]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/core/verbs.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / core / verbs.c
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44
45 #include <rdma/ib_verbs.h>
46 #include <rdma/ib_cache.h>
47 #include <rdma/ib_addr.h>
48
49 #include "core_priv.h"
50
51 static const char * const ib_events[] = {
52 [IB_EVENT_CQ_ERR] = "CQ error",
53 [IB_EVENT_QP_FATAL] = "QP fatal error",
54 [IB_EVENT_QP_REQ_ERR] = "QP request error",
55 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
56 [IB_EVENT_COMM_EST] = "communication established",
57 [IB_EVENT_SQ_DRAINED] = "send queue drained",
58 [IB_EVENT_PATH_MIG] = "path migration successful",
59 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
60 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
61 [IB_EVENT_PORT_ACTIVE] = "port active",
62 [IB_EVENT_PORT_ERR] = "port error",
63 [IB_EVENT_LID_CHANGE] = "LID change",
64 [IB_EVENT_PKEY_CHANGE] = "P_key change",
65 [IB_EVENT_SM_CHANGE] = "SM change",
66 [IB_EVENT_SRQ_ERR] = "SRQ error",
67 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
68 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
69 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
70 [IB_EVENT_GID_CHANGE] = "GID changed",
71 };
72
73 const char *ib_event_msg(enum ib_event_type event)
74 {
75 size_t index = event;
76
77 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
78 ib_events[index] : "unrecognized event";
79 }
80 EXPORT_SYMBOL(ib_event_msg);
81
82 static const char * const wc_statuses[] = {
83 [IB_WC_SUCCESS] = "success",
84 [IB_WC_LOC_LEN_ERR] = "local length error",
85 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
86 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
87 [IB_WC_LOC_PROT_ERR] = "local protection error",
88 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
89 [IB_WC_MW_BIND_ERR] = "memory management operation error",
90 [IB_WC_BAD_RESP_ERR] = "bad response error",
91 [IB_WC_LOC_ACCESS_ERR] = "local access error",
92 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
93 [IB_WC_REM_ACCESS_ERR] = "remote access error",
94 [IB_WC_REM_OP_ERR] = "remote operation error",
95 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
96 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
97 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
98 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
99 [IB_WC_REM_ABORT_ERR] = "operation aborted",
100 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
101 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
102 [IB_WC_FATAL_ERR] = "fatal error",
103 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
104 [IB_WC_GENERAL_ERR] = "general error",
105 };
106
107 const char *ib_wc_status_msg(enum ib_wc_status status)
108 {
109 size_t index = status;
110
111 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
112 wc_statuses[index] : "unrecognized status";
113 }
114 EXPORT_SYMBOL(ib_wc_status_msg);
115
116 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
117 {
118 switch (rate) {
119 case IB_RATE_2_5_GBPS: return 1;
120 case IB_RATE_5_GBPS: return 2;
121 case IB_RATE_10_GBPS: return 4;
122 case IB_RATE_20_GBPS: return 8;
123 case IB_RATE_30_GBPS: return 12;
124 case IB_RATE_40_GBPS: return 16;
125 case IB_RATE_60_GBPS: return 24;
126 case IB_RATE_80_GBPS: return 32;
127 case IB_RATE_120_GBPS: return 48;
128 default: return -1;
129 }
130 }
131 EXPORT_SYMBOL(ib_rate_to_mult);
132
133 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
134 {
135 switch (mult) {
136 case 1: return IB_RATE_2_5_GBPS;
137 case 2: return IB_RATE_5_GBPS;
138 case 4: return IB_RATE_10_GBPS;
139 case 8: return IB_RATE_20_GBPS;
140 case 12: return IB_RATE_30_GBPS;
141 case 16: return IB_RATE_40_GBPS;
142 case 24: return IB_RATE_60_GBPS;
143 case 32: return IB_RATE_80_GBPS;
144 case 48: return IB_RATE_120_GBPS;
145 default: return IB_RATE_PORT_CURRENT;
146 }
147 }
148 EXPORT_SYMBOL(mult_to_ib_rate);
149
150 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
151 {
152 switch (rate) {
153 case IB_RATE_2_5_GBPS: return 2500;
154 case IB_RATE_5_GBPS: return 5000;
155 case IB_RATE_10_GBPS: return 10000;
156 case IB_RATE_20_GBPS: return 20000;
157 case IB_RATE_30_GBPS: return 30000;
158 case IB_RATE_40_GBPS: return 40000;
159 case IB_RATE_60_GBPS: return 60000;
160 case IB_RATE_80_GBPS: return 80000;
161 case IB_RATE_120_GBPS: return 120000;
162 case IB_RATE_14_GBPS: return 14062;
163 case IB_RATE_56_GBPS: return 56250;
164 case IB_RATE_112_GBPS: return 112500;
165 case IB_RATE_168_GBPS: return 168750;
166 case IB_RATE_25_GBPS: return 25781;
167 case IB_RATE_100_GBPS: return 103125;
168 case IB_RATE_200_GBPS: return 206250;
169 case IB_RATE_300_GBPS: return 309375;
170 default: return -1;
171 }
172 }
173 EXPORT_SYMBOL(ib_rate_to_mbps);
174
175 __attribute_const__ enum rdma_transport_type
176 rdma_node_get_transport(enum rdma_node_type node_type)
177 {
178 switch (node_type) {
179 case RDMA_NODE_IB_CA:
180 case RDMA_NODE_IB_SWITCH:
181 case RDMA_NODE_IB_ROUTER:
182 return RDMA_TRANSPORT_IB;
183 case RDMA_NODE_RNIC:
184 return RDMA_TRANSPORT_IWARP;
185 case RDMA_NODE_USNIC:
186 return RDMA_TRANSPORT_USNIC;
187 case RDMA_NODE_USNIC_UDP:
188 return RDMA_TRANSPORT_USNIC_UDP;
189 default:
190 BUG();
191 return 0;
192 }
193 }
194 EXPORT_SYMBOL(rdma_node_get_transport);
195
196 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
197 {
198 if (device->get_link_layer)
199 return device->get_link_layer(device, port_num);
200
201 switch (rdma_node_get_transport(device->node_type)) {
202 case RDMA_TRANSPORT_IB:
203 return IB_LINK_LAYER_INFINIBAND;
204 case RDMA_TRANSPORT_IWARP:
205 case RDMA_TRANSPORT_USNIC:
206 case RDMA_TRANSPORT_USNIC_UDP:
207 return IB_LINK_LAYER_ETHERNET;
208 default:
209 return IB_LINK_LAYER_UNSPECIFIED;
210 }
211 }
212 EXPORT_SYMBOL(rdma_port_get_link_layer);
213
214 /* Protection domains */
215
216 /**
217 * ib_alloc_pd - Allocates an unused protection domain.
218 * @device: The device on which to allocate the protection domain.
219 *
220 * A protection domain object provides an association between QPs, shared
221 * receive queues, address handles, memory regions, and memory windows.
222 *
223 * Every PD has a local_dma_lkey which can be used as the lkey value for local
224 * memory operations.
225 */
226 struct ib_pd *ib_alloc_pd(struct ib_device *device)
227 {
228 struct ib_pd *pd;
229 struct ib_device_attr devattr;
230 int rc;
231
232 rc = ib_query_device(device, &devattr);
233 if (rc)
234 return ERR_PTR(rc);
235
236 pd = device->alloc_pd(device, NULL, NULL);
237 if (IS_ERR(pd))
238 return pd;
239
240 pd->device = device;
241 pd->uobject = NULL;
242 pd->local_mr = NULL;
243 atomic_set(&pd->usecnt, 0);
244
245 if (devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
246 pd->local_dma_lkey = device->local_dma_lkey;
247 else {
248 struct ib_mr *mr;
249
250 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
251 if (IS_ERR(mr)) {
252 ib_dealloc_pd(pd);
253 return (struct ib_pd *)mr;
254 }
255
256 pd->local_mr = mr;
257 pd->local_dma_lkey = pd->local_mr->lkey;
258 }
259 return pd;
260 }
261 EXPORT_SYMBOL(ib_alloc_pd);
262
263 /**
264 * ib_dealloc_pd - Deallocates a protection domain.
265 * @pd: The protection domain to deallocate.
266 *
267 * It is an error to call this function while any resources in the pd still
268 * exist. The caller is responsible to synchronously destroy them and
269 * guarantee no new allocations will happen.
270 */
271 void ib_dealloc_pd(struct ib_pd *pd)
272 {
273 int ret;
274
275 if (pd->local_mr) {
276 ret = ib_dereg_mr(pd->local_mr);
277 WARN_ON(ret);
278 pd->local_mr = NULL;
279 }
280
281 /* uverbs manipulates usecnt with proper locking, while the kabi
282 requires the caller to guarantee we can't race here. */
283 WARN_ON(atomic_read(&pd->usecnt));
284
285 /* Making delalloc_pd a void return is a WIP, no driver should return
286 an error here. */
287 ret = pd->device->dealloc_pd(pd);
288 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
289 }
290 EXPORT_SYMBOL(ib_dealloc_pd);
291
292 /* Address handles */
293
294 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
295 {
296 struct ib_ah *ah;
297
298 ah = pd->device->create_ah(pd, ah_attr);
299
300 if (!IS_ERR(ah)) {
301 ah->device = pd->device;
302 ah->pd = pd;
303 ah->uobject = NULL;
304 atomic_inc(&pd->usecnt);
305 }
306
307 return ah;
308 }
309 EXPORT_SYMBOL(ib_create_ah);
310
311 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
312 const struct ib_wc *wc, const struct ib_grh *grh,
313 struct ib_ah_attr *ah_attr)
314 {
315 u32 flow_class;
316 u16 gid_index;
317 int ret;
318
319 memset(ah_attr, 0, sizeof *ah_attr);
320 if (rdma_cap_eth_ah(device, port_num)) {
321 if (!(wc->wc_flags & IB_WC_GRH))
322 return -EPROTOTYPE;
323
324 if (wc->wc_flags & IB_WC_WITH_SMAC &&
325 wc->wc_flags & IB_WC_WITH_VLAN) {
326 memcpy(ah_attr->dmac, wc->smac, ETH_ALEN);
327 ah_attr->vlan_id = wc->vlan_id;
328 } else {
329 ret = rdma_addr_find_dmac_by_grh(&grh->dgid, &grh->sgid,
330 ah_attr->dmac, &ah_attr->vlan_id);
331 if (ret)
332 return ret;
333 }
334 } else {
335 ah_attr->vlan_id = 0xffff;
336 }
337
338 ah_attr->dlid = wc->slid;
339 ah_attr->sl = wc->sl;
340 ah_attr->src_path_bits = wc->dlid_path_bits;
341 ah_attr->port_num = port_num;
342
343 if (wc->wc_flags & IB_WC_GRH) {
344 ah_attr->ah_flags = IB_AH_GRH;
345 ah_attr->grh.dgid = grh->sgid;
346
347 ret = ib_find_cached_gid(device, &grh->dgid, &port_num,
348 &gid_index);
349 if (ret)
350 return ret;
351
352 ah_attr->grh.sgid_index = (u8) gid_index;
353 flow_class = be32_to_cpu(grh->version_tclass_flow);
354 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
355 ah_attr->grh.hop_limit = 0xFF;
356 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
357 }
358 return 0;
359 }
360 EXPORT_SYMBOL(ib_init_ah_from_wc);
361
362 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
363 const struct ib_grh *grh, u8 port_num)
364 {
365 struct ib_ah_attr ah_attr;
366 int ret;
367
368 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
369 if (ret)
370 return ERR_PTR(ret);
371
372 return ib_create_ah(pd, &ah_attr);
373 }
374 EXPORT_SYMBOL(ib_create_ah_from_wc);
375
376 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
377 {
378 return ah->device->modify_ah ?
379 ah->device->modify_ah(ah, ah_attr) :
380 -ENOSYS;
381 }
382 EXPORT_SYMBOL(ib_modify_ah);
383
384 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
385 {
386 return ah->device->query_ah ?
387 ah->device->query_ah(ah, ah_attr) :
388 -ENOSYS;
389 }
390 EXPORT_SYMBOL(ib_query_ah);
391
392 int ib_destroy_ah(struct ib_ah *ah)
393 {
394 struct ib_pd *pd;
395 int ret;
396
397 pd = ah->pd;
398 ret = ah->device->destroy_ah(ah);
399 if (!ret)
400 atomic_dec(&pd->usecnt);
401
402 return ret;
403 }
404 EXPORT_SYMBOL(ib_destroy_ah);
405
406 /* Shared receive queues */
407
408 struct ib_srq *ib_create_srq(struct ib_pd *pd,
409 struct ib_srq_init_attr *srq_init_attr)
410 {
411 struct ib_srq *srq;
412
413 if (!pd->device->create_srq)
414 return ERR_PTR(-ENOSYS);
415
416 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
417
418 if (!IS_ERR(srq)) {
419 srq->device = pd->device;
420 srq->pd = pd;
421 srq->uobject = NULL;
422 srq->event_handler = srq_init_attr->event_handler;
423 srq->srq_context = srq_init_attr->srq_context;
424 srq->srq_type = srq_init_attr->srq_type;
425 if (srq->srq_type == IB_SRQT_XRC) {
426 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
427 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
428 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
429 atomic_inc(&srq->ext.xrc.cq->usecnt);
430 }
431 atomic_inc(&pd->usecnt);
432 atomic_set(&srq->usecnt, 0);
433 }
434
435 return srq;
436 }
437 EXPORT_SYMBOL(ib_create_srq);
438
439 int ib_modify_srq(struct ib_srq *srq,
440 struct ib_srq_attr *srq_attr,
441 enum ib_srq_attr_mask srq_attr_mask)
442 {
443 return srq->device->modify_srq ?
444 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
445 -ENOSYS;
446 }
447 EXPORT_SYMBOL(ib_modify_srq);
448
449 int ib_query_srq(struct ib_srq *srq,
450 struct ib_srq_attr *srq_attr)
451 {
452 return srq->device->query_srq ?
453 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
454 }
455 EXPORT_SYMBOL(ib_query_srq);
456
457 int ib_destroy_srq(struct ib_srq *srq)
458 {
459 struct ib_pd *pd;
460 enum ib_srq_type srq_type;
461 struct ib_xrcd *uninitialized_var(xrcd);
462 struct ib_cq *uninitialized_var(cq);
463 int ret;
464
465 if (atomic_read(&srq->usecnt))
466 return -EBUSY;
467
468 pd = srq->pd;
469 srq_type = srq->srq_type;
470 if (srq_type == IB_SRQT_XRC) {
471 xrcd = srq->ext.xrc.xrcd;
472 cq = srq->ext.xrc.cq;
473 }
474
475 ret = srq->device->destroy_srq(srq);
476 if (!ret) {
477 atomic_dec(&pd->usecnt);
478 if (srq_type == IB_SRQT_XRC) {
479 atomic_dec(&xrcd->usecnt);
480 atomic_dec(&cq->usecnt);
481 }
482 }
483
484 return ret;
485 }
486 EXPORT_SYMBOL(ib_destroy_srq);
487
488 /* Queue pairs */
489
490 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
491 {
492 struct ib_qp *qp = context;
493 unsigned long flags;
494
495 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
496 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
497 if (event->element.qp->event_handler)
498 event->element.qp->event_handler(event, event->element.qp->qp_context);
499 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
500 }
501
502 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
503 {
504 mutex_lock(&xrcd->tgt_qp_mutex);
505 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
506 mutex_unlock(&xrcd->tgt_qp_mutex);
507 }
508
509 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
510 void (*event_handler)(struct ib_event *, void *),
511 void *qp_context)
512 {
513 struct ib_qp *qp;
514 unsigned long flags;
515
516 qp = kzalloc(sizeof *qp, GFP_KERNEL);
517 if (!qp)
518 return ERR_PTR(-ENOMEM);
519
520 qp->real_qp = real_qp;
521 atomic_inc(&real_qp->usecnt);
522 qp->device = real_qp->device;
523 qp->event_handler = event_handler;
524 qp->qp_context = qp_context;
525 qp->qp_num = real_qp->qp_num;
526 qp->qp_type = real_qp->qp_type;
527
528 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
529 list_add(&qp->open_list, &real_qp->open_list);
530 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
531
532 return qp;
533 }
534
535 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
536 struct ib_qp_open_attr *qp_open_attr)
537 {
538 struct ib_qp *qp, *real_qp;
539
540 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
541 return ERR_PTR(-EINVAL);
542
543 qp = ERR_PTR(-EINVAL);
544 mutex_lock(&xrcd->tgt_qp_mutex);
545 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
546 if (real_qp->qp_num == qp_open_attr->qp_num) {
547 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
548 qp_open_attr->qp_context);
549 break;
550 }
551 }
552 mutex_unlock(&xrcd->tgt_qp_mutex);
553 return qp;
554 }
555 EXPORT_SYMBOL(ib_open_qp);
556
557 struct ib_qp *ib_create_qp(struct ib_pd *pd,
558 struct ib_qp_init_attr *qp_init_attr)
559 {
560 struct ib_qp *qp, *real_qp;
561 struct ib_device *device;
562
563 device = pd ? pd->device : qp_init_attr->xrcd->device;
564 qp = device->create_qp(pd, qp_init_attr, NULL);
565
566 if (!IS_ERR(qp)) {
567 qp->device = device;
568 qp->real_qp = qp;
569 qp->uobject = NULL;
570 qp->qp_type = qp_init_attr->qp_type;
571
572 atomic_set(&qp->usecnt, 0);
573 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
574 qp->event_handler = __ib_shared_qp_event_handler;
575 qp->qp_context = qp;
576 qp->pd = NULL;
577 qp->send_cq = qp->recv_cq = NULL;
578 qp->srq = NULL;
579 qp->xrcd = qp_init_attr->xrcd;
580 atomic_inc(&qp_init_attr->xrcd->usecnt);
581 INIT_LIST_HEAD(&qp->open_list);
582
583 real_qp = qp;
584 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
585 qp_init_attr->qp_context);
586 if (!IS_ERR(qp))
587 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
588 else
589 real_qp->device->destroy_qp(real_qp);
590 } else {
591 qp->event_handler = qp_init_attr->event_handler;
592 qp->qp_context = qp_init_attr->qp_context;
593 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
594 qp->recv_cq = NULL;
595 qp->srq = NULL;
596 } else {
597 qp->recv_cq = qp_init_attr->recv_cq;
598 atomic_inc(&qp_init_attr->recv_cq->usecnt);
599 qp->srq = qp_init_attr->srq;
600 if (qp->srq)
601 atomic_inc(&qp_init_attr->srq->usecnt);
602 }
603
604 qp->pd = pd;
605 qp->send_cq = qp_init_attr->send_cq;
606 qp->xrcd = NULL;
607
608 atomic_inc(&pd->usecnt);
609 atomic_inc(&qp_init_attr->send_cq->usecnt);
610 }
611 }
612
613 return qp;
614 }
615 EXPORT_SYMBOL(ib_create_qp);
616
617 static const struct {
618 int valid;
619 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
620 enum ib_qp_attr_mask req_param_add_eth[IB_QPT_MAX];
621 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
622 enum ib_qp_attr_mask opt_param_add_eth[IB_QPT_MAX];
623 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
624 [IB_QPS_RESET] = {
625 [IB_QPS_RESET] = { .valid = 1 },
626 [IB_QPS_INIT] = {
627 .valid = 1,
628 .req_param = {
629 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
630 IB_QP_PORT |
631 IB_QP_QKEY),
632 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
633 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
634 IB_QP_PORT |
635 IB_QP_ACCESS_FLAGS),
636 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
637 IB_QP_PORT |
638 IB_QP_ACCESS_FLAGS),
639 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
640 IB_QP_PORT |
641 IB_QP_ACCESS_FLAGS),
642 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
643 IB_QP_PORT |
644 IB_QP_ACCESS_FLAGS),
645 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
646 IB_QP_QKEY),
647 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
648 IB_QP_QKEY),
649 }
650 },
651 },
652 [IB_QPS_INIT] = {
653 [IB_QPS_RESET] = { .valid = 1 },
654 [IB_QPS_ERR] = { .valid = 1 },
655 [IB_QPS_INIT] = {
656 .valid = 1,
657 .opt_param = {
658 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
659 IB_QP_PORT |
660 IB_QP_QKEY),
661 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
662 IB_QP_PORT |
663 IB_QP_ACCESS_FLAGS),
664 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
665 IB_QP_PORT |
666 IB_QP_ACCESS_FLAGS),
667 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
668 IB_QP_PORT |
669 IB_QP_ACCESS_FLAGS),
670 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
671 IB_QP_PORT |
672 IB_QP_ACCESS_FLAGS),
673 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
674 IB_QP_QKEY),
675 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
676 IB_QP_QKEY),
677 }
678 },
679 [IB_QPS_RTR] = {
680 .valid = 1,
681 .req_param = {
682 [IB_QPT_UC] = (IB_QP_AV |
683 IB_QP_PATH_MTU |
684 IB_QP_DEST_QPN |
685 IB_QP_RQ_PSN),
686 [IB_QPT_RC] = (IB_QP_AV |
687 IB_QP_PATH_MTU |
688 IB_QP_DEST_QPN |
689 IB_QP_RQ_PSN |
690 IB_QP_MAX_DEST_RD_ATOMIC |
691 IB_QP_MIN_RNR_TIMER),
692 [IB_QPT_XRC_INI] = (IB_QP_AV |
693 IB_QP_PATH_MTU |
694 IB_QP_DEST_QPN |
695 IB_QP_RQ_PSN),
696 [IB_QPT_XRC_TGT] = (IB_QP_AV |
697 IB_QP_PATH_MTU |
698 IB_QP_DEST_QPN |
699 IB_QP_RQ_PSN |
700 IB_QP_MAX_DEST_RD_ATOMIC |
701 IB_QP_MIN_RNR_TIMER),
702 },
703 .req_param_add_eth = {
704 [IB_QPT_RC] = (IB_QP_SMAC),
705 [IB_QPT_UC] = (IB_QP_SMAC),
706 [IB_QPT_XRC_INI] = (IB_QP_SMAC),
707 [IB_QPT_XRC_TGT] = (IB_QP_SMAC)
708 },
709 .opt_param = {
710 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
711 IB_QP_QKEY),
712 [IB_QPT_UC] = (IB_QP_ALT_PATH |
713 IB_QP_ACCESS_FLAGS |
714 IB_QP_PKEY_INDEX),
715 [IB_QPT_RC] = (IB_QP_ALT_PATH |
716 IB_QP_ACCESS_FLAGS |
717 IB_QP_PKEY_INDEX),
718 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
719 IB_QP_ACCESS_FLAGS |
720 IB_QP_PKEY_INDEX),
721 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
722 IB_QP_ACCESS_FLAGS |
723 IB_QP_PKEY_INDEX),
724 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
725 IB_QP_QKEY),
726 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
727 IB_QP_QKEY),
728 },
729 .opt_param_add_eth = {
730 [IB_QPT_RC] = (IB_QP_ALT_SMAC |
731 IB_QP_VID |
732 IB_QP_ALT_VID),
733 [IB_QPT_UC] = (IB_QP_ALT_SMAC |
734 IB_QP_VID |
735 IB_QP_ALT_VID),
736 [IB_QPT_XRC_INI] = (IB_QP_ALT_SMAC |
737 IB_QP_VID |
738 IB_QP_ALT_VID),
739 [IB_QPT_XRC_TGT] = (IB_QP_ALT_SMAC |
740 IB_QP_VID |
741 IB_QP_ALT_VID)
742 }
743 }
744 },
745 [IB_QPS_RTR] = {
746 [IB_QPS_RESET] = { .valid = 1 },
747 [IB_QPS_ERR] = { .valid = 1 },
748 [IB_QPS_RTS] = {
749 .valid = 1,
750 .req_param = {
751 [IB_QPT_UD] = IB_QP_SQ_PSN,
752 [IB_QPT_UC] = IB_QP_SQ_PSN,
753 [IB_QPT_RC] = (IB_QP_TIMEOUT |
754 IB_QP_RETRY_CNT |
755 IB_QP_RNR_RETRY |
756 IB_QP_SQ_PSN |
757 IB_QP_MAX_QP_RD_ATOMIC),
758 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
759 IB_QP_RETRY_CNT |
760 IB_QP_RNR_RETRY |
761 IB_QP_SQ_PSN |
762 IB_QP_MAX_QP_RD_ATOMIC),
763 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
764 IB_QP_SQ_PSN),
765 [IB_QPT_SMI] = IB_QP_SQ_PSN,
766 [IB_QPT_GSI] = IB_QP_SQ_PSN,
767 },
768 .opt_param = {
769 [IB_QPT_UD] = (IB_QP_CUR_STATE |
770 IB_QP_QKEY),
771 [IB_QPT_UC] = (IB_QP_CUR_STATE |
772 IB_QP_ALT_PATH |
773 IB_QP_ACCESS_FLAGS |
774 IB_QP_PATH_MIG_STATE),
775 [IB_QPT_RC] = (IB_QP_CUR_STATE |
776 IB_QP_ALT_PATH |
777 IB_QP_ACCESS_FLAGS |
778 IB_QP_MIN_RNR_TIMER |
779 IB_QP_PATH_MIG_STATE),
780 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
781 IB_QP_ALT_PATH |
782 IB_QP_ACCESS_FLAGS |
783 IB_QP_PATH_MIG_STATE),
784 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
785 IB_QP_ALT_PATH |
786 IB_QP_ACCESS_FLAGS |
787 IB_QP_MIN_RNR_TIMER |
788 IB_QP_PATH_MIG_STATE),
789 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
790 IB_QP_QKEY),
791 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
792 IB_QP_QKEY),
793 }
794 }
795 },
796 [IB_QPS_RTS] = {
797 [IB_QPS_RESET] = { .valid = 1 },
798 [IB_QPS_ERR] = { .valid = 1 },
799 [IB_QPS_RTS] = {
800 .valid = 1,
801 .opt_param = {
802 [IB_QPT_UD] = (IB_QP_CUR_STATE |
803 IB_QP_QKEY),
804 [IB_QPT_UC] = (IB_QP_CUR_STATE |
805 IB_QP_ACCESS_FLAGS |
806 IB_QP_ALT_PATH |
807 IB_QP_PATH_MIG_STATE),
808 [IB_QPT_RC] = (IB_QP_CUR_STATE |
809 IB_QP_ACCESS_FLAGS |
810 IB_QP_ALT_PATH |
811 IB_QP_PATH_MIG_STATE |
812 IB_QP_MIN_RNR_TIMER),
813 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
814 IB_QP_ACCESS_FLAGS |
815 IB_QP_ALT_PATH |
816 IB_QP_PATH_MIG_STATE),
817 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
818 IB_QP_ACCESS_FLAGS |
819 IB_QP_ALT_PATH |
820 IB_QP_PATH_MIG_STATE |
821 IB_QP_MIN_RNR_TIMER),
822 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
823 IB_QP_QKEY),
824 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
825 IB_QP_QKEY),
826 }
827 },
828 [IB_QPS_SQD] = {
829 .valid = 1,
830 .opt_param = {
831 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
832 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
833 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
834 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
835 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
836 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
837 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
838 }
839 },
840 },
841 [IB_QPS_SQD] = {
842 [IB_QPS_RESET] = { .valid = 1 },
843 [IB_QPS_ERR] = { .valid = 1 },
844 [IB_QPS_RTS] = {
845 .valid = 1,
846 .opt_param = {
847 [IB_QPT_UD] = (IB_QP_CUR_STATE |
848 IB_QP_QKEY),
849 [IB_QPT_UC] = (IB_QP_CUR_STATE |
850 IB_QP_ALT_PATH |
851 IB_QP_ACCESS_FLAGS |
852 IB_QP_PATH_MIG_STATE),
853 [IB_QPT_RC] = (IB_QP_CUR_STATE |
854 IB_QP_ALT_PATH |
855 IB_QP_ACCESS_FLAGS |
856 IB_QP_MIN_RNR_TIMER |
857 IB_QP_PATH_MIG_STATE),
858 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
859 IB_QP_ALT_PATH |
860 IB_QP_ACCESS_FLAGS |
861 IB_QP_PATH_MIG_STATE),
862 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
863 IB_QP_ALT_PATH |
864 IB_QP_ACCESS_FLAGS |
865 IB_QP_MIN_RNR_TIMER |
866 IB_QP_PATH_MIG_STATE),
867 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
868 IB_QP_QKEY),
869 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
870 IB_QP_QKEY),
871 }
872 },
873 [IB_QPS_SQD] = {
874 .valid = 1,
875 .opt_param = {
876 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
877 IB_QP_QKEY),
878 [IB_QPT_UC] = (IB_QP_AV |
879 IB_QP_ALT_PATH |
880 IB_QP_ACCESS_FLAGS |
881 IB_QP_PKEY_INDEX |
882 IB_QP_PATH_MIG_STATE),
883 [IB_QPT_RC] = (IB_QP_PORT |
884 IB_QP_AV |
885 IB_QP_TIMEOUT |
886 IB_QP_RETRY_CNT |
887 IB_QP_RNR_RETRY |
888 IB_QP_MAX_QP_RD_ATOMIC |
889 IB_QP_MAX_DEST_RD_ATOMIC |
890 IB_QP_ALT_PATH |
891 IB_QP_ACCESS_FLAGS |
892 IB_QP_PKEY_INDEX |
893 IB_QP_MIN_RNR_TIMER |
894 IB_QP_PATH_MIG_STATE),
895 [IB_QPT_XRC_INI] = (IB_QP_PORT |
896 IB_QP_AV |
897 IB_QP_TIMEOUT |
898 IB_QP_RETRY_CNT |
899 IB_QP_RNR_RETRY |
900 IB_QP_MAX_QP_RD_ATOMIC |
901 IB_QP_ALT_PATH |
902 IB_QP_ACCESS_FLAGS |
903 IB_QP_PKEY_INDEX |
904 IB_QP_PATH_MIG_STATE),
905 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
906 IB_QP_AV |
907 IB_QP_TIMEOUT |
908 IB_QP_MAX_DEST_RD_ATOMIC |
909 IB_QP_ALT_PATH |
910 IB_QP_ACCESS_FLAGS |
911 IB_QP_PKEY_INDEX |
912 IB_QP_MIN_RNR_TIMER |
913 IB_QP_PATH_MIG_STATE),
914 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
915 IB_QP_QKEY),
916 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
917 IB_QP_QKEY),
918 }
919 }
920 },
921 [IB_QPS_SQE] = {
922 [IB_QPS_RESET] = { .valid = 1 },
923 [IB_QPS_ERR] = { .valid = 1 },
924 [IB_QPS_RTS] = {
925 .valid = 1,
926 .opt_param = {
927 [IB_QPT_UD] = (IB_QP_CUR_STATE |
928 IB_QP_QKEY),
929 [IB_QPT_UC] = (IB_QP_CUR_STATE |
930 IB_QP_ACCESS_FLAGS),
931 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
932 IB_QP_QKEY),
933 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
934 IB_QP_QKEY),
935 }
936 }
937 },
938 [IB_QPS_ERR] = {
939 [IB_QPS_RESET] = { .valid = 1 },
940 [IB_QPS_ERR] = { .valid = 1 }
941 }
942 };
943
944 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
945 enum ib_qp_type type, enum ib_qp_attr_mask mask,
946 enum rdma_link_layer ll)
947 {
948 enum ib_qp_attr_mask req_param, opt_param;
949
950 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
951 next_state < 0 || next_state > IB_QPS_ERR)
952 return 0;
953
954 if (mask & IB_QP_CUR_STATE &&
955 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
956 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
957 return 0;
958
959 if (!qp_state_table[cur_state][next_state].valid)
960 return 0;
961
962 req_param = qp_state_table[cur_state][next_state].req_param[type];
963 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
964
965 if (ll == IB_LINK_LAYER_ETHERNET) {
966 req_param |= qp_state_table[cur_state][next_state].
967 req_param_add_eth[type];
968 opt_param |= qp_state_table[cur_state][next_state].
969 opt_param_add_eth[type];
970 }
971
972 if ((mask & req_param) != req_param)
973 return 0;
974
975 if (mask & ~(req_param | opt_param | IB_QP_STATE))
976 return 0;
977
978 return 1;
979 }
980 EXPORT_SYMBOL(ib_modify_qp_is_ok);
981
982 int ib_resolve_eth_l2_attrs(struct ib_qp *qp,
983 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
984 {
985 int ret = 0;
986 union ib_gid sgid;
987
988 if ((*qp_attr_mask & IB_QP_AV) &&
989 (rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))) {
990 ret = ib_query_gid(qp->device, qp_attr->ah_attr.port_num,
991 qp_attr->ah_attr.grh.sgid_index, &sgid);
992 if (ret)
993 goto out;
994 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
995 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw, qp_attr->ah_attr.dmac);
996 rdma_get_ll_mac((struct in6_addr *)sgid.raw, qp_attr->smac);
997 if (!(*qp_attr_mask & IB_QP_VID))
998 qp_attr->vlan_id = rdma_get_vlan_id(&sgid);
999 } else {
1000 ret = rdma_addr_find_dmac_by_grh(&sgid, &qp_attr->ah_attr.grh.dgid,
1001 qp_attr->ah_attr.dmac, &qp_attr->vlan_id);
1002 if (ret)
1003 goto out;
1004 ret = rdma_addr_find_smac_by_sgid(&sgid, qp_attr->smac, NULL);
1005 if (ret)
1006 goto out;
1007 }
1008 *qp_attr_mask |= IB_QP_SMAC;
1009 if (qp_attr->vlan_id < 0xFFFF)
1010 *qp_attr_mask |= IB_QP_VID;
1011 }
1012 out:
1013 return ret;
1014 }
1015 EXPORT_SYMBOL(ib_resolve_eth_l2_attrs);
1016
1017
1018 int ib_modify_qp(struct ib_qp *qp,
1019 struct ib_qp_attr *qp_attr,
1020 int qp_attr_mask)
1021 {
1022 int ret;
1023
1024 ret = ib_resolve_eth_l2_attrs(qp, qp_attr, &qp_attr_mask);
1025 if (ret)
1026 return ret;
1027
1028 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1029 }
1030 EXPORT_SYMBOL(ib_modify_qp);
1031
1032 int ib_query_qp(struct ib_qp *qp,
1033 struct ib_qp_attr *qp_attr,
1034 int qp_attr_mask,
1035 struct ib_qp_init_attr *qp_init_attr)
1036 {
1037 return qp->device->query_qp ?
1038 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1039 -ENOSYS;
1040 }
1041 EXPORT_SYMBOL(ib_query_qp);
1042
1043 int ib_close_qp(struct ib_qp *qp)
1044 {
1045 struct ib_qp *real_qp;
1046 unsigned long flags;
1047
1048 real_qp = qp->real_qp;
1049 if (real_qp == qp)
1050 return -EINVAL;
1051
1052 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1053 list_del(&qp->open_list);
1054 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1055
1056 atomic_dec(&real_qp->usecnt);
1057 kfree(qp);
1058
1059 return 0;
1060 }
1061 EXPORT_SYMBOL(ib_close_qp);
1062
1063 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1064 {
1065 struct ib_xrcd *xrcd;
1066 struct ib_qp *real_qp;
1067 int ret;
1068
1069 real_qp = qp->real_qp;
1070 xrcd = real_qp->xrcd;
1071
1072 mutex_lock(&xrcd->tgt_qp_mutex);
1073 ib_close_qp(qp);
1074 if (atomic_read(&real_qp->usecnt) == 0)
1075 list_del(&real_qp->xrcd_list);
1076 else
1077 real_qp = NULL;
1078 mutex_unlock(&xrcd->tgt_qp_mutex);
1079
1080 if (real_qp) {
1081 ret = ib_destroy_qp(real_qp);
1082 if (!ret)
1083 atomic_dec(&xrcd->usecnt);
1084 else
1085 __ib_insert_xrcd_qp(xrcd, real_qp);
1086 }
1087
1088 return 0;
1089 }
1090
1091 int ib_destroy_qp(struct ib_qp *qp)
1092 {
1093 struct ib_pd *pd;
1094 struct ib_cq *scq, *rcq;
1095 struct ib_srq *srq;
1096 int ret;
1097
1098 if (atomic_read(&qp->usecnt))
1099 return -EBUSY;
1100
1101 if (qp->real_qp != qp)
1102 return __ib_destroy_shared_qp(qp);
1103
1104 pd = qp->pd;
1105 scq = qp->send_cq;
1106 rcq = qp->recv_cq;
1107 srq = qp->srq;
1108
1109 ret = qp->device->destroy_qp(qp);
1110 if (!ret) {
1111 if (pd)
1112 atomic_dec(&pd->usecnt);
1113 if (scq)
1114 atomic_dec(&scq->usecnt);
1115 if (rcq)
1116 atomic_dec(&rcq->usecnt);
1117 if (srq)
1118 atomic_dec(&srq->usecnt);
1119 }
1120
1121 return ret;
1122 }
1123 EXPORT_SYMBOL(ib_destroy_qp);
1124
1125 /* Completion queues */
1126
1127 struct ib_cq *ib_create_cq(struct ib_device *device,
1128 ib_comp_handler comp_handler,
1129 void (*event_handler)(struct ib_event *, void *),
1130 void *cq_context,
1131 const struct ib_cq_init_attr *cq_attr)
1132 {
1133 struct ib_cq *cq;
1134
1135 cq = device->create_cq(device, cq_attr, NULL, NULL);
1136
1137 if (!IS_ERR(cq)) {
1138 cq->device = device;
1139 cq->uobject = NULL;
1140 cq->comp_handler = comp_handler;
1141 cq->event_handler = event_handler;
1142 cq->cq_context = cq_context;
1143 atomic_set(&cq->usecnt, 0);
1144 }
1145
1146 return cq;
1147 }
1148 EXPORT_SYMBOL(ib_create_cq);
1149
1150 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1151 {
1152 return cq->device->modify_cq ?
1153 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1154 }
1155 EXPORT_SYMBOL(ib_modify_cq);
1156
1157 int ib_destroy_cq(struct ib_cq *cq)
1158 {
1159 if (atomic_read(&cq->usecnt))
1160 return -EBUSY;
1161
1162 return cq->device->destroy_cq(cq);
1163 }
1164 EXPORT_SYMBOL(ib_destroy_cq);
1165
1166 int ib_resize_cq(struct ib_cq *cq, int cqe)
1167 {
1168 return cq->device->resize_cq ?
1169 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1170 }
1171 EXPORT_SYMBOL(ib_resize_cq);
1172
1173 /* Memory regions */
1174
1175 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1176 {
1177 struct ib_mr *mr;
1178 int err;
1179
1180 err = ib_check_mr_access(mr_access_flags);
1181 if (err)
1182 return ERR_PTR(err);
1183
1184 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1185
1186 if (!IS_ERR(mr)) {
1187 mr->device = pd->device;
1188 mr->pd = pd;
1189 mr->uobject = NULL;
1190 atomic_inc(&pd->usecnt);
1191 atomic_set(&mr->usecnt, 0);
1192 }
1193
1194 return mr;
1195 }
1196 EXPORT_SYMBOL(ib_get_dma_mr);
1197
1198 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr)
1199 {
1200 return mr->device->query_mr ?
1201 mr->device->query_mr(mr, mr_attr) : -ENOSYS;
1202 }
1203 EXPORT_SYMBOL(ib_query_mr);
1204
1205 int ib_dereg_mr(struct ib_mr *mr)
1206 {
1207 struct ib_pd *pd;
1208 int ret;
1209
1210 if (atomic_read(&mr->usecnt))
1211 return -EBUSY;
1212
1213 pd = mr->pd;
1214 ret = mr->device->dereg_mr(mr);
1215 if (!ret)
1216 atomic_dec(&pd->usecnt);
1217
1218 return ret;
1219 }
1220 EXPORT_SYMBOL(ib_dereg_mr);
1221
1222 /**
1223 * ib_alloc_mr() - Allocates a memory region
1224 * @pd: protection domain associated with the region
1225 * @mr_type: memory region type
1226 * @max_num_sg: maximum sg entries available for registration.
1227 *
1228 * Notes:
1229 * Memory registeration page/sg lists must not exceed max_num_sg.
1230 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1231 * max_num_sg * used_page_size.
1232 *
1233 */
1234 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1235 enum ib_mr_type mr_type,
1236 u32 max_num_sg)
1237 {
1238 struct ib_mr *mr;
1239
1240 if (!pd->device->alloc_mr)
1241 return ERR_PTR(-ENOSYS);
1242
1243 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1244 if (!IS_ERR(mr)) {
1245 mr->device = pd->device;
1246 mr->pd = pd;
1247 mr->uobject = NULL;
1248 atomic_inc(&pd->usecnt);
1249 atomic_set(&mr->usecnt, 0);
1250 }
1251
1252 return mr;
1253 }
1254 EXPORT_SYMBOL(ib_alloc_mr);
1255
1256 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(struct ib_device *device,
1257 int max_page_list_len)
1258 {
1259 struct ib_fast_reg_page_list *page_list;
1260
1261 if (!device->alloc_fast_reg_page_list)
1262 return ERR_PTR(-ENOSYS);
1263
1264 page_list = device->alloc_fast_reg_page_list(device, max_page_list_len);
1265
1266 if (!IS_ERR(page_list)) {
1267 page_list->device = device;
1268 page_list->max_page_list_len = max_page_list_len;
1269 }
1270
1271 return page_list;
1272 }
1273 EXPORT_SYMBOL(ib_alloc_fast_reg_page_list);
1274
1275 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list)
1276 {
1277 page_list->device->free_fast_reg_page_list(page_list);
1278 }
1279 EXPORT_SYMBOL(ib_free_fast_reg_page_list);
1280
1281 /* Memory windows */
1282
1283 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
1284 {
1285 struct ib_mw *mw;
1286
1287 if (!pd->device->alloc_mw)
1288 return ERR_PTR(-ENOSYS);
1289
1290 mw = pd->device->alloc_mw(pd, type);
1291 if (!IS_ERR(mw)) {
1292 mw->device = pd->device;
1293 mw->pd = pd;
1294 mw->uobject = NULL;
1295 mw->type = type;
1296 atomic_inc(&pd->usecnt);
1297 }
1298
1299 return mw;
1300 }
1301 EXPORT_SYMBOL(ib_alloc_mw);
1302
1303 int ib_dealloc_mw(struct ib_mw *mw)
1304 {
1305 struct ib_pd *pd;
1306 int ret;
1307
1308 pd = mw->pd;
1309 ret = mw->device->dealloc_mw(mw);
1310 if (!ret)
1311 atomic_dec(&pd->usecnt);
1312
1313 return ret;
1314 }
1315 EXPORT_SYMBOL(ib_dealloc_mw);
1316
1317 /* "Fast" memory regions */
1318
1319 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1320 int mr_access_flags,
1321 struct ib_fmr_attr *fmr_attr)
1322 {
1323 struct ib_fmr *fmr;
1324
1325 if (!pd->device->alloc_fmr)
1326 return ERR_PTR(-ENOSYS);
1327
1328 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1329 if (!IS_ERR(fmr)) {
1330 fmr->device = pd->device;
1331 fmr->pd = pd;
1332 atomic_inc(&pd->usecnt);
1333 }
1334
1335 return fmr;
1336 }
1337 EXPORT_SYMBOL(ib_alloc_fmr);
1338
1339 int ib_unmap_fmr(struct list_head *fmr_list)
1340 {
1341 struct ib_fmr *fmr;
1342
1343 if (list_empty(fmr_list))
1344 return 0;
1345
1346 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1347 return fmr->device->unmap_fmr(fmr_list);
1348 }
1349 EXPORT_SYMBOL(ib_unmap_fmr);
1350
1351 int ib_dealloc_fmr(struct ib_fmr *fmr)
1352 {
1353 struct ib_pd *pd;
1354 int ret;
1355
1356 pd = fmr->pd;
1357 ret = fmr->device->dealloc_fmr(fmr);
1358 if (!ret)
1359 atomic_dec(&pd->usecnt);
1360
1361 return ret;
1362 }
1363 EXPORT_SYMBOL(ib_dealloc_fmr);
1364
1365 /* Multicast groups */
1366
1367 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1368 {
1369 int ret;
1370
1371 if (!qp->device->attach_mcast)
1372 return -ENOSYS;
1373 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1374 return -EINVAL;
1375
1376 ret = qp->device->attach_mcast(qp, gid, lid);
1377 if (!ret)
1378 atomic_inc(&qp->usecnt);
1379 return ret;
1380 }
1381 EXPORT_SYMBOL(ib_attach_mcast);
1382
1383 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1384 {
1385 int ret;
1386
1387 if (!qp->device->detach_mcast)
1388 return -ENOSYS;
1389 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1390 return -EINVAL;
1391
1392 ret = qp->device->detach_mcast(qp, gid, lid);
1393 if (!ret)
1394 atomic_dec(&qp->usecnt);
1395 return ret;
1396 }
1397 EXPORT_SYMBOL(ib_detach_mcast);
1398
1399 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1400 {
1401 struct ib_xrcd *xrcd;
1402
1403 if (!device->alloc_xrcd)
1404 return ERR_PTR(-ENOSYS);
1405
1406 xrcd = device->alloc_xrcd(device, NULL, NULL);
1407 if (!IS_ERR(xrcd)) {
1408 xrcd->device = device;
1409 xrcd->inode = NULL;
1410 atomic_set(&xrcd->usecnt, 0);
1411 mutex_init(&xrcd->tgt_qp_mutex);
1412 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1413 }
1414
1415 return xrcd;
1416 }
1417 EXPORT_SYMBOL(ib_alloc_xrcd);
1418
1419 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1420 {
1421 struct ib_qp *qp;
1422 int ret;
1423
1424 if (atomic_read(&xrcd->usecnt))
1425 return -EBUSY;
1426
1427 while (!list_empty(&xrcd->tgt_qp_list)) {
1428 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1429 ret = ib_destroy_qp(qp);
1430 if (ret)
1431 return ret;
1432 }
1433
1434 return xrcd->device->dealloc_xrcd(xrcd);
1435 }
1436 EXPORT_SYMBOL(ib_dealloc_xrcd);
1437
1438 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1439 struct ib_flow_attr *flow_attr,
1440 int domain)
1441 {
1442 struct ib_flow *flow_id;
1443 if (!qp->device->create_flow)
1444 return ERR_PTR(-ENOSYS);
1445
1446 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1447 if (!IS_ERR(flow_id))
1448 atomic_inc(&qp->usecnt);
1449 return flow_id;
1450 }
1451 EXPORT_SYMBOL(ib_create_flow);
1452
1453 int ib_destroy_flow(struct ib_flow *flow_id)
1454 {
1455 int err;
1456 struct ib_qp *qp = flow_id->qp;
1457
1458 err = qp->device->destroy_flow(flow_id);
1459 if (!err)
1460 atomic_dec(&qp->usecnt);
1461 return err;
1462 }
1463 EXPORT_SYMBOL(ib_destroy_flow);
1464
1465 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1466 struct ib_mr_status *mr_status)
1467 {
1468 return mr->device->check_mr_status ?
1469 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1470 }
1471 EXPORT_SYMBOL(ib_check_mr_status);