]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/core/addr.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / core / addr.c
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51
52 #include "core_priv.h"
53
54 struct addr_req {
55 struct list_head list;
56 struct sockaddr_storage src_addr;
57 struct sockaddr_storage dst_addr;
58 struct rdma_dev_addr *addr;
59 struct rdma_addr_client *client;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 int status;
65 u32 seq;
66 };
67
68 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
69
70 static void process_req(struct work_struct *work);
71
72 static DEFINE_MUTEX(lock);
73 static LIST_HEAD(req_list);
74 static DECLARE_DELAYED_WORK(work, process_req);
75 static struct workqueue_struct *addr_wq;
76
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 .len = sizeof(struct rdma_nla_ls_gid)},
80 };
81
82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
83 {
84 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
85 int ret;
86
87 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
88 return false;
89
90 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
91 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
92 if (ret)
93 return false;
94
95 return true;
96 }
97
98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
99 {
100 const struct nlattr *head, *curr;
101 union ib_gid gid;
102 struct addr_req *req;
103 int len, rem;
104 int found = 0;
105
106 head = (const struct nlattr *)nlmsg_data(nlh);
107 len = nlmsg_len(nlh);
108
109 nla_for_each_attr(curr, head, len, rem) {
110 if (curr->nla_type == LS_NLA_TYPE_DGID)
111 memcpy(&gid, nla_data(curr), nla_len(curr));
112 }
113
114 mutex_lock(&lock);
115 list_for_each_entry(req, &req_list, list) {
116 if (nlh->nlmsg_seq != req->seq)
117 continue;
118 /* We set the DGID part, the rest was set earlier */
119 rdma_addr_set_dgid(req->addr, &gid);
120 req->status = 0;
121 found = 1;
122 break;
123 }
124 mutex_unlock(&lock);
125
126 if (!found)
127 pr_info("Couldn't find request waiting for DGID: %pI6\n",
128 &gid);
129 }
130
131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
132 struct netlink_callback *cb)
133 {
134 const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
135
136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 !(NETLINK_CB(skb).sk) ||
138 !netlink_capable(skb, CAP_NET_ADMIN))
139 return -EPERM;
140
141 if (ib_nl_is_good_ip_resp(nlh))
142 ib_nl_process_good_ip_rsep(nlh);
143
144 return skb->len;
145 }
146
147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
148 const void *daddr,
149 u32 seq, u16 family)
150 {
151 struct sk_buff *skb = NULL;
152 struct nlmsghdr *nlh;
153 struct rdma_ls_ip_resolve_header *header;
154 void *data;
155 size_t size;
156 int attrtype;
157 int len;
158
159 if (family == AF_INET) {
160 size = sizeof(struct in_addr);
161 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
162 } else {
163 size = sizeof(struct in6_addr);
164 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
165 }
166
167 len = nla_total_size(sizeof(size));
168 len += NLMSG_ALIGN(sizeof(*header));
169
170 skb = nlmsg_new(len, GFP_KERNEL);
171 if (!skb)
172 return -ENOMEM;
173
174 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
175 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
176 if (!data) {
177 nlmsg_free(skb);
178 return -ENODATA;
179 }
180
181 /* Construct the family header first */
182 header = (struct rdma_ls_ip_resolve_header *)
183 skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
184 header->ifindex = dev_addr->bound_dev_if;
185 nla_put(skb, attrtype, size, daddr);
186
187 /* Repair the nlmsg header length */
188 nlmsg_end(skb, nlh);
189 ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
190
191 /* Make the request retry, so when we get the response from userspace
192 * we will have something.
193 */
194 return -ENODATA;
195 }
196
197 int rdma_addr_size(struct sockaddr *addr)
198 {
199 switch (addr->sa_family) {
200 case AF_INET:
201 return sizeof(struct sockaddr_in);
202 case AF_INET6:
203 return sizeof(struct sockaddr_in6);
204 case AF_IB:
205 return sizeof(struct sockaddr_ib);
206 default:
207 return 0;
208 }
209 }
210 EXPORT_SYMBOL(rdma_addr_size);
211
212 static struct rdma_addr_client self;
213
214 void rdma_addr_register_client(struct rdma_addr_client *client)
215 {
216 atomic_set(&client->refcount, 1);
217 init_completion(&client->comp);
218 }
219 EXPORT_SYMBOL(rdma_addr_register_client);
220
221 static inline void put_client(struct rdma_addr_client *client)
222 {
223 if (atomic_dec_and_test(&client->refcount))
224 complete(&client->comp);
225 }
226
227 void rdma_addr_unregister_client(struct rdma_addr_client *client)
228 {
229 put_client(client);
230 wait_for_completion(&client->comp);
231 }
232 EXPORT_SYMBOL(rdma_addr_unregister_client);
233
234 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
235 const unsigned char *dst_dev_addr)
236 {
237 dev_addr->dev_type = dev->type;
238 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
239 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
240 if (dst_dev_addr)
241 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
242 dev_addr->bound_dev_if = dev->ifindex;
243 return 0;
244 }
245 EXPORT_SYMBOL(rdma_copy_addr);
246
247 int rdma_translate_ip(const struct sockaddr *addr,
248 struct rdma_dev_addr *dev_addr,
249 u16 *vlan_id)
250 {
251 struct net_device *dev;
252 int ret = -EADDRNOTAVAIL;
253
254 if (dev_addr->bound_dev_if) {
255 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
256 if (!dev)
257 return -ENODEV;
258 ret = rdma_copy_addr(dev_addr, dev, NULL);
259 dev_put(dev);
260 return ret;
261 }
262
263 switch (addr->sa_family) {
264 case AF_INET:
265 dev = ip_dev_find(dev_addr->net,
266 ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
267
268 if (!dev)
269 return ret;
270
271 ret = rdma_copy_addr(dev_addr, dev, NULL);
272 if (vlan_id)
273 *vlan_id = rdma_vlan_dev_vlan_id(dev);
274 dev_put(dev);
275 break;
276 #if IS_ENABLED(CONFIG_IPV6)
277 case AF_INET6:
278 rcu_read_lock();
279 for_each_netdev_rcu(dev_addr->net, dev) {
280 if (ipv6_chk_addr(dev_addr->net,
281 &((const struct sockaddr_in6 *)addr)->sin6_addr,
282 dev, 1)) {
283 ret = rdma_copy_addr(dev_addr, dev, NULL);
284 if (vlan_id)
285 *vlan_id = rdma_vlan_dev_vlan_id(dev);
286 break;
287 }
288 }
289 rcu_read_unlock();
290 break;
291 #endif
292 }
293 return ret;
294 }
295 EXPORT_SYMBOL(rdma_translate_ip);
296
297 static void set_timeout(unsigned long time)
298 {
299 unsigned long delay;
300
301 delay = time - jiffies;
302 if ((long)delay < 0)
303 delay = 0;
304
305 mod_delayed_work(addr_wq, &work, delay);
306 }
307
308 static void queue_req(struct addr_req *req)
309 {
310 struct addr_req *temp_req;
311
312 mutex_lock(&lock);
313 list_for_each_entry_reverse(temp_req, &req_list, list) {
314 if (time_after_eq(req->timeout, temp_req->timeout))
315 break;
316 }
317
318 list_add(&req->list, &temp_req->list);
319
320 if (req_list.next == &req->list)
321 set_timeout(req->timeout);
322 mutex_unlock(&lock);
323 }
324
325 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
326 const void *daddr, u32 seq, u16 family)
327 {
328 if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
329 return -EADDRNOTAVAIL;
330
331 /* We fill in what we can, the response will fill the rest */
332 rdma_copy_addr(dev_addr, dst->dev, NULL);
333 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
334 }
335
336 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
337 const void *daddr)
338 {
339 struct neighbour *n;
340 int ret;
341
342 n = dst_neigh_lookup(dst, daddr);
343
344 rcu_read_lock();
345 if (!n || !(n->nud_state & NUD_VALID)) {
346 if (n)
347 neigh_event_send(n, NULL);
348 ret = -ENODATA;
349 } else {
350 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
351 }
352 rcu_read_unlock();
353
354 if (n)
355 neigh_release(n);
356
357 return ret;
358 }
359
360 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
361 {
362 struct rtable *rt;
363 struct rt6_info *rt6;
364
365 if (family == AF_INET) {
366 rt = container_of(dst, struct rtable, dst);
367 return rt->rt_uses_gateway;
368 }
369
370 rt6 = container_of(dst, struct rt6_info, dst);
371 return rt6->rt6i_flags & RTF_GATEWAY;
372 }
373
374 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
375 const struct sockaddr *dst_in, u32 seq)
376 {
377 const struct sockaddr_in *dst_in4 =
378 (const struct sockaddr_in *)dst_in;
379 const struct sockaddr_in6 *dst_in6 =
380 (const struct sockaddr_in6 *)dst_in;
381 const void *daddr = (dst_in->sa_family == AF_INET) ?
382 (const void *)&dst_in4->sin_addr.s_addr :
383 (const void *)&dst_in6->sin6_addr;
384 sa_family_t family = dst_in->sa_family;
385
386 /* Gateway + ARPHRD_INFINIBAND -> IB router */
387 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
388 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
389 else
390 return dst_fetch_ha(dst, dev_addr, daddr);
391 }
392
393 static int addr4_resolve(struct sockaddr_in *src_in,
394 const struct sockaddr_in *dst_in,
395 struct rdma_dev_addr *addr,
396 struct rtable **prt)
397 {
398 __be32 src_ip = src_in->sin_addr.s_addr;
399 __be32 dst_ip = dst_in->sin_addr.s_addr;
400 struct rtable *rt;
401 struct flowi4 fl4;
402 int ret;
403
404 memset(&fl4, 0, sizeof(fl4));
405 fl4.daddr = dst_ip;
406 fl4.saddr = src_ip;
407 fl4.flowi4_oif = addr->bound_dev_if;
408 rt = ip_route_output_key(addr->net, &fl4);
409 if (IS_ERR(rt)) {
410 ret = PTR_ERR(rt);
411 goto out;
412 }
413 src_in->sin_family = AF_INET;
414 src_in->sin_addr.s_addr = fl4.saddr;
415
416 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
417 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
418 * type accordingly.
419 */
420 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
421 addr->network = RDMA_NETWORK_IPV4;
422
423 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
424
425 *prt = rt;
426 return 0;
427 out:
428 return ret;
429 }
430
431 #if IS_ENABLED(CONFIG_IPV6)
432 static int addr6_resolve(struct sockaddr_in6 *src_in,
433 const struct sockaddr_in6 *dst_in,
434 struct rdma_dev_addr *addr,
435 struct dst_entry **pdst)
436 {
437 struct flowi6 fl6;
438 struct dst_entry *dst;
439 struct rt6_info *rt;
440 int ret;
441
442 memset(&fl6, 0, sizeof fl6);
443 fl6.daddr = dst_in->sin6_addr;
444 fl6.saddr = src_in->sin6_addr;
445 fl6.flowi6_oif = addr->bound_dev_if;
446
447 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
448 if (ret < 0)
449 return ret;
450
451 rt = (struct rt6_info *)dst;
452 if (ipv6_addr_any(&src_in->sin6_addr)) {
453 src_in->sin6_family = AF_INET6;
454 src_in->sin6_addr = fl6.saddr;
455 }
456
457 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
458 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
459 * type accordingly.
460 */
461 if (rt->rt6i_flags & RTF_GATEWAY &&
462 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
463 addr->network = RDMA_NETWORK_IPV6;
464
465 addr->hoplimit = ip6_dst_hoplimit(dst);
466
467 *pdst = dst;
468 return 0;
469 }
470 #else
471 static int addr6_resolve(struct sockaddr_in6 *src_in,
472 const struct sockaddr_in6 *dst_in,
473 struct rdma_dev_addr *addr,
474 struct dst_entry **pdst)
475 {
476 return -EADDRNOTAVAIL;
477 }
478 #endif
479
480 static int addr_resolve_neigh(struct dst_entry *dst,
481 const struct sockaddr *dst_in,
482 struct rdma_dev_addr *addr,
483 u32 seq)
484 {
485 if (dst->dev->flags & IFF_LOOPBACK) {
486 int ret;
487
488 ret = rdma_translate_ip(dst_in, addr, NULL);
489 if (!ret)
490 memcpy(addr->dst_dev_addr, addr->src_dev_addr,
491 MAX_ADDR_LEN);
492
493 return ret;
494 }
495
496 /* If the device doesn't do ARP internally */
497 if (!(dst->dev->flags & IFF_NOARP))
498 return fetch_ha(dst, addr, dst_in, seq);
499
500 return rdma_copy_addr(addr, dst->dev, NULL);
501 }
502
503 static int addr_resolve(struct sockaddr *src_in,
504 const struct sockaddr *dst_in,
505 struct rdma_dev_addr *addr,
506 bool resolve_neigh,
507 u32 seq)
508 {
509 struct net_device *ndev;
510 struct dst_entry *dst;
511 int ret;
512
513 if (src_in->sa_family == AF_INET) {
514 struct rtable *rt = NULL;
515 const struct sockaddr_in *dst_in4 =
516 (const struct sockaddr_in *)dst_in;
517
518 ret = addr4_resolve((struct sockaddr_in *)src_in,
519 dst_in4, addr, &rt);
520 if (ret)
521 return ret;
522
523 if (resolve_neigh)
524 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
525
526 ndev = rt->dst.dev;
527 dev_hold(ndev);
528
529 ip_rt_put(rt);
530 } else {
531 const struct sockaddr_in6 *dst_in6 =
532 (const struct sockaddr_in6 *)dst_in;
533
534 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
535 dst_in6, addr,
536 &dst);
537 if (ret)
538 return ret;
539
540 if (resolve_neigh)
541 ret = addr_resolve_neigh(dst, dst_in, addr, seq);
542
543 ndev = dst->dev;
544 dev_hold(ndev);
545
546 dst_release(dst);
547 }
548
549 addr->bound_dev_if = ndev->ifindex;
550 addr->net = dev_net(ndev);
551 dev_put(ndev);
552
553 return ret;
554 }
555
556 static void process_req(struct work_struct *work)
557 {
558 struct addr_req *req, *temp_req;
559 struct sockaddr *src_in, *dst_in;
560 struct list_head done_list;
561
562 INIT_LIST_HEAD(&done_list);
563
564 mutex_lock(&lock);
565 list_for_each_entry_safe(req, temp_req, &req_list, list) {
566 if (req->status == -ENODATA) {
567 src_in = (struct sockaddr *) &req->src_addr;
568 dst_in = (struct sockaddr *) &req->dst_addr;
569 req->status = addr_resolve(src_in, dst_in, req->addr,
570 true, req->seq);
571 if (req->status && time_after_eq(jiffies, req->timeout))
572 req->status = -ETIMEDOUT;
573 else if (req->status == -ENODATA)
574 continue;
575 }
576 list_move_tail(&req->list, &done_list);
577 }
578
579 if (!list_empty(&req_list)) {
580 req = list_entry(req_list.next, struct addr_req, list);
581 set_timeout(req->timeout);
582 }
583 mutex_unlock(&lock);
584
585 list_for_each_entry_safe(req, temp_req, &done_list, list) {
586 list_del(&req->list);
587 req->callback(req->status, (struct sockaddr *) &req->src_addr,
588 req->addr, req->context);
589 put_client(req->client);
590 kfree(req);
591 }
592 }
593
594 int rdma_resolve_ip(struct rdma_addr_client *client,
595 struct sockaddr *src_addr, struct sockaddr *dst_addr,
596 struct rdma_dev_addr *addr, int timeout_ms,
597 void (*callback)(int status, struct sockaddr *src_addr,
598 struct rdma_dev_addr *addr, void *context),
599 void *context)
600 {
601 struct sockaddr *src_in, *dst_in;
602 struct addr_req *req;
603 int ret = 0;
604
605 req = kzalloc(sizeof *req, GFP_KERNEL);
606 if (!req)
607 return -ENOMEM;
608
609 src_in = (struct sockaddr *) &req->src_addr;
610 dst_in = (struct sockaddr *) &req->dst_addr;
611
612 if (src_addr) {
613 if (src_addr->sa_family != dst_addr->sa_family) {
614 ret = -EINVAL;
615 goto err;
616 }
617
618 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
619 } else {
620 src_in->sa_family = dst_addr->sa_family;
621 }
622
623 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
624 req->addr = addr;
625 req->callback = callback;
626 req->context = context;
627 req->client = client;
628 atomic_inc(&client->refcount);
629 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
630
631 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
632 switch (req->status) {
633 case 0:
634 req->timeout = jiffies;
635 queue_req(req);
636 break;
637 case -ENODATA:
638 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
639 queue_req(req);
640 break;
641 default:
642 ret = req->status;
643 atomic_dec(&client->refcount);
644 goto err;
645 }
646 return ret;
647 err:
648 kfree(req);
649 return ret;
650 }
651 EXPORT_SYMBOL(rdma_resolve_ip);
652
653 int rdma_resolve_ip_route(struct sockaddr *src_addr,
654 const struct sockaddr *dst_addr,
655 struct rdma_dev_addr *addr)
656 {
657 struct sockaddr_storage ssrc_addr = {};
658 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
659
660 if (src_addr) {
661 if (src_addr->sa_family != dst_addr->sa_family)
662 return -EINVAL;
663
664 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
665 } else {
666 src_in->sa_family = dst_addr->sa_family;
667 }
668
669 return addr_resolve(src_in, dst_addr, addr, false, 0);
670 }
671 EXPORT_SYMBOL(rdma_resolve_ip_route);
672
673 void rdma_addr_cancel(struct rdma_dev_addr *addr)
674 {
675 struct addr_req *req, *temp_req;
676
677 mutex_lock(&lock);
678 list_for_each_entry_safe(req, temp_req, &req_list, list) {
679 if (req->addr == addr) {
680 req->status = -ECANCELED;
681 req->timeout = jiffies;
682 list_move(&req->list, &req_list);
683 set_timeout(req->timeout);
684 break;
685 }
686 }
687 mutex_unlock(&lock);
688 }
689 EXPORT_SYMBOL(rdma_addr_cancel);
690
691 struct resolve_cb_context {
692 struct rdma_dev_addr *addr;
693 struct completion comp;
694 int status;
695 };
696
697 static void resolve_cb(int status, struct sockaddr *src_addr,
698 struct rdma_dev_addr *addr, void *context)
699 {
700 if (!status)
701 memcpy(((struct resolve_cb_context *)context)->addr,
702 addr, sizeof(struct rdma_dev_addr));
703 ((struct resolve_cb_context *)context)->status = status;
704 complete(&((struct resolve_cb_context *)context)->comp);
705 }
706
707 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
708 const union ib_gid *dgid,
709 u8 *dmac, u16 *vlan_id, int *if_index,
710 int *hoplimit)
711 {
712 int ret = 0;
713 struct rdma_dev_addr dev_addr;
714 struct resolve_cb_context ctx;
715 struct net_device *dev;
716
717 union {
718 struct sockaddr _sockaddr;
719 struct sockaddr_in _sockaddr_in;
720 struct sockaddr_in6 _sockaddr_in6;
721 } sgid_addr, dgid_addr;
722
723
724 rdma_gid2ip(&sgid_addr._sockaddr, sgid);
725 rdma_gid2ip(&dgid_addr._sockaddr, dgid);
726
727 memset(&dev_addr, 0, sizeof(dev_addr));
728 if (if_index)
729 dev_addr.bound_dev_if = *if_index;
730 dev_addr.net = &init_net;
731
732 ctx.addr = &dev_addr;
733 init_completion(&ctx.comp);
734 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
735 &dev_addr, 1000, resolve_cb, &ctx);
736 if (ret)
737 return ret;
738
739 wait_for_completion(&ctx.comp);
740
741 ret = ctx.status;
742 if (ret)
743 return ret;
744
745 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
746 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
747 if (!dev)
748 return -ENODEV;
749 if (if_index)
750 *if_index = dev_addr.bound_dev_if;
751 if (vlan_id)
752 *vlan_id = rdma_vlan_dev_vlan_id(dev);
753 if (hoplimit)
754 *hoplimit = dev_addr.hoplimit;
755 dev_put(dev);
756 return ret;
757 }
758 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
759
760 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
761 {
762 int ret = 0;
763 struct rdma_dev_addr dev_addr;
764 union {
765 struct sockaddr _sockaddr;
766 struct sockaddr_in _sockaddr_in;
767 struct sockaddr_in6 _sockaddr_in6;
768 } gid_addr;
769
770 rdma_gid2ip(&gid_addr._sockaddr, sgid);
771
772 memset(&dev_addr, 0, sizeof(dev_addr));
773 dev_addr.net = &init_net;
774 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
775 if (ret)
776 return ret;
777
778 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
779 return ret;
780 }
781 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
782
783 static int netevent_callback(struct notifier_block *self, unsigned long event,
784 void *ctx)
785 {
786 if (event == NETEVENT_NEIGH_UPDATE) {
787 struct neighbour *neigh = ctx;
788
789 if (neigh->nud_state & NUD_VALID) {
790 set_timeout(jiffies);
791 }
792 }
793 return 0;
794 }
795
796 static struct notifier_block nb = {
797 .notifier_call = netevent_callback
798 };
799
800 int addr_init(void)
801 {
802 addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0);
803 if (!addr_wq)
804 return -ENOMEM;
805
806 register_netevent_notifier(&nb);
807 rdma_addr_register_client(&self);
808
809 return 0;
810 }
811
812 void addr_cleanup(void)
813 {
814 rdma_addr_unregister_client(&self);
815 unregister_netevent_notifier(&nb);
816 destroy_workqueue(addr_wq);
817 }