]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/infiniband/core/verbs.c
IB/core: Set RoCEv2 MGID according to spec
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / core / verbs.c
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static const char * const ib_events[] = {
57 [IB_EVENT_CQ_ERR] = "CQ error",
58 [IB_EVENT_QP_FATAL] = "QP fatal error",
59 [IB_EVENT_QP_REQ_ERR] = "QP request error",
60 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
61 [IB_EVENT_COMM_EST] = "communication established",
62 [IB_EVENT_SQ_DRAINED] = "send queue drained",
63 [IB_EVENT_PATH_MIG] = "path migration successful",
64 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
65 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
66 [IB_EVENT_PORT_ACTIVE] = "port active",
67 [IB_EVENT_PORT_ERR] = "port error",
68 [IB_EVENT_LID_CHANGE] = "LID change",
69 [IB_EVENT_PKEY_CHANGE] = "P_key change",
70 [IB_EVENT_SM_CHANGE] = "SM change",
71 [IB_EVENT_SRQ_ERR] = "SRQ error",
72 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
73 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
74 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
75 [IB_EVENT_GID_CHANGE] = "GID changed",
76 };
77
78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
79 {
80 size_t index = event;
81
82 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
83 ib_events[index] : "unrecognized event";
84 }
85 EXPORT_SYMBOL(ib_event_msg);
86
87 static const char * const wc_statuses[] = {
88 [IB_WC_SUCCESS] = "success",
89 [IB_WC_LOC_LEN_ERR] = "local length error",
90 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
91 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
92 [IB_WC_LOC_PROT_ERR] = "local protection error",
93 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
94 [IB_WC_MW_BIND_ERR] = "memory management operation error",
95 [IB_WC_BAD_RESP_ERR] = "bad response error",
96 [IB_WC_LOC_ACCESS_ERR] = "local access error",
97 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
98 [IB_WC_REM_ACCESS_ERR] = "remote access error",
99 [IB_WC_REM_OP_ERR] = "remote operation error",
100 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
101 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
102 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
103 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
104 [IB_WC_REM_ABORT_ERR] = "operation aborted",
105 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
106 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
107 [IB_WC_FATAL_ERR] = "fatal error",
108 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
109 [IB_WC_GENERAL_ERR] = "general error",
110 };
111
112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 {
114 size_t index = status;
115
116 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
117 wc_statuses[index] : "unrecognized status";
118 }
119 EXPORT_SYMBOL(ib_wc_status_msg);
120
121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
122 {
123 switch (rate) {
124 case IB_RATE_2_5_GBPS: return 1;
125 case IB_RATE_5_GBPS: return 2;
126 case IB_RATE_10_GBPS: return 4;
127 case IB_RATE_20_GBPS: return 8;
128 case IB_RATE_30_GBPS: return 12;
129 case IB_RATE_40_GBPS: return 16;
130 case IB_RATE_60_GBPS: return 24;
131 case IB_RATE_80_GBPS: return 32;
132 case IB_RATE_120_GBPS: return 48;
133 default: return -1;
134 }
135 }
136 EXPORT_SYMBOL(ib_rate_to_mult);
137
138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
139 {
140 switch (mult) {
141 case 1: return IB_RATE_2_5_GBPS;
142 case 2: return IB_RATE_5_GBPS;
143 case 4: return IB_RATE_10_GBPS;
144 case 8: return IB_RATE_20_GBPS;
145 case 12: return IB_RATE_30_GBPS;
146 case 16: return IB_RATE_40_GBPS;
147 case 24: return IB_RATE_60_GBPS;
148 case 32: return IB_RATE_80_GBPS;
149 case 48: return IB_RATE_120_GBPS;
150 default: return IB_RATE_PORT_CURRENT;
151 }
152 }
153 EXPORT_SYMBOL(mult_to_ib_rate);
154
155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
156 {
157 switch (rate) {
158 case IB_RATE_2_5_GBPS: return 2500;
159 case IB_RATE_5_GBPS: return 5000;
160 case IB_RATE_10_GBPS: return 10000;
161 case IB_RATE_20_GBPS: return 20000;
162 case IB_RATE_30_GBPS: return 30000;
163 case IB_RATE_40_GBPS: return 40000;
164 case IB_RATE_60_GBPS: return 60000;
165 case IB_RATE_80_GBPS: return 80000;
166 case IB_RATE_120_GBPS: return 120000;
167 case IB_RATE_14_GBPS: return 14062;
168 case IB_RATE_56_GBPS: return 56250;
169 case IB_RATE_112_GBPS: return 112500;
170 case IB_RATE_168_GBPS: return 168750;
171 case IB_RATE_25_GBPS: return 25781;
172 case IB_RATE_100_GBPS: return 103125;
173 case IB_RATE_200_GBPS: return 206250;
174 case IB_RATE_300_GBPS: return 309375;
175 default: return -1;
176 }
177 }
178 EXPORT_SYMBOL(ib_rate_to_mbps);
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(enum rdma_node_type node_type)
182 {
183 switch (node_type) {
184 case RDMA_NODE_IB_CA:
185 case RDMA_NODE_IB_SWITCH:
186 case RDMA_NODE_IB_ROUTER:
187 return RDMA_TRANSPORT_IB;
188 case RDMA_NODE_RNIC:
189 return RDMA_TRANSPORT_IWARP;
190 case RDMA_NODE_USNIC:
191 return RDMA_TRANSPORT_USNIC;
192 case RDMA_NODE_USNIC_UDP:
193 return RDMA_TRANSPORT_USNIC_UDP;
194 default:
195 BUG();
196 return 0;
197 }
198 }
199 EXPORT_SYMBOL(rdma_node_get_transport);
200
201 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
202 {
203 if (device->get_link_layer)
204 return device->get_link_layer(device, port_num);
205
206 switch (rdma_node_get_transport(device->node_type)) {
207 case RDMA_TRANSPORT_IB:
208 return IB_LINK_LAYER_INFINIBAND;
209 case RDMA_TRANSPORT_IWARP:
210 case RDMA_TRANSPORT_USNIC:
211 case RDMA_TRANSPORT_USNIC_UDP:
212 return IB_LINK_LAYER_ETHERNET;
213 default:
214 return IB_LINK_LAYER_UNSPECIFIED;
215 }
216 }
217 EXPORT_SYMBOL(rdma_port_get_link_layer);
218
219 /* Protection domains */
220
221 /**
222 * ib_alloc_pd - Allocates an unused protection domain.
223 * @device: The device on which to allocate the protection domain.
224 *
225 * A protection domain object provides an association between QPs, shared
226 * receive queues, address handles, memory regions, and memory windows.
227 *
228 * Every PD has a local_dma_lkey which can be used as the lkey value for local
229 * memory operations.
230 */
231 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
232 const char *caller)
233 {
234 struct ib_pd *pd;
235 int mr_access_flags = 0;
236
237 pd = device->alloc_pd(device, NULL, NULL);
238 if (IS_ERR(pd))
239 return pd;
240
241 pd->device = device;
242 pd->uobject = NULL;
243 pd->__internal_mr = NULL;
244 atomic_set(&pd->usecnt, 0);
245 pd->flags = flags;
246
247 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
248 pd->local_dma_lkey = device->local_dma_lkey;
249 else
250 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
251
252 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
253 pr_warn("%s: enabling unsafe global rkey\n", caller);
254 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
255 }
256
257 if (mr_access_flags) {
258 struct ib_mr *mr;
259
260 mr = pd->device->get_dma_mr(pd, mr_access_flags);
261 if (IS_ERR(mr)) {
262 ib_dealloc_pd(pd);
263 return ERR_CAST(mr);
264 }
265
266 mr->device = pd->device;
267 mr->pd = pd;
268 mr->uobject = NULL;
269 mr->need_inval = false;
270
271 pd->__internal_mr = mr;
272
273 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
274 pd->local_dma_lkey = pd->__internal_mr->lkey;
275
276 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
277 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
278 }
279
280 return pd;
281 }
282 EXPORT_SYMBOL(__ib_alloc_pd);
283
284 /**
285 * ib_dealloc_pd - Deallocates a protection domain.
286 * @pd: The protection domain to deallocate.
287 *
288 * It is an error to call this function while any resources in the pd still
289 * exist. The caller is responsible to synchronously destroy them and
290 * guarantee no new allocations will happen.
291 */
292 void ib_dealloc_pd(struct ib_pd *pd)
293 {
294 int ret;
295
296 if (pd->__internal_mr) {
297 ret = pd->device->dereg_mr(pd->__internal_mr);
298 WARN_ON(ret);
299 pd->__internal_mr = NULL;
300 }
301
302 /* uverbs manipulates usecnt with proper locking, while the kabi
303 requires the caller to guarantee we can't race here. */
304 WARN_ON(atomic_read(&pd->usecnt));
305
306 /* Making delalloc_pd a void return is a WIP, no driver should return
307 an error here. */
308 ret = pd->device->dealloc_pd(pd);
309 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
310 }
311 EXPORT_SYMBOL(ib_dealloc_pd);
312
313 /* Address handles */
314
315 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
316 {
317 struct ib_ah *ah;
318
319 ah = pd->device->create_ah(pd, ah_attr, NULL);
320
321 if (!IS_ERR(ah)) {
322 ah->device = pd->device;
323 ah->pd = pd;
324 ah->uobject = NULL;
325 ah->type = ah_attr->type;
326 atomic_inc(&pd->usecnt);
327 }
328
329 return ah;
330 }
331 EXPORT_SYMBOL(rdma_create_ah);
332
333 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
334 {
335 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
336 struct iphdr ip4h_checked;
337 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
338
339 /* If it's IPv6, the version must be 6, otherwise, the first
340 * 20 bytes (before the IPv4 header) are garbled.
341 */
342 if (ip6h->version != 6)
343 return (ip4h->version == 4) ? 4 : 0;
344 /* version may be 6 or 4 because the first 20 bytes could be garbled */
345
346 /* RoCE v2 requires no options, thus header length
347 * must be 5 words
348 */
349 if (ip4h->ihl != 5)
350 return 6;
351
352 /* Verify checksum.
353 * We can't write on scattered buffers so we need to copy to
354 * temp buffer.
355 */
356 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
357 ip4h_checked.check = 0;
358 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
359 /* if IPv4 header checksum is OK, believe it */
360 if (ip4h->check == ip4h_checked.check)
361 return 4;
362 return 6;
363 }
364 EXPORT_SYMBOL(ib_get_rdma_header_version);
365
366 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
367 u8 port_num,
368 const struct ib_grh *grh)
369 {
370 int grh_version;
371
372 if (rdma_protocol_ib(device, port_num))
373 return RDMA_NETWORK_IB;
374
375 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
376
377 if (grh_version == 4)
378 return RDMA_NETWORK_IPV4;
379
380 if (grh->next_hdr == IPPROTO_UDP)
381 return RDMA_NETWORK_IPV6;
382
383 return RDMA_NETWORK_ROCE_V1;
384 }
385
386 struct find_gid_index_context {
387 u16 vlan_id;
388 enum ib_gid_type gid_type;
389 };
390
391 static bool find_gid_index(const union ib_gid *gid,
392 const struct ib_gid_attr *gid_attr,
393 void *context)
394 {
395 struct find_gid_index_context *ctx =
396 (struct find_gid_index_context *)context;
397
398 if (ctx->gid_type != gid_attr->gid_type)
399 return false;
400
401 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
402 (is_vlan_dev(gid_attr->ndev) &&
403 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
404 return false;
405
406 return true;
407 }
408
409 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
410 u16 vlan_id, const union ib_gid *sgid,
411 enum ib_gid_type gid_type,
412 u16 *gid_index)
413 {
414 struct find_gid_index_context context = {.vlan_id = vlan_id,
415 .gid_type = gid_type};
416
417 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
418 &context, gid_index);
419 }
420
421 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
422 enum rdma_network_type net_type,
423 union ib_gid *sgid, union ib_gid *dgid)
424 {
425 struct sockaddr_in src_in;
426 struct sockaddr_in dst_in;
427 __be32 src_saddr, dst_saddr;
428
429 if (!sgid || !dgid)
430 return -EINVAL;
431
432 if (net_type == RDMA_NETWORK_IPV4) {
433 memcpy(&src_in.sin_addr.s_addr,
434 &hdr->roce4grh.saddr, 4);
435 memcpy(&dst_in.sin_addr.s_addr,
436 &hdr->roce4grh.daddr, 4);
437 src_saddr = src_in.sin_addr.s_addr;
438 dst_saddr = dst_in.sin_addr.s_addr;
439 ipv6_addr_set_v4mapped(src_saddr,
440 (struct in6_addr *)sgid);
441 ipv6_addr_set_v4mapped(dst_saddr,
442 (struct in6_addr *)dgid);
443 return 0;
444 } else if (net_type == RDMA_NETWORK_IPV6 ||
445 net_type == RDMA_NETWORK_IB) {
446 *dgid = hdr->ibgrh.dgid;
447 *sgid = hdr->ibgrh.sgid;
448 return 0;
449 } else {
450 return -EINVAL;
451 }
452 }
453 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
454
455 /*
456 * This function creates ah from the incoming packet.
457 * Incoming packet has dgid of the receiver node on which this code is
458 * getting executed and, sgid contains the GID of the sender.
459 *
460 * When resolving mac address of destination, the arrived dgid is used
461 * as sgid and, sgid is used as dgid because sgid contains destinations
462 * GID whom to respond to.
463 *
464 * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
465 * position of arguments dgid and sgid do not match the order of the
466 * parameters.
467 */
468 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
469 const struct ib_wc *wc, const struct ib_grh *grh,
470 struct rdma_ah_attr *ah_attr)
471 {
472 u32 flow_class;
473 u16 gid_index;
474 int ret;
475 enum rdma_network_type net_type = RDMA_NETWORK_IB;
476 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
477 int hoplimit = 0xff;
478 union ib_gid dgid;
479 union ib_gid sgid;
480
481 memset(ah_attr, 0, sizeof *ah_attr);
482 ah_attr->type = rdma_ah_find_type(device, port_num);
483 if (rdma_cap_eth_ah(device, port_num)) {
484 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
485 net_type = wc->network_hdr_type;
486 else
487 net_type = ib_get_net_type_by_grh(device, port_num, grh);
488 gid_type = ib_network_to_gid_type(net_type);
489 }
490 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
491 &sgid, &dgid);
492 if (ret)
493 return ret;
494
495 if (rdma_protocol_roce(device, port_num)) {
496 int if_index = 0;
497 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
498 wc->vlan_id : 0xffff;
499 struct net_device *idev;
500 struct net_device *resolved_dev;
501
502 if (!(wc->wc_flags & IB_WC_GRH))
503 return -EPROTOTYPE;
504
505 if (!device->get_netdev)
506 return -EOPNOTSUPP;
507
508 idev = device->get_netdev(device, port_num);
509 if (!idev)
510 return -ENODEV;
511
512 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
513 ah_attr->roce.dmac,
514 wc->wc_flags & IB_WC_WITH_VLAN ?
515 NULL : &vlan_id,
516 &if_index, &hoplimit);
517 if (ret) {
518 dev_put(idev);
519 return ret;
520 }
521
522 resolved_dev = dev_get_by_index(&init_net, if_index);
523 rcu_read_lock();
524 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
525 resolved_dev))
526 ret = -EHOSTUNREACH;
527 rcu_read_unlock();
528 dev_put(idev);
529 dev_put(resolved_dev);
530 if (ret)
531 return ret;
532
533 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
534 &dgid, gid_type, &gid_index);
535 if (ret)
536 return ret;
537 }
538
539 rdma_ah_set_dlid(ah_attr, wc->slid);
540 rdma_ah_set_sl(ah_attr, wc->sl);
541 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
542 rdma_ah_set_port_num(ah_attr, port_num);
543
544 if (wc->wc_flags & IB_WC_GRH) {
545 if (!rdma_cap_eth_ah(device, port_num)) {
546 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
547 ret = ib_find_cached_gid_by_port(device, &dgid,
548 IB_GID_TYPE_IB,
549 port_num, NULL,
550 &gid_index);
551 if (ret)
552 return ret;
553 } else {
554 gid_index = 0;
555 }
556 }
557
558 flow_class = be32_to_cpu(grh->version_tclass_flow);
559 rdma_ah_set_grh(ah_attr, &sgid,
560 flow_class & 0xFFFFF,
561 (u8)gid_index, hoplimit,
562 (flow_class >> 20) & 0xFF);
563
564 }
565 return 0;
566 }
567 EXPORT_SYMBOL(ib_init_ah_from_wc);
568
569 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
570 const struct ib_grh *grh, u8 port_num)
571 {
572 struct rdma_ah_attr ah_attr;
573 int ret;
574
575 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
576 if (ret)
577 return ERR_PTR(ret);
578
579 return rdma_create_ah(pd, &ah_attr);
580 }
581 EXPORT_SYMBOL(ib_create_ah_from_wc);
582
583 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
584 {
585 if (ah->type != ah_attr->type)
586 return -EINVAL;
587
588 return ah->device->modify_ah ?
589 ah->device->modify_ah(ah, ah_attr) :
590 -ENOSYS;
591 }
592 EXPORT_SYMBOL(rdma_modify_ah);
593
594 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
595 {
596 return ah->device->query_ah ?
597 ah->device->query_ah(ah, ah_attr) :
598 -ENOSYS;
599 }
600 EXPORT_SYMBOL(rdma_query_ah);
601
602 int rdma_destroy_ah(struct ib_ah *ah)
603 {
604 struct ib_pd *pd;
605 int ret;
606
607 pd = ah->pd;
608 ret = ah->device->destroy_ah(ah);
609 if (!ret)
610 atomic_dec(&pd->usecnt);
611
612 return ret;
613 }
614 EXPORT_SYMBOL(rdma_destroy_ah);
615
616 /* Shared receive queues */
617
618 struct ib_srq *ib_create_srq(struct ib_pd *pd,
619 struct ib_srq_init_attr *srq_init_attr)
620 {
621 struct ib_srq *srq;
622
623 if (!pd->device->create_srq)
624 return ERR_PTR(-ENOSYS);
625
626 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
627
628 if (!IS_ERR(srq)) {
629 srq->device = pd->device;
630 srq->pd = pd;
631 srq->uobject = NULL;
632 srq->event_handler = srq_init_attr->event_handler;
633 srq->srq_context = srq_init_attr->srq_context;
634 srq->srq_type = srq_init_attr->srq_type;
635 if (srq->srq_type == IB_SRQT_XRC) {
636 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
637 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
638 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
639 atomic_inc(&srq->ext.xrc.cq->usecnt);
640 }
641 atomic_inc(&pd->usecnt);
642 atomic_set(&srq->usecnt, 0);
643 }
644
645 return srq;
646 }
647 EXPORT_SYMBOL(ib_create_srq);
648
649 int ib_modify_srq(struct ib_srq *srq,
650 struct ib_srq_attr *srq_attr,
651 enum ib_srq_attr_mask srq_attr_mask)
652 {
653 return srq->device->modify_srq ?
654 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
655 -ENOSYS;
656 }
657 EXPORT_SYMBOL(ib_modify_srq);
658
659 int ib_query_srq(struct ib_srq *srq,
660 struct ib_srq_attr *srq_attr)
661 {
662 return srq->device->query_srq ?
663 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
664 }
665 EXPORT_SYMBOL(ib_query_srq);
666
667 int ib_destroy_srq(struct ib_srq *srq)
668 {
669 struct ib_pd *pd;
670 enum ib_srq_type srq_type;
671 struct ib_xrcd *uninitialized_var(xrcd);
672 struct ib_cq *uninitialized_var(cq);
673 int ret;
674
675 if (atomic_read(&srq->usecnt))
676 return -EBUSY;
677
678 pd = srq->pd;
679 srq_type = srq->srq_type;
680 if (srq_type == IB_SRQT_XRC) {
681 xrcd = srq->ext.xrc.xrcd;
682 cq = srq->ext.xrc.cq;
683 }
684
685 ret = srq->device->destroy_srq(srq);
686 if (!ret) {
687 atomic_dec(&pd->usecnt);
688 if (srq_type == IB_SRQT_XRC) {
689 atomic_dec(&xrcd->usecnt);
690 atomic_dec(&cq->usecnt);
691 }
692 }
693
694 return ret;
695 }
696 EXPORT_SYMBOL(ib_destroy_srq);
697
698 /* Queue pairs */
699
700 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
701 {
702 struct ib_qp *qp = context;
703 unsigned long flags;
704
705 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
706 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
707 if (event->element.qp->event_handler)
708 event->element.qp->event_handler(event, event->element.qp->qp_context);
709 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
710 }
711
712 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
713 {
714 mutex_lock(&xrcd->tgt_qp_mutex);
715 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
716 mutex_unlock(&xrcd->tgt_qp_mutex);
717 }
718
719 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
720 void (*event_handler)(struct ib_event *, void *),
721 void *qp_context)
722 {
723 struct ib_qp *qp;
724 unsigned long flags;
725 int err;
726
727 qp = kzalloc(sizeof *qp, GFP_KERNEL);
728 if (!qp)
729 return ERR_PTR(-ENOMEM);
730
731 qp->real_qp = real_qp;
732 err = ib_open_shared_qp_security(qp, real_qp->device);
733 if (err) {
734 kfree(qp);
735 return ERR_PTR(err);
736 }
737
738 qp->real_qp = real_qp;
739 atomic_inc(&real_qp->usecnt);
740 qp->device = real_qp->device;
741 qp->event_handler = event_handler;
742 qp->qp_context = qp_context;
743 qp->qp_num = real_qp->qp_num;
744 qp->qp_type = real_qp->qp_type;
745
746 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
747 list_add(&qp->open_list, &real_qp->open_list);
748 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
749
750 return qp;
751 }
752
753 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
754 struct ib_qp_open_attr *qp_open_attr)
755 {
756 struct ib_qp *qp, *real_qp;
757
758 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
759 return ERR_PTR(-EINVAL);
760
761 qp = ERR_PTR(-EINVAL);
762 mutex_lock(&xrcd->tgt_qp_mutex);
763 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
764 if (real_qp->qp_num == qp_open_attr->qp_num) {
765 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
766 qp_open_attr->qp_context);
767 break;
768 }
769 }
770 mutex_unlock(&xrcd->tgt_qp_mutex);
771 return qp;
772 }
773 EXPORT_SYMBOL(ib_open_qp);
774
775 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
776 struct ib_qp_init_attr *qp_init_attr)
777 {
778 struct ib_qp *real_qp = qp;
779
780 qp->event_handler = __ib_shared_qp_event_handler;
781 qp->qp_context = qp;
782 qp->pd = NULL;
783 qp->send_cq = qp->recv_cq = NULL;
784 qp->srq = NULL;
785 qp->xrcd = qp_init_attr->xrcd;
786 atomic_inc(&qp_init_attr->xrcd->usecnt);
787 INIT_LIST_HEAD(&qp->open_list);
788
789 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
790 qp_init_attr->qp_context);
791 if (!IS_ERR(qp))
792 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
793 else
794 real_qp->device->destroy_qp(real_qp);
795 return qp;
796 }
797
798 struct ib_qp *ib_create_qp(struct ib_pd *pd,
799 struct ib_qp_init_attr *qp_init_attr)
800 {
801 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
802 struct ib_qp *qp;
803 int ret;
804
805 if (qp_init_attr->rwq_ind_tbl &&
806 (qp_init_attr->recv_cq ||
807 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
808 qp_init_attr->cap.max_recv_sge))
809 return ERR_PTR(-EINVAL);
810
811 /*
812 * If the callers is using the RDMA API calculate the resources
813 * needed for the RDMA READ/WRITE operations.
814 *
815 * Note that these callers need to pass in a port number.
816 */
817 if (qp_init_attr->cap.max_rdma_ctxs)
818 rdma_rw_init_qp(device, qp_init_attr);
819
820 qp = device->create_qp(pd, qp_init_attr, NULL);
821 if (IS_ERR(qp))
822 return qp;
823
824 ret = ib_create_qp_security(qp, device);
825 if (ret) {
826 ib_destroy_qp(qp);
827 return ERR_PTR(ret);
828 }
829
830 qp->device = device;
831 qp->real_qp = qp;
832 qp->uobject = NULL;
833 qp->qp_type = qp_init_attr->qp_type;
834 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
835
836 atomic_set(&qp->usecnt, 0);
837 qp->mrs_used = 0;
838 spin_lock_init(&qp->mr_lock);
839 INIT_LIST_HEAD(&qp->rdma_mrs);
840 INIT_LIST_HEAD(&qp->sig_mrs);
841
842 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
843 return ib_create_xrc_qp(qp, qp_init_attr);
844
845 qp->event_handler = qp_init_attr->event_handler;
846 qp->qp_context = qp_init_attr->qp_context;
847 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
848 qp->recv_cq = NULL;
849 qp->srq = NULL;
850 } else {
851 qp->recv_cq = qp_init_attr->recv_cq;
852 if (qp_init_attr->recv_cq)
853 atomic_inc(&qp_init_attr->recv_cq->usecnt);
854 qp->srq = qp_init_attr->srq;
855 if (qp->srq)
856 atomic_inc(&qp_init_attr->srq->usecnt);
857 }
858
859 qp->pd = pd;
860 qp->send_cq = qp_init_attr->send_cq;
861 qp->xrcd = NULL;
862
863 atomic_inc(&pd->usecnt);
864 if (qp_init_attr->send_cq)
865 atomic_inc(&qp_init_attr->send_cq->usecnt);
866 if (qp_init_attr->rwq_ind_tbl)
867 atomic_inc(&qp->rwq_ind_tbl->usecnt);
868
869 if (qp_init_attr->cap.max_rdma_ctxs) {
870 ret = rdma_rw_init_mrs(qp, qp_init_attr);
871 if (ret) {
872 pr_err("failed to init MR pool ret= %d\n", ret);
873 ib_destroy_qp(qp);
874 return ERR_PTR(ret);
875 }
876 }
877
878 /*
879 * Note: all hw drivers guarantee that max_send_sge is lower than
880 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
881 * max_send_sge <= max_sge_rd.
882 */
883 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
884 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
885 device->attrs.max_sge_rd);
886
887 return qp;
888 }
889 EXPORT_SYMBOL(ib_create_qp);
890
891 static const struct {
892 int valid;
893 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
894 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
895 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
896 [IB_QPS_RESET] = {
897 [IB_QPS_RESET] = { .valid = 1 },
898 [IB_QPS_ERR] = { .valid = 1 },
899 [IB_QPS_INIT] = {
900 .valid = 1,
901 .req_param = {
902 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
903 IB_QP_PORT |
904 IB_QP_QKEY),
905 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
906 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
907 IB_QP_PORT |
908 IB_QP_ACCESS_FLAGS),
909 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
910 IB_QP_PORT |
911 IB_QP_ACCESS_FLAGS),
912 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
913 IB_QP_PORT |
914 IB_QP_ACCESS_FLAGS),
915 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
916 IB_QP_PORT |
917 IB_QP_ACCESS_FLAGS),
918 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
919 IB_QP_QKEY),
920 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
921 IB_QP_QKEY),
922 }
923 },
924 },
925 [IB_QPS_INIT] = {
926 [IB_QPS_RESET] = { .valid = 1 },
927 [IB_QPS_ERR] = { .valid = 1 },
928 [IB_QPS_INIT] = {
929 .valid = 1,
930 .opt_param = {
931 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
932 IB_QP_PORT |
933 IB_QP_QKEY),
934 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
935 IB_QP_PORT |
936 IB_QP_ACCESS_FLAGS),
937 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
938 IB_QP_PORT |
939 IB_QP_ACCESS_FLAGS),
940 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
941 IB_QP_PORT |
942 IB_QP_ACCESS_FLAGS),
943 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
944 IB_QP_PORT |
945 IB_QP_ACCESS_FLAGS),
946 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
947 IB_QP_QKEY),
948 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
949 IB_QP_QKEY),
950 }
951 },
952 [IB_QPS_RTR] = {
953 .valid = 1,
954 .req_param = {
955 [IB_QPT_UC] = (IB_QP_AV |
956 IB_QP_PATH_MTU |
957 IB_QP_DEST_QPN |
958 IB_QP_RQ_PSN),
959 [IB_QPT_RC] = (IB_QP_AV |
960 IB_QP_PATH_MTU |
961 IB_QP_DEST_QPN |
962 IB_QP_RQ_PSN |
963 IB_QP_MAX_DEST_RD_ATOMIC |
964 IB_QP_MIN_RNR_TIMER),
965 [IB_QPT_XRC_INI] = (IB_QP_AV |
966 IB_QP_PATH_MTU |
967 IB_QP_DEST_QPN |
968 IB_QP_RQ_PSN),
969 [IB_QPT_XRC_TGT] = (IB_QP_AV |
970 IB_QP_PATH_MTU |
971 IB_QP_DEST_QPN |
972 IB_QP_RQ_PSN |
973 IB_QP_MAX_DEST_RD_ATOMIC |
974 IB_QP_MIN_RNR_TIMER),
975 },
976 .opt_param = {
977 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
978 IB_QP_QKEY),
979 [IB_QPT_UC] = (IB_QP_ALT_PATH |
980 IB_QP_ACCESS_FLAGS |
981 IB_QP_PKEY_INDEX),
982 [IB_QPT_RC] = (IB_QP_ALT_PATH |
983 IB_QP_ACCESS_FLAGS |
984 IB_QP_PKEY_INDEX),
985 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
986 IB_QP_ACCESS_FLAGS |
987 IB_QP_PKEY_INDEX),
988 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
989 IB_QP_ACCESS_FLAGS |
990 IB_QP_PKEY_INDEX),
991 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
992 IB_QP_QKEY),
993 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
994 IB_QP_QKEY),
995 },
996 },
997 },
998 [IB_QPS_RTR] = {
999 [IB_QPS_RESET] = { .valid = 1 },
1000 [IB_QPS_ERR] = { .valid = 1 },
1001 [IB_QPS_RTS] = {
1002 .valid = 1,
1003 .req_param = {
1004 [IB_QPT_UD] = IB_QP_SQ_PSN,
1005 [IB_QPT_UC] = IB_QP_SQ_PSN,
1006 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1007 IB_QP_RETRY_CNT |
1008 IB_QP_RNR_RETRY |
1009 IB_QP_SQ_PSN |
1010 IB_QP_MAX_QP_RD_ATOMIC),
1011 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1012 IB_QP_RETRY_CNT |
1013 IB_QP_RNR_RETRY |
1014 IB_QP_SQ_PSN |
1015 IB_QP_MAX_QP_RD_ATOMIC),
1016 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1017 IB_QP_SQ_PSN),
1018 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1019 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1020 },
1021 .opt_param = {
1022 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1023 IB_QP_QKEY),
1024 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1025 IB_QP_ALT_PATH |
1026 IB_QP_ACCESS_FLAGS |
1027 IB_QP_PATH_MIG_STATE),
1028 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1029 IB_QP_ALT_PATH |
1030 IB_QP_ACCESS_FLAGS |
1031 IB_QP_MIN_RNR_TIMER |
1032 IB_QP_PATH_MIG_STATE),
1033 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1034 IB_QP_ALT_PATH |
1035 IB_QP_ACCESS_FLAGS |
1036 IB_QP_PATH_MIG_STATE),
1037 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1038 IB_QP_ALT_PATH |
1039 IB_QP_ACCESS_FLAGS |
1040 IB_QP_MIN_RNR_TIMER |
1041 IB_QP_PATH_MIG_STATE),
1042 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1043 IB_QP_QKEY),
1044 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1045 IB_QP_QKEY),
1046 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1047 }
1048 }
1049 },
1050 [IB_QPS_RTS] = {
1051 [IB_QPS_RESET] = { .valid = 1 },
1052 [IB_QPS_ERR] = { .valid = 1 },
1053 [IB_QPS_RTS] = {
1054 .valid = 1,
1055 .opt_param = {
1056 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1057 IB_QP_QKEY),
1058 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1059 IB_QP_ACCESS_FLAGS |
1060 IB_QP_ALT_PATH |
1061 IB_QP_PATH_MIG_STATE),
1062 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1063 IB_QP_ACCESS_FLAGS |
1064 IB_QP_ALT_PATH |
1065 IB_QP_PATH_MIG_STATE |
1066 IB_QP_MIN_RNR_TIMER),
1067 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1068 IB_QP_ACCESS_FLAGS |
1069 IB_QP_ALT_PATH |
1070 IB_QP_PATH_MIG_STATE),
1071 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1072 IB_QP_ACCESS_FLAGS |
1073 IB_QP_ALT_PATH |
1074 IB_QP_PATH_MIG_STATE |
1075 IB_QP_MIN_RNR_TIMER),
1076 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1077 IB_QP_QKEY),
1078 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1079 IB_QP_QKEY),
1080 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1081 }
1082 },
1083 [IB_QPS_SQD] = {
1084 .valid = 1,
1085 .opt_param = {
1086 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1087 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1088 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1089 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1090 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1091 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1092 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1093 }
1094 },
1095 },
1096 [IB_QPS_SQD] = {
1097 [IB_QPS_RESET] = { .valid = 1 },
1098 [IB_QPS_ERR] = { .valid = 1 },
1099 [IB_QPS_RTS] = {
1100 .valid = 1,
1101 .opt_param = {
1102 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1103 IB_QP_QKEY),
1104 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1105 IB_QP_ALT_PATH |
1106 IB_QP_ACCESS_FLAGS |
1107 IB_QP_PATH_MIG_STATE),
1108 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1109 IB_QP_ALT_PATH |
1110 IB_QP_ACCESS_FLAGS |
1111 IB_QP_MIN_RNR_TIMER |
1112 IB_QP_PATH_MIG_STATE),
1113 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1114 IB_QP_ALT_PATH |
1115 IB_QP_ACCESS_FLAGS |
1116 IB_QP_PATH_MIG_STATE),
1117 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1118 IB_QP_ALT_PATH |
1119 IB_QP_ACCESS_FLAGS |
1120 IB_QP_MIN_RNR_TIMER |
1121 IB_QP_PATH_MIG_STATE),
1122 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1123 IB_QP_QKEY),
1124 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1125 IB_QP_QKEY),
1126 }
1127 },
1128 [IB_QPS_SQD] = {
1129 .valid = 1,
1130 .opt_param = {
1131 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1132 IB_QP_QKEY),
1133 [IB_QPT_UC] = (IB_QP_AV |
1134 IB_QP_ALT_PATH |
1135 IB_QP_ACCESS_FLAGS |
1136 IB_QP_PKEY_INDEX |
1137 IB_QP_PATH_MIG_STATE),
1138 [IB_QPT_RC] = (IB_QP_PORT |
1139 IB_QP_AV |
1140 IB_QP_TIMEOUT |
1141 IB_QP_RETRY_CNT |
1142 IB_QP_RNR_RETRY |
1143 IB_QP_MAX_QP_RD_ATOMIC |
1144 IB_QP_MAX_DEST_RD_ATOMIC |
1145 IB_QP_ALT_PATH |
1146 IB_QP_ACCESS_FLAGS |
1147 IB_QP_PKEY_INDEX |
1148 IB_QP_MIN_RNR_TIMER |
1149 IB_QP_PATH_MIG_STATE),
1150 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1151 IB_QP_AV |
1152 IB_QP_TIMEOUT |
1153 IB_QP_RETRY_CNT |
1154 IB_QP_RNR_RETRY |
1155 IB_QP_MAX_QP_RD_ATOMIC |
1156 IB_QP_ALT_PATH |
1157 IB_QP_ACCESS_FLAGS |
1158 IB_QP_PKEY_INDEX |
1159 IB_QP_PATH_MIG_STATE),
1160 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1161 IB_QP_AV |
1162 IB_QP_TIMEOUT |
1163 IB_QP_MAX_DEST_RD_ATOMIC |
1164 IB_QP_ALT_PATH |
1165 IB_QP_ACCESS_FLAGS |
1166 IB_QP_PKEY_INDEX |
1167 IB_QP_MIN_RNR_TIMER |
1168 IB_QP_PATH_MIG_STATE),
1169 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1170 IB_QP_QKEY),
1171 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1172 IB_QP_QKEY),
1173 }
1174 }
1175 },
1176 [IB_QPS_SQE] = {
1177 [IB_QPS_RESET] = { .valid = 1 },
1178 [IB_QPS_ERR] = { .valid = 1 },
1179 [IB_QPS_RTS] = {
1180 .valid = 1,
1181 .opt_param = {
1182 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1183 IB_QP_QKEY),
1184 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1185 IB_QP_ACCESS_FLAGS),
1186 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1187 IB_QP_QKEY),
1188 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1189 IB_QP_QKEY),
1190 }
1191 }
1192 },
1193 [IB_QPS_ERR] = {
1194 [IB_QPS_RESET] = { .valid = 1 },
1195 [IB_QPS_ERR] = { .valid = 1 }
1196 }
1197 };
1198
1199 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1200 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1201 enum rdma_link_layer ll)
1202 {
1203 enum ib_qp_attr_mask req_param, opt_param;
1204
1205 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1206 next_state < 0 || next_state > IB_QPS_ERR)
1207 return 0;
1208
1209 if (mask & IB_QP_CUR_STATE &&
1210 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1211 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1212 return 0;
1213
1214 if (!qp_state_table[cur_state][next_state].valid)
1215 return 0;
1216
1217 req_param = qp_state_table[cur_state][next_state].req_param[type];
1218 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1219
1220 if ((mask & req_param) != req_param)
1221 return 0;
1222
1223 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1224 return 0;
1225
1226 return 1;
1227 }
1228 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1229
1230 int ib_resolve_eth_dmac(struct ib_device *device,
1231 struct rdma_ah_attr *ah_attr)
1232 {
1233 int ret = 0;
1234 struct ib_global_route *grh;
1235
1236 if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1237 return -EINVAL;
1238
1239 if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1240 return 0;
1241
1242 grh = rdma_ah_retrieve_grh(ah_attr);
1243
1244 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1245 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1246 ah_attr->roce.dmac);
1247 } else {
1248 union ib_gid sgid;
1249 struct ib_gid_attr sgid_attr;
1250 int ifindex;
1251 int hop_limit;
1252
1253 ret = ib_query_gid(device,
1254 rdma_ah_get_port_num(ah_attr),
1255 grh->sgid_index,
1256 &sgid, &sgid_attr);
1257
1258 if (ret || !sgid_attr.ndev) {
1259 if (!ret)
1260 ret = -ENXIO;
1261 goto out;
1262 }
1263
1264 ifindex = sgid_attr.ndev->ifindex;
1265
1266 ret =
1267 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1268 ah_attr->roce.dmac,
1269 NULL, &ifindex, &hop_limit);
1270
1271 dev_put(sgid_attr.ndev);
1272
1273 grh->hop_limit = hop_limit;
1274 }
1275 out:
1276 return ret;
1277 }
1278 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1279
1280 /**
1281 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1282 * @qp: The QP to modify.
1283 * @attr: On input, specifies the QP attributes to modify. On output,
1284 * the current values of selected QP attributes are returned.
1285 * @attr_mask: A bit-mask used to specify which attributes of the QP
1286 * are being modified.
1287 * @udata: pointer to user's input output buffer information
1288 * are being modified.
1289 * It returns 0 on success and returns appropriate error code on error.
1290 */
1291 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr,
1292 int attr_mask, struct ib_udata *udata)
1293 {
1294 int ret;
1295
1296 if (attr_mask & IB_QP_AV) {
1297 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1298 if (ret)
1299 return ret;
1300 }
1301 return ib_security_modify_qp(qp, attr, attr_mask, udata);
1302 }
1303 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1304
1305 int ib_modify_qp(struct ib_qp *qp,
1306 struct ib_qp_attr *qp_attr,
1307 int qp_attr_mask)
1308 {
1309 return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
1310 }
1311 EXPORT_SYMBOL(ib_modify_qp);
1312
1313 int ib_query_qp(struct ib_qp *qp,
1314 struct ib_qp_attr *qp_attr,
1315 int qp_attr_mask,
1316 struct ib_qp_init_attr *qp_init_attr)
1317 {
1318 return qp->device->query_qp ?
1319 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1320 -ENOSYS;
1321 }
1322 EXPORT_SYMBOL(ib_query_qp);
1323
1324 int ib_close_qp(struct ib_qp *qp)
1325 {
1326 struct ib_qp *real_qp;
1327 unsigned long flags;
1328
1329 real_qp = qp->real_qp;
1330 if (real_qp == qp)
1331 return -EINVAL;
1332
1333 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1334 list_del(&qp->open_list);
1335 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1336
1337 atomic_dec(&real_qp->usecnt);
1338 ib_close_shared_qp_security(qp->qp_sec);
1339 kfree(qp);
1340
1341 return 0;
1342 }
1343 EXPORT_SYMBOL(ib_close_qp);
1344
1345 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1346 {
1347 struct ib_xrcd *xrcd;
1348 struct ib_qp *real_qp;
1349 int ret;
1350
1351 real_qp = qp->real_qp;
1352 xrcd = real_qp->xrcd;
1353
1354 mutex_lock(&xrcd->tgt_qp_mutex);
1355 ib_close_qp(qp);
1356 if (atomic_read(&real_qp->usecnt) == 0)
1357 list_del(&real_qp->xrcd_list);
1358 else
1359 real_qp = NULL;
1360 mutex_unlock(&xrcd->tgt_qp_mutex);
1361
1362 if (real_qp) {
1363 ret = ib_destroy_qp(real_qp);
1364 if (!ret)
1365 atomic_dec(&xrcd->usecnt);
1366 else
1367 __ib_insert_xrcd_qp(xrcd, real_qp);
1368 }
1369
1370 return 0;
1371 }
1372
1373 int ib_destroy_qp(struct ib_qp *qp)
1374 {
1375 struct ib_pd *pd;
1376 struct ib_cq *scq, *rcq;
1377 struct ib_srq *srq;
1378 struct ib_rwq_ind_table *ind_tbl;
1379 struct ib_qp_security *sec;
1380 int ret;
1381
1382 WARN_ON_ONCE(qp->mrs_used > 0);
1383
1384 if (atomic_read(&qp->usecnt))
1385 return -EBUSY;
1386
1387 if (qp->real_qp != qp)
1388 return __ib_destroy_shared_qp(qp);
1389
1390 pd = qp->pd;
1391 scq = qp->send_cq;
1392 rcq = qp->recv_cq;
1393 srq = qp->srq;
1394 ind_tbl = qp->rwq_ind_tbl;
1395 sec = qp->qp_sec;
1396 if (sec)
1397 ib_destroy_qp_security_begin(sec);
1398
1399 if (!qp->uobject)
1400 rdma_rw_cleanup_mrs(qp);
1401
1402 ret = qp->device->destroy_qp(qp);
1403 if (!ret) {
1404 if (pd)
1405 atomic_dec(&pd->usecnt);
1406 if (scq)
1407 atomic_dec(&scq->usecnt);
1408 if (rcq)
1409 atomic_dec(&rcq->usecnt);
1410 if (srq)
1411 atomic_dec(&srq->usecnt);
1412 if (ind_tbl)
1413 atomic_dec(&ind_tbl->usecnt);
1414 if (sec)
1415 ib_destroy_qp_security_end(sec);
1416 } else {
1417 if (sec)
1418 ib_destroy_qp_security_abort(sec);
1419 }
1420
1421 return ret;
1422 }
1423 EXPORT_SYMBOL(ib_destroy_qp);
1424
1425 /* Completion queues */
1426
1427 struct ib_cq *ib_create_cq(struct ib_device *device,
1428 ib_comp_handler comp_handler,
1429 void (*event_handler)(struct ib_event *, void *),
1430 void *cq_context,
1431 const struct ib_cq_init_attr *cq_attr)
1432 {
1433 struct ib_cq *cq;
1434
1435 cq = device->create_cq(device, cq_attr, NULL, NULL);
1436
1437 if (!IS_ERR(cq)) {
1438 cq->device = device;
1439 cq->uobject = NULL;
1440 cq->comp_handler = comp_handler;
1441 cq->event_handler = event_handler;
1442 cq->cq_context = cq_context;
1443 atomic_set(&cq->usecnt, 0);
1444 }
1445
1446 return cq;
1447 }
1448 EXPORT_SYMBOL(ib_create_cq);
1449
1450 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1451 {
1452 return cq->device->modify_cq ?
1453 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1454 }
1455 EXPORT_SYMBOL(ib_modify_cq);
1456
1457 int ib_destroy_cq(struct ib_cq *cq)
1458 {
1459 if (atomic_read(&cq->usecnt))
1460 return -EBUSY;
1461
1462 return cq->device->destroy_cq(cq);
1463 }
1464 EXPORT_SYMBOL(ib_destroy_cq);
1465
1466 int ib_resize_cq(struct ib_cq *cq, int cqe)
1467 {
1468 return cq->device->resize_cq ?
1469 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1470 }
1471 EXPORT_SYMBOL(ib_resize_cq);
1472
1473 /* Memory regions */
1474
1475 int ib_dereg_mr(struct ib_mr *mr)
1476 {
1477 struct ib_pd *pd = mr->pd;
1478 int ret;
1479
1480 ret = mr->device->dereg_mr(mr);
1481 if (!ret)
1482 atomic_dec(&pd->usecnt);
1483
1484 return ret;
1485 }
1486 EXPORT_SYMBOL(ib_dereg_mr);
1487
1488 /**
1489 * ib_alloc_mr() - Allocates a memory region
1490 * @pd: protection domain associated with the region
1491 * @mr_type: memory region type
1492 * @max_num_sg: maximum sg entries available for registration.
1493 *
1494 * Notes:
1495 * Memory registeration page/sg lists must not exceed max_num_sg.
1496 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1497 * max_num_sg * used_page_size.
1498 *
1499 */
1500 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1501 enum ib_mr_type mr_type,
1502 u32 max_num_sg)
1503 {
1504 struct ib_mr *mr;
1505
1506 if (!pd->device->alloc_mr)
1507 return ERR_PTR(-ENOSYS);
1508
1509 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1510 if (!IS_ERR(mr)) {
1511 mr->device = pd->device;
1512 mr->pd = pd;
1513 mr->uobject = NULL;
1514 atomic_inc(&pd->usecnt);
1515 mr->need_inval = false;
1516 }
1517
1518 return mr;
1519 }
1520 EXPORT_SYMBOL(ib_alloc_mr);
1521
1522 /* "Fast" memory regions */
1523
1524 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1525 int mr_access_flags,
1526 struct ib_fmr_attr *fmr_attr)
1527 {
1528 struct ib_fmr *fmr;
1529
1530 if (!pd->device->alloc_fmr)
1531 return ERR_PTR(-ENOSYS);
1532
1533 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1534 if (!IS_ERR(fmr)) {
1535 fmr->device = pd->device;
1536 fmr->pd = pd;
1537 atomic_inc(&pd->usecnt);
1538 }
1539
1540 return fmr;
1541 }
1542 EXPORT_SYMBOL(ib_alloc_fmr);
1543
1544 int ib_unmap_fmr(struct list_head *fmr_list)
1545 {
1546 struct ib_fmr *fmr;
1547
1548 if (list_empty(fmr_list))
1549 return 0;
1550
1551 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1552 return fmr->device->unmap_fmr(fmr_list);
1553 }
1554 EXPORT_SYMBOL(ib_unmap_fmr);
1555
1556 int ib_dealloc_fmr(struct ib_fmr *fmr)
1557 {
1558 struct ib_pd *pd;
1559 int ret;
1560
1561 pd = fmr->pd;
1562 ret = fmr->device->dealloc_fmr(fmr);
1563 if (!ret)
1564 atomic_dec(&pd->usecnt);
1565
1566 return ret;
1567 }
1568 EXPORT_SYMBOL(ib_dealloc_fmr);
1569
1570 /* Multicast groups */
1571
1572 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1573 {
1574 struct ib_qp_init_attr init_attr = {};
1575 struct ib_qp_attr attr = {};
1576 int num_eth_ports = 0;
1577 int port;
1578
1579 /* If QP state >= init, it is assigned to a port and we can check this
1580 * port only.
1581 */
1582 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1583 if (attr.qp_state >= IB_QPS_INIT) {
1584 if (qp->device->get_link_layer(qp->device, attr.port_num) !=
1585 IB_LINK_LAYER_INFINIBAND)
1586 return true;
1587 goto lid_check;
1588 }
1589 }
1590
1591 /* Can't get a quick answer, iterate over all ports */
1592 for (port = 0; port < qp->device->phys_port_cnt; port++)
1593 if (qp->device->get_link_layer(qp->device, port) !=
1594 IB_LINK_LAYER_INFINIBAND)
1595 num_eth_ports++;
1596
1597 /* If we have at lease one Ethernet port, RoCE annex declares that
1598 * multicast LID should be ignored. We can't tell at this step if the
1599 * QP belongs to an IB or Ethernet port.
1600 */
1601 if (num_eth_ports)
1602 return true;
1603
1604 /* If all the ports are IB, we can check according to IB spec. */
1605 lid_check:
1606 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1607 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1608 }
1609
1610 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1611 {
1612 int ret;
1613
1614 if (!qp->device->attach_mcast)
1615 return -ENOSYS;
1616
1617 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1618 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1619 return -EINVAL;
1620
1621 ret = qp->device->attach_mcast(qp, gid, lid);
1622 if (!ret)
1623 atomic_inc(&qp->usecnt);
1624 return ret;
1625 }
1626 EXPORT_SYMBOL(ib_attach_mcast);
1627
1628 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1629 {
1630 int ret;
1631
1632 if (!qp->device->detach_mcast)
1633 return -ENOSYS;
1634
1635 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1636 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1637 return -EINVAL;
1638
1639 ret = qp->device->detach_mcast(qp, gid, lid);
1640 if (!ret)
1641 atomic_dec(&qp->usecnt);
1642 return ret;
1643 }
1644 EXPORT_SYMBOL(ib_detach_mcast);
1645
1646 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1647 {
1648 struct ib_xrcd *xrcd;
1649
1650 if (!device->alloc_xrcd)
1651 return ERR_PTR(-ENOSYS);
1652
1653 xrcd = device->alloc_xrcd(device, NULL, NULL);
1654 if (!IS_ERR(xrcd)) {
1655 xrcd->device = device;
1656 xrcd->inode = NULL;
1657 atomic_set(&xrcd->usecnt, 0);
1658 mutex_init(&xrcd->tgt_qp_mutex);
1659 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1660 }
1661
1662 return xrcd;
1663 }
1664 EXPORT_SYMBOL(ib_alloc_xrcd);
1665
1666 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1667 {
1668 struct ib_qp *qp;
1669 int ret;
1670
1671 if (atomic_read(&xrcd->usecnt))
1672 return -EBUSY;
1673
1674 while (!list_empty(&xrcd->tgt_qp_list)) {
1675 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1676 ret = ib_destroy_qp(qp);
1677 if (ret)
1678 return ret;
1679 }
1680
1681 return xrcd->device->dealloc_xrcd(xrcd);
1682 }
1683 EXPORT_SYMBOL(ib_dealloc_xrcd);
1684
1685 /**
1686 * ib_create_wq - Creates a WQ associated with the specified protection
1687 * domain.
1688 * @pd: The protection domain associated with the WQ.
1689 * @wq_init_attr: A list of initial attributes required to create the
1690 * WQ. If WQ creation succeeds, then the attributes are updated to
1691 * the actual capabilities of the created WQ.
1692 *
1693 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1694 * the requested size of the WQ, and set to the actual values allocated
1695 * on return.
1696 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1697 * at least as large as the requested values.
1698 */
1699 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1700 struct ib_wq_init_attr *wq_attr)
1701 {
1702 struct ib_wq *wq;
1703
1704 if (!pd->device->create_wq)
1705 return ERR_PTR(-ENOSYS);
1706
1707 wq = pd->device->create_wq(pd, wq_attr, NULL);
1708 if (!IS_ERR(wq)) {
1709 wq->event_handler = wq_attr->event_handler;
1710 wq->wq_context = wq_attr->wq_context;
1711 wq->wq_type = wq_attr->wq_type;
1712 wq->cq = wq_attr->cq;
1713 wq->device = pd->device;
1714 wq->pd = pd;
1715 wq->uobject = NULL;
1716 atomic_inc(&pd->usecnt);
1717 atomic_inc(&wq_attr->cq->usecnt);
1718 atomic_set(&wq->usecnt, 0);
1719 }
1720 return wq;
1721 }
1722 EXPORT_SYMBOL(ib_create_wq);
1723
1724 /**
1725 * ib_destroy_wq - Destroys the specified WQ.
1726 * @wq: The WQ to destroy.
1727 */
1728 int ib_destroy_wq(struct ib_wq *wq)
1729 {
1730 int err;
1731 struct ib_cq *cq = wq->cq;
1732 struct ib_pd *pd = wq->pd;
1733
1734 if (atomic_read(&wq->usecnt))
1735 return -EBUSY;
1736
1737 err = wq->device->destroy_wq(wq);
1738 if (!err) {
1739 atomic_dec(&pd->usecnt);
1740 atomic_dec(&cq->usecnt);
1741 }
1742 return err;
1743 }
1744 EXPORT_SYMBOL(ib_destroy_wq);
1745
1746 /**
1747 * ib_modify_wq - Modifies the specified WQ.
1748 * @wq: The WQ to modify.
1749 * @wq_attr: On input, specifies the WQ attributes to modify.
1750 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1751 * are being modified.
1752 * On output, the current values of selected WQ attributes are returned.
1753 */
1754 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1755 u32 wq_attr_mask)
1756 {
1757 int err;
1758
1759 if (!wq->device->modify_wq)
1760 return -ENOSYS;
1761
1762 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1763 return err;
1764 }
1765 EXPORT_SYMBOL(ib_modify_wq);
1766
1767 /*
1768 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1769 * @device: The device on which to create the rwq indirection table.
1770 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1771 * create the Indirection Table.
1772 *
1773 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1774 * than the created ib_rwq_ind_table object and the caller is responsible
1775 * for its memory allocation/free.
1776 */
1777 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1778 struct ib_rwq_ind_table_init_attr *init_attr)
1779 {
1780 struct ib_rwq_ind_table *rwq_ind_table;
1781 int i;
1782 u32 table_size;
1783
1784 if (!device->create_rwq_ind_table)
1785 return ERR_PTR(-ENOSYS);
1786
1787 table_size = (1 << init_attr->log_ind_tbl_size);
1788 rwq_ind_table = device->create_rwq_ind_table(device,
1789 init_attr, NULL);
1790 if (IS_ERR(rwq_ind_table))
1791 return rwq_ind_table;
1792
1793 rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1794 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1795 rwq_ind_table->device = device;
1796 rwq_ind_table->uobject = NULL;
1797 atomic_set(&rwq_ind_table->usecnt, 0);
1798
1799 for (i = 0; i < table_size; i++)
1800 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1801
1802 return rwq_ind_table;
1803 }
1804 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1805
1806 /*
1807 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1808 * @wq_ind_table: The Indirection Table to destroy.
1809 */
1810 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1811 {
1812 int err, i;
1813 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1814 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1815
1816 if (atomic_read(&rwq_ind_table->usecnt))
1817 return -EBUSY;
1818
1819 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1820 if (!err) {
1821 for (i = 0; i < table_size; i++)
1822 atomic_dec(&ind_tbl[i]->usecnt);
1823 }
1824
1825 return err;
1826 }
1827 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1828
1829 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1830 struct ib_flow_attr *flow_attr,
1831 int domain)
1832 {
1833 struct ib_flow *flow_id;
1834 if (!qp->device->create_flow)
1835 return ERR_PTR(-ENOSYS);
1836
1837 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1838 if (!IS_ERR(flow_id)) {
1839 atomic_inc(&qp->usecnt);
1840 flow_id->qp = qp;
1841 }
1842 return flow_id;
1843 }
1844 EXPORT_SYMBOL(ib_create_flow);
1845
1846 int ib_destroy_flow(struct ib_flow *flow_id)
1847 {
1848 int err;
1849 struct ib_qp *qp = flow_id->qp;
1850
1851 err = qp->device->destroy_flow(flow_id);
1852 if (!err)
1853 atomic_dec(&qp->usecnt);
1854 return err;
1855 }
1856 EXPORT_SYMBOL(ib_destroy_flow);
1857
1858 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1859 struct ib_mr_status *mr_status)
1860 {
1861 return mr->device->check_mr_status ?
1862 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1863 }
1864 EXPORT_SYMBOL(ib_check_mr_status);
1865
1866 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1867 int state)
1868 {
1869 if (!device->set_vf_link_state)
1870 return -ENOSYS;
1871
1872 return device->set_vf_link_state(device, vf, port, state);
1873 }
1874 EXPORT_SYMBOL(ib_set_vf_link_state);
1875
1876 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1877 struct ifla_vf_info *info)
1878 {
1879 if (!device->get_vf_config)
1880 return -ENOSYS;
1881
1882 return device->get_vf_config(device, vf, port, info);
1883 }
1884 EXPORT_SYMBOL(ib_get_vf_config);
1885
1886 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1887 struct ifla_vf_stats *stats)
1888 {
1889 if (!device->get_vf_stats)
1890 return -ENOSYS;
1891
1892 return device->get_vf_stats(device, vf, port, stats);
1893 }
1894 EXPORT_SYMBOL(ib_get_vf_stats);
1895
1896 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1897 int type)
1898 {
1899 if (!device->set_vf_guid)
1900 return -ENOSYS;
1901
1902 return device->set_vf_guid(device, vf, port, guid, type);
1903 }
1904 EXPORT_SYMBOL(ib_set_vf_guid);
1905
1906 /**
1907 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1908 * and set it the memory region.
1909 * @mr: memory region
1910 * @sg: dma mapped scatterlist
1911 * @sg_nents: number of entries in sg
1912 * @sg_offset: offset in bytes into sg
1913 * @page_size: page vector desired page size
1914 *
1915 * Constraints:
1916 * - The first sg element is allowed to have an offset.
1917 * - Each sg element must either be aligned to page_size or virtually
1918 * contiguous to the previous element. In case an sg element has a
1919 * non-contiguous offset, the mapping prefix will not include it.
1920 * - The last sg element is allowed to have length less than page_size.
1921 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1922 * then only max_num_sg entries will be mapped.
1923 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1924 * constraints holds and the page_size argument is ignored.
1925 *
1926 * Returns the number of sg elements that were mapped to the memory region.
1927 *
1928 * After this completes successfully, the memory region
1929 * is ready for registration.
1930 */
1931 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1932 unsigned int *sg_offset, unsigned int page_size)
1933 {
1934 if (unlikely(!mr->device->map_mr_sg))
1935 return -ENOSYS;
1936
1937 mr->page_size = page_size;
1938
1939 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1940 }
1941 EXPORT_SYMBOL(ib_map_mr_sg);
1942
1943 /**
1944 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1945 * to a page vector
1946 * @mr: memory region
1947 * @sgl: dma mapped scatterlist
1948 * @sg_nents: number of entries in sg
1949 * @sg_offset_p: IN: start offset in bytes into sg
1950 * OUT: offset in bytes for element n of the sg of the first
1951 * byte that has not been processed where n is the return
1952 * value of this function.
1953 * @set_page: driver page assignment function pointer
1954 *
1955 * Core service helper for drivers to convert the largest
1956 * prefix of given sg list to a page vector. The sg list
1957 * prefix converted is the prefix that meet the requirements
1958 * of ib_map_mr_sg.
1959 *
1960 * Returns the number of sg elements that were assigned to
1961 * a page vector.
1962 */
1963 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1964 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1965 {
1966 struct scatterlist *sg;
1967 u64 last_end_dma_addr = 0;
1968 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1969 unsigned int last_page_off = 0;
1970 u64 page_mask = ~((u64)mr->page_size - 1);
1971 int i, ret;
1972
1973 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1974 return -EINVAL;
1975
1976 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1977 mr->length = 0;
1978
1979 for_each_sg(sgl, sg, sg_nents, i) {
1980 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1981 u64 prev_addr = dma_addr;
1982 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1983 u64 end_dma_addr = dma_addr + dma_len;
1984 u64 page_addr = dma_addr & page_mask;
1985
1986 /*
1987 * For the second and later elements, check whether either the
1988 * end of element i-1 or the start of element i is not aligned
1989 * on a page boundary.
1990 */
1991 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1992 /* Stop mapping if there is a gap. */
1993 if (last_end_dma_addr != dma_addr)
1994 break;
1995
1996 /*
1997 * Coalesce this element with the last. If it is small
1998 * enough just update mr->length. Otherwise start
1999 * mapping from the next page.
2000 */
2001 goto next_page;
2002 }
2003
2004 do {
2005 ret = set_page(mr, page_addr);
2006 if (unlikely(ret < 0)) {
2007 sg_offset = prev_addr - sg_dma_address(sg);
2008 mr->length += prev_addr - dma_addr;
2009 if (sg_offset_p)
2010 *sg_offset_p = sg_offset;
2011 return i || sg_offset ? i : ret;
2012 }
2013 prev_addr = page_addr;
2014 next_page:
2015 page_addr += mr->page_size;
2016 } while (page_addr < end_dma_addr);
2017
2018 mr->length += dma_len;
2019 last_end_dma_addr = end_dma_addr;
2020 last_page_off = end_dma_addr & ~page_mask;
2021
2022 sg_offset = 0;
2023 }
2024
2025 if (sg_offset_p)
2026 *sg_offset_p = 0;
2027 return i;
2028 }
2029 EXPORT_SYMBOL(ib_sg_to_pages);
2030
2031 struct ib_drain_cqe {
2032 struct ib_cqe cqe;
2033 struct completion done;
2034 };
2035
2036 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2037 {
2038 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2039 cqe);
2040
2041 complete(&cqe->done);
2042 }
2043
2044 /*
2045 * Post a WR and block until its completion is reaped for the SQ.
2046 */
2047 static void __ib_drain_sq(struct ib_qp *qp)
2048 {
2049 struct ib_cq *cq = qp->send_cq;
2050 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2051 struct ib_drain_cqe sdrain;
2052 struct ib_send_wr swr = {}, *bad_swr;
2053 int ret;
2054
2055 swr.wr_cqe = &sdrain.cqe;
2056 sdrain.cqe.done = ib_drain_qp_done;
2057 init_completion(&sdrain.done);
2058
2059 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2060 if (ret) {
2061 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2062 return;
2063 }
2064
2065 ret = ib_post_send(qp, &swr, &bad_swr);
2066 if (ret) {
2067 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2068 return;
2069 }
2070
2071 if (cq->poll_ctx == IB_POLL_DIRECT)
2072 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2073 ib_process_cq_direct(cq, -1);
2074 else
2075 wait_for_completion(&sdrain.done);
2076 }
2077
2078 /*
2079 * Post a WR and block until its completion is reaped for the RQ.
2080 */
2081 static void __ib_drain_rq(struct ib_qp *qp)
2082 {
2083 struct ib_cq *cq = qp->recv_cq;
2084 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2085 struct ib_drain_cqe rdrain;
2086 struct ib_recv_wr rwr = {}, *bad_rwr;
2087 int ret;
2088
2089 rwr.wr_cqe = &rdrain.cqe;
2090 rdrain.cqe.done = ib_drain_qp_done;
2091 init_completion(&rdrain.done);
2092
2093 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2094 if (ret) {
2095 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2096 return;
2097 }
2098
2099 ret = ib_post_recv(qp, &rwr, &bad_rwr);
2100 if (ret) {
2101 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2102 return;
2103 }
2104
2105 if (cq->poll_ctx == IB_POLL_DIRECT)
2106 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2107 ib_process_cq_direct(cq, -1);
2108 else
2109 wait_for_completion(&rdrain.done);
2110 }
2111
2112 /**
2113 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2114 * application.
2115 * @qp: queue pair to drain
2116 *
2117 * If the device has a provider-specific drain function, then
2118 * call that. Otherwise call the generic drain function
2119 * __ib_drain_sq().
2120 *
2121 * The caller must:
2122 *
2123 * ensure there is room in the CQ and SQ for the drain work request and
2124 * completion.
2125 *
2126 * allocate the CQ using ib_alloc_cq().
2127 *
2128 * ensure that there are no other contexts that are posting WRs concurrently.
2129 * Otherwise the drain is not guaranteed.
2130 */
2131 void ib_drain_sq(struct ib_qp *qp)
2132 {
2133 if (qp->device->drain_sq)
2134 qp->device->drain_sq(qp);
2135 else
2136 __ib_drain_sq(qp);
2137 }
2138 EXPORT_SYMBOL(ib_drain_sq);
2139
2140 /**
2141 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2142 * application.
2143 * @qp: queue pair to drain
2144 *
2145 * If the device has a provider-specific drain function, then
2146 * call that. Otherwise call the generic drain function
2147 * __ib_drain_rq().
2148 *
2149 * The caller must:
2150 *
2151 * ensure there is room in the CQ and RQ for the drain work request and
2152 * completion.
2153 *
2154 * allocate the CQ using ib_alloc_cq().
2155 *
2156 * ensure that there are no other contexts that are posting WRs concurrently.
2157 * Otherwise the drain is not guaranteed.
2158 */
2159 void ib_drain_rq(struct ib_qp *qp)
2160 {
2161 if (qp->device->drain_rq)
2162 qp->device->drain_rq(qp);
2163 else
2164 __ib_drain_rq(qp);
2165 }
2166 EXPORT_SYMBOL(ib_drain_rq);
2167
2168 /**
2169 * ib_drain_qp() - Block until all CQEs have been consumed by the
2170 * application on both the RQ and SQ.
2171 * @qp: queue pair to drain
2172 *
2173 * The caller must:
2174 *
2175 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2176 * and completions.
2177 *
2178 * allocate the CQs using ib_alloc_cq().
2179 *
2180 * ensure that there are no other contexts that are posting WRs concurrently.
2181 * Otherwise the drain is not guaranteed.
2182 */
2183 void ib_drain_qp(struct ib_qp *qp)
2184 {
2185 ib_drain_sq(qp);
2186 if (!qp->srq)
2187 ib_drain_rq(qp);
2188 }
2189 EXPORT_SYMBOL(ib_drain_qp);