]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/core/addr.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / core / addr.c
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51
52 #include "core_priv.h"
53
54 struct addr_req {
55 struct list_head list;
56 struct sockaddr_storage src_addr;
57 struct sockaddr_storage dst_addr;
58 struct rdma_dev_addr *addr;
59 struct rdma_addr_client *client;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 struct delayed_work work;
65 int status;
66 u32 seq;
67 };
68
69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70
71 static void process_req(struct work_struct *work);
72
73 static DEFINE_MUTEX(lock);
74 static LIST_HEAD(req_list);
75 static DECLARE_DELAYED_WORK(work, process_req);
76 static struct workqueue_struct *addr_wq;
77
78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80 .len = sizeof(struct rdma_nla_ls_gid)},
81 };
82
83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 int ret;
87
88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 return false;
90
91 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 if (ret)
94 return false;
95
96 return true;
97 }
98
99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 const struct nlattr *head, *curr;
102 union ib_gid gid;
103 struct addr_req *req;
104 int len, rem;
105 int found = 0;
106
107 head = (const struct nlattr *)nlmsg_data(nlh);
108 len = nlmsg_len(nlh);
109
110 nla_for_each_attr(curr, head, len, rem) {
111 if (curr->nla_type == LS_NLA_TYPE_DGID)
112 memcpy(&gid, nla_data(curr), nla_len(curr));
113 }
114
115 mutex_lock(&lock);
116 list_for_each_entry(req, &req_list, list) {
117 if (nlh->nlmsg_seq != req->seq)
118 continue;
119 /* We set the DGID part, the rest was set earlier */
120 rdma_addr_set_dgid(req->addr, &gid);
121 req->status = 0;
122 found = 1;
123 break;
124 }
125 mutex_unlock(&lock);
126
127 if (!found)
128 pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 &gid);
130 }
131
132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 struct netlink_callback *cb)
134 {
135 const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
136
137 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
138 !(NETLINK_CB(skb).sk) ||
139 !netlink_capable(skb, CAP_NET_ADMIN))
140 return -EPERM;
141
142 if (ib_nl_is_good_ip_resp(nlh))
143 ib_nl_process_good_ip_rsep(nlh);
144
145 return skb->len;
146 }
147
148 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
149 const void *daddr,
150 u32 seq, u16 family)
151 {
152 struct sk_buff *skb = NULL;
153 struct nlmsghdr *nlh;
154 struct rdma_ls_ip_resolve_header *header;
155 void *data;
156 size_t size;
157 int attrtype;
158 int len;
159
160 if (family == AF_INET) {
161 size = sizeof(struct in_addr);
162 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
163 } else {
164 size = sizeof(struct in6_addr);
165 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
166 }
167
168 len = nla_total_size(sizeof(size));
169 len += NLMSG_ALIGN(sizeof(*header));
170
171 skb = nlmsg_new(len, GFP_KERNEL);
172 if (!skb)
173 return -ENOMEM;
174
175 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
176 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
177 if (!data) {
178 nlmsg_free(skb);
179 return -ENODATA;
180 }
181
182 /* Construct the family header first */
183 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
184 header->ifindex = dev_addr->bound_dev_if;
185 nla_put(skb, attrtype, size, daddr);
186
187 /* Repair the nlmsg header length */
188 nlmsg_end(skb, nlh);
189 ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
190
191 /* Make the request retry, so when we get the response from userspace
192 * we will have something.
193 */
194 return -ENODATA;
195 }
196
197 int rdma_addr_size(struct sockaddr *addr)
198 {
199 switch (addr->sa_family) {
200 case AF_INET:
201 return sizeof(struct sockaddr_in);
202 case AF_INET6:
203 return sizeof(struct sockaddr_in6);
204 case AF_IB:
205 return sizeof(struct sockaddr_ib);
206 default:
207 return 0;
208 }
209 }
210 EXPORT_SYMBOL(rdma_addr_size);
211
212 static struct rdma_addr_client self;
213
214 void rdma_addr_register_client(struct rdma_addr_client *client)
215 {
216 atomic_set(&client->refcount, 1);
217 init_completion(&client->comp);
218 }
219 EXPORT_SYMBOL(rdma_addr_register_client);
220
221 static inline void put_client(struct rdma_addr_client *client)
222 {
223 if (atomic_dec_and_test(&client->refcount))
224 complete(&client->comp);
225 }
226
227 void rdma_addr_unregister_client(struct rdma_addr_client *client)
228 {
229 put_client(client);
230 wait_for_completion(&client->comp);
231 }
232 EXPORT_SYMBOL(rdma_addr_unregister_client);
233
234 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
235 const unsigned char *dst_dev_addr)
236 {
237 dev_addr->dev_type = dev->type;
238 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
239 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
240 if (dst_dev_addr)
241 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
242 dev_addr->bound_dev_if = dev->ifindex;
243 return 0;
244 }
245 EXPORT_SYMBOL(rdma_copy_addr);
246
247 int rdma_translate_ip(const struct sockaddr *addr,
248 struct rdma_dev_addr *dev_addr,
249 u16 *vlan_id)
250 {
251 struct net_device *dev;
252 int ret = -EADDRNOTAVAIL;
253
254 if (dev_addr->bound_dev_if) {
255 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
256 if (!dev)
257 return -ENODEV;
258 ret = rdma_copy_addr(dev_addr, dev, NULL);
259 dev_put(dev);
260 return ret;
261 }
262
263 switch (addr->sa_family) {
264 case AF_INET:
265 dev = ip_dev_find(dev_addr->net,
266 ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
267
268 if (!dev)
269 return ret;
270
271 ret = rdma_copy_addr(dev_addr, dev, NULL);
272 dev_addr->bound_dev_if = dev->ifindex;
273 if (vlan_id)
274 *vlan_id = rdma_vlan_dev_vlan_id(dev);
275 dev_put(dev);
276 break;
277 #if IS_ENABLED(CONFIG_IPV6)
278 case AF_INET6:
279 rcu_read_lock();
280 for_each_netdev_rcu(dev_addr->net, dev) {
281 if (ipv6_chk_addr(dev_addr->net,
282 &((const struct sockaddr_in6 *)addr)->sin6_addr,
283 dev, 1)) {
284 ret = rdma_copy_addr(dev_addr, dev, NULL);
285 dev_addr->bound_dev_if = dev->ifindex;
286 if (vlan_id)
287 *vlan_id = rdma_vlan_dev_vlan_id(dev);
288 break;
289 }
290 }
291 rcu_read_unlock();
292 break;
293 #endif
294 }
295 return ret;
296 }
297 EXPORT_SYMBOL(rdma_translate_ip);
298
299 static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
300 {
301 unsigned long delay;
302
303 delay = time - jiffies;
304 if ((long)delay < 0)
305 delay = 0;
306
307 mod_delayed_work(addr_wq, delayed_work, delay);
308 }
309
310 static void queue_req(struct addr_req *req)
311 {
312 struct addr_req *temp_req;
313
314 mutex_lock(&lock);
315 list_for_each_entry_reverse(temp_req, &req_list, list) {
316 if (time_after_eq(req->timeout, temp_req->timeout))
317 break;
318 }
319
320 list_add(&req->list, &temp_req->list);
321
322 set_timeout(&req->work, req->timeout);
323 mutex_unlock(&lock);
324 }
325
326 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
327 const void *daddr, u32 seq, u16 family)
328 {
329 if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
330 return -EADDRNOTAVAIL;
331
332 /* We fill in what we can, the response will fill the rest */
333 rdma_copy_addr(dev_addr, dst->dev, NULL);
334 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
335 }
336
337 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
338 const void *daddr)
339 {
340 struct neighbour *n;
341 int ret;
342
343 n = dst_neigh_lookup(dst, daddr);
344
345 rcu_read_lock();
346 if (!n || !(n->nud_state & NUD_VALID)) {
347 if (n)
348 neigh_event_send(n, NULL);
349 ret = -ENODATA;
350 } else {
351 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
352 }
353 rcu_read_unlock();
354
355 if (n)
356 neigh_release(n);
357
358 return ret;
359 }
360
361 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
362 {
363 struct rtable *rt;
364 struct rt6_info *rt6;
365
366 if (family == AF_INET) {
367 rt = container_of(dst, struct rtable, dst);
368 return rt->rt_uses_gateway;
369 }
370
371 rt6 = container_of(dst, struct rt6_info, dst);
372 return rt6->rt6i_flags & RTF_GATEWAY;
373 }
374
375 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
376 const struct sockaddr *dst_in, u32 seq)
377 {
378 const struct sockaddr_in *dst_in4 =
379 (const struct sockaddr_in *)dst_in;
380 const struct sockaddr_in6 *dst_in6 =
381 (const struct sockaddr_in6 *)dst_in;
382 const void *daddr = (dst_in->sa_family == AF_INET) ?
383 (const void *)&dst_in4->sin_addr.s_addr :
384 (const void *)&dst_in6->sin6_addr;
385 sa_family_t family = dst_in->sa_family;
386
387 /* Gateway + ARPHRD_INFINIBAND -> IB router */
388 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
389 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
390 else
391 return dst_fetch_ha(dst, dev_addr, daddr);
392 }
393
394 static int addr4_resolve(struct sockaddr_in *src_in,
395 const struct sockaddr_in *dst_in,
396 struct rdma_dev_addr *addr,
397 struct rtable **prt)
398 {
399 __be32 src_ip = src_in->sin_addr.s_addr;
400 __be32 dst_ip = dst_in->sin_addr.s_addr;
401 struct rtable *rt;
402 struct flowi4 fl4;
403 int ret;
404
405 memset(&fl4, 0, sizeof(fl4));
406 fl4.daddr = dst_ip;
407 fl4.saddr = src_ip;
408 fl4.flowi4_oif = addr->bound_dev_if;
409 rt = ip_route_output_key(addr->net, &fl4);
410 ret = PTR_ERR_OR_ZERO(rt);
411 if (ret)
412 return ret;
413
414 src_in->sin_family = AF_INET;
415 src_in->sin_addr.s_addr = fl4.saddr;
416
417 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
418 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
419 * type accordingly.
420 */
421 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
422 addr->network = RDMA_NETWORK_IPV4;
423
424 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
425
426 *prt = rt;
427 return 0;
428 }
429
430 #if IS_ENABLED(CONFIG_IPV6)
431 static int addr6_resolve(struct sockaddr_in6 *src_in,
432 const struct sockaddr_in6 *dst_in,
433 struct rdma_dev_addr *addr,
434 struct dst_entry **pdst)
435 {
436 struct flowi6 fl6;
437 struct dst_entry *dst;
438 struct rt6_info *rt;
439 int ret;
440
441 memset(&fl6, 0, sizeof fl6);
442 fl6.daddr = dst_in->sin6_addr;
443 fl6.saddr = src_in->sin6_addr;
444 fl6.flowi6_oif = addr->bound_dev_if;
445
446 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
447 if (ret < 0)
448 return ret;
449
450 rt = (struct rt6_info *)dst;
451 if (ipv6_addr_any(&src_in->sin6_addr)) {
452 src_in->sin6_family = AF_INET6;
453 src_in->sin6_addr = fl6.saddr;
454 }
455
456 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
457 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
458 * type accordingly.
459 */
460 if (rt->rt6i_flags & RTF_GATEWAY &&
461 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
462 addr->network = RDMA_NETWORK_IPV6;
463
464 addr->hoplimit = ip6_dst_hoplimit(dst);
465
466 *pdst = dst;
467 return 0;
468 }
469 #else
470 static int addr6_resolve(struct sockaddr_in6 *src_in,
471 const struct sockaddr_in6 *dst_in,
472 struct rdma_dev_addr *addr,
473 struct dst_entry **pdst)
474 {
475 return -EADDRNOTAVAIL;
476 }
477 #endif
478
479 static int addr_resolve_neigh(struct dst_entry *dst,
480 const struct sockaddr *dst_in,
481 struct rdma_dev_addr *addr,
482 u32 seq)
483 {
484 if (dst->dev->flags & IFF_LOOPBACK) {
485 int ret;
486
487 ret = rdma_translate_ip(dst_in, addr, NULL);
488 if (!ret)
489 memcpy(addr->dst_dev_addr, addr->src_dev_addr,
490 MAX_ADDR_LEN);
491
492 return ret;
493 }
494
495 /* If the device doesn't do ARP internally */
496 if (!(dst->dev->flags & IFF_NOARP))
497 return fetch_ha(dst, addr, dst_in, seq);
498
499 return rdma_copy_addr(addr, dst->dev, NULL);
500 }
501
502 static int addr_resolve(struct sockaddr *src_in,
503 const struct sockaddr *dst_in,
504 struct rdma_dev_addr *addr,
505 bool resolve_neigh,
506 u32 seq)
507 {
508 struct net_device *ndev;
509 struct dst_entry *dst;
510 int ret;
511
512 if (!addr->net) {
513 pr_warn_ratelimited("%s: missing namespace\n", __func__);
514 return -EINVAL;
515 }
516
517 if (src_in->sa_family == AF_INET) {
518 struct rtable *rt = NULL;
519 const struct sockaddr_in *dst_in4 =
520 (const struct sockaddr_in *)dst_in;
521
522 ret = addr4_resolve((struct sockaddr_in *)src_in,
523 dst_in4, addr, &rt);
524 if (ret)
525 return ret;
526
527 if (resolve_neigh)
528 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
529
530 if (addr->bound_dev_if) {
531 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
532 } else {
533 ndev = rt->dst.dev;
534 dev_hold(ndev);
535 }
536
537 ip_rt_put(rt);
538 } else {
539 const struct sockaddr_in6 *dst_in6 =
540 (const struct sockaddr_in6 *)dst_in;
541
542 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
543 dst_in6, addr,
544 &dst);
545 if (ret)
546 return ret;
547
548 if (resolve_neigh)
549 ret = addr_resolve_neigh(dst, dst_in, addr, seq);
550
551 if (addr->bound_dev_if) {
552 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
553 } else {
554 ndev = dst->dev;
555 dev_hold(ndev);
556 }
557
558 dst_release(dst);
559 }
560
561 if (ndev->flags & IFF_LOOPBACK) {
562 ret = rdma_translate_ip(dst_in, addr, NULL);
563 /*
564 * Put the loopback device and get the translated
565 * device instead.
566 */
567 dev_put(ndev);
568 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
569 } else {
570 addr->bound_dev_if = ndev->ifindex;
571 }
572 dev_put(ndev);
573
574 return ret;
575 }
576
577 static void process_one_req(struct work_struct *_work)
578 {
579 struct addr_req *req;
580 struct sockaddr *src_in, *dst_in;
581
582 mutex_lock(&lock);
583 req = container_of(_work, struct addr_req, work.work);
584
585 if (req->status == -ENODATA) {
586 src_in = (struct sockaddr *)&req->src_addr;
587 dst_in = (struct sockaddr *)&req->dst_addr;
588 req->status = addr_resolve(src_in, dst_in, req->addr,
589 true, req->seq);
590 if (req->status && time_after_eq(jiffies, req->timeout)) {
591 req->status = -ETIMEDOUT;
592 } else if (req->status == -ENODATA) {
593 /* requeue the work for retrying again */
594 set_timeout(&req->work, req->timeout);
595 mutex_unlock(&lock);
596 return;
597 }
598 }
599 list_del(&req->list);
600 mutex_unlock(&lock);
601
602 req->callback(req->status, (struct sockaddr *)&req->src_addr,
603 req->addr, req->context);
604 put_client(req->client);
605 kfree(req);
606 }
607
608 static void process_req(struct work_struct *work)
609 {
610 struct addr_req *req, *temp_req;
611 struct sockaddr *src_in, *dst_in;
612 struct list_head done_list;
613
614 INIT_LIST_HEAD(&done_list);
615
616 mutex_lock(&lock);
617 list_for_each_entry_safe(req, temp_req, &req_list, list) {
618 if (req->status == -ENODATA) {
619 src_in = (struct sockaddr *) &req->src_addr;
620 dst_in = (struct sockaddr *) &req->dst_addr;
621 req->status = addr_resolve(src_in, dst_in, req->addr,
622 true, req->seq);
623 if (req->status && time_after_eq(jiffies, req->timeout))
624 req->status = -ETIMEDOUT;
625 else if (req->status == -ENODATA) {
626 set_timeout(&req->work, req->timeout);
627 continue;
628 }
629 }
630 list_move_tail(&req->list, &done_list);
631 }
632
633 mutex_unlock(&lock);
634
635 list_for_each_entry_safe(req, temp_req, &done_list, list) {
636 list_del(&req->list);
637 /* It is safe to cancel other work items from this work item
638 * because at a time there can be only one work item running
639 * with this single threaded work queue.
640 */
641 cancel_delayed_work(&req->work);
642 req->callback(req->status, (struct sockaddr *) &req->src_addr,
643 req->addr, req->context);
644 put_client(req->client);
645 kfree(req);
646 }
647 }
648
649 int rdma_resolve_ip(struct rdma_addr_client *client,
650 struct sockaddr *src_addr, struct sockaddr *dst_addr,
651 struct rdma_dev_addr *addr, int timeout_ms,
652 void (*callback)(int status, struct sockaddr *src_addr,
653 struct rdma_dev_addr *addr, void *context),
654 void *context)
655 {
656 struct sockaddr *src_in, *dst_in;
657 struct addr_req *req;
658 int ret = 0;
659
660 req = kzalloc(sizeof *req, GFP_KERNEL);
661 if (!req)
662 return -ENOMEM;
663
664 src_in = (struct sockaddr *) &req->src_addr;
665 dst_in = (struct sockaddr *) &req->dst_addr;
666
667 if (src_addr) {
668 if (src_addr->sa_family != dst_addr->sa_family) {
669 ret = -EINVAL;
670 goto err;
671 }
672
673 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
674 } else {
675 src_in->sa_family = dst_addr->sa_family;
676 }
677
678 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
679 req->addr = addr;
680 req->callback = callback;
681 req->context = context;
682 req->client = client;
683 atomic_inc(&client->refcount);
684 INIT_DELAYED_WORK(&req->work, process_one_req);
685 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
686
687 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
688 switch (req->status) {
689 case 0:
690 req->timeout = jiffies;
691 queue_req(req);
692 break;
693 case -ENODATA:
694 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
695 queue_req(req);
696 break;
697 default:
698 ret = req->status;
699 atomic_dec(&client->refcount);
700 goto err;
701 }
702 return ret;
703 err:
704 kfree(req);
705 return ret;
706 }
707 EXPORT_SYMBOL(rdma_resolve_ip);
708
709 int rdma_resolve_ip_route(struct sockaddr *src_addr,
710 const struct sockaddr *dst_addr,
711 struct rdma_dev_addr *addr)
712 {
713 struct sockaddr_storage ssrc_addr = {};
714 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
715
716 if (src_addr) {
717 if (src_addr->sa_family != dst_addr->sa_family)
718 return -EINVAL;
719
720 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
721 } else {
722 src_in->sa_family = dst_addr->sa_family;
723 }
724
725 return addr_resolve(src_in, dst_addr, addr, false, 0);
726 }
727 EXPORT_SYMBOL(rdma_resolve_ip_route);
728
729 void rdma_addr_cancel(struct rdma_dev_addr *addr)
730 {
731 struct addr_req *req, *temp_req;
732
733 mutex_lock(&lock);
734 list_for_each_entry_safe(req, temp_req, &req_list, list) {
735 if (req->addr == addr) {
736 req->status = -ECANCELED;
737 req->timeout = jiffies;
738 list_move(&req->list, &req_list);
739 set_timeout(&req->work, req->timeout);
740 break;
741 }
742 }
743 mutex_unlock(&lock);
744 }
745 EXPORT_SYMBOL(rdma_addr_cancel);
746
747 struct resolve_cb_context {
748 struct rdma_dev_addr *addr;
749 struct completion comp;
750 int status;
751 };
752
753 static void resolve_cb(int status, struct sockaddr *src_addr,
754 struct rdma_dev_addr *addr, void *context)
755 {
756 if (!status)
757 memcpy(((struct resolve_cb_context *)context)->addr,
758 addr, sizeof(struct rdma_dev_addr));
759 ((struct resolve_cb_context *)context)->status = status;
760 complete(&((struct resolve_cb_context *)context)->comp);
761 }
762
763 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
764 const union ib_gid *dgid,
765 u8 *dmac, u16 *vlan_id, int *if_index,
766 int *hoplimit)
767 {
768 int ret = 0;
769 struct rdma_dev_addr dev_addr;
770 struct resolve_cb_context ctx;
771 struct net_device *dev;
772
773 union {
774 struct sockaddr _sockaddr;
775 struct sockaddr_in _sockaddr_in;
776 struct sockaddr_in6 _sockaddr_in6;
777 } sgid_addr, dgid_addr;
778
779
780 rdma_gid2ip(&sgid_addr._sockaddr, sgid);
781 rdma_gid2ip(&dgid_addr._sockaddr, dgid);
782
783 memset(&dev_addr, 0, sizeof(dev_addr));
784 if (if_index)
785 dev_addr.bound_dev_if = *if_index;
786 dev_addr.net = &init_net;
787
788 ctx.addr = &dev_addr;
789 init_completion(&ctx.comp);
790 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
791 &dev_addr, 1000, resolve_cb, &ctx);
792 if (ret)
793 return ret;
794
795 wait_for_completion(&ctx.comp);
796
797 ret = ctx.status;
798 if (ret)
799 return ret;
800
801 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
802 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
803 if (!dev)
804 return -ENODEV;
805 if (if_index)
806 *if_index = dev_addr.bound_dev_if;
807 if (vlan_id)
808 *vlan_id = rdma_vlan_dev_vlan_id(dev);
809 if (hoplimit)
810 *hoplimit = dev_addr.hoplimit;
811 dev_put(dev);
812 return ret;
813 }
814 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
815
816 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
817 {
818 int ret = 0;
819 struct rdma_dev_addr dev_addr;
820 union {
821 struct sockaddr _sockaddr;
822 struct sockaddr_in _sockaddr_in;
823 struct sockaddr_in6 _sockaddr_in6;
824 } gid_addr;
825
826 rdma_gid2ip(&gid_addr._sockaddr, sgid);
827
828 memset(&dev_addr, 0, sizeof(dev_addr));
829 dev_addr.net = &init_net;
830 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
831 if (ret)
832 return ret;
833
834 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
835 return ret;
836 }
837 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
838
839 static int netevent_callback(struct notifier_block *self, unsigned long event,
840 void *ctx)
841 {
842 if (event == NETEVENT_NEIGH_UPDATE) {
843 struct neighbour *neigh = ctx;
844
845 if (neigh->nud_state & NUD_VALID)
846 set_timeout(&work, jiffies);
847 }
848 return 0;
849 }
850
851 static struct notifier_block nb = {
852 .notifier_call = netevent_callback
853 };
854
855 int addr_init(void)
856 {
857 addr_wq = alloc_ordered_workqueue("ib_addr", WQ_MEM_RECLAIM);
858 if (!addr_wq)
859 return -ENOMEM;
860
861 register_netevent_notifier(&nb);
862 rdma_addr_register_client(&self);
863
864 return 0;
865 }
866
867 void addr_cleanup(void)
868 {
869 rdma_addr_unregister_client(&self);
870 unregister_netevent_notifier(&nb);
871 destroy_workqueue(addr_wq);
872 }