daddr);
344
345 rcu_read_lock();
346 if (!n || !(n->nud_state & NUD_VALID)) {
347 if (n)
348 neigh_event_send(n, NULL);
349 ret = -ENODATA;
350 } else {
351 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
352 }
353 rcu_read_unlock();
354
355 if (n)
356 neigh_release(n);
357
358 return ret;
359 }
360
361 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
362 {
363 struct rtable *rt;
364 struct rt6_info *rt6;
365
366 if (family == AF_INET) {
367 rt = container_of(dst, struct rtable, dst);
368 return rt->rt_uses_gateway;
369 }
370
371 rt6 = container_of(dst, struct rt6_info, dst);
372 return rt6->rt6i_flags & RTF_GATEWAY;
373 }
374
375 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
376 const struct sockaddr *dst_in, u32 seq)
377 {
378 const struct sockaddr_in *dst_in4 =
379 (const struct sockaddr_in *)dst_in;
380 const struct sockaddr_in6 *dst_in6 =
381 (const struct sockaddr_in6 *)dst_in;
382 const void *daddr = (dst_in->sa_family == AF_INET) ?
383 (const void *)&dst_in4->sin_addr.s_addr :
384 (const void *)&dst_in6->sin6_addr;
385 sa_family_t family = dst_in->sa_family;
386
387 /* Gateway + ARPHRD_INFINIBAND -> IB router */
388 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
389 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
390 else
391 return dst_fetch_ha(dst, dev_addr, daddr);
392 }
393
394 static int addr4_resolve(struct sockaddr_in *src_in,
395 const struct sockaddr_in *dst_in,
396 struct rdma_dev_addr *addr,
397 struct rtable **prt)
398 {
399 __be32 src_ip = src_in->sin_addr.s_addr;
400 __be32 dst_ip = dst_in->sin_addr.s_addr;
401 struct rtable *rt;
402 struct flowi4 fl4;
403 int ret;
404
405 memset(&fl4, 0, sizeof(fl4));
406 fl4.daddr = dst_ip;
407 fl4.saddr = src_ip;
408 fl4.flowi4_oif = addr->bound_dev_if;
409 rt = ip_route_output_key(addr->net, &fl4);
410 ret = PTR_ERR_OR_ZERO(rt);
411 if (ret)
412 return ret;
413
414 src_in->sin_family = AF_INET;
415 src_in->sin_addr.s_addr = fl4.saddr;
416
417 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
418 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
419 * type accordingly.
420 */
421 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
422 addr->network = RDMA_NETWORK_IPV4;
423
424 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
425
426 *prt = rt;
427 return 0;
428 }
429
430 #if IS_ENABLED(CONFIG_IPV6)
431 static int addr6_resolve(struct sockaddr_in6 *src_in,
432 const struct sockaddr_in6 *dst_in,
433 struct rdma_dev_addr *addr,
434 struct dst_entry **pdst)
435 {
436 struct flowi6 fl6;
437 struct dst_entry *dst;
438 struct rt6_info *rt;
439 int ret;
440
441 memset(&fl6, 0, sizeof fl6);
442 fl6.daddr = dst_in->sin6_addr;
443 fl6.saddr = src_in->sin6_addr;
444 fl6.flowi6_oif = addr->bound_dev_if;
445
446 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
447 if (ret < 0)
448 return ret;
449
450 rt = (struct rt6_info *)dst;
451 if (ipv6_addr_any(&src_in->sin6_addr)) {
452 src_in->sin6_family = AF_INET6;
453 src_in->sin6_addr = fl6.saddr;
454 }
455
456 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
457 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
458 * type accordingly.
459 */
460 if (rt->rt6i_flags & RTF_GATEWAY &&
461 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
462 addr->network = RDMA_NETWORK_IPV6;
463
464 addr->hoplimit = ip6_dst_hoplimit(dst);
465
466 *pdst = dst;
467 return 0;
468 }
469 #else
470 static int addr6_resolve(struct sockaddr_in6 *src_in,
471 const struct sockaddr_in6 *dst_in,
472 struct rdma_dev_addr *addr,
473 struct dst_entry **pdst)
474 {
475 return -EADDRNOTAVAIL;
476 }
477 #endif
478
479 static int addr_resolve_neigh(struct dst_entry *dst,
480 const struct sockaddr *dst_in,
481 struct rdma_dev_addr *addr,
482 u32 seq)
483 {
484 if (dst->dev->flags & IFF_LOOPBACK) {
485 int ret;
486
487 ret = rdma_translate_ip(dst_in, addr, NULL);
488 if (!ret)
489 memcpy(addr->dst_dev_addr, addr->src_dev_addr,
490 MAX_ADDR_LEN);
491
492 return ret;
493 }
494
495 /* If the device doesn't do ARP internally */
496 if (!(dst->dev->flags & IFF_NOARP))
497 return fetch_ha(dst, addr, dst_in, seq);
498
499 return rdma_copy_addr(addr, dst->dev, NULL);
500 }
501
502 static int addr_resolve(struct sockaddr *src_in,
503 const struct sockaddr *dst_in,
504 struct rdma_dev_addr *addr,
505 bool resolve_neigh,
506 u32 seq)
507 {
508 struct net_device *ndev;
509 struct dst_entry *dst;
510 int ret;
511
512 if (!addr->net) {
513 pr_warn_ratelimited("%s: missing namespace\n", __func__);
514 return -EINVAL;
515 }
516
517 if (src_in->sa_family == AF_INET) {
518 struct rtable *rt = NULL;
519 const struct sockaddr_in *dst_in4 =
520 (const struct sockaddr_in *)dst_in;
521
522 ret = addr4_resolve((struct sockaddr_in *)src_in,
523 dst_in4, addr, &rt);
524 if (ret)
525 return ret;
526
527 if (resolve_neigh)
528 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
529
530 if (addr->bound_dev_if) {
531 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
532 } else {
533 ndev = rt->dst.dev;
534 dev_hold(ndev);
535 }
536
537 ip_rt_put(rt);
538 } else {
539 const struct sockaddr_in6 *dst_in6 =
540 (const struct sockaddr_in6 *)dst_in;
541
542 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
543 dst_in6, addr,
544 &dst);
545 if (ret)
546 return ret;
547
548 if (resolve_neigh)
549 ret = addr_resolve_neigh(dst, dst_in, addr, seq);
550
551 if (addr->bound_dev_if) {
552 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
553 } else {
554 ndev = dst->dev;
555 dev_hold(ndev);
556 }
557
558 dst_release(dst);
559 }
560
561 if (ndev->flags & IFF_LOOPBACK) {
562 ret = rdma_translate_ip(dst_in, addr, NULL);
563 /*
564 * Put the loopback device and get the translated
565 * device instead.
566 */
567 dev_put(ndev);
568 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
569 } else {
570 addr->bound_dev_if = ndev->ifindex;
571 }
572 dev_put(ndev);
573
574 return ret;
575 }
576
577 static void process_req(struct work_struct *work)
578 {
579 struct addr_req *req, *temp_req;
580 struct sockaddr *src_in, *dst_in;
581 struct list_head done_list;
582
583 INIT_LIST_HEAD(&done_list);
584
585 mutex_lock(&lock);
586 list_for_each_entry_safe(req, temp_req, &req_list, list) {
587 if (req->status == -ENODATA) {
588 src_in = (struct sockaddr *) &req->src_addr;
589 dst_in = (struct sockaddr *) &req->dst_addr;
590 req->status = addr_resolve(src_in, dst_in, req->addr,
591 true, req->seq);
592 if (req->status && time_after_eq(jiffies, req->timeout))
593 req->status = -ETIMEDOUT;
594 else if (req->status == -ENODATA)
595 continue;
596 }
597 list_move_tail(&req->list, &done_list);
598 }
599
600 if (!list_empty(&req_list)) {
601 req = list_entry(req_list.next, struct addr_req, list);
602 set_timeout(req->timeout);
603 }
604 mutex_unlock(&lock);
605
606 list_for_each_entry_safe(req, temp_req, &done_list, list) {
607 list_del(&req->list);
608 req->callback(req->status, (struct sockaddr *) &req->src_addr,
609 req->addr, req->context);
610 put_client(req->client);
611 kfree(req);
612 }
613 }
614
615 int rdma_resolve_ip(struct rdma_addr_client *client,
616 struct sockaddr *src_addr, struct sockaddr *dst_addr,
617 struct rdma_dev_addr *addr, int timeout_ms,
618 void (*callback)(int status, struct sockaddr *src_addr,
619 struct rdma_dev_addr *addr, void *context),
620 void *context)
621 {
622 struct sockaddr *src_in, *dst_in;
623 struct addr_req *req;
624 int ret = 0;
625
626 req = kzalloc(sizeof *req, GFP_KERNEL);
627 if (!req)
628 return -ENOMEM;
629
630 src_in = (struct sockaddr *) &req->src_addr;
631 dst_in = (struct sockaddr *) &req->dst_addr;
632
633 if (src_addr) {
634 if (src_addr->sa_family != dst_addr->sa_family) {
635 ret = -EINVAL;
636 goto err;
637 }
638
639 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
640 } else {
641 src_in->sa_family = dst_addr->sa_family;
642 }
643
644 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
645 req->addr = addr;
646 req->callback = callback;
647 req->context = context;
648 req->client = client;
649 atomic_inc(&client->refcount);
650 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
651
652 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
653 switch (req->status) {
654 case 0:
655 req->timeout = jiffies;
656 queue_req(req);
657 break;
658 case -ENODATA:
659 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
660 queue_req(req);
661 break;
662 default:
663 ret = req->status;
664 atomic_dec(&client->refcount);
665 goto err;
666 }
667 return ret;
668 err:
669 kfree(req);
670 return ret;
671 }
672 EXPORT_SYMBOL(rdma_resolve_ip);
673
674 int rdma_resolve_ip_route(struct sockaddr *src_addr,
675 const struct sockaddr *dst_addr,
676 struct rdma_dev_addr *addr)
677 {
678 struct sockaddr_storage ssrc_addr = {};
679 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
680
681 if (src_addr) {
682 if (src_addr->sa_family != dst_addr->sa_family)
683 return -EINVAL;
684
685 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
686 } else {
687 src_in->sa_family = dst_addr->sa_family;
688 }
689
690 return addr_resolve(src_in, dst_addr, addr, false, 0);
691 }
692 EXPORT_SYMBOL(rdma_resolve_ip_route);
693
694 void rdma_addr_cancel(struct rdma_dev_addr *addr)
695 {
696 struct addr_req *req, *temp_req;
697
698 mutex_lock(&lock);
699 list_for_each_entry_safe(req, temp_req, &req_list, list) {
700 if (req->addr == addr) {
701 req->status = -ECANCELED;
702 req->timeout = jiffies;
703 list_move(&req->list, &req_list);
704 set_timeout(req->timeout);
705 break;
706 }
707 }
708 mutex_unlock(&lock);
709 }
710 EXPORT_SYMBOL(rdma_addr_cancel);
711
712 struct resolve_cb_context {
713 struct rdma_dev_addr *addr;
714 struct completion comp;
715 int status;
716 };
717
718 static void resolve_cb(int status, struct sockaddr *src_addr,
719 struct rdma_dev_addr *addr, void *context)
720 {
721 if (!status)
722 memcpy(((struct resolve_cb_context *)context)->addr,
723 addr, sizeof(struct rdma_dev_addr));
724 ((struct resolve_cb_context *)context)->status = status;
725 complete(&((struct resolve_cb_context *)context)->comp);
726 }
727
728 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
729 const union ib_gid *dgid,
730 u8 *dmac, u16 *vlan_id, int *if_index,
731 int *hoplimit)
732 {
733 int ret = 0;
734 struct rdma_dev_addr dev_addr;
735 struct resolve_cb_context ctx;
736 struct net_device *dev;
737
738 union {
739 struct sockaddr _sockaddr;
740 struct sockaddr_in _sockaddr_in;
741 struct sockaddr_in6 _sockaddr_in6;
742 } sgid_addr, dgid_addr;
743
744
745 rdma_gid2ip(&sgid_addr._sockaddr, sgid);
746 rdma_gid2ip(&dgid_addr._sockaddr, dgid);
747
748 memset(&dev_addr, 0, sizeof(dev_addr));
749 if (if_index)
750 dev_addr.bound_dev_if = *if_index;
751 dev_addr.net = &init_net;
752
753 ctx.addr = &dev_addr;
754 init_completion(&ctx.comp);
755 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
756 &dev_addr, 1000, resolve_cb, &ctx);
757 if (ret)
758 return ret;
759
760 wait_for_completion(&ctx.comp);
761
762 ret = ctx.status;
763 if (ret)
764 return ret;
765
766 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
767 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
768 if (!dev)
769 return -ENODEV;
770 if (if_index)
771 *if_index = dev_addr.bound_dev_if;
772 if (vlan_id)
773 *vlan_id = rdma_vlan_dev_vlan_id(dev);
774 if (hoplimit)
775 *hoplimit = dev_addr.hoplimit;
776 dev_put(dev);
777 return ret;
778 }
779 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
780
781 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
782 {
783 int ret = 0;
784 struct rdma_dev_addr dev_addr;
785 union {
786 struct sockaddr _sockaddr;
787 struct sockaddr_in _sockaddr_in;
788 struct sockaddr_in6 _sockaddr_in6;
789 } gid_addr;
790
791 rdma_gid2ip(&gid_addr._sockaddr, sgid);
792
793 memset(&dev_addr, 0, sizeof(dev_addr));
794 dev_addr.net = &init_net;
795 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
796 if (ret)
797 return ret;
798
799 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
800 return ret;
801 }
802 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
803
804 static int netevent_callback(struct notifier_block *self, unsigned long event,
805 void *ctx)
806 {
807 if (event == NETEVENT_NEIGH_UPDATE) {
808 struct neighbour *neigh = ctx;
809
810 if (neigh->nud_state & NUD_VALID) {
811 set_timeout(jiffies);
812 }
813 }
814 return 0;
815 }
816
817 static struct notifier_block nb = {
818 .notifier_call = netevent_callback
819 };
820
821 int addr_init(void)
822 {
823 addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0);
824 if (!addr_wq)
825 return -ENOMEM;
826
827 register_netevent_notifier(&nb);
828 rdma_addr_register_client(&self);
829
830 return 0;
831 }
832
833 void addr_cleanup(void)
834 {
835 rdma_addr_unregister_client(&self);
836 unregister_netevent_notifier(&nb);
837 destroy_workqueue(addr_wq);
838 }