]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/infiniband/core/addr.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-eoan-kernel.git] / drivers / infiniband / core / addr.c
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/ipv6_stubs.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_cache.h>
49 #include <rdma/ib_sa.h>
50 #include <rdma/ib.h>
51 #include <rdma/rdma_netlink.h>
52 #include <net/netlink.h>
53
54 #include "core_priv.h"
55
56 struct addr_req {
57 struct list_head list;
58 struct sockaddr_storage src_addr;
59 struct sockaddr_storage dst_addr;
60 struct rdma_dev_addr *addr;
61 void *context;
62 void (*callback)(int status, struct sockaddr *src_addr,
63 struct rdma_dev_addr *addr, void *context);
64 unsigned long timeout;
65 struct delayed_work work;
66 bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */
67 int status;
68 u32 seq;
69 };
70
71 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
72
73 static DEFINE_SPINLOCK(lock);
74 static LIST_HEAD(req_list);
75 static struct workqueue_struct *addr_wq;
76
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 .len = sizeof(struct rdma_nla_ls_gid)},
80 };
81
82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
83 {
84 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
85 int ret;
86
87 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
88 return false;
89
90 ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
91 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
92 if (ret)
93 return false;
94
95 return true;
96 }
97
98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
99 {
100 const struct nlattr *head, *curr;
101 union ib_gid gid;
102 struct addr_req *req;
103 int len, rem;
104 int found = 0;
105
106 head = (const struct nlattr *)nlmsg_data(nlh);
107 len = nlmsg_len(nlh);
108
109 nla_for_each_attr(curr, head, len, rem) {
110 if (curr->nla_type == LS_NLA_TYPE_DGID)
111 memcpy(&gid, nla_data(curr), nla_len(curr));
112 }
113
114 spin_lock_bh(&lock);
115 list_for_each_entry(req, &req_list, list) {
116 if (nlh->nlmsg_seq != req->seq)
117 continue;
118 /* We set the DGID part, the rest was set earlier */
119 rdma_addr_set_dgid(req->addr, &gid);
120 req->status = 0;
121 found = 1;
122 break;
123 }
124 spin_unlock_bh(&lock);
125
126 if (!found)
127 pr_info("Couldn't find request waiting for DGID: %pI6\n",
128 &gid);
129 }
130
131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
132 struct nlmsghdr *nlh,
133 struct netlink_ext_ack *extack)
134 {
135 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
136 !(NETLINK_CB(skb).sk))
137 return -EPERM;
138
139 if (ib_nl_is_good_ip_resp(nlh))
140 ib_nl_process_good_ip_rsep(nlh);
141
142 return skb->len;
143 }
144
145 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
146 const void *daddr,
147 u32 seq, u16 family)
148 {
149 struct sk_buff *skb = NULL;
150 struct nlmsghdr *nlh;
151 struct rdma_ls_ip_resolve_header *header;
152 void *data;
153 size_t size;
154 int attrtype;
155 int len;
156
157 if (family == AF_INET) {
158 size = sizeof(struct in_addr);
159 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
160 } else {
161 size = sizeof(struct in6_addr);
162 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
163 }
164
165 len = nla_total_size(sizeof(size));
166 len += NLMSG_ALIGN(sizeof(*header));
167
168 skb = nlmsg_new(len, GFP_KERNEL);
169 if (!skb)
170 return -ENOMEM;
171
172 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
173 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
174 if (!data) {
175 nlmsg_free(skb);
176 return -ENODATA;
177 }
178
179 /* Construct the family header first */
180 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
181 header->ifindex = dev_addr->bound_dev_if;
182 nla_put(skb, attrtype, size, daddr);
183
184 /* Repair the nlmsg header length */
185 nlmsg_end(skb, nlh);
186 rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
187
188 /* Make the request retry, so when we get the response from userspace
189 * we will have something.
190 */
191 return -ENODATA;
192 }
193
194 int rdma_addr_size(const struct sockaddr *addr)
195 {
196 switch (addr->sa_family) {
197 case AF_INET:
198 return sizeof(struct sockaddr_in);
199 case AF_INET6:
200 return sizeof(struct sockaddr_in6);
201 case AF_IB:
202 return sizeof(struct sockaddr_ib);
203 default:
204 return 0;
205 }
206 }
207 EXPORT_SYMBOL(rdma_addr_size);
208
209 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
210 {
211 int ret = rdma_addr_size((struct sockaddr *) addr);
212
213 return ret <= sizeof(*addr) ? ret : 0;
214 }
215 EXPORT_SYMBOL(rdma_addr_size_in6);
216
217 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
218 {
219 int ret = rdma_addr_size((struct sockaddr *) addr);
220
221 return ret <= sizeof(*addr) ? ret : 0;
222 }
223 EXPORT_SYMBOL(rdma_addr_size_kss);
224
225 /**
226 * rdma_copy_src_l2_addr - Copy netdevice source addresses
227 * @dev_addr: Destination address pointer where to copy the addresses
228 * @dev: Netdevice whose source addresses to copy
229 *
230 * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
231 * This includes unicast address, broadcast address, device type and
232 * interface index.
233 */
234 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
235 const struct net_device *dev)
236 {
237 dev_addr->dev_type = dev->type;
238 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
239 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
240 dev_addr->bound_dev_if = dev->ifindex;
241 }
242 EXPORT_SYMBOL(rdma_copy_src_l2_addr);
243
244 static struct net_device *
245 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
246 {
247 struct net_device *dev = NULL;
248 int ret = -EADDRNOTAVAIL;
249
250 switch (src_in->sa_family) {
251 case AF_INET:
252 dev = __ip_dev_find(net,
253 ((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
254 false);
255 if (dev)
256 ret = 0;
257 break;
258 #if IS_ENABLED(CONFIG_IPV6)
259 case AF_INET6:
260 for_each_netdev_rcu(net, dev) {
261 if (ipv6_chk_addr(net,
262 &((const struct sockaddr_in6 *)src_in)->sin6_addr,
263 dev, 1)) {
264 ret = 0;
265 break;
266 }
267 }
268 break;
269 #endif
270 }
271 return ret ? ERR_PTR(ret) : dev;
272 }
273
274 int rdma_translate_ip(const struct sockaddr *addr,
275 struct rdma_dev_addr *dev_addr)
276 {
277 struct net_device *dev;
278
279 if (dev_addr->bound_dev_if) {
280 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
281 if (!dev)
282 return -ENODEV;
283 rdma_copy_src_l2_addr(dev_addr, dev);
284 dev_put(dev);
285 return 0;
286 }
287
288 rcu_read_lock();
289 dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
290 if (!IS_ERR(dev))
291 rdma_copy_src_l2_addr(dev_addr, dev);
292 rcu_read_unlock();
293 return PTR_ERR_OR_ZERO(dev);
294 }
295 EXPORT_SYMBOL(rdma_translate_ip);
296
297 static void set_timeout(struct addr_req *req, unsigned long time)
298 {
299 unsigned long delay;
300
301 delay = time - jiffies;
302 if ((long)delay < 0)
303 delay = 0;
304
305 mod_delayed_work(addr_wq, &req->work, delay);
306 }
307
308 static void queue_req(struct addr_req *req)
309 {
310 spin_lock_bh(&lock);
311 list_add_tail(&req->list, &req_list);
312 set_timeout(req, req->timeout);
313 spin_unlock_bh(&lock);
314 }
315
316 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
317 const void *daddr, u32 seq, u16 family)
318 {
319 if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
320 return -EADDRNOTAVAIL;
321
322 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
323 }
324
325 static int dst_fetch_ha(const struct dst_entry *dst,
326 struct rdma_dev_addr *dev_addr,
327 const void *daddr)
328 {
329 struct neighbour *n;
330 int ret = 0;
331
332 n = dst_neigh_lookup(dst, daddr);
333 if (!n)
334 return -ENODATA;
335
336 if (!(n->nud_state & NUD_VALID)) {
337 neigh_event_send(n, NULL);
338 ret = -ENODATA;
339 } else {
340 memcpy(dev_addr->dst_dev_addr, n->ha, MAX_ADDR_LEN);
341 }
342
343 neigh_release(n);
344
345 return ret;
346 }
347
348 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
349 {
350 struct rtable *rt;
351 struct rt6_info *rt6;
352
353 if (family == AF_INET) {
354 rt = container_of(dst, struct rtable, dst);
355 return rt->rt_gw_family == AF_INET;
356 }
357
358 rt6 = container_of(dst, struct rt6_info, dst);
359 return rt6->rt6i_flags & RTF_GATEWAY;
360 }
361
362 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
363 const struct sockaddr *dst_in, u32 seq)
364 {
365 const struct sockaddr_in *dst_in4 =
366 (const struct sockaddr_in *)dst_in;
367 const struct sockaddr_in6 *dst_in6 =
368 (const struct sockaddr_in6 *)dst_in;
369 const void *daddr = (dst_in->sa_family == AF_INET) ?
370 (const void *)&dst_in4->sin_addr.s_addr :
371 (const void *)&dst_in6->sin6_addr;
372 sa_family_t family = dst_in->sa_family;
373
374 /* If we have a gateway in IB mode then it must be an IB network */
375 if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
376 return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
377 else
378 return dst_fetch_ha(dst, dev_addr, daddr);
379 }
380
381 static int addr4_resolve(struct sockaddr *src_sock,
382 const struct sockaddr *dst_sock,
383 struct rdma_dev_addr *addr,
384 struct rtable **prt)
385 {
386 struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
387 const struct sockaddr_in *dst_in =
388 (const struct sockaddr_in *)dst_sock;
389
390 __be32 src_ip = src_in->sin_addr.s_addr;
391 __be32 dst_ip = dst_in->sin_addr.s_addr;
392 struct rtable *rt;
393 struct flowi4 fl4;
394 int ret;
395
396 memset(&fl4, 0, sizeof(fl4));
397 fl4.daddr = dst_ip;
398 fl4.saddr = src_ip;
399 fl4.flowi4_oif = addr->bound_dev_if;
400 rt = ip_route_output_key(addr->net, &fl4);
401 ret = PTR_ERR_OR_ZERO(rt);
402 if (ret)
403 return ret;
404
405 src_in->sin_addr.s_addr = fl4.saddr;
406
407 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
408
409 *prt = rt;
410 return 0;
411 }
412
413 #if IS_ENABLED(CONFIG_IPV6)
414 static int addr6_resolve(struct sockaddr *src_sock,
415 const struct sockaddr *dst_sock,
416 struct rdma_dev_addr *addr,
417 struct dst_entry **pdst)
418 {
419 struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
420 const struct sockaddr_in6 *dst_in =
421 (const struct sockaddr_in6 *)dst_sock;
422 struct flowi6 fl6;
423 struct dst_entry *dst;
424 int ret;
425
426 memset(&fl6, 0, sizeof fl6);
427 fl6.daddr = dst_in->sin6_addr;
428 fl6.saddr = src_in->sin6_addr;
429 fl6.flowi6_oif = addr->bound_dev_if;
430
431 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
432 if (ret < 0)
433 return ret;
434
435 if (ipv6_addr_any(&src_in->sin6_addr))
436 src_in->sin6_addr = fl6.saddr;
437
438 addr->hoplimit = ip6_dst_hoplimit(dst);
439
440 *pdst = dst;
441 return 0;
442 }
443 #else
444 static int addr6_resolve(struct sockaddr *src_sock,
445 const struct sockaddr *dst_sock,
446 struct rdma_dev_addr *addr,
447 struct dst_entry **pdst)
448 {
449 return -EADDRNOTAVAIL;
450 }
451 #endif
452
453 static int addr_resolve_neigh(const struct dst_entry *dst,
454 const struct sockaddr *dst_in,
455 struct rdma_dev_addr *addr,
456 unsigned int ndev_flags,
457 u32 seq)
458 {
459 int ret = 0;
460
461 if (ndev_flags & IFF_LOOPBACK) {
462 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
463 } else {
464 if (!(ndev_flags & IFF_NOARP)) {
465 /* If the device doesn't do ARP internally */
466 ret = fetch_ha(dst, addr, dst_in, seq);
467 }
468 }
469 return ret;
470 }
471
472 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
473 const struct sockaddr *dst_in,
474 const struct dst_entry *dst,
475 const struct net_device *ndev)
476 {
477 int ret = 0;
478
479 if (dst->dev->flags & IFF_LOOPBACK)
480 ret = rdma_translate_ip(dst_in, dev_addr);
481 else
482 rdma_copy_src_l2_addr(dev_addr, dst->dev);
483
484 /*
485 * If there's a gateway and type of device not ARPHRD_INFINIBAND,
486 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
487 * network type accordingly.
488 */
489 if (has_gateway(dst, dst_in->sa_family) &&
490 ndev->type != ARPHRD_INFINIBAND)
491 dev_addr->network = dst_in->sa_family == AF_INET ?
492 RDMA_NETWORK_IPV4 :
493 RDMA_NETWORK_IPV6;
494 else
495 dev_addr->network = RDMA_NETWORK_IB;
496
497 return ret;
498 }
499
500 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
501 unsigned int *ndev_flags,
502 const struct sockaddr *dst_in,
503 const struct dst_entry *dst)
504 {
505 struct net_device *ndev = READ_ONCE(dst->dev);
506
507 *ndev_flags = ndev->flags;
508 /* A physical device must be the RDMA device to use */
509 if (ndev->flags & IFF_LOOPBACK) {
510 /*
511 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
512 * loopback IP address. So if route is resolved to loopback
513 * interface, translate that to a real ndev based on non
514 * loopback IP address.
515 */
516 ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
517 if (IS_ERR(ndev))
518 return -ENODEV;
519 }
520
521 return copy_src_l2_addr(dev_addr, dst_in, dst, ndev);
522 }
523
524 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
525 {
526 struct net_device *ndev;
527
528 ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
529 if (IS_ERR(ndev))
530 return PTR_ERR(ndev);
531
532 /*
533 * Since we are holding the rcu, reading net and ifindex
534 * are safe without any additional reference; because
535 * change_net_namespace() in net/core/dev.c does rcu sync
536 * after it changes the state to IFF_DOWN and before
537 * updating netdev fields {net, ifindex}.
538 */
539 addr->net = dev_net(ndev);
540 addr->bound_dev_if = ndev->ifindex;
541 return 0;
542 }
543
544 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
545 {
546 addr->net = &init_net;
547 addr->bound_dev_if = 0;
548 }
549
550 static int addr_resolve(struct sockaddr *src_in,
551 const struct sockaddr *dst_in,
552 struct rdma_dev_addr *addr,
553 bool resolve_neigh,
554 bool resolve_by_gid_attr,
555 u32 seq)
556 {
557 struct dst_entry *dst = NULL;
558 unsigned int ndev_flags = 0;
559 struct rtable *rt = NULL;
560 int ret;
561
562 if (!addr->net) {
563 pr_warn_ratelimited("%s: missing namespace\n", __func__);
564 return -EINVAL;
565 }
566
567 rcu_read_lock();
568 if (resolve_by_gid_attr) {
569 if (!addr->sgid_attr) {
570 rcu_read_unlock();
571 pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
572 return -EINVAL;
573 }
574 /*
575 * If the request is for a specific gid attribute of the
576 * rdma_dev_addr, derive net from the netdevice of the
577 * GID attribute.
578 */
579 ret = set_addr_netns_by_gid_rcu(addr);
580 if (ret) {
581 rcu_read_unlock();
582 return ret;
583 }
584 }
585 if (src_in->sa_family == AF_INET) {
586 ret = addr4_resolve(src_in, dst_in, addr, &rt);
587 dst = &rt->dst;
588 } else {
589 ret = addr6_resolve(src_in, dst_in, addr, &dst);
590 }
591 if (ret) {
592 rcu_read_unlock();
593 goto done;
594 }
595 ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst);
596 rcu_read_unlock();
597
598 /*
599 * Resolve neighbor destination address if requested and
600 * only if src addr translation didn't fail.
601 */
602 if (!ret && resolve_neigh)
603 ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq);
604
605 if (src_in->sa_family == AF_INET)
606 ip_rt_put(rt);
607 else
608 dst_release(dst);
609 done:
610 /*
611 * Clear the addr net to go back to its original state, only if it was
612 * derived from GID attribute in this context.
613 */
614 if (resolve_by_gid_attr)
615 rdma_addr_set_net_defaults(addr);
616 return ret;
617 }
618
619 static void process_one_req(struct work_struct *_work)
620 {
621 struct addr_req *req;
622 struct sockaddr *src_in, *dst_in;
623
624 req = container_of(_work, struct addr_req, work.work);
625
626 if (req->status == -ENODATA) {
627 src_in = (struct sockaddr *)&req->src_addr;
628 dst_in = (struct sockaddr *)&req->dst_addr;
629 req->status = addr_resolve(src_in, dst_in, req->addr,
630 true, req->resolve_by_gid_attr,
631 req->seq);
632 if (req->status && time_after_eq(jiffies, req->timeout)) {
633 req->status = -ETIMEDOUT;
634 } else if (req->status == -ENODATA) {
635 /* requeue the work for retrying again */
636 spin_lock_bh(&lock);
637 if (!list_empty(&req->list))
638 set_timeout(req, req->timeout);
639 spin_unlock_bh(&lock);
640 return;
641 }
642 }
643
644 req->callback(req->status, (struct sockaddr *)&req->src_addr,
645 req->addr, req->context);
646 req->callback = NULL;
647
648 spin_lock_bh(&lock);
649 if (!list_empty(&req->list)) {
650 /*
651 * Although the work will normally have been canceled by the
652 * workqueue, it can still be requeued as long as it is on the
653 * req_list.
654 */
655 cancel_delayed_work(&req->work);
656 list_del_init(&req->list);
657 kfree(req);
658 }
659 spin_unlock_bh(&lock);
660 }
661
662 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
663 struct rdma_dev_addr *addr, unsigned long timeout_ms,
664 void (*callback)(int status, struct sockaddr *src_addr,
665 struct rdma_dev_addr *addr, void *context),
666 bool resolve_by_gid_attr, void *context)
667 {
668 struct sockaddr *src_in, *dst_in;
669 struct addr_req *req;
670 int ret = 0;
671
672 req = kzalloc(sizeof *req, GFP_KERNEL);
673 if (!req)
674 return -ENOMEM;
675
676 src_in = (struct sockaddr *) &req->src_addr;
677 dst_in = (struct sockaddr *) &req->dst_addr;
678
679 if (src_addr) {
680 if (src_addr->sa_family != dst_addr->sa_family) {
681 ret = -EINVAL;
682 goto err;
683 }
684
685 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
686 } else {
687 src_in->sa_family = dst_addr->sa_family;
688 }
689
690 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
691 req->addr = addr;
692 req->callback = callback;
693 req->context = context;
694 req->resolve_by_gid_attr = resolve_by_gid_attr;
695 INIT_DELAYED_WORK(&req->work, process_one_req);
696 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
697
698 req->status = addr_resolve(src_in, dst_in, addr, true,
699 req->resolve_by_gid_attr, req->seq);
700 switch (req->status) {
701 case 0:
702 req->timeout = jiffies;
703 queue_req(req);
704 break;
705 case -ENODATA:
706 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
707 queue_req(req);
708 break;
709 default:
710 ret = req->status;
711 goto err;
712 }
713 return ret;
714 err:
715 kfree(req);
716 return ret;
717 }
718 EXPORT_SYMBOL(rdma_resolve_ip);
719
720 int roce_resolve_route_from_path(struct sa_path_rec *rec,
721 const struct ib_gid_attr *attr)
722 {
723 union {
724 struct sockaddr _sockaddr;
725 struct sockaddr_in _sockaddr_in;
726 struct sockaddr_in6 _sockaddr_in6;
727 } sgid, dgid;
728 struct rdma_dev_addr dev_addr = {};
729 int ret;
730
731 if (rec->roce.route_resolved)
732 return 0;
733
734 rdma_gid2ip(&sgid._sockaddr, &rec->sgid);
735 rdma_gid2ip(&dgid._sockaddr, &rec->dgid);
736
737 if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
738 return -EINVAL;
739
740 if (!attr || !attr->ndev)
741 return -EINVAL;
742
743 dev_addr.net = &init_net;
744 dev_addr.sgid_attr = attr;
745
746 ret = addr_resolve(&sgid._sockaddr, &dgid._sockaddr,
747 &dev_addr, false, true, 0);
748 if (ret)
749 return ret;
750
751 if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
752 dev_addr.network == RDMA_NETWORK_IPV6) &&
753 rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
754 return -EINVAL;
755
756 rec->roce.route_resolved = true;
757 return 0;
758 }
759
760 /**
761 * rdma_addr_cancel - Cancel resolve ip request
762 * @addr: Pointer to address structure given previously
763 * during rdma_resolve_ip().
764 * rdma_addr_cancel() is synchronous function which cancels any pending
765 * request if there is any.
766 */
767 void rdma_addr_cancel(struct rdma_dev_addr *addr)
768 {
769 struct addr_req *req, *temp_req;
770 struct addr_req *found = NULL;
771
772 spin_lock_bh(&lock);
773 list_for_each_entry_safe(req, temp_req, &req_list, list) {
774 if (req->addr == addr) {
775 /*
776 * Removing from the list means we take ownership of
777 * the req
778 */
779 list_del_init(&req->list);
780 found = req;
781 break;
782 }
783 }
784 spin_unlock_bh(&lock);
785
786 if (!found)
787 return;
788
789 /*
790 * sync canceling the work after removing it from the req_list
791 * guarentees no work is running and none will be started.
792 */
793 cancel_delayed_work_sync(&found->work);
794 kfree(found);
795 }
796 EXPORT_SYMBOL(rdma_addr_cancel);
797
798 struct resolve_cb_context {
799 struct completion comp;
800 int status;
801 };
802
803 static void resolve_cb(int status, struct sockaddr *src_addr,
804 struct rdma_dev_addr *addr, void *context)
805 {
806 ((struct resolve_cb_context *)context)->status = status;
807 complete(&((struct resolve_cb_context *)context)->comp);
808 }
809
810 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
811 const union ib_gid *dgid,
812 u8 *dmac, const struct ib_gid_attr *sgid_attr,
813 int *hoplimit)
814 {
815 struct rdma_dev_addr dev_addr;
816 struct resolve_cb_context ctx;
817 union {
818 struct sockaddr _sockaddr;
819 struct sockaddr_in _sockaddr_in;
820 struct sockaddr_in6 _sockaddr_in6;
821 } sgid_addr, dgid_addr;
822 int ret;
823
824 rdma_gid2ip(&sgid_addr._sockaddr, sgid);
825 rdma_gid2ip(&dgid_addr._sockaddr, dgid);
826
827 memset(&dev_addr, 0, sizeof(dev_addr));
828 dev_addr.net = &init_net;
829 dev_addr.sgid_attr = sgid_attr;
830
831 init_completion(&ctx.comp);
832 ret = rdma_resolve_ip(&sgid_addr._sockaddr, &dgid_addr._sockaddr,
833 &dev_addr, 1000, resolve_cb, true, &ctx);
834 if (ret)
835 return ret;
836
837 wait_for_completion(&ctx.comp);
838
839 ret = ctx.status;
840 if (ret)
841 return ret;
842
843 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
844 *hoplimit = dev_addr.hoplimit;
845 return 0;
846 }
847
848 static int netevent_callback(struct notifier_block *self, unsigned long event,
849 void *ctx)
850 {
851 struct addr_req *req;
852
853 if (event == NETEVENT_NEIGH_UPDATE) {
854 struct neighbour *neigh = ctx;
855
856 if (neigh->nud_state & NUD_VALID) {
857 spin_lock_bh(&lock);
858 list_for_each_entry(req, &req_list, list)
859 set_timeout(req, jiffies);
860 spin_unlock_bh(&lock);
861 }
862 }
863 return 0;
864 }
865
866 static struct notifier_block nb = {
867 .notifier_call = netevent_callback
868 };
869
870 int addr_init(void)
871 {
872 addr_wq = alloc_ordered_workqueue("ib_addr", 0);
873 if (!addr_wq)
874 return -ENOMEM;
875
876 register_netevent_notifier(&nb);
877
878 return 0;
879 }
880
881 void addr_cleanup(void)
882 {
883 unregister_netevent_notifier(&nb);
884 destroy_workqueue(addr_wq);
885 WARN_ON(!list_empty(&req_list));
886 }