]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/core/addr.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / core / addr.c
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51
52 #include "core_priv.h"
53
54 struct addr_req {
55 struct list_head list;
56 struct sockaddr_storage src_addr;
57 struct sockaddr_storage dst_addr;
58 struct rdma_dev_addr *addr;
59 struct rdma_addr_client *client;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 int status;
65 u32 seq;
66 };
67
68 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
69
70 static void process_req(struct work_struct *work);
71
72 static DEFINE_MUTEX(lock);
73 static LIST_HEAD(req_list);
74 static DECLARE_DELAYED_WORK(work, process_req);
75 static struct workqueue_struct *addr_wq;
76
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 .len = sizeof(struct rdma_nla_ls_gid)},
80 };
81
82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
83 {
84 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
85 int ret;
86
87 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
88 return false;
89
90 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
91 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
92 if (ret)
93 return false;
94
95 return true;
96 }
97
98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
99 {
100 const struct nlattr *head, *curr;
101 union ib_gid gid;
102 struct addr_req *req;
103 int len, rem;
104 int found = 0;
105
106 head = (const struct nlattr *)nlmsg_data(nlh);
107 len = nlmsg_len(nlh);
108
109 nla_for_each_attr(curr, head, len, rem) {
110 if (curr->nla_type == LS_NLA_TYPE_DGID)
111 memcpy(&gid, nla_data(curr), nla_len(curr));
112 }
113
114 mutex_lock(&lock);
115 list_for_each_entry(req, &req_list, list) {
116 if (nlh->nlmsg_seq != req->seq)
117 continue;
118 /* We set the DGID part, the rest was set earlier */
119 rdma_addr_set_dgid(req->addr, &gid);
120 req->status = 0;
121 found = 1;
122 break;
123 }
124 mutex_unlock(&lock);
125
126 if (!found)
127 pr_info("Couldn't find request waiting for DGID: %pI6\n",
128 &gid);
129 }
130
131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
132 struct netlink_callback *cb)
133 {
134 const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
135
136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 !(NETLINK_CB(skb).sk) ||
138 !netlink_capable(skb, CAP_NET_ADMIN))
139 return -EPERM;
140
141 if (ib_nl_is_good_ip_resp(nlh))
142 ib_nl_process_good_ip_rsep(nlh);
143
144 return skb->len;
145 }
146
147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
148 const void *daddr,
149 u32 seq, u16 family)
150 {
151 struct sk_buff *skb = NULL;
152 struct nlmsghdr *nlh;
153 struct rdma_ls_ip_resolve_header *header;
154 void *data;
155 size_t size;
156 int attrtype;
157 int len;
158
159 if (family == AF_INET) {
160 size = sizeof(struct in_addr);
161 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
162 } else {
163 size = sizeof(struct in6_addr);
164 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
165 }
166
167 len = nla_total_size(sizeof(size));
168 len += NLMSG_ALIGN(sizeof(*header));
169
170 skb = nlmsg_new(len, GFP_KERNEL);
171 if (!skb)
172 return -ENOMEM;
173
174 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
175 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
176 if (!data) {
177 nlmsg_free(skb);
178 return -ENODATA;
179 }
180
181 /* Construct the family header first */
182 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
183 header->ifindex = dev_addr->bound_dev_if;
184 nla_put(skb, attrtype, size, daddr);
185
186 /* Repair the nlmsg header length */
187 nlmsg_end(skb, nlh);
188 ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
189
190 /* Make the request retry, so when we get the response from userspace
191 * we will have something.
192 */
193 return -ENODATA;
194 }
195
196 int rdma_addr_size(struct sockaddr *addr)
197 {
198 switch (addr->sa_family) {
199 case AF_INET:
200 return sizeof(struct sockaddr_in);
201 case AF_INET6:
202 return sizeof(struct sockaddr_in6);
203 case AF_IB:
204 return sizeof(struct sockaddr_ib);
205 default:
206 return 0;
207 }
208 }
209 EXPORT_SYMBOL(rdma_addr_size);
210
211 static struct rdma_addr_client self;
212
213 void rdma_addr_register_client(struct rdma_addr_client *client)
214 {
215 atomic_set(&client->refcount, 1);
216 init_completion(&client->comp);
217 }
218 EXPORT_SYMBOL(rdma_addr_register_client);
219
220 static inline void put_client(struct rdma_addr_client *client)
221 {
222 if (atomic_dec_and_test(&client->refcount))
223 complete(&client->comp);
224 }
225
226 void rdma_addr_unregister_client(struct rdma_addr_client *client)
227 {
228 put_client(client);
229 wait_for_completion(&client->comp);
230 }
231 EXPORT_SYMBOL(rdma_addr_unregister_client);
232
233 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
234 const unsigned char *dst_dev_addr)
235 {
236 dev_addr->dev_type = dev->type;
237 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
238 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
239 if (dst_dev_addr)
240 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
241 dev_addr->bound_dev_if = dev->ifindex;
242 return 0;
243 }
244 EXPORT_SYMBOL(rdma_copy_addr);
245
246 int rdma_translate_ip(const struct sockaddr *addr,
247 struct rdma_dev_addr *dev_addr,
248 u16 *vlan_id)
249 {
250 struct net_device *dev;
251 int ret = -EADDRNOTAVAIL;
252
253 if (dev_addr->bound_dev_if) {
254 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
255 if (!dev)
256 return -ENODEV;
257 ret = rdma_copy_addr(dev_addr, dev, NULL);
258 dev_put(dev);
259 return ret;
260 }
261
262 switch (addr->sa_family) {
263 case AF_INET:
264 dev = ip_dev_find(dev_addr->net,
265 ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
266
267 if (!dev)
268 return ret;
269
270 ret = rdma_copy_addr(dev_addr, dev, NULL);
271 if (vlan_id)
272 *vlan_id = rdma_vlan_dev_vlan_id(dev);
273 dev_put(dev);
274 break;
275 #if IS_ENABLED(CONFIG_IPV6)
276 case AF_INET6:
277 rcu_read_lock();
278 for_each_netdev_rcu(dev_addr->net, dev) {
279 if (ipv6_chk_addr(dev_addr->net,
280 &((const struct sockaddr_in6 *)addr)->sin6_addr,
281 dev, 1)) {
282 ret = rdma_copy_addr(dev_addr, dev, NULL);
283 if (vlan_id)
284 *vlan_id = rdma_vlan_dev_vlan_id(dev);
285 break;
286 }
287 }
288 rcu_read_unlock();
289 break;
290 #endif
291 }
292 return ret;
293 }
294 EXPORT_SYMBOL(rdma_translate_ip);
295
296 static void set_timeout(unsigned long time)
297 {
298 unsigned long delay;
299
300 delay = time - jiffies;
301 if ((long)delay < 0)
302 delay = 0;
303
304 mod_delayed_work(addr_wq, &work, delay);
305 }
306
307 static void queue_req(struct addr_req *req)
308 {
309 struct addr_req *temp_req;
310
311 mutex_lock(&lock);
312 list_for_each_entry_reverse(temp_req, &req_list, list) {
313 if (time_after_eq(req->timeout, temp_req->timeout))
314 break;
315 }
316
317 list_add(&req->list, &temp_req->list);
318
319 if (req_list.next == &req->list)
320 set_timeout(req->timeout);
321 mutex_unlock(&lock);
322 }
323
324 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
325 const void *daddr, u32 seq, u16 family)
326 {
327 if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
328 return -EADDRNOTAVAIL;
329
330 /* We fill in what we can, the response will fill the rest */
331 rdma_copy_addr(dev_addr, dst->dev, NULL);
332 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
333 }
334
335 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
336 const void *daddr)
337 {
338 struct neighbour *n;
339 int ret;
340
341 n = dst_neigh_lookup(dst, daddr);
342
343 rcu_read_lock();
344 if (!n || !(n->nud_state & NUD_VALID)) {
345 if (n)
346 neigh_event_send(n, NULL);
347 ret = -ENODATA;
348 } else {
349 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
350 }
351 rcu_read_unlock();
352
353 if (n)
354 neigh_release(n);
355
356 return ret;
357 }
358
359 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
360 {
361 struct rtable *rt;
362 struct rt6_info *rt6;
363
364 if (family == AF_INET) {
365 rt = container_of(dst, struct rtable, dst);
366 return rt->rt_uses_gateway;
367 }
368
369 rt6 = container_of(dst, struct rt6_info, dst);
370 return rt6->rt6i_flags & RTF_GATEWAY;
371 }
372
373 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
374 const struct sockaddr *dst_in, u32 seq)
375 {
376 const struct sockaddr_in *dst_in4 =
377 (const struct sockaddr_in *)dst_in;
378 const struct sockaddr_in6 *dst_in6 =
379 (const struct sockaddr_in6 *)dst_in;
380 const void *daddr = (dst_in->sa_family == AF_INET) ?
381 (const void *)&dst_in4->sin_addr.s_addr :
382 (const void *)&dst_in6->sin6_addr;
383 sa_family_t family = dst_in->sa_family;
384
385 /* Gateway + ARPHRD_INFINIBAND -> IB router */
386 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
387 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
388 else
389 return dst_fetch_ha(dst, dev_addr, daddr);
390 }
391
392 static int addr4_resolve(struct sockaddr_in *src_in,
393 const struct sockaddr_in *dst_in,
394 struct rdma_dev_addr *addr,
395 struct rtable **prt)
396 {
397 __be32 src_ip = src_in->sin_addr.s_addr;
398 __be32 dst_ip = dst_in->sin_addr.s_addr;
399 struct rtable *rt;
400 struct flowi4 fl4;
401 int ret;
402
403 memset(&fl4, 0, sizeof(fl4));
404 fl4.daddr = dst_ip;
405 fl4.saddr = src_ip;
406 fl4.flowi4_oif = addr->bound_dev_if;
407 rt = ip_route_output_key(addr->net, &fl4);
408 if (IS_ERR(rt)) {
409 ret = PTR_ERR(rt);
410 goto out;
411 }
412 src_in->sin_family = AF_INET;
413 src_in->sin_addr.s_addr = fl4.saddr;
414
415 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
416 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
417 * type accordingly.
418 */
419 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
420 addr->network = RDMA_NETWORK_IPV4;
421
422 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
423
424 *prt = rt;
425 return 0;
426 out:
427 return ret;
428 }
429
430 #if IS_ENABLED(CONFIG_IPV6)
431 static int addr6_resolve(struct sockaddr_in6 *src_in,
432 const struct sockaddr_in6 *dst_in,
433 struct rdma_dev_addr *addr,
434 struct dst_entry **pdst)
435 {
436 struct flowi6 fl6;
437 struct dst_entry *dst;
438 struct rt6_info *rt;
439 int ret;
440
441 memset(&fl6, 0, sizeof fl6);
442 fl6.daddr = dst_in->sin6_addr;
443 fl6.saddr = src_in->sin6_addr;
444 fl6.flowi6_oif = addr->bound_dev_if;
445
446 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
447 if (ret < 0)
448 return ret;
449
450 rt = (struct rt6_info *)dst;
451 if (ipv6_addr_any(&src_in->sin6_addr)) {
452 src_in->sin6_family = AF_INET6;
453 src_in->sin6_addr = fl6.saddr;
454 }
455
456 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
457 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
458 * type accordingly.
459 */
460 if (rt->rt6i_flags & RTF_GATEWAY &&
461 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
462 addr->network = RDMA_NETWORK_IPV6;
463
464 addr->hoplimit = ip6_dst_hoplimit(dst);
465
466 *pdst = dst;
467 return 0;
468 }
469 #else
470 static int addr6_resolve(struct sockaddr_in6 *src_in,
471 const struct sockaddr_in6 *dst_in,
472 struct rdma_dev_addr *addr,
473 struct dst_entry **pdst)
474 {
475 return -EADDRNOTAVAIL;
476 }
477 #endif
478
479 static int addr_resolve_neigh(struct dst_entry *dst,
480 const struct sockaddr *dst_in,
481 struct rdma_dev_addr *addr,
482 u32 seq)
483 {
484 if (dst->dev->flags & IFF_LOOPBACK) {
485 int ret;
486
487 ret = rdma_translate_ip(dst_in, addr, NULL);
488 if (!ret)
489 memcpy(addr->dst_dev_addr, addr->src_dev_addr,
490 MAX_ADDR_LEN);
491
492 return ret;
493 }
494
495 /* If the device doesn't do ARP internally */
496 if (!(dst->dev->flags & IFF_NOARP))
497 return fetch_ha(dst, addr, dst_in, seq);
498
499 return rdma_copy_addr(addr, dst->dev, NULL);
500 }
501
502 static int addr_resolve(struct sockaddr *src_in,
503 const struct sockaddr *dst_in,
504 struct rdma_dev_addr *addr,
505 bool resolve_neigh,
506 u32 seq)
507 {
508 struct net_device *ndev;
509 struct dst_entry *dst;
510 int ret;
511
512 if (src_in->sa_family == AF_INET) {
513 struct rtable *rt = NULL;
514 const struct sockaddr_in *dst_in4 =
515 (const struct sockaddr_in *)dst_in;
516
517 ret = addr4_resolve((struct sockaddr_in *)src_in,
518 dst_in4, addr, &rt);
519 if (ret)
520 return ret;
521
522 if (resolve_neigh)
523 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
524
525 ndev = rt->dst.dev;
526 dev_hold(ndev);
527
528 ip_rt_put(rt);
529 } else {
530 const struct sockaddr_in6 *dst_in6 =
531 (const struct sockaddr_in6 *)dst_in;
532
533 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
534 dst_in6, addr,
535 &dst);
536 if (ret)
537 return ret;
538
539 if (resolve_neigh)
540 ret = addr_resolve_neigh(dst, dst_in, addr, seq);
541
542 ndev = dst->dev;
543 dev_hold(ndev);
544
545 dst_release(dst);
546 }
547
548 addr->bound_dev_if = ndev->ifindex;
549 addr->net = dev_net(ndev);
550 dev_put(ndev);
551
552 return ret;
553 }
554
555 static void process_req(struct work_struct *work)
556 {
557 struct addr_req *req, *temp_req;
558 struct sockaddr *src_in, *dst_in;
559 struct list_head done_list;
560
561 INIT_LIST_HEAD(&done_list);
562
563 mutex_lock(&lock);
564 list_for_each_entry_safe(req, temp_req, &req_list, list) {
565 if (req->status == -ENODATA) {
566 src_in = (struct sockaddr *) &req->src_addr;
567 dst_in = (struct sockaddr *) &req->dst_addr;
568 req->status = addr_resolve(src_in, dst_in, req->addr,
569 true, req->seq);
570 if (req->status && time_after_eq(jiffies, req->timeout))
571 req->status = -ETIMEDOUT;
572 else if (req->status == -ENODATA)
573 continue;
574 }
575 list_move_tail(&req->list, &done_list);
576 }
577
578 if (!list_empty(&req_list)) {
579 req = list_entry(req_list.next, struct addr_req, list);
580 set_timeout(req->timeout);
581 }
582 mutex_unlock(&lock);
583
584 list_for_each_entry_safe(req, temp_req, &done_list, list) {
585 list_del(&req->list);
586 req->callback(req->status, (struct sockaddr *) &req->src_addr,
587 req->addr, req->context);
588 put_client(req->client);
589 kfree(req);
590 }
591 }
592
593 int rdma_resolve_ip(struct rdma_addr_client *client,
594 struct sockaddr *src_addr, struct sockaddr *dst_addr,
595 struct rdma_dev_addr *addr, int timeout_ms,
596 void (*callback)(int status, struct sockaddr *src_addr,
597 struct rdma_dev_addr *addr, void *context),
598 void *context)
599 {
600 struct sockaddr *src_in, *dst_in;
601 struct addr_req *req;
602 int ret = 0;
603
604 req = kzalloc(sizeof *req, GFP_KERNEL);
605 if (!req)
606 return -ENOMEM;
607
608 src_in = (struct sockaddr *) &req->src_addr;
609 dst_in = (struct sockaddr *) &req->dst_addr;
610
611 if (src_addr) {
612 if (src_addr->sa_family != dst_addr->sa_family) {
613 ret = -EINVAL;
614 goto err;
615 }
616
617 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
618 } else {
619 src_in->sa_family = dst_addr->sa_family;
620 }
621
622 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
623 req->addr = addr;
624 req->callback = callback;
625 req->context = context;
626 req->client = client;
627 atomic_inc(&client->refcount);
628 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
629
630 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
631 switch (req->status) {
632 case 0:
633 req->timeout = jiffies;
634 queue_req(req);
635 break;
636 case -ENODATA:
637 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
638 queue_req(req);
639 break;
640 default:
641 ret = req->status;
642 atomic_dec(&client->refcount);
643 goto err;
644 }
645 return ret;
646 err:
647 kfree(req);
648 return ret;
649 }
650 EXPORT_SYMBOL(rdma_resolve_ip);
651
652 int rdma_resolve_ip_route(struct sockaddr *src_addr,
653 const struct sockaddr *dst_addr,
654 struct rdma_dev_addr *addr)
655 {
656 struct sockaddr_storage ssrc_addr = {};
657 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
658
659 if (src_addr) {
660 if (src_addr->sa_family != dst_addr->sa_family)
661 return -EINVAL;
662
663 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
664 } else {
665 src_in->sa_family = dst_addr->sa_family;
666 }
667
668 return addr_resolve(src_in, dst_addr, addr, false, 0);
669 }
670 EXPORT_SYMBOL(rdma_resolve_ip_route);
671
672 void rdma_addr_cancel(struct rdma_dev_addr *addr)
673 {
674 struct addr_req *req, *temp_req;
675
676 mutex_lock(&lock);
677 list_for_each_entry_safe(req, temp_req, &req_list, list) {
678 if (req->addr == addr) {
679 req->status = -ECANCELED;
680 req->timeout = jiffies;
681 list_move(&req->list, &req_list);
682 set_timeout(req->timeout);
683 break;
684 }
685 }
686 mutex_unlock(&lock);
687 }
688 EXPORT_SYMBOL(rdma_addr_cancel);
689
690 struct resolve_cb_context {
691 struct rdma_dev_addr *addr;
692 struct completion comp;
693 int status;
694 };
695
696 static void resolve_cb(int status, struct sockaddr *src_addr,
697 struct rdma_dev_addr *addr, void *context)
698 {
699 if (!status)
700 memcpy(((struct resolve_cb_context *)context)->addr,
701 addr, sizeof(struct rdma_dev_addr));
702 ((struct resolve_cb_context *)context)->status = status;
703 complete(&((struct resolve_cb_context *)context)->comp);
704 }
705
706 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
707 const union ib_gid *dgid,
708 u8 *dmac, u16 *vlan_id, int *if_index,
709 int *hoplimit)
710 {
711 int ret = 0;
712 struct rdma_dev_addr dev_addr;
713 struct resolve_cb_context ctx;
714 struct net_device *dev;
715
716 union {
717 struct sockaddr _sockaddr;
718 struct sockaddr_in _sockaddr_in;
719 struct sockaddr_in6 _sockaddr_in6;
720 } sgid_addr, dgid_addr;
721
722
723 rdma_gid2ip(&sgid_addr._sockaddr, sgid);
724 rdma_gid2ip(&dgid_addr._sockaddr, dgid);
725
726 memset(&dev_addr, 0, sizeof(dev_addr));
727 if (if_index)
728 dev_addr.bound_dev_if = *if_index;
729 dev_addr.net = &init_net;
730
731 ctx.addr = &dev_addr;
732 init_completion(&ctx.comp);
733 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
734 &dev_addr, 1000, resolve_cb, &ctx);
735 if (ret)
736 return ret;
737
738 wait_for_completion(&ctx.comp);
739
740 ret = ctx.status;
741 if (ret)
742 return ret;
743
744 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
745 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
746 if (!dev)
747 return -ENODEV;
748 if (if_index)
749 *if_index = dev_addr.bound_dev_if;
750 if (vlan_id)
751 *vlan_id = rdma_vlan_dev_vlan_id(dev);
752 if (hoplimit)
753 *hoplimit = dev_addr.hoplimit;
754 dev_put(dev);
755 return ret;
756 }
757 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
758
759 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
760 {
761 int ret = 0;
762 struct rdma_dev_addr dev_addr;
763 union {
764 struct sockaddr _sockaddr;
765 struct sockaddr_in _sockaddr_in;
766 struct sockaddr_in6 _sockaddr_in6;
767 } gid_addr;
768
769 rdma_gid2ip(&gid_addr._sockaddr, sgid);
770
771 memset(&dev_addr, 0, sizeof(dev_addr));
772 dev_addr.net = &init_net;
773 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
774 if (ret)
775 return ret;
776
777 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
778 return ret;
779 }
780 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
781
782 static int netevent_callback(struct notifier_block *self, unsigned long event,
783 void *ctx)
784 {
785 if (event == NETEVENT_NEIGH_UPDATE) {
786 struct neighbour *neigh = ctx;
787
788 if (neigh->nud_state & NUD_VALID) {
789 set_timeout(jiffies);
790 }
791 }
792 return 0;
793 }
794
795 static struct notifier_block nb = {
796 .notifier_call = netevent_callback
797 };
798
799 int addr_init(void)
800 {
801 addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0);
802 if (!addr_wq)
803 return -ENOMEM;
804
805 register_netevent_notifier(&nb);
806 rdma_addr_register_client(&self);
807
808 return 0;
809 }
810
811 void addr_cleanup(void)
812 {
813 rdma_addr_unregister_client(&self);
814 unregister_netevent_notifier(&nb);
815 destroy_workqueue(addr_wq);
816 }