]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/core/addr.c
networking: make skb_put & friends return void pointers
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / core / addr.c
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51
52 #include "core_priv.h"
53
54 struct addr_req {
55 struct list_head list;
56 struct sockaddr_storage src_addr;
57 struct sockaddr_storage dst_addr;
58 struct rdma_dev_addr *addr;
59 struct rdma_addr_client *client;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 int status;
65 u32 seq;
66 };
67
68 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
69
70 static void process_req(struct work_struct *work);
71
72 static DEFINE_MUTEX(lock);
73 static LIST_HEAD(req_list);
74 static DECLARE_DELAYED_WORK(work, process_req);
75 static struct workqueue_struct *addr_wq;
76
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 .len = sizeof(struct rdma_nla_ls_gid)},
80 };
81
82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
83 {
84 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
85 int ret;
86
87 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
88 return false;
89
90 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
91 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
92 if (ret)
93 return false;
94
95 return true;
96 }
97
98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
99 {
100 const struct nlattr *head, *curr;
101 union ib_gid gid;
102 struct addr_req *req;
103 int len, rem;
104 int found = 0;
105
106 head = (const struct nlattr *)nlmsg_data(nlh);
107 len = nlmsg_len(nlh);
108
109 nla_for_each_attr(curr, head, len, rem) {
110 if (curr->nla_type == LS_NLA_TYPE_DGID)
111 memcpy(&gid, nla_data(curr), nla_len(curr));
112 }
113
114 mutex_lock(&lock);
115 list_for_each_entry(req, &req_list, list) {
116 if (nlh->nlmsg_seq != req->seq)
117 continue;
118 /* We set the DGID part, the rest was set earlier */
119 rdma_addr_set_dgid(req->addr, &gid);
120 req->status = 0;
121 found = 1;
122 break;
123 }
124 mutex_unlock(&lock);
125
126 if (!found)
127 pr_info("Couldn't find request waiting for DGID: %pI6\n",
128 &gid);
129 }
130
131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
132 struct netlink_callback *cb)
133 {
134 const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
135
136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 !(NETLINK_CB(skb).sk) ||
138 !netlink_capable(skb, CAP_NET_ADMIN))
139 return -EPERM;
140
141 if (ib_nl_is_good_ip_resp(nlh))
142 ib_nl_process_good_ip_rsep(nlh);
143
144 return skb->len;
145 }
146
147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
148 const void *daddr,
149 u32 seq, u16 family)
150 {
151 struct sk_buff *skb = NULL;
152 struct nlmsghdr *nlh;
153 struct rdma_ls_ip_resolve_header *header;
154 void *data;
155 size_t size;
156 int attrtype;
157 int len;
158
159 if (family == AF_INET) {
160 size = sizeof(struct in_addr);
161 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
162 } else {
163 size = sizeof(struct in6_addr);
164 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
165 }
166
167 len = nla_total_size(sizeof(size));
168 len += NLMSG_ALIGN(sizeof(*header));
169
170 skb = nlmsg_new(len, GFP_KERNEL);
171 if (!skb)
172 return -ENOMEM;
173
174 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
175 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
176 if (!data) {
177 nlmsg_free(skb);
178 return -ENODATA;
179 }
180
181 /* Construct the family header first */
182 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
183 header->ifindex = dev_addr->bound_dev_if;
184 nla_put(skb, attrtype, size, daddr);
185
186 /* Repair the nlmsg header length */
187 nlmsg_end(skb, nlh);
188 ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
189
190 /* Make the request retry, so when we get the response from userspace
191 * we will have something.
192 */
193 return -ENODATA;
194 }
195
196 int rdma_addr_size(struct sockaddr *addr)
197 {
198 switch (addr->sa_family) {
199 case AF_INET:
200 return sizeof(struct sockaddr_in);
201 case AF_INET6:
202 return sizeof(struct sockaddr_in6);
203 case AF_IB:
204 return sizeof(struct sockaddr_ib);
205 default:
206 return 0;
207 }
208 }
209 EXPORT_SYMBOL(rdma_addr_size);
210
211 static struct rdma_addr_client self;
212
213 void rdma_addr_register_client(struct rdma_addr_client *client)
214 {
215 atomic_set(&client->refcount, 1);
216 init_completion(&client->comp);
217 }
218 EXPORT_SYMBOL(rdma_addr_register_client);
219
220 static inline void put_client(struct rdma_addr_client *client)
221 {
222 if (atomic_dec_and_test(&client->refcount))
223 complete(&client->comp);
224 }
225
226 void rdma_addr_unregister_client(struct rdma_addr_client *client)
227 {
228 put_client(client);
229 wait_for_completion(&client->comp);
230 }
231 EXPORT_SYMBOL(rdma_addr_unregister_client);
232
233 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
234 const unsigned char *dst_dev_addr)
235 {
236 dev_addr->dev_type = dev->type;
237 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
238 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
239 if (dst_dev_addr)
240 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
241 dev_addr->bound_dev_if = dev->ifindex;
242 return 0;
243 }
244 EXPORT_SYMBOL(rdma_copy_addr);
245
246 int rdma_translate_ip(const struct sockaddr *addr,
247 struct rdma_dev_addr *dev_addr,
248 u16 *vlan_id)
249 {
250 struct net_device *dev;
251 int ret = -EADDRNOTAVAIL;
252
253 if (dev_addr->bound_dev_if) {
254 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
255 if (!dev)
256 return -ENODEV;
257 ret = rdma_copy_addr(dev_addr, dev, NULL);
258 dev_put(dev);
259 return ret;
260 }
261
262 switch (addr->sa_family) {
263 case AF_INET:
264 dev = ip_dev_find(dev_addr->net,
265 ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
266
267 if (!dev)
268 return ret;
269
270 ret = rdma_copy_addr(dev_addr, dev, NULL);
271 if (vlan_id)
272 *vlan_id = rdma_vlan_dev_vlan_id(dev);
273 dev_put(dev);
274 break;
275 #if IS_ENABLED(CONFIG_IPV6)
276 case AF_INET6:
277 rcu_read_lock();
278 for_each_netdev_rcu(dev_addr->net, dev) {
279 if (ipv6_chk_addr(dev_addr->net,
280 &((const struct sockaddr_in6 *)addr)->sin6_addr,
281 dev, 1)) {
282 ret = rdma_copy_addr(dev_addr, dev, NULL);
283 if (vlan_id)
284 *vlan_id = rdma_vlan_dev_vlan_id(dev);
285 break;
286 }
287 }
288 rcu_read_unlock();
289 break;
290 #endif
291 }
292 return ret;
293 }
294 EXPORT_SYMBOL(rdma_translate_ip);
295
296 static void set_timeout(unsigned long time)
297 {
298 unsigned long delay;
299
300 delay = time - jiffies;
301 if ((long)delay < 0)
302 delay = 0;
303
304 mod_delayed_work(addr_wq, &work, delay);
305 }
306
307 static void queue_req(struct addr_req *req)
308 {
309 struct addr_req *temp_req;
310
311 mutex_lock(&lock);
312 list_for_each_entry_reverse(temp_req, &req_list, list) {
313 if (time_after_eq(req->timeout, temp_req->timeout))
314 break;
315 }
316
317 list_add(&req->list, &temp_req->list);
318
319 if (req_list.next == &req->list)
320 set_timeout(req->timeout);
321 mutex_unlock(&lock);
322 }
323
324 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
325 const void *daddr, u32 seq, u16 family)
326 {
327 if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
328 return -EADDRNOTAVAIL;
329
330 /* We fill in what we can, the response will fill the rest */
331 rdma_copy_addr(dev_addr, dst->dev, NULL);
332 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
333 }
334
335 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
336 const void *daddr)
337 {
338 struct neighbour *n;
339 int ret;
340
341 n = dst_neigh_lookup(dst, daddr);
342
343 rcu_read_lock();
344 if (!n || !(n->nud_state & NUD_VALID)) {
345 if (n)
346 neigh_event_send(n, NULL);
347 ret = -ENODATA;
348 } else {
349 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
350 }
351 rcu_read_unlock();
352
353 if (n)
354 neigh_release(n);
355
356 return ret;
357 }
358
359 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
360 {
361 struct rtable *rt;
362 struct rt6_info *rt6;
363
364 if (family == AF_INET) {
365 rt = container_of(dst, struct rtable, dst);
366 return rt->rt_uses_gateway;
367 }
368
369 rt6 = container_of(dst, struct rt6_info, dst);
370 return rt6->rt6i_flags & RTF_GATEWAY;
371 }
372
373 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
374 const struct sockaddr *dst_in, u32 seq)
375 {
376 const struct sockaddr_in *dst_in4 =
377 (const struct sockaddr_in *)dst_in;
378 const struct sockaddr_in6 *dst_in6 =
379 (const struct sockaddr_in6 *)dst_in;
380 const void *daddr = (dst_in->sa_family == AF_INET) ?
381 (const void *)&dst_in4->sin_addr.s_addr :
382 (const void *)&dst_in6->sin6_addr;
383 sa_family_t family = dst_in->sa_family;
384
385 /* Gateway + ARPHRD_INFINIBAND -> IB router */
386 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
387 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
388 else
389 return dst_fetch_ha(dst, dev_addr, daddr);
390 }
391
392 static int addr4_resolve(struct sockaddr_in *src_in,
393 const struct sockaddr_in *dst_in,
394 struct rdma_dev_addr *addr,
395 struct rtable **prt)
396 {
397 __be32 src_ip = src_in->sin_addr.s_addr;
398 __be32 dst_ip = dst_in->sin_addr.s_addr;
399 struct rtable *rt;
400 struct flowi4 fl4;
401 int ret;
402
403 memset(&fl4, 0, sizeof(fl4));
404 fl4.daddr = dst_ip;
405 fl4.saddr = src_ip;
406 fl4.flowi4_oif = addr->bound_dev_if;
407 rt = ip_route_output_key(addr->net, &fl4);
408 if (IS_ERR(rt)) {
409 ret = PTR_ERR(rt);
410 goto out;
411 }
412 src_in->sin_family = AF_INET;
413 src_in->sin_addr.s_addr = fl4.saddr;
414
415 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
416 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
417 * type accordingly.
418 */
419 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
420 addr->network = RDMA_NETWORK_IPV4;
421
422 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
423
424 *prt = rt;
425 return 0;
426 out:
427 return ret;
428 }
429
430 #if IS_ENABLED(CONFIG_IPV6)
431 static int addr6_resolve(struct sockaddr_in6 *src_in,
432 const struct sockaddr_in6 *dst_in,
433 struct rdma_dev_addr *addr,
434 struct dst_entry **pdst)
435 {
436 struct flowi6 fl6;
437 struct dst_entry *dst;
438 struct rt6_info *rt;
439 int ret;
440
441 memset(&fl6, 0, sizeof fl6);
442 fl6.daddr = dst_in->sin6_addr;
443 fl6.saddr = src_in->sin6_addr;
444 fl6.flowi6_oif = addr->bound_dev_if;
445
446 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
447 if (ret < 0)
448 return ret;
449
450 rt = (struct rt6_info *)dst;
451 if (ipv6_addr_any(&fl6.saddr)) {
452 ret = ipv6_dev_get_saddr(addr->net, ip6_dst_idev(dst)->dev,
453 &fl6.daddr, 0, &fl6.saddr);
454 if (ret)
455 goto put;
456
457 src_in->sin6_family = AF_INET6;
458 src_in->sin6_addr = fl6.saddr;
459 }
460
461 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
462 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
463 * type accordingly.
464 */
465 if (rt->rt6i_flags & RTF_GATEWAY &&
466 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
467 addr->network = RDMA_NETWORK_IPV6;
468
469 addr->hoplimit = ip6_dst_hoplimit(dst);
470
471 *pdst = dst;
472 return 0;
473 put:
474 dst_release(dst);
475 return ret;
476 }
477 #else
478 static int addr6_resolve(struct sockaddr_in6 *src_in,
479 const struct sockaddr_in6 *dst_in,
480 struct rdma_dev_addr *addr,
481 struct dst_entry **pdst)
482 {
483 return -EADDRNOTAVAIL;
484 }
485 #endif
486
487 static int addr_resolve_neigh(struct dst_entry *dst,
488 const struct sockaddr *dst_in,
489 struct rdma_dev_addr *addr,
490 u32 seq)
491 {
492 if (dst->dev->flags & IFF_LOOPBACK) {
493 int ret;
494
495 ret = rdma_translate_ip(dst_in, addr, NULL);
496 if (!ret)
497 memcpy(addr->dst_dev_addr, addr->src_dev_addr,
498 MAX_ADDR_LEN);
499
500 return ret;
501 }
502
503 /* If the device doesn't do ARP internally */
504 if (!(dst->dev->flags & IFF_NOARP))
505 return fetch_ha(dst, addr, dst_in, seq);
506
507 return rdma_copy_addr(addr, dst->dev, NULL);
508 }
509
510 static int addr_resolve(struct sockaddr *src_in,
511 const struct sockaddr *dst_in,
512 struct rdma_dev_addr *addr,
513 bool resolve_neigh,
514 u32 seq)
515 {
516 struct net_device *ndev;
517 struct dst_entry *dst;
518 int ret;
519
520 if (src_in->sa_family == AF_INET) {
521 struct rtable *rt = NULL;
522 const struct sockaddr_in *dst_in4 =
523 (const struct sockaddr_in *)dst_in;
524
525 ret = addr4_resolve((struct sockaddr_in *)src_in,
526 dst_in4, addr, &rt);
527 if (ret)
528 return ret;
529
530 if (resolve_neigh)
531 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
532
533 ndev = rt->dst.dev;
534 dev_hold(ndev);
535
536 ip_rt_put(rt);
537 } else {
538 const struct sockaddr_in6 *dst_in6 =
539 (const struct sockaddr_in6 *)dst_in;
540
541 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
542 dst_in6, addr,
543 &dst);
544 if (ret)
545 return ret;
546
547 if (resolve_neigh)
548 ret = addr_resolve_neigh(dst, dst_in, addr, seq);
549
550 ndev = dst->dev;
551 dev_hold(ndev);
552
553 dst_release(dst);
554 }
555
556 addr->bound_dev_if = ndev->ifindex;
557 addr->net = dev_net(ndev);
558 dev_put(ndev);
559
560 return ret;
561 }
562
563 static void process_req(struct work_struct *work)
564 {
565 struct addr_req *req, *temp_req;
566 struct sockaddr *src_in, *dst_in;
567 struct list_head done_list;
568
569 INIT_LIST_HEAD(&done_list);
570
571 mutex_lock(&lock);
572 list_for_each_entry_safe(req, temp_req, &req_list, list) {
573 if (req->status == -ENODATA) {
574 src_in = (struct sockaddr *) &req->src_addr;
575 dst_in = (struct sockaddr *) &req->dst_addr;
576 req->status = addr_resolve(src_in, dst_in, req->addr,
577 true, req->seq);
578 if (req->status && time_after_eq(jiffies, req->timeout))
579 req->status = -ETIMEDOUT;
580 else if (req->status == -ENODATA)
581 continue;
582 }
583 list_move_tail(&req->list, &done_list);
584 }
585
586 if (!list_empty(&req_list)) {
587 req = list_entry(req_list.next, struct addr_req, list);
588 set_timeout(req->timeout);
589 }
590 mutex_unlock(&lock);
591
592 list_for_each_entry_safe(req, temp_req, &done_list, list) {
593 list_del(&req->list);
594 req->callback(req->status, (struct sockaddr *) &req->src_addr,
595 req->addr, req->context);
596 put_client(req->client);
597 kfree(req);
598 }
599 }
600
601 int rdma_resolve_ip(struct rdma_addr_client *client,
602 struct sockaddr *src_addr, struct sockaddr *dst_addr,
603 struct rdma_dev_addr *addr, int timeout_ms,
604 void (*callback)(int status, struct sockaddr *src_addr,
605 struct rdma_dev_addr *addr, void *context),
606 void *context)
607 {
608 struct sockaddr *src_in, *dst_in;
609 struct addr_req *req;
610 int ret = 0;
611
612 req = kzalloc(sizeof *req, GFP_KERNEL);
613 if (!req)
614 return -ENOMEM;
615
616 src_in = (struct sockaddr *) &req->src_addr;
617 dst_in = (struct sockaddr *) &req->dst_addr;
618
619 if (src_addr) {
620 if (src_addr->sa_family != dst_addr->sa_family) {
621 ret = -EINVAL;
622 goto err;
623 }
624
625 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
626 } else {
627 src_in->sa_family = dst_addr->sa_family;
628 }
629
630 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
631 req->addr = addr;
632 req->callback = callback;
633 req->context = context;
634 req->client = client;
635 atomic_inc(&client->refcount);
636 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
637
638 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
639 switch (req->status) {
640 case 0:
641 req->timeout = jiffies;
642 queue_req(req);
643 break;
644 case -ENODATA:
645 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
646 queue_req(req);
647 break;
648 default:
649 ret = req->status;
650 atomic_dec(&client->refcount);
651 goto err;
652 }
653 return ret;
654 err:
655 kfree(req);
656 return ret;
657 }
658 EXPORT_SYMBOL(rdma_resolve_ip);
659
660 int rdma_resolve_ip_route(struct sockaddr *src_addr,
661 const struct sockaddr *dst_addr,
662 struct rdma_dev_addr *addr)
663 {
664 struct sockaddr_storage ssrc_addr = {};
665 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
666
667 if (src_addr) {
668 if (src_addr->sa_family != dst_addr->sa_family)
669 return -EINVAL;
670
671 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
672 } else {
673 src_in->sa_family = dst_addr->sa_family;
674 }
675
676 return addr_resolve(src_in, dst_addr, addr, false, 0);
677 }
678 EXPORT_SYMBOL(rdma_resolve_ip_route);
679
680 void rdma_addr_cancel(struct rdma_dev_addr *addr)
681 {
682 struct addr_req *req, *temp_req;
683
684 mutex_lock(&lock);
685 list_for_each_entry_safe(req, temp_req, &req_list, list) {
686 if (req->addr == addr) {
687 req->status = -ECANCELED;
688 req->timeout = jiffies;
689 list_move(&req->list, &req_list);
690 set_timeout(req->timeout);
691 break;
692 }
693 }
694 mutex_unlock(&lock);
695 }
696 EXPORT_SYMBOL(rdma_addr_cancel);
697
698 struct resolve_cb_context {
699 struct rdma_dev_addr *addr;
700 struct completion comp;
701 int status;
702 };
703
704 static void resolve_cb(int status, struct sockaddr *src_addr,
705 struct rdma_dev_addr *addr, void *context)
706 {
707 if (!status)
708 memcpy(((struct resolve_cb_context *)context)->addr,
709 addr, sizeof(struct rdma_dev_addr));
710 ((struct resolve_cb_context *)context)->status = status;
711 complete(&((struct resolve_cb_context *)context)->comp);
712 }
713
714 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
715 const union ib_gid *dgid,
716 u8 *dmac, u16 *vlan_id, int *if_index,
717 int *hoplimit)
718 {
719 int ret = 0;
720 struct rdma_dev_addr dev_addr;
721 struct resolve_cb_context ctx;
722 struct net_device *dev;
723
724 union {
725 struct sockaddr _sockaddr;
726 struct sockaddr_in _sockaddr_in;
727 struct sockaddr_in6 _sockaddr_in6;
728 } sgid_addr, dgid_addr;
729
730
731 rdma_gid2ip(&sgid_addr._sockaddr, sgid);
732 rdma_gid2ip(&dgid_addr._sockaddr, dgid);
733
734 memset(&dev_addr, 0, sizeof(dev_addr));
735 if (if_index)
736 dev_addr.bound_dev_if = *if_index;
737 dev_addr.net = &init_net;
738
739 ctx.addr = &dev_addr;
740 init_completion(&ctx.comp);
741 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
742 &dev_addr, 1000, resolve_cb, &ctx);
743 if (ret)
744 return ret;
745
746 wait_for_completion(&ctx.comp);
747
748 ret = ctx.status;
749 if (ret)
750 return ret;
751
752 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
753 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
754 if (!dev)
755 return -ENODEV;
756 if (if_index)
757 *if_index = dev_addr.bound_dev_if;
758 if (vlan_id)
759 *vlan_id = rdma_vlan_dev_vlan_id(dev);
760 if (hoplimit)
761 *hoplimit = dev_addr.hoplimit;
762 dev_put(dev);
763 return ret;
764 }
765 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
766
767 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
768 {
769 int ret = 0;
770 struct rdma_dev_addr dev_addr;
771 union {
772 struct sockaddr _sockaddr;
773 struct sockaddr_in _sockaddr_in;
774 struct sockaddr_in6 _sockaddr_in6;
775 } gid_addr;
776
777 rdma_gid2ip(&gid_addr._sockaddr, sgid);
778
779 memset(&dev_addr, 0, sizeof(dev_addr));
780 dev_addr.net = &init_net;
781 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
782 if (ret)
783 return ret;
784
785 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
786 return ret;
787 }
788 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
789
790 static int netevent_callback(struct notifier_block *self, unsigned long event,
791 void *ctx)
792 {
793 if (event == NETEVENT_NEIGH_UPDATE) {
794 struct neighbour *neigh = ctx;
795
796 if (neigh->nud_state & NUD_VALID) {
797 set_timeout(jiffies);
798 }
799 }
800 return 0;
801 }
802
803 static struct notifier_block nb = {
804 .notifier_call = netevent_callback
805 };
806
807 int addr_init(void)
808 {
809 addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0);
810 if (!addr_wq)
811 return -ENOMEM;
812
813 register_netevent_notifier(&nb);
814 rdma_addr_register_client(&self);
815
816 return 0;
817 }
818
819 void addr_cleanup(void)
820 {
821 rdma_addr_unregister_client(&self);
822 unregister_netevent_notifier(&nb);
823 destroy_workqueue(addr_wq);
824 }