]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/infiniband/core/addr.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / drivers / infiniband / core / addr.c
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/ipv6_stubs.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_cache.h>
49 #include <rdma/ib_sa.h>
50 #include <rdma/ib.h>
51 #include <rdma/rdma_netlink.h>
52 #include <net/netlink.h>
53
54 #include "core_priv.h"
55
56 struct addr_req {
57 struct list_head list;
58 struct sockaddr_storage src_addr;
59 struct sockaddr_storage dst_addr;
60 struct rdma_dev_addr *addr;
61 void *context;
62 void (*callback)(int status, struct sockaddr *src_addr,
63 struct rdma_dev_addr *addr, void *context);
64 unsigned long timeout;
65 struct delayed_work work;
66 bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */
67 int status;
68 u32 seq;
69 };
70
71 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
72
73 static DEFINE_SPINLOCK(lock);
74 static LIST_HEAD(req_list);
75 static struct workqueue_struct *addr_wq;
76
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 .len = sizeof(struct rdma_nla_ls_gid),
80 .validation_type = NLA_VALIDATE_MIN,
81 .min = sizeof(struct rdma_nla_ls_gid)},
82 };
83
84 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
85 {
86 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
87 int ret;
88
89 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
90 return false;
91
92 ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
93 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
94 if (ret)
95 return false;
96
97 return true;
98 }
99
100 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
101 {
102 const struct nlattr *head, *curr;
103 union ib_gid gid;
104 struct addr_req *req;
105 int len, rem;
106 int found = 0;
107
108 head = (const struct nlattr *)nlmsg_data(nlh);
109 len = nlmsg_len(nlh);
110
111 nla_for_each_attr(curr, head, len, rem) {
112 if (curr->nla_type == LS_NLA_TYPE_DGID)
113 memcpy(&gid, nla_data(curr), nla_len(curr));
114 }
115
116 spin_lock_bh(&lock);
117 list_for_each_entry(req, &req_list, list) {
118 if (nlh->nlmsg_seq != req->seq)
119 continue;
120 /* We set the DGID part, the rest was set earlier */
121 rdma_addr_set_dgid(req->addr, &gid);
122 req->status = 0;
123 found = 1;
124 break;
125 }
126 spin_unlock_bh(&lock);
127
128 if (!found)
129 pr_info("Couldn't find request waiting for DGID: %pI6\n",
130 &gid);
131 }
132
133 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
134 struct nlmsghdr *nlh,
135 struct netlink_ext_ack *extack)
136 {
137 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
138 !(NETLINK_CB(skb).sk))
139 return -EPERM;
140
141 if (ib_nl_is_good_ip_resp(nlh))
142 ib_nl_process_good_ip_rsep(nlh);
143
144 return 0;
145 }
146
147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
148 const void *daddr,
149 u32 seq, u16 family)
150 {
151 struct sk_buff *skb = NULL;
152 struct nlmsghdr *nlh;
153 struct rdma_ls_ip_resolve_header *header;
154 void *data;
155 size_t size;
156 int attrtype;
157 int len;
158
159 if (family == AF_INET) {
160 size = sizeof(struct in_addr);
161 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
162 } else {
163 size = sizeof(struct in6_addr);
164 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
165 }
166
167 len = nla_total_size(sizeof(size));
168 len += NLMSG_ALIGN(sizeof(*header));
169
170 skb = nlmsg_new(len, GFP_KERNEL);
171 if (!skb)
172 return -ENOMEM;
173
174 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
175 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
176 if (!data) {
177 nlmsg_free(skb);
178 return -ENODATA;
179 }
180
181 /* Construct the family header first */
182 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
183 header->ifindex = dev_addr->bound_dev_if;
184 nla_put(skb, attrtype, size, daddr);
185
186 /* Repair the nlmsg header length */
187 nlmsg_end(skb, nlh);
188 rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
189
190 /* Make the request retry, so when we get the response from userspace
191 * we will have something.
192 */
193 return -ENODATA;
194 }
195
196 int rdma_addr_size(const struct sockaddr *addr)
197 {
198 switch (addr->sa_family) {
199 case AF_INET:
200 return sizeof(struct sockaddr_in);
201 case AF_INET6:
202 return sizeof(struct sockaddr_in6);
203 case AF_IB:
204 return sizeof(struct sockaddr_ib);
205 default:
206 return 0;
207 }
208 }
209 EXPORT_SYMBOL(rdma_addr_size);
210
211 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
212 {
213 int ret = rdma_addr_size((struct sockaddr *) addr);
214
215 return ret <= sizeof(*addr) ? ret : 0;
216 }
217 EXPORT_SYMBOL(rdma_addr_size_in6);
218
219 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
220 {
221 int ret = rdma_addr_size((struct sockaddr *) addr);
222
223 return ret <= sizeof(*addr) ? ret : 0;
224 }
225 EXPORT_SYMBOL(rdma_addr_size_kss);
226
227 /**
228 * rdma_copy_src_l2_addr - Copy netdevice source addresses
229 * @dev_addr: Destination address pointer where to copy the addresses
230 * @dev: Netdevice whose source addresses to copy
231 *
232 * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
233 * This includes unicast address, broadcast address, device type and
234 * interface index.
235 */
236 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
237 const struct net_device *dev)
238 {
239 dev_addr->dev_type = dev->type;
240 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
241 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
242 dev_addr->bound_dev_if = dev->ifindex;
243 }
244 EXPORT_SYMBOL(rdma_copy_src_l2_addr);
245
246 static struct net_device *
247 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
248 {
249 struct net_device *dev = NULL;
250 int ret = -EADDRNOTAVAIL;
251
252 switch (src_in->sa_family) {
253 case AF_INET:
254 dev = __ip_dev_find(net,
255 ((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
256 false);
257 if (dev)
258 ret = 0;
259 break;
260 #if IS_ENABLED(CONFIG_IPV6)
261 case AF_INET6:
262 for_each_netdev_rcu(net, dev) {
263 if (ipv6_chk_addr(net,
264 &((const struct sockaddr_in6 *)src_in)->sin6_addr,
265 dev, 1)) {
266 ret = 0;
267 break;
268 }
269 }
270 break;
271 #endif
272 }
273 return ret ? ERR_PTR(ret) : dev;
274 }
275
276 int rdma_translate_ip(const struct sockaddr *addr,
277 struct rdma_dev_addr *dev_addr)
278 {
279 struct net_device *dev;
280
281 if (dev_addr->bound_dev_if) {
282 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
283 if (!dev)
284 return -ENODEV;
285 rdma_copy_src_l2_addr(dev_addr, dev);
286 dev_put(dev);
287 return 0;
288 }
289
290 rcu_read_lock();
291 dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
292 if (!IS_ERR(dev))
293 rdma_copy_src_l2_addr(dev_addr, dev);
294 rcu_read_unlock();
295 return PTR_ERR_OR_ZERO(dev);
296 }
297 EXPORT_SYMBOL(rdma_translate_ip);
298
299 static void set_timeout(struct addr_req *req, unsigned long time)
300 {
301 unsigned long delay;
302
303 delay = time - jiffies;
304 if ((long)delay < 0)
305 delay = 0;
306
307 mod_delayed_work(addr_wq, &req->work, delay);
308 }
309
310 static void queue_req(struct addr_req *req)
311 {
312 spin_lock_bh(&lock);
313 list_add_tail(&req->list, &req_list);
314 set_timeout(req, req->timeout);
315 spin_unlock_bh(&lock);
316 }
317
318 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
319 const void *daddr, u32 seq, u16 family)
320 {
321 if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
322 return -EADDRNOTAVAIL;
323
324 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
325 }
326
327 static int dst_fetch_ha(const struct dst_entry *dst,
328 struct rdma_dev_addr *dev_addr,
329 const void *daddr)
330 {
331 struct neighbour *n;
332 int ret = 0;
333
334 n = dst_neigh_lookup(dst, daddr);
335 if (!n)
336 return -ENODATA;
337
338 if (!(n->nud_state & NUD_VALID)) {
339 neigh_event_send(n, NULL);
340 ret = -ENODATA;
341 } else {
342 neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev);
343 }
344
345 neigh_release(n);
346
347 return ret;
348 }
349
350 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
351 {
352 struct rtable *rt;
353 struct rt6_info *rt6;
354
355 if (family == AF_INET) {
356 rt = container_of(dst, struct rtable, dst);
357 return rt->rt_uses_gateway;
358 }
359
360 rt6 = container_of(dst, struct rt6_info, dst);
361 return rt6->rt6i_flags & RTF_GATEWAY;
362 }
363
364 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
365 const struct sockaddr *dst_in, u32 seq)
366 {
367 const struct sockaddr_in *dst_in4 =
368 (const struct sockaddr_in *)dst_in;
369 const struct sockaddr_in6 *dst_in6 =
370 (const struct sockaddr_in6 *)dst_in;
371 const void *daddr = (dst_in->sa_family == AF_INET) ?
372 (const void *)&dst_in4->sin_addr.s_addr :
373 (const void *)&dst_in6->sin6_addr;
374 sa_family_t family = dst_in->sa_family;
375
376 might_sleep();
377
378 /* If we have a gateway in IB mode then it must be an IB network */
379 if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
380 return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
381 else
382 return dst_fetch_ha(dst, dev_addr, daddr);
383 }
384
385 static int addr4_resolve(struct sockaddr *src_sock,
386 const struct sockaddr *dst_sock,
387 struct rdma_dev_addr *addr,
388 struct rtable **prt)
389 {
390 struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
391 const struct sockaddr_in *dst_in =
392 (const struct sockaddr_in *)dst_sock;
393
394 __be32 src_ip = src_in->sin_addr.s_addr;
395 __be32 dst_ip = dst_in->sin_addr.s_addr;
396 struct rtable *rt;
397 struct flowi4 fl4;
398 int ret;
399
400 memset(&fl4, 0, sizeof(fl4));
401 fl4.daddr = dst_ip;
402 fl4.saddr = src_ip;
403 fl4.flowi4_oif = addr->bound_dev_if;
404 rt = ip_route_output_key(addr->net, &fl4);
405 ret = PTR_ERR_OR_ZERO(rt);
406 if (ret)
407 return ret;
408
409 src_in->sin_addr.s_addr = fl4.saddr;
410
411 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
412
413 *prt = rt;
414 return 0;
415 }
416
417 #if IS_ENABLED(CONFIG_IPV6)
418 static int addr6_resolve(struct sockaddr *src_sock,
419 const struct sockaddr *dst_sock,
420 struct rdma_dev_addr *addr,
421 struct dst_entry **pdst)
422 {
423 struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
424 const struct sockaddr_in6 *dst_in =
425 (const struct sockaddr_in6 *)dst_sock;
426 struct flowi6 fl6;
427 struct dst_entry *dst;
428
429 memset(&fl6, 0, sizeof fl6);
430 fl6.daddr = dst_in->sin6_addr;
431 fl6.saddr = src_in->sin6_addr;
432 fl6.flowi6_oif = addr->bound_dev_if;
433
434 dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL);
435 if (IS_ERR(dst))
436 return PTR_ERR(dst);
437
438 if (ipv6_addr_any(&src_in->sin6_addr))
439 src_in->sin6_addr = fl6.saddr;
440
441 addr->hoplimit = ip6_dst_hoplimit(dst);
442
443 *pdst = dst;
444 return 0;
445 }
446 #else
447 static int addr6_resolve(struct sockaddr *src_sock,
448 const struct sockaddr *dst_sock,
449 struct rdma_dev_addr *addr,
450 struct dst_entry **pdst)
451 {
452 return -EADDRNOTAVAIL;
453 }
454 #endif
455
456 static int addr_resolve_neigh(const struct dst_entry *dst,
457 const struct sockaddr *dst_in,
458 struct rdma_dev_addr *addr,
459 unsigned int ndev_flags,
460 u32 seq)
461 {
462 int ret = 0;
463
464 if (ndev_flags & IFF_LOOPBACK) {
465 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
466 } else {
467 if (!(ndev_flags & IFF_NOARP)) {
468 /* If the device doesn't do ARP internally */
469 ret = fetch_ha(dst, addr, dst_in, seq);
470 }
471 }
472 return ret;
473 }
474
475 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
476 const struct sockaddr *dst_in,
477 const struct dst_entry *dst,
478 const struct net_device *ndev)
479 {
480 int ret = 0;
481
482 if (dst->dev->flags & IFF_LOOPBACK)
483 ret = rdma_translate_ip(dst_in, dev_addr);
484 else
485 rdma_copy_src_l2_addr(dev_addr, dst->dev);
486
487 /*
488 * If there's a gateway and type of device not ARPHRD_INFINIBAND,
489 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
490 * network type accordingly.
491 */
492 if (has_gateway(dst, dst_in->sa_family) &&
493 ndev->type != ARPHRD_INFINIBAND)
494 dev_addr->network = dst_in->sa_family == AF_INET ?
495 RDMA_NETWORK_IPV4 :
496 RDMA_NETWORK_IPV6;
497 else
498 dev_addr->network = RDMA_NETWORK_IB;
499
500 return ret;
501 }
502
503 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
504 unsigned int *ndev_flags,
505 const struct sockaddr *dst_in,
506 const struct dst_entry *dst)
507 {
508 struct net_device *ndev = READ_ONCE(dst->dev);
509
510 *ndev_flags = ndev->flags;
511 /* A physical device must be the RDMA device to use */
512 if (ndev->flags & IFF_LOOPBACK) {
513 /*
514 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
515 * loopback IP address. So if route is resolved to loopback
516 * interface, translate that to a real ndev based on non
517 * loopback IP address.
518 */
519 ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
520 if (IS_ERR(ndev))
521 return -ENODEV;
522 }
523
524 return copy_src_l2_addr(dev_addr, dst_in, dst, ndev);
525 }
526
527 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
528 {
529 struct net_device *ndev;
530
531 ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
532 if (IS_ERR(ndev))
533 return PTR_ERR(ndev);
534
535 /*
536 * Since we are holding the rcu, reading net and ifindex
537 * are safe without any additional reference; because
538 * change_net_namespace() in net/core/dev.c does rcu sync
539 * after it changes the state to IFF_DOWN and before
540 * updating netdev fields {net, ifindex}.
541 */
542 addr->net = dev_net(ndev);
543 addr->bound_dev_if = ndev->ifindex;
544 return 0;
545 }
546
547 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
548 {
549 addr->net = &init_net;
550 addr->bound_dev_if = 0;
551 }
552
553 static int addr_resolve(struct sockaddr *src_in,
554 const struct sockaddr *dst_in,
555 struct rdma_dev_addr *addr,
556 bool resolve_neigh,
557 bool resolve_by_gid_attr,
558 u32 seq)
559 {
560 struct dst_entry *dst = NULL;
561 unsigned int ndev_flags = 0;
562 struct rtable *rt = NULL;
563 int ret;
564
565 if (!addr->net) {
566 pr_warn_ratelimited("%s: missing namespace\n", __func__);
567 return -EINVAL;
568 }
569
570 rcu_read_lock();
571 if (resolve_by_gid_attr) {
572 if (!addr->sgid_attr) {
573 rcu_read_unlock();
574 pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
575 return -EINVAL;
576 }
577 /*
578 * If the request is for a specific gid attribute of the
579 * rdma_dev_addr, derive net from the netdevice of the
580 * GID attribute.
581 */
582 ret = set_addr_netns_by_gid_rcu(addr);
583 if (ret) {
584 rcu_read_unlock();
585 return ret;
586 }
587 }
588 if (src_in->sa_family == AF_INET) {
589 ret = addr4_resolve(src_in, dst_in, addr, &rt);
590 dst = &rt->dst;
591 } else {
592 ret = addr6_resolve(src_in, dst_in, addr, &dst);
593 }
594 if (ret) {
595 rcu_read_unlock();
596 goto done;
597 }
598 ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst);
599 rcu_read_unlock();
600
601 /*
602 * Resolve neighbor destination address if requested and
603 * only if src addr translation didn't fail.
604 */
605 if (!ret && resolve_neigh)
606 ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq);
607
608 if (src_in->sa_family == AF_INET)
609 ip_rt_put(rt);
610 else
611 dst_release(dst);
612 done:
613 /*
614 * Clear the addr net to go back to its original state, only if it was
615 * derived from GID attribute in this context.
616 */
617 if (resolve_by_gid_attr)
618 rdma_addr_set_net_defaults(addr);
619 return ret;
620 }
621
622 static void process_one_req(struct work_struct *_work)
623 {
624 struct addr_req *req;
625 struct sockaddr *src_in, *dst_in;
626
627 req = container_of(_work, struct addr_req, work.work);
628
629 if (req->status == -ENODATA) {
630 src_in = (struct sockaddr *)&req->src_addr;
631 dst_in = (struct sockaddr *)&req->dst_addr;
632 req->status = addr_resolve(src_in, dst_in, req->addr,
633 true, req->resolve_by_gid_attr,
634 req->seq);
635 if (req->status && time_after_eq(jiffies, req->timeout)) {
636 req->status = -ETIMEDOUT;
637 } else if (req->status == -ENODATA) {
638 /* requeue the work for retrying again */
639 spin_lock_bh(&lock);
640 if (!list_empty(&req->list))
641 set_timeout(req, req->timeout);
642 spin_unlock_bh(&lock);
643 return;
644 }
645 }
646
647 req->callback(req->status, (struct sockaddr *)&req->src_addr,
648 req->addr, req->context);
649 req->callback = NULL;
650
651 spin_lock_bh(&lock);
652 /*
653 * Although the work will normally have been canceled by the workqueue,
654 * it can still be requeued as long as it is on the req_list.
655 */
656 cancel_delayed_work(&req->work);
657 if (!list_empty(&req->list)) {
658 list_del_init(&req->list);
659 kfree(req);
660 }
661 spin_unlock_bh(&lock);
662 }
663
664 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
665 struct rdma_dev_addr *addr, unsigned long timeout_ms,
666 void (*callback)(int status, struct sockaddr *src_addr,
667 struct rdma_dev_addr *addr, void *context),
668 bool resolve_by_gid_attr, void *context)
669 {
670 struct sockaddr *src_in, *dst_in;
671 struct addr_req *req;
672 int ret = 0;
673
674 req = kzalloc(sizeof *req, GFP_KERNEL);
675 if (!req)
676 return -ENOMEM;
677
678 src_in = (struct sockaddr *) &req->src_addr;
679 dst_in = (struct sockaddr *) &req->dst_addr;
680
681 if (src_addr) {
682 if (src_addr->sa_family != dst_addr->sa_family) {
683 ret = -EINVAL;
684 goto err;
685 }
686
687 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
688 } else {
689 src_in->sa_family = dst_addr->sa_family;
690 }
691
692 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
693 req->addr = addr;
694 req->callback = callback;
695 req->context = context;
696 req->resolve_by_gid_attr = resolve_by_gid_attr;
697 INIT_DELAYED_WORK(&req->work, process_one_req);
698 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
699
700 req->status = addr_resolve(src_in, dst_in, addr, true,
701 req->resolve_by_gid_attr, req->seq);
702 switch (req->status) {
703 case 0:
704 req->timeout = jiffies;
705 queue_req(req);
706 break;
707 case -ENODATA:
708 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
709 queue_req(req);
710 break;
711 default:
712 ret = req->status;
713 goto err;
714 }
715 return ret;
716 err:
717 kfree(req);
718 return ret;
719 }
720 EXPORT_SYMBOL(rdma_resolve_ip);
721
722 int roce_resolve_route_from_path(struct sa_path_rec *rec,
723 const struct ib_gid_attr *attr)
724 {
725 union {
726 struct sockaddr _sockaddr;
727 struct sockaddr_in _sockaddr_in;
728 struct sockaddr_in6 _sockaddr_in6;
729 } sgid, dgid;
730 struct rdma_dev_addr dev_addr = {};
731 int ret;
732
733 might_sleep();
734
735 if (rec->roce.route_resolved)
736 return 0;
737
738 rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid);
739 rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid);
740
741 if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
742 return -EINVAL;
743
744 if (!attr || !attr->ndev)
745 return -EINVAL;
746
747 dev_addr.net = &init_net;
748 dev_addr.sgid_attr = attr;
749
750 ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid,
751 &dev_addr, false, true, 0);
752 if (ret)
753 return ret;
754
755 if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
756 dev_addr.network == RDMA_NETWORK_IPV6) &&
757 rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
758 return -EINVAL;
759
760 rec->roce.route_resolved = true;
761 return 0;
762 }
763
764 /**
765 * rdma_addr_cancel - Cancel resolve ip request
766 * @addr: Pointer to address structure given previously
767 * during rdma_resolve_ip().
768 * rdma_addr_cancel() is synchronous function which cancels any pending
769 * request if there is any.
770 */
771 void rdma_addr_cancel(struct rdma_dev_addr *addr)
772 {
773 struct addr_req *req, *temp_req;
774 struct addr_req *found = NULL;
775
776 spin_lock_bh(&lock);
777 list_for_each_entry_safe(req, temp_req, &req_list, list) {
778 if (req->addr == addr) {
779 /*
780 * Removing from the list means we take ownership of
781 * the req
782 */
783 list_del_init(&req->list);
784 found = req;
785 break;
786 }
787 }
788 spin_unlock_bh(&lock);
789
790 if (!found)
791 return;
792
793 /*
794 * sync canceling the work after removing it from the req_list
795 * guarentees no work is running and none will be started.
796 */
797 cancel_delayed_work_sync(&found->work);
798 kfree(found);
799 }
800 EXPORT_SYMBOL(rdma_addr_cancel);
801
802 struct resolve_cb_context {
803 struct completion comp;
804 int status;
805 };
806
807 static void resolve_cb(int status, struct sockaddr *src_addr,
808 struct rdma_dev_addr *addr, void *context)
809 {
810 ((struct resolve_cb_context *)context)->status = status;
811 complete(&((struct resolve_cb_context *)context)->comp);
812 }
813
814 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
815 const union ib_gid *dgid,
816 u8 *dmac, const struct ib_gid_attr *sgid_attr,
817 int *hoplimit)
818 {
819 struct rdma_dev_addr dev_addr;
820 struct resolve_cb_context ctx;
821 union {
822 struct sockaddr_in _sockaddr_in;
823 struct sockaddr_in6 _sockaddr_in6;
824 } sgid_addr, dgid_addr;
825 int ret;
826
827 rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid);
828 rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid);
829
830 memset(&dev_addr, 0, sizeof(dev_addr));
831 dev_addr.net = &init_net;
832 dev_addr.sgid_attr = sgid_attr;
833
834 init_completion(&ctx.comp);
835 ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr,
836 (struct sockaddr *)&dgid_addr, &dev_addr, 1000,
837 resolve_cb, true, &ctx);
838 if (ret)
839 return ret;
840
841 wait_for_completion(&ctx.comp);
842
843 ret = ctx.status;
844 if (ret)
845 return ret;
846
847 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
848 *hoplimit = dev_addr.hoplimit;
849 return 0;
850 }
851
852 static int netevent_callback(struct notifier_block *self, unsigned long event,
853 void *ctx)
854 {
855 struct addr_req *req;
856
857 if (event == NETEVENT_NEIGH_UPDATE) {
858 struct neighbour *neigh = ctx;
859
860 if (neigh->nud_state & NUD_VALID) {
861 spin_lock_bh(&lock);
862 list_for_each_entry(req, &req_list, list)
863 set_timeout(req, jiffies);
864 spin_unlock_bh(&lock);
865 }
866 }
867 return 0;
868 }
869
870 static struct notifier_block nb = {
871 .notifier_call = netevent_callback
872 };
873
874 int addr_init(void)
875 {
876 addr_wq = alloc_ordered_workqueue("ib_addr", 0);
877 if (!addr_wq)
878 return -ENOMEM;
879
880 register_netevent_notifier(&nb);
881
882 return 0;
883 }
884
885 void addr_cleanup(void)
886 {
887 unregister_netevent_notifier(&nb);
888 destroy_workqueue(addr_wq);
889 WARN_ON(!list_empty(&req_list));
890 }