]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/infiniband/core/rw.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / infiniband / core / rw.c
1 /*
2 * Copyright (c) 2016 HGST, a Western Digital Company.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 */
13 #include <linux/moduleparam.h>
14 #include <linux/slab.h>
15 #include <linux/pci-p2pdma.h>
16 #include <rdma/mr_pool.h>
17 #include <rdma/rw.h>
18
19 enum {
20 RDMA_RW_SINGLE_WR,
21 RDMA_RW_MULTI_WR,
22 RDMA_RW_MR,
23 RDMA_RW_SIG_MR,
24 };
25
26 static bool rdma_rw_force_mr;
27 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
28 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
29
30 /*
31 * Check if the device might use memory registration. This is currently only
32 * true for iWarp devices. In the future we can hopefully fine tune this based
33 * on HCA driver input.
34 */
35 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
36 {
37 if (rdma_protocol_iwarp(dev, port_num))
38 return true;
39 if (unlikely(rdma_rw_force_mr))
40 return true;
41 return false;
42 }
43
44 /*
45 * Check if the device will use memory registration for this RW operation.
46 * We currently always use memory registrations for iWarp RDMA READs, and
47 * have a debug option to force usage of MRs.
48 *
49 * XXX: In the future we can hopefully fine tune this based on HCA driver
50 * input.
51 */
52 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
53 enum dma_data_direction dir, int dma_nents)
54 {
55 if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
56 return true;
57 if (unlikely(rdma_rw_force_mr))
58 return true;
59 return false;
60 }
61
62 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
63 {
64 /* arbitrary limit to avoid allocating gigantic resources */
65 return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
66 }
67
68 /* Caller must have zero-initialized *reg. */
69 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
70 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
71 u32 sg_cnt, u32 offset)
72 {
73 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
74 u32 nents = min(sg_cnt, pages_per_mr);
75 int count = 0, ret;
76
77 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
78 if (!reg->mr)
79 return -EAGAIN;
80
81 if (reg->mr->need_inval) {
82 reg->inv_wr.opcode = IB_WR_LOCAL_INV;
83 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
84 reg->inv_wr.next = &reg->reg_wr.wr;
85 count++;
86 } else {
87 reg->inv_wr.next = NULL;
88 }
89
90 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
91 if (ret < 0 || ret < nents) {
92 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
93 return -EINVAL;
94 }
95
96 reg->reg_wr.wr.opcode = IB_WR_REG_MR;
97 reg->reg_wr.mr = reg->mr;
98 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
99 if (rdma_protocol_iwarp(qp->device, port_num))
100 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
101 count++;
102
103 reg->sge.addr = reg->mr->iova;
104 reg->sge.length = reg->mr->length;
105 return count;
106 }
107
108 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
109 u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
110 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
111 {
112 struct rdma_rw_reg_ctx *prev = NULL;
113 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
114 int i, j, ret = 0, count = 0;
115
116 ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
117 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
118 if (!ctx->reg) {
119 ret = -ENOMEM;
120 goto out;
121 }
122
123 for (i = 0; i < ctx->nr_ops; i++) {
124 struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
125 u32 nents = min(sg_cnt, pages_per_mr);
126
127 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
128 offset);
129 if (ret < 0)
130 goto out_free;
131 count += ret;
132
133 if (prev) {
134 if (reg->mr->need_inval)
135 prev->wr.wr.next = &reg->inv_wr;
136 else
137 prev->wr.wr.next = &reg->reg_wr.wr;
138 }
139
140 reg->reg_wr.wr.next = &reg->wr.wr;
141
142 reg->wr.wr.sg_list = &reg->sge;
143 reg->wr.wr.num_sge = 1;
144 reg->wr.remote_addr = remote_addr;
145 reg->wr.rkey = rkey;
146 if (dir == DMA_TO_DEVICE) {
147 reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
148 } else if (!rdma_cap_read_inv(qp->device, port_num)) {
149 reg->wr.wr.opcode = IB_WR_RDMA_READ;
150 } else {
151 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
152 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
153 }
154 count++;
155
156 remote_addr += reg->sge.length;
157 sg_cnt -= nents;
158 for (j = 0; j < nents; j++)
159 sg = sg_next(sg);
160 prev = reg;
161 offset = 0;
162 }
163
164 if (prev)
165 prev->wr.wr.next = NULL;
166
167 ctx->type = RDMA_RW_MR;
168 return count;
169
170 out_free:
171 while (--i >= 0)
172 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
173 kfree(ctx->reg);
174 out:
175 return ret;
176 }
177
178 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
179 struct scatterlist *sg, u32 sg_cnt, u32 offset,
180 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
181 {
182 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
183 qp->max_read_sge;
184 struct ib_sge *sge;
185 u32 total_len = 0, i, j;
186
187 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
188
189 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
190 if (!ctx->map.sges)
191 goto out;
192
193 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
194 if (!ctx->map.wrs)
195 goto out_free_sges;
196
197 for (i = 0; i < ctx->nr_ops; i++) {
198 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
199 u32 nr_sge = min(sg_cnt, max_sge);
200
201 if (dir == DMA_TO_DEVICE)
202 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
203 else
204 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
205 rdma_wr->remote_addr = remote_addr + total_len;
206 rdma_wr->rkey = rkey;
207 rdma_wr->wr.num_sge = nr_sge;
208 rdma_wr->wr.sg_list = sge;
209
210 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
211 sge->addr = sg_dma_address(sg) + offset;
212 sge->length = sg_dma_len(sg) - offset;
213 sge->lkey = qp->pd->local_dma_lkey;
214
215 total_len += sge->length;
216 sge++;
217 sg_cnt--;
218 offset = 0;
219 }
220
221 rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
222 &ctx->map.wrs[i + 1].wr : NULL;
223 }
224
225 ctx->type = RDMA_RW_MULTI_WR;
226 return ctx->nr_ops;
227
228 out_free_sges:
229 kfree(ctx->map.sges);
230 out:
231 return -ENOMEM;
232 }
233
234 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
235 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
236 enum dma_data_direction dir)
237 {
238 struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
239
240 ctx->nr_ops = 1;
241
242 ctx->single.sge.lkey = qp->pd->local_dma_lkey;
243 ctx->single.sge.addr = sg_dma_address(sg) + offset;
244 ctx->single.sge.length = sg_dma_len(sg) - offset;
245
246 memset(rdma_wr, 0, sizeof(*rdma_wr));
247 if (dir == DMA_TO_DEVICE)
248 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
249 else
250 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
251 rdma_wr->wr.sg_list = &ctx->single.sge;
252 rdma_wr->wr.num_sge = 1;
253 rdma_wr->remote_addr = remote_addr;
254 rdma_wr->rkey = rkey;
255
256 ctx->type = RDMA_RW_SINGLE_WR;
257 return 1;
258 }
259
260 /**
261 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
262 * @ctx: context to initialize
263 * @qp: queue pair to operate on
264 * @port_num: port num to which the connection is bound
265 * @sg: scatterlist to READ/WRITE from/to
266 * @sg_cnt: number of entries in @sg
267 * @sg_offset: current byte offset into @sg
268 * @remote_addr:remote address to read/write (relative to @rkey)
269 * @rkey: remote key to operate on
270 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
271 *
272 * Returns the number of WQEs that will be needed on the workqueue if
273 * successful, or a negative error code.
274 */
275 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
276 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
277 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
278 {
279 struct ib_device *dev = qp->pd->device;
280 int ret;
281
282 if (is_pci_p2pdma_page(sg_page(sg)))
283 ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir);
284 else
285 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
286
287 if (!ret)
288 return -ENOMEM;
289 sg_cnt = ret;
290
291 /*
292 * Skip to the S/G entry that sg_offset falls into:
293 */
294 for (;;) {
295 u32 len = sg_dma_len(sg);
296
297 if (sg_offset < len)
298 break;
299
300 sg = sg_next(sg);
301 sg_offset -= len;
302 sg_cnt--;
303 }
304
305 ret = -EIO;
306 if (WARN_ON_ONCE(sg_cnt == 0))
307 goto out_unmap_sg;
308
309 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
310 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
311 sg_offset, remote_addr, rkey, dir);
312 } else if (sg_cnt > 1) {
313 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
314 remote_addr, rkey, dir);
315 } else {
316 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
317 remote_addr, rkey, dir);
318 }
319
320 if (ret < 0)
321 goto out_unmap_sg;
322 return ret;
323
324 out_unmap_sg:
325 ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
326 return ret;
327 }
328 EXPORT_SYMBOL(rdma_rw_ctx_init);
329
330 /**
331 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
332 * @ctx: context to initialize
333 * @qp: queue pair to operate on
334 * @port_num: port num to which the connection is bound
335 * @sg: scatterlist to READ/WRITE from/to
336 * @sg_cnt: number of entries in @sg
337 * @prot_sg: scatterlist to READ/WRITE protection information from/to
338 * @prot_sg_cnt: number of entries in @prot_sg
339 * @sig_attrs: signature offloading algorithms
340 * @remote_addr:remote address to read/write (relative to @rkey)
341 * @rkey: remote key to operate on
342 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
343 *
344 * Returns the number of WQEs that will be needed on the workqueue if
345 * successful, or a negative error code.
346 */
347 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
348 u8 port_num, struct scatterlist *sg, u32 sg_cnt,
349 struct scatterlist *prot_sg, u32 prot_sg_cnt,
350 struct ib_sig_attrs *sig_attrs,
351 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
352 {
353 struct ib_device *dev = qp->pd->device;
354 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
355 struct ib_rdma_wr *rdma_wr;
356 struct ib_send_wr *prev_wr = NULL;
357 int count = 0, ret;
358
359 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
360 pr_err("SG count too large\n");
361 return -EINVAL;
362 }
363
364 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
365 if (!ret)
366 return -ENOMEM;
367 sg_cnt = ret;
368
369 ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
370 if (!ret) {
371 ret = -ENOMEM;
372 goto out_unmap_sg;
373 }
374 prot_sg_cnt = ret;
375
376 ctx->type = RDMA_RW_SIG_MR;
377 ctx->nr_ops = 1;
378 ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
379 if (!ctx->sig) {
380 ret = -ENOMEM;
381 goto out_unmap_prot_sg;
382 }
383
384 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
385 if (ret < 0)
386 goto out_free_ctx;
387 count += ret;
388 prev_wr = &ctx->sig->data.reg_wr.wr;
389
390 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
391 prot_sg, prot_sg_cnt, 0);
392 if (ret < 0)
393 goto out_destroy_data_mr;
394 count += ret;
395
396 if (ctx->sig->prot.inv_wr.next)
397 prev_wr->next = &ctx->sig->prot.inv_wr;
398 else
399 prev_wr->next = &ctx->sig->prot.reg_wr.wr;
400 prev_wr = &ctx->sig->prot.reg_wr.wr;
401
402 ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
403 if (!ctx->sig->sig_mr) {
404 ret = -EAGAIN;
405 goto out_destroy_prot_mr;
406 }
407
408 if (ctx->sig->sig_mr->need_inval) {
409 memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
410
411 ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
412 ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
413
414 prev_wr->next = &ctx->sig->sig_inv_wr;
415 prev_wr = &ctx->sig->sig_inv_wr;
416 }
417
418 ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
419 ctx->sig->sig_wr.wr.wr_cqe = NULL;
420 ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
421 ctx->sig->sig_wr.wr.num_sge = 1;
422 ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
423 ctx->sig->sig_wr.sig_attrs = sig_attrs;
424 ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
425 if (prot_sg_cnt)
426 ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
427 prev_wr->next = &ctx->sig->sig_wr.wr;
428 prev_wr = &ctx->sig->sig_wr.wr;
429 count++;
430
431 ctx->sig->sig_sge.addr = 0;
432 ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
433 if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
434 ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
435
436 rdma_wr = &ctx->sig->data.wr;
437 rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
438 rdma_wr->wr.num_sge = 1;
439 rdma_wr->remote_addr = remote_addr;
440 rdma_wr->rkey = rkey;
441 if (dir == DMA_TO_DEVICE)
442 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
443 else
444 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
445 prev_wr->next = &rdma_wr->wr;
446 prev_wr = &rdma_wr->wr;
447 count++;
448
449 return count;
450
451 out_destroy_prot_mr:
452 if (prot_sg_cnt)
453 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
454 out_destroy_data_mr:
455 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
456 out_free_ctx:
457 kfree(ctx->sig);
458 out_unmap_prot_sg:
459 ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
460 out_unmap_sg:
461 ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
462 return ret;
463 }
464 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
465
466 /*
467 * Now that we are going to post the WRs we can update the lkey and need_inval
468 * state on the MRs. If we were doing this at init time, we would get double
469 * or missing invalidations if a context was initialized but not actually
470 * posted.
471 */
472 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
473 {
474 reg->mr->need_inval = need_inval;
475 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
476 reg->reg_wr.key = reg->mr->lkey;
477 reg->sge.lkey = reg->mr->lkey;
478 }
479
480 /**
481 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
482 * @ctx: context to operate on
483 * @qp: queue pair to operate on
484 * @port_num: port num to which the connection is bound
485 * @cqe: completion queue entry for the last WR
486 * @chain_wr: WR to append to the posted chain
487 *
488 * Return the WR chain for the set of RDMA READ/WRITE operations described by
489 * @ctx, as well as any memory registration operations needed. If @chain_wr
490 * is non-NULL the WR it points to will be appended to the chain of WRs posted.
491 * If @chain_wr is not set @cqe must be set so that the caller gets a
492 * completion notification.
493 */
494 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
495 u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
496 {
497 struct ib_send_wr *first_wr, *last_wr;
498 int i;
499
500 switch (ctx->type) {
501 case RDMA_RW_SIG_MR:
502 rdma_rw_update_lkey(&ctx->sig->data, true);
503 if (ctx->sig->prot.mr)
504 rdma_rw_update_lkey(&ctx->sig->prot, true);
505
506 ctx->sig->sig_mr->need_inval = true;
507 ib_update_fast_reg_key(ctx->sig->sig_mr,
508 ib_inc_rkey(ctx->sig->sig_mr->lkey));
509 ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
510
511 if (ctx->sig->data.inv_wr.next)
512 first_wr = &ctx->sig->data.inv_wr;
513 else
514 first_wr = &ctx->sig->data.reg_wr.wr;
515 last_wr = &ctx->sig->data.wr.wr;
516 break;
517 case RDMA_RW_MR:
518 for (i = 0; i < ctx->nr_ops; i++) {
519 rdma_rw_update_lkey(&ctx->reg[i],
520 ctx->reg[i].wr.wr.opcode !=
521 IB_WR_RDMA_READ_WITH_INV);
522 }
523
524 if (ctx->reg[0].inv_wr.next)
525 first_wr = &ctx->reg[0].inv_wr;
526 else
527 first_wr = &ctx->reg[0].reg_wr.wr;
528 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
529 break;
530 case RDMA_RW_MULTI_WR:
531 first_wr = &ctx->map.wrs[0].wr;
532 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
533 break;
534 case RDMA_RW_SINGLE_WR:
535 first_wr = &ctx->single.wr.wr;
536 last_wr = &ctx->single.wr.wr;
537 break;
538 default:
539 BUG();
540 }
541
542 if (chain_wr) {
543 last_wr->next = chain_wr;
544 } else {
545 last_wr->wr_cqe = cqe;
546 last_wr->send_flags |= IB_SEND_SIGNALED;
547 }
548
549 return first_wr;
550 }
551 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
552
553 /**
554 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
555 * @ctx: context to operate on
556 * @qp: queue pair to operate on
557 * @port_num: port num to which the connection is bound
558 * @cqe: completion queue entry for the last WR
559 * @chain_wr: WR to append to the posted chain
560 *
561 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
562 * any memory registration operations needed. If @chain_wr is non-NULL the
563 * WR it points to will be appended to the chain of WRs posted. If @chain_wr
564 * is not set @cqe must be set so that the caller gets a completion
565 * notification.
566 */
567 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
568 struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
569 {
570 struct ib_send_wr *first_wr;
571
572 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
573 return ib_post_send(qp, first_wr, NULL);
574 }
575 EXPORT_SYMBOL(rdma_rw_ctx_post);
576
577 /**
578 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
579 * @ctx: context to release
580 * @qp: queue pair to operate on
581 * @port_num: port num to which the connection is bound
582 * @sg: scatterlist that was used for the READ/WRITE
583 * @sg_cnt: number of entries in @sg
584 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
585 */
586 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
587 struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
588 {
589 int i;
590
591 switch (ctx->type) {
592 case RDMA_RW_MR:
593 for (i = 0; i < ctx->nr_ops; i++)
594 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
595 kfree(ctx->reg);
596 break;
597 case RDMA_RW_MULTI_WR:
598 kfree(ctx->map.wrs);
599 kfree(ctx->map.sges);
600 break;
601 case RDMA_RW_SINGLE_WR:
602 break;
603 default:
604 BUG();
605 break;
606 }
607
608 /* P2PDMA contexts do not need to be unmapped */
609 if (!is_pci_p2pdma_page(sg_page(sg)))
610 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
611 }
612 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
613
614 /**
615 * rdma_rw_ctx_destroy_signature - release all resources allocated by
616 * rdma_rw_ctx_init_signature
617 * @ctx: context to release
618 * @qp: queue pair to operate on
619 * @port_num: port num to which the connection is bound
620 * @sg: scatterlist that was used for the READ/WRITE
621 * @sg_cnt: number of entries in @sg
622 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI
623 * @prot_sg_cnt: number of entries in @prot_sg
624 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
625 */
626 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
627 u8 port_num, struct scatterlist *sg, u32 sg_cnt,
628 struct scatterlist *prot_sg, u32 prot_sg_cnt,
629 enum dma_data_direction dir)
630 {
631 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
632 return;
633
634 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
635 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
636
637 if (ctx->sig->prot.mr) {
638 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
639 ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
640 }
641
642 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
643 kfree(ctx->sig);
644 }
645 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
646
647 /**
648 * rdma_rw_mr_factor - return number of MRs required for a payload
649 * @device: device handling the connection
650 * @port_num: port num to which the connection is bound
651 * @maxpages: maximum payload pages per rdma_rw_ctx
652 *
653 * Returns the number of MRs the device requires to move @maxpayload
654 * bytes. The returned value is used during transport creation to
655 * compute max_rdma_ctxts and the size of the transport's Send and
656 * Send Completion Queues.
657 */
658 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
659 unsigned int maxpages)
660 {
661 unsigned int mr_pages;
662
663 if (rdma_rw_can_use_mr(device, port_num))
664 mr_pages = rdma_rw_fr_page_list_len(device);
665 else
666 mr_pages = device->attrs.max_sge_rd;
667 return DIV_ROUND_UP(maxpages, mr_pages);
668 }
669 EXPORT_SYMBOL(rdma_rw_mr_factor);
670
671 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
672 {
673 u32 factor;
674
675 WARN_ON_ONCE(attr->port_num == 0);
676
677 /*
678 * Each context needs at least one RDMA READ or WRITE WR.
679 *
680 * For some hardware we might need more, eventually we should ask the
681 * HCA driver for a multiplier here.
682 */
683 factor = 1;
684
685 /*
686 * If the devices needs MRs to perform RDMA READ or WRITE operations,
687 * we'll need two additional MRs for the registrations and the
688 * invalidation.
689 */
690 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN)
691 factor += 6; /* (inv + reg) * (data + prot + sig) */
692 else if (rdma_rw_can_use_mr(dev, attr->port_num))
693 factor += 2; /* inv + reg */
694
695 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
696
697 /*
698 * But maybe we were just too high in the sky and the device doesn't
699 * even support all we need, and we'll have to live with what we get..
700 */
701 attr->cap.max_send_wr =
702 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
703 }
704
705 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
706 {
707 struct ib_device *dev = qp->pd->device;
708 u32 nr_mrs = 0, nr_sig_mrs = 0;
709 int ret = 0;
710
711 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) {
712 nr_sig_mrs = attr->cap.max_rdma_ctxs;
713 nr_mrs = attr->cap.max_rdma_ctxs * 2;
714 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
715 nr_mrs = attr->cap.max_rdma_ctxs;
716 }
717
718 if (nr_mrs) {
719 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
720 IB_MR_TYPE_MEM_REG,
721 rdma_rw_fr_page_list_len(dev));
722 if (ret) {
723 pr_err("%s: failed to allocated %d MRs\n",
724 __func__, nr_mrs);
725 return ret;
726 }
727 }
728
729 if (nr_sig_mrs) {
730 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
731 IB_MR_TYPE_SIGNATURE, 2);
732 if (ret) {
733 pr_err("%s: failed to allocated %d SIG MRs\n",
734 __func__, nr_mrs);
735 goto out_free_rdma_mrs;
736 }
737 }
738
739 return 0;
740
741 out_free_rdma_mrs:
742 ib_mr_pool_destroy(qp, &qp->rdma_mrs);
743 return ret;
744 }
745
746 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
747 {
748 ib_mr_pool_destroy(qp, &qp->sig_mrs);
749 ib_mr_pool_destroy(qp, &qp->rdma_mrs);
750 }