]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/infiniband/hw/cxgb4/cm.c
ASoC: rt5659: Fix incorrect register addresses
[mirror_ubuntu-hirsute-kernel.git] / drivers / infiniband / hw / cxgb4 / cm.c
1 /*
2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49
50 #include <rdma/ib_addr.h>
51
52 #include "iw_cxgb4.h"
53 #include "clip_tbl.h"
54
55 static char *states[] = {
56 "idle",
57 "listen",
58 "connecting",
59 "mpa_wait_req",
60 "mpa_req_sent",
61 "mpa_req_rcvd",
62 "mpa_rep_sent",
63 "fpdu_mode",
64 "aborting",
65 "closing",
66 "moribund",
67 "dead",
68 NULL,
69 };
70
71 static int nocong;
72 module_param(nocong, int, 0644);
73 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
74
75 static int enable_ecn;
76 module_param(enable_ecn, int, 0644);
77 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
78
79 static int dack_mode = 1;
80 module_param(dack_mode, int, 0644);
81 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
82
83 uint c4iw_max_read_depth = 32;
84 module_param(c4iw_max_read_depth, int, 0644);
85 MODULE_PARM_DESC(c4iw_max_read_depth,
86 "Per-connection max ORD/IRD (default=32)");
87
88 static int enable_tcp_timestamps;
89 module_param(enable_tcp_timestamps, int, 0644);
90 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
91
92 static int enable_tcp_sack;
93 module_param(enable_tcp_sack, int, 0644);
94 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
95
96 static int enable_tcp_window_scaling = 1;
97 module_param(enable_tcp_window_scaling, int, 0644);
98 MODULE_PARM_DESC(enable_tcp_window_scaling,
99 "Enable tcp window scaling (default=1)");
100
101 int c4iw_debug;
102 module_param(c4iw_debug, int, 0644);
103 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
104
105 static int peer2peer = 1;
106 module_param(peer2peer, int, 0644);
107 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
108
109 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
110 module_param(p2p_type, int, 0644);
111 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
112 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
113
114 static int ep_timeout_secs = 60;
115 module_param(ep_timeout_secs, int, 0644);
116 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
117 "in seconds (default=60)");
118
119 static int mpa_rev = 2;
120 module_param(mpa_rev, int, 0644);
121 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
122 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
123 " compliant (default=2)");
124
125 static int markers_enabled;
126 module_param(markers_enabled, int, 0644);
127 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
128
129 static int crc_enabled = 1;
130 module_param(crc_enabled, int, 0644);
131 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
132
133 static int rcv_win = 256 * 1024;
134 module_param(rcv_win, int, 0644);
135 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
136
137 static int snd_win = 128 * 1024;
138 module_param(snd_win, int, 0644);
139 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
140
141 static struct workqueue_struct *workq;
142
143 static struct sk_buff_head rxq;
144
145 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
146 static void ep_timeout(unsigned long arg);
147 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
148 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
149
150 static LIST_HEAD(timeout_list);
151 static spinlock_t timeout_lock;
152
153 static void deref_cm_id(struct c4iw_ep_common *epc)
154 {
155 epc->cm_id->rem_ref(epc->cm_id);
156 epc->cm_id = NULL;
157 set_bit(CM_ID_DEREFED, &epc->history);
158 }
159
160 static void ref_cm_id(struct c4iw_ep_common *epc)
161 {
162 set_bit(CM_ID_REFED, &epc->history);
163 epc->cm_id->add_ref(epc->cm_id);
164 }
165
166 static void deref_qp(struct c4iw_ep *ep)
167 {
168 c4iw_qp_rem_ref(&ep->com.qp->ibqp);
169 clear_bit(QP_REFERENCED, &ep->com.flags);
170 set_bit(QP_DEREFED, &ep->com.history);
171 }
172
173 static void ref_qp(struct c4iw_ep *ep)
174 {
175 set_bit(QP_REFERENCED, &ep->com.flags);
176 set_bit(QP_REFED, &ep->com.history);
177 c4iw_qp_add_ref(&ep->com.qp->ibqp);
178 }
179
180 static void start_ep_timer(struct c4iw_ep *ep)
181 {
182 PDBG("%s ep %p\n", __func__, ep);
183 if (timer_pending(&ep->timer)) {
184 pr_err("%s timer already started! ep %p\n",
185 __func__, ep);
186 return;
187 }
188 clear_bit(TIMEOUT, &ep->com.flags);
189 c4iw_get_ep(&ep->com);
190 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
191 ep->timer.data = (unsigned long)ep;
192 ep->timer.function = ep_timeout;
193 add_timer(&ep->timer);
194 }
195
196 static int stop_ep_timer(struct c4iw_ep *ep)
197 {
198 PDBG("%s ep %p stopping\n", __func__, ep);
199 del_timer_sync(&ep->timer);
200 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
201 c4iw_put_ep(&ep->com);
202 return 0;
203 }
204 return 1;
205 }
206
207 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
208 struct l2t_entry *l2e)
209 {
210 int error = 0;
211
212 if (c4iw_fatal_error(rdev)) {
213 kfree_skb(skb);
214 PDBG("%s - device in error state - dropping\n", __func__);
215 return -EIO;
216 }
217 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
218 if (error < 0)
219 kfree_skb(skb);
220 else if (error == NET_XMIT_DROP)
221 return -ENOMEM;
222 return error < 0 ? error : 0;
223 }
224
225 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
226 {
227 int error = 0;
228
229 if (c4iw_fatal_error(rdev)) {
230 kfree_skb(skb);
231 PDBG("%s - device in error state - dropping\n", __func__);
232 return -EIO;
233 }
234 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
235 if (error < 0)
236 kfree_skb(skb);
237 return error < 0 ? error : 0;
238 }
239
240 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
241 {
242 struct cpl_tid_release *req;
243
244 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
245 if (!skb)
246 return;
247 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
248 INIT_TP_WR(req, hwtid);
249 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
250 set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
251 c4iw_ofld_send(rdev, skb);
252 return;
253 }
254
255 static void set_emss(struct c4iw_ep *ep, u16 opt)
256 {
257 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
258 ((AF_INET == ep->com.remote_addr.ss_family) ?
259 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
260 sizeof(struct tcphdr);
261 ep->mss = ep->emss;
262 if (TCPOPT_TSTAMP_G(opt))
263 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
264 if (ep->emss < 128)
265 ep->emss = 128;
266 if (ep->emss & 7)
267 PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
268 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
269 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
270 ep->mss, ep->emss);
271 }
272
273 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
274 {
275 enum c4iw_ep_state state;
276
277 mutex_lock(&epc->mutex);
278 state = epc->state;
279 mutex_unlock(&epc->mutex);
280 return state;
281 }
282
283 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
284 {
285 epc->state = new;
286 }
287
288 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
289 {
290 mutex_lock(&epc->mutex);
291 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
292 __state_set(epc, new);
293 mutex_unlock(&epc->mutex);
294 return;
295 }
296
297 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
298 {
299 struct sk_buff *skb;
300 unsigned int i;
301 size_t len;
302
303 len = roundup(sizeof(union cpl_wr_size), 16);
304 for (i = 0; i < size; i++) {
305 skb = alloc_skb(len, GFP_KERNEL);
306 if (!skb)
307 goto fail;
308 skb_queue_tail(ep_skb_list, skb);
309 }
310 return 0;
311 fail:
312 skb_queue_purge(ep_skb_list);
313 return -ENOMEM;
314 }
315
316 static void *alloc_ep(int size, gfp_t gfp)
317 {
318 struct c4iw_ep_common *epc;
319
320 epc = kzalloc(size, gfp);
321 if (epc) {
322 kref_init(&epc->kref);
323 mutex_init(&epc->mutex);
324 c4iw_init_wr_wait(&epc->wr_wait);
325 }
326 PDBG("%s alloc ep %p\n", __func__, epc);
327 return epc;
328 }
329
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(&ep->com.dev->lock, flags);
335 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
336 spin_unlock_irqrestore(&ep->com.dev->lock, flags);
337 }
338
339 static void insert_ep_tid(struct c4iw_ep *ep)
340 {
341 unsigned long flags;
342
343 spin_lock_irqsave(&ep->com.dev->lock, flags);
344 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
345 spin_unlock_irqrestore(&ep->com.dev->lock, flags);
346 }
347
348 /*
349 * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
350 */
351 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
352 {
353 struct c4iw_ep *ep;
354 unsigned long flags;
355
356 spin_lock_irqsave(&dev->lock, flags);
357 ep = idr_find(&dev->hwtid_idr, tid);
358 if (ep)
359 c4iw_get_ep(&ep->com);
360 spin_unlock_irqrestore(&dev->lock, flags);
361 return ep;
362 }
363
364 /*
365 * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
366 */
367 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
368 unsigned int stid)
369 {
370 struct c4iw_listen_ep *ep;
371 unsigned long flags;
372
373 spin_lock_irqsave(&dev->lock, flags);
374 ep = idr_find(&dev->stid_idr, stid);
375 if (ep)
376 c4iw_get_ep(&ep->com);
377 spin_unlock_irqrestore(&dev->lock, flags);
378 return ep;
379 }
380
381 void _c4iw_free_ep(struct kref *kref)
382 {
383 struct c4iw_ep *ep;
384
385 ep = container_of(kref, struct c4iw_ep, com.kref);
386 PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]);
387 if (test_bit(QP_REFERENCED, &ep->com.flags))
388 deref_qp(ep);
389 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
390 if (ep->com.remote_addr.ss_family == AF_INET6) {
391 struct sockaddr_in6 *sin6 =
392 (struct sockaddr_in6 *)
393 &ep->com.local_addr;
394
395 cxgb4_clip_release(
396 ep->com.dev->rdev.lldi.ports[0],
397 (const u32 *)&sin6->sin6_addr.s6_addr,
398 1);
399 }
400 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
401 dst_release(ep->dst);
402 cxgb4_l2t_release(ep->l2t);
403 if (ep->mpa_skb)
404 kfree_skb(ep->mpa_skb);
405 }
406 if (!skb_queue_empty(&ep->com.ep_skb_list))
407 skb_queue_purge(&ep->com.ep_skb_list);
408 kfree(ep);
409 }
410
411 static void release_ep_resources(struct c4iw_ep *ep)
412 {
413 set_bit(RELEASE_RESOURCES, &ep->com.flags);
414
415 /*
416 * If we have a hwtid, then remove it from the idr table
417 * so lookups will no longer find this endpoint. Otherwise
418 * we have a race where one thread finds the ep ptr just
419 * before the other thread is freeing the ep memory.
420 */
421 if (ep->hwtid != -1)
422 remove_ep_tid(ep);
423 c4iw_put_ep(&ep->com);
424 }
425
426 static int status2errno(int status)
427 {
428 switch (status) {
429 case CPL_ERR_NONE:
430 return 0;
431 case CPL_ERR_CONN_RESET:
432 return -ECONNRESET;
433 case CPL_ERR_ARP_MISS:
434 return -EHOSTUNREACH;
435 case CPL_ERR_CONN_TIMEDOUT:
436 return -ETIMEDOUT;
437 case CPL_ERR_TCAM_FULL:
438 return -ENOMEM;
439 case CPL_ERR_CONN_EXIST:
440 return -EADDRINUSE;
441 default:
442 return -EIO;
443 }
444 }
445
446 /*
447 * Try and reuse skbs already allocated...
448 */
449 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
450 {
451 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
452 skb_trim(skb, 0);
453 skb_get(skb);
454 skb_reset_transport_header(skb);
455 } else {
456 skb = alloc_skb(len, gfp);
457 }
458 t4_set_arp_err_handler(skb, NULL, NULL);
459 return skb;
460 }
461
462 static struct net_device *get_real_dev(struct net_device *egress_dev)
463 {
464 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
465 }
466
467 static int our_interface(struct c4iw_dev *dev, struct net_device *egress_dev)
468 {
469 int i;
470
471 egress_dev = get_real_dev(egress_dev);
472 for (i = 0; i < dev->rdev.lldi.nports; i++)
473 if (dev->rdev.lldi.ports[i] == egress_dev)
474 return 1;
475 return 0;
476 }
477
478 static struct dst_entry *find_route6(struct c4iw_dev *dev, __u8 *local_ip,
479 __u8 *peer_ip, __be16 local_port,
480 __be16 peer_port, u8 tos,
481 __u32 sin6_scope_id)
482 {
483 struct dst_entry *dst = NULL;
484
485 if (IS_ENABLED(CONFIG_IPV6)) {
486 struct flowi6 fl6;
487
488 memset(&fl6, 0, sizeof(fl6));
489 memcpy(&fl6.daddr, peer_ip, 16);
490 memcpy(&fl6.saddr, local_ip, 16);
491 if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
492 fl6.flowi6_oif = sin6_scope_id;
493 dst = ip6_route_output(&init_net, NULL, &fl6);
494 if (!dst)
495 goto out;
496 if (!our_interface(dev, ip6_dst_idev(dst)->dev) &&
497 !(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
498 dst_release(dst);
499 dst = NULL;
500 }
501 }
502
503 out:
504 return dst;
505 }
506
507 static struct dst_entry *find_route(struct c4iw_dev *dev, __be32 local_ip,
508 __be32 peer_ip, __be16 local_port,
509 __be16 peer_port, u8 tos)
510 {
511 struct rtable *rt;
512 struct flowi4 fl4;
513 struct neighbour *n;
514
515 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
516 peer_port, local_port, IPPROTO_TCP,
517 tos, 0);
518 if (IS_ERR(rt))
519 return NULL;
520 n = dst_neigh_lookup(&rt->dst, &peer_ip);
521 if (!n)
522 return NULL;
523 if (!our_interface(dev, n->dev) &&
524 !(n->dev->flags & IFF_LOOPBACK)) {
525 neigh_release(n);
526 dst_release(&rt->dst);
527 return NULL;
528 }
529 neigh_release(n);
530 return &rt->dst;
531 }
532
533 static void arp_failure_discard(void *handle, struct sk_buff *skb)
534 {
535 pr_err(MOD "ARP failure\n");
536 kfree_skb(skb);
537 }
538
539 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
540 {
541 pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
542 }
543
544 enum {
545 NUM_FAKE_CPLS = 2,
546 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
547 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
548 };
549
550 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
551 {
552 struct c4iw_ep *ep;
553
554 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
555 release_ep_resources(ep);
556 return 0;
557 }
558
559 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
560 {
561 struct c4iw_ep *ep;
562
563 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
564 c4iw_put_ep(&ep->parent_ep->com);
565 release_ep_resources(ep);
566 return 0;
567 }
568
569 /*
570 * Fake up a special CPL opcode and call sched() so process_work() will call
571 * _put_ep_safe() in a safe context to free the ep resources. This is needed
572 * because ARP error handlers are called in an ATOMIC context, and
573 * _c4iw_free_ep() needs to block.
574 */
575 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
576 int cpl)
577 {
578 struct cpl_act_establish *rpl = cplhdr(skb);
579
580 /* Set our special ARP_FAILURE opcode */
581 rpl->ot.opcode = cpl;
582
583 /*
584 * Save ep in the skb->cb area, after where sched() will save the dev
585 * ptr.
586 */
587 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
588 sched(ep->com.dev, skb);
589 }
590
591 /* Handle an ARP failure for an accept */
592 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
593 {
594 struct c4iw_ep *ep = handle;
595
596 pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n",
597 ep->hwtid);
598
599 __state_set(&ep->com, DEAD);
600 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
601 }
602
603 /*
604 * Handle an ARP failure for an active open.
605 */
606 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
607 {
608 struct c4iw_ep *ep = handle;
609
610 printk(KERN_ERR MOD "ARP failure during connect\n");
611 connect_reply_upcall(ep, -EHOSTUNREACH);
612 __state_set(&ep->com, DEAD);
613 if (ep->com.remote_addr.ss_family == AF_INET6) {
614 struct sockaddr_in6 *sin6 =
615 (struct sockaddr_in6 *)&ep->com.local_addr;
616 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
617 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
618 }
619 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
620 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
621 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
622 }
623
624 /*
625 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
626 * and send it along.
627 */
628 static void abort_arp_failure(void *handle, struct sk_buff *skb)
629 {
630 int ret;
631 struct c4iw_ep *ep = handle;
632 struct c4iw_rdev *rdev = &ep->com.dev->rdev;
633 struct cpl_abort_req *req = cplhdr(skb);
634
635 PDBG("%s rdev %p\n", __func__, rdev);
636 req->cmd = CPL_ABORT_NO_RST;
637 ret = c4iw_ofld_send(rdev, skb);
638 if (ret) {
639 __state_set(&ep->com, DEAD);
640 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
641 }
642 }
643
644 static int send_flowc(struct c4iw_ep *ep)
645 {
646 struct fw_flowc_wr *flowc;
647 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
648 int i;
649 u16 vlan = ep->l2t->vlan;
650 int nparams;
651
652 if (WARN_ON(!skb))
653 return -ENOMEM;
654
655 if (vlan == CPL_L2T_VLAN_NONE)
656 nparams = 8;
657 else
658 nparams = 9;
659
660 flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN);
661
662 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
663 FW_FLOWC_WR_NPARAMS_V(nparams));
664 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN,
665 16)) | FW_WR_FLOWID_V(ep->hwtid));
666
667 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
668 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
669 (ep->com.dev->rdev.lldi.pf));
670 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
671 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
672 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
673 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
674 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
675 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
676 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
677 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
678 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
679 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
680 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
681 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
682 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
683 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
684 if (nparams == 9) {
685 u16 pri;
686
687 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
688 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
689 flowc->mnemval[8].val = cpu_to_be32(pri);
690 } else {
691 /* Pad WR to 16 byte boundary */
692 flowc->mnemval[8].mnemonic = 0;
693 flowc->mnemval[8].val = 0;
694 }
695 for (i = 0; i < 9; i++) {
696 flowc->mnemval[i].r4[0] = 0;
697 flowc->mnemval[i].r4[1] = 0;
698 flowc->mnemval[i].r4[2] = 0;
699 }
700
701 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
702 return c4iw_ofld_send(&ep->com.dev->rdev, skb);
703 }
704
705 static int send_halfclose(struct c4iw_ep *ep)
706 {
707 struct cpl_close_con_req *req;
708 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
709 int wrlen = roundup(sizeof *req, 16);
710
711 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
712 if (WARN_ON(!skb))
713 return -ENOMEM;
714
715 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
716 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
717 req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
718 memset(req, 0, wrlen);
719 INIT_TP_WR(req, ep->hwtid);
720 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
721 ep->hwtid));
722 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
723 }
724
725 static int send_abort(struct c4iw_ep *ep)
726 {
727 struct cpl_abort_req *req;
728 int wrlen = roundup(sizeof *req, 16);
729 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
730
731 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
732 if (WARN_ON(!req_skb))
733 return -ENOMEM;
734
735 set_wr_txq(req_skb, CPL_PRIORITY_DATA, ep->txq_idx);
736 t4_set_arp_err_handler(req_skb, ep, abort_arp_failure);
737 req = (struct cpl_abort_req *)skb_put(req_skb, wrlen);
738 memset(req, 0, wrlen);
739 INIT_TP_WR(req, ep->hwtid);
740 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
741 req->cmd = CPL_ABORT_SEND_RST;
742 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
743 }
744
745 static void best_mtu(const unsigned short *mtus, unsigned short mtu,
746 unsigned int *idx, int use_ts, int ipv6)
747 {
748 unsigned short hdr_size = (ipv6 ?
749 sizeof(struct ipv6hdr) :
750 sizeof(struct iphdr)) +
751 sizeof(struct tcphdr) +
752 (use_ts ?
753 round_up(TCPOLEN_TIMESTAMP, 4) : 0);
754 unsigned short data_size = mtu - hdr_size;
755
756 cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
757 }
758
759 static int send_connect(struct c4iw_ep *ep)
760 {
761 struct cpl_act_open_req *req = NULL;
762 struct cpl_t5_act_open_req *t5req = NULL;
763 struct cpl_t6_act_open_req *t6req = NULL;
764 struct cpl_act_open_req6 *req6 = NULL;
765 struct cpl_t5_act_open_req6 *t5req6 = NULL;
766 struct cpl_t6_act_open_req6 *t6req6 = NULL;
767 struct sk_buff *skb;
768 u64 opt0;
769 u32 opt2;
770 unsigned int mtu_idx;
771 int wscale;
772 int win, sizev4, sizev6, wrlen;
773 struct sockaddr_in *la = (struct sockaddr_in *)
774 &ep->com.local_addr;
775 struct sockaddr_in *ra = (struct sockaddr_in *)
776 &ep->com.remote_addr;
777 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
778 &ep->com.local_addr;
779 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
780 &ep->com.remote_addr;
781 int ret;
782 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
783 u32 isn = (prandom_u32() & ~7UL) - 1;
784
785 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
786 case CHELSIO_T4:
787 sizev4 = sizeof(struct cpl_act_open_req);
788 sizev6 = sizeof(struct cpl_act_open_req6);
789 break;
790 case CHELSIO_T5:
791 sizev4 = sizeof(struct cpl_t5_act_open_req);
792 sizev6 = sizeof(struct cpl_t5_act_open_req6);
793 break;
794 case CHELSIO_T6:
795 sizev4 = sizeof(struct cpl_t6_act_open_req);
796 sizev6 = sizeof(struct cpl_t6_act_open_req6);
797 break;
798 default:
799 pr_err("T%d Chip is not supported\n",
800 CHELSIO_CHIP_VERSION(adapter_type));
801 return -EINVAL;
802 }
803
804 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
805 roundup(sizev4, 16) :
806 roundup(sizev6, 16);
807
808 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
809
810 skb = get_skb(NULL, wrlen, GFP_KERNEL);
811 if (!skb) {
812 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
813 __func__);
814 return -ENOMEM;
815 }
816 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
817
818 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
819 enable_tcp_timestamps,
820 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
821 wscale = compute_wscale(rcv_win);
822
823 /*
824 * Specify the largest window that will fit in opt0. The
825 * remainder will be specified in the rx_data_ack.
826 */
827 win = ep->rcv_win >> 10;
828 if (win > RCV_BUFSIZ_M)
829 win = RCV_BUFSIZ_M;
830
831 opt0 = (nocong ? NO_CONG_F : 0) |
832 KEEP_ALIVE_F |
833 DELACK_F |
834 WND_SCALE_V(wscale) |
835 MSS_IDX_V(mtu_idx) |
836 L2T_IDX_V(ep->l2t->idx) |
837 TX_CHAN_V(ep->tx_chan) |
838 SMAC_SEL_V(ep->smac_idx) |
839 DSCP_V(ep->tos >> 2) |
840 ULP_MODE_V(ULP_MODE_TCPDDP) |
841 RCV_BUFSIZ_V(win);
842 opt2 = RX_CHANNEL_V(0) |
843 CCTRL_ECN_V(enable_ecn) |
844 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
845 if (enable_tcp_timestamps)
846 opt2 |= TSTAMPS_EN_F;
847 if (enable_tcp_sack)
848 opt2 |= SACK_EN_F;
849 if (wscale && enable_tcp_window_scaling)
850 opt2 |= WND_SCALE_EN_F;
851 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
852 if (peer2peer)
853 isn += 4;
854
855 opt2 |= T5_OPT_2_VALID_F;
856 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
857 opt2 |= T5_ISS_F;
858 }
859
860 if (ep->com.remote_addr.ss_family == AF_INET6)
861 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
862 (const u32 *)&la6->sin6_addr.s6_addr, 1);
863
864 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
865
866 if (ep->com.remote_addr.ss_family == AF_INET) {
867 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
868 case CHELSIO_T4:
869 req = (struct cpl_act_open_req *)skb_put(skb, wrlen);
870 INIT_TP_WR(req, 0);
871 break;
872 case CHELSIO_T5:
873 t5req = (struct cpl_t5_act_open_req *)skb_put(skb,
874 wrlen);
875 INIT_TP_WR(t5req, 0);
876 req = (struct cpl_act_open_req *)t5req;
877 break;
878 case CHELSIO_T6:
879 t6req = (struct cpl_t6_act_open_req *)skb_put(skb,
880 wrlen);
881 INIT_TP_WR(t6req, 0);
882 req = (struct cpl_act_open_req *)t6req;
883 t5req = (struct cpl_t5_act_open_req *)t6req;
884 break;
885 default:
886 pr_err("T%d Chip is not supported\n",
887 CHELSIO_CHIP_VERSION(adapter_type));
888 ret = -EINVAL;
889 goto clip_release;
890 }
891
892 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
893 ((ep->rss_qid<<14) | ep->atid)));
894 req->local_port = la->sin_port;
895 req->peer_port = ra->sin_port;
896 req->local_ip = la->sin_addr.s_addr;
897 req->peer_ip = ra->sin_addr.s_addr;
898 req->opt0 = cpu_to_be64(opt0);
899
900 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
901 req->params = cpu_to_be32(cxgb4_select_ntuple(
902 ep->com.dev->rdev.lldi.ports[0],
903 ep->l2t));
904 req->opt2 = cpu_to_be32(opt2);
905 } else {
906 t5req->params = cpu_to_be64(FILTER_TUPLE_V(
907 cxgb4_select_ntuple(
908 ep->com.dev->rdev.lldi.ports[0],
909 ep->l2t)));
910 t5req->rsvd = cpu_to_be32(isn);
911 PDBG("%s snd_isn %u\n", __func__, t5req->rsvd);
912 t5req->opt2 = cpu_to_be32(opt2);
913 }
914 } else {
915 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
916 case CHELSIO_T4:
917 req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen);
918 INIT_TP_WR(req6, 0);
919 break;
920 case CHELSIO_T5:
921 t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb,
922 wrlen);
923 INIT_TP_WR(t5req6, 0);
924 req6 = (struct cpl_act_open_req6 *)t5req6;
925 break;
926 case CHELSIO_T6:
927 t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb,
928 wrlen);
929 INIT_TP_WR(t6req6, 0);
930 req6 = (struct cpl_act_open_req6 *)t6req6;
931 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
932 break;
933 default:
934 pr_err("T%d Chip is not supported\n",
935 CHELSIO_CHIP_VERSION(adapter_type));
936 ret = -EINVAL;
937 goto clip_release;
938 }
939
940 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
941 ((ep->rss_qid<<14)|ep->atid)));
942 req6->local_port = la6->sin6_port;
943 req6->peer_port = ra6->sin6_port;
944 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
945 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
946 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
947 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
948 req6->opt0 = cpu_to_be64(opt0);
949
950 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
951 req6->params = cpu_to_be32(cxgb4_select_ntuple(
952 ep->com.dev->rdev.lldi.ports[0],
953 ep->l2t));
954 req6->opt2 = cpu_to_be32(opt2);
955 } else {
956 t5req6->params = cpu_to_be64(FILTER_TUPLE_V(
957 cxgb4_select_ntuple(
958 ep->com.dev->rdev.lldi.ports[0],
959 ep->l2t)));
960 t5req6->rsvd = cpu_to_be32(isn);
961 PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd);
962 t5req6->opt2 = cpu_to_be32(opt2);
963 }
964 }
965
966 set_bit(ACT_OPEN_REQ, &ep->com.history);
967 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
968 clip_release:
969 if (ret && ep->com.remote_addr.ss_family == AF_INET6)
970 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
971 (const u32 *)&la6->sin6_addr.s6_addr, 1);
972 return ret;
973 }
974
975 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
976 u8 mpa_rev_to_use)
977 {
978 int mpalen, wrlen, ret;
979 struct fw_ofld_tx_data_wr *req;
980 struct mpa_message *mpa;
981 struct mpa_v2_conn_params mpa_v2_params;
982
983 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
984
985 BUG_ON(skb_cloned(skb));
986
987 mpalen = sizeof(*mpa) + ep->plen;
988 if (mpa_rev_to_use == 2)
989 mpalen += sizeof(struct mpa_v2_conn_params);
990 wrlen = roundup(mpalen + sizeof *req, 16);
991 skb = get_skb(skb, wrlen, GFP_KERNEL);
992 if (!skb) {
993 connect_reply_upcall(ep, -ENOMEM);
994 return -ENOMEM;
995 }
996 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
997
998 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
999 memset(req, 0, wrlen);
1000 req->op_to_immdlen = cpu_to_be32(
1001 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1002 FW_WR_COMPL_F |
1003 FW_WR_IMMDLEN_V(mpalen));
1004 req->flowid_len16 = cpu_to_be32(
1005 FW_WR_FLOWID_V(ep->hwtid) |
1006 FW_WR_LEN16_V(wrlen >> 4));
1007 req->plen = cpu_to_be32(mpalen);
1008 req->tunnel_to_proxy = cpu_to_be32(
1009 FW_OFLD_TX_DATA_WR_FLUSH_F |
1010 FW_OFLD_TX_DATA_WR_SHOVE_F);
1011
1012 mpa = (struct mpa_message *)(req + 1);
1013 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
1014
1015 mpa->flags = 0;
1016 if (crc_enabled)
1017 mpa->flags |= MPA_CRC;
1018 if (markers_enabled) {
1019 mpa->flags |= MPA_MARKERS;
1020 ep->mpa_attr.recv_marker_enabled = 1;
1021 } else {
1022 ep->mpa_attr.recv_marker_enabled = 0;
1023 }
1024 if (mpa_rev_to_use == 2)
1025 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1026
1027 mpa->private_data_size = htons(ep->plen);
1028 mpa->revision = mpa_rev_to_use;
1029 if (mpa_rev_to_use == 1) {
1030 ep->tried_with_mpa_v1 = 1;
1031 ep->retry_with_mpa_v1 = 0;
1032 }
1033
1034 if (mpa_rev_to_use == 2) {
1035 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1036 sizeof (struct mpa_v2_conn_params));
1037 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1038 ep->ord);
1039 mpa_v2_params.ird = htons((u16)ep->ird);
1040 mpa_v2_params.ord = htons((u16)ep->ord);
1041
1042 if (peer2peer) {
1043 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1044 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1045 mpa_v2_params.ord |=
1046 htons(MPA_V2_RDMA_WRITE_RTR);
1047 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1048 mpa_v2_params.ord |=
1049 htons(MPA_V2_RDMA_READ_RTR);
1050 }
1051 memcpy(mpa->private_data, &mpa_v2_params,
1052 sizeof(struct mpa_v2_conn_params));
1053
1054 if (ep->plen)
1055 memcpy(mpa->private_data +
1056 sizeof(struct mpa_v2_conn_params),
1057 ep->mpa_pkt + sizeof(*mpa), ep->plen);
1058 } else
1059 if (ep->plen)
1060 memcpy(mpa->private_data,
1061 ep->mpa_pkt + sizeof(*mpa), ep->plen);
1062
1063 /*
1064 * Reference the mpa skb. This ensures the data area
1065 * will remain in memory until the hw acks the tx.
1066 * Function fw4_ack() will deref it.
1067 */
1068 skb_get(skb);
1069 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1070 BUG_ON(ep->mpa_skb);
1071 ep->mpa_skb = skb;
1072 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1073 if (ret)
1074 return ret;
1075 start_ep_timer(ep);
1076 __state_set(&ep->com, MPA_REQ_SENT);
1077 ep->mpa_attr.initiator = 1;
1078 ep->snd_seq += mpalen;
1079 return ret;
1080 }
1081
1082 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1083 {
1084 int mpalen, wrlen;
1085 struct fw_ofld_tx_data_wr *req;
1086 struct mpa_message *mpa;
1087 struct sk_buff *skb;
1088 struct mpa_v2_conn_params mpa_v2_params;
1089
1090 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1091
1092 mpalen = sizeof(*mpa) + plen;
1093 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1094 mpalen += sizeof(struct mpa_v2_conn_params);
1095 wrlen = roundup(mpalen + sizeof *req, 16);
1096
1097 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1098 if (!skb) {
1099 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1100 return -ENOMEM;
1101 }
1102 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1103
1104 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
1105 memset(req, 0, wrlen);
1106 req->op_to_immdlen = cpu_to_be32(
1107 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1108 FW_WR_COMPL_F |
1109 FW_WR_IMMDLEN_V(mpalen));
1110 req->flowid_len16 = cpu_to_be32(
1111 FW_WR_FLOWID_V(ep->hwtid) |
1112 FW_WR_LEN16_V(wrlen >> 4));
1113 req->plen = cpu_to_be32(mpalen);
1114 req->tunnel_to_proxy = cpu_to_be32(
1115 FW_OFLD_TX_DATA_WR_FLUSH_F |
1116 FW_OFLD_TX_DATA_WR_SHOVE_F);
1117
1118 mpa = (struct mpa_message *)(req + 1);
1119 memset(mpa, 0, sizeof(*mpa));
1120 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1121 mpa->flags = MPA_REJECT;
1122 mpa->revision = ep->mpa_attr.version;
1123 mpa->private_data_size = htons(plen);
1124
1125 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1126 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1127 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1128 sizeof (struct mpa_v2_conn_params));
1129 mpa_v2_params.ird = htons(((u16)ep->ird) |
1130 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1131 0));
1132 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1133 (p2p_type ==
1134 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1135 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1136 FW_RI_INIT_P2PTYPE_READ_REQ ?
1137 MPA_V2_RDMA_READ_RTR : 0) : 0));
1138 memcpy(mpa->private_data, &mpa_v2_params,
1139 sizeof(struct mpa_v2_conn_params));
1140
1141 if (ep->plen)
1142 memcpy(mpa->private_data +
1143 sizeof(struct mpa_v2_conn_params), pdata, plen);
1144 } else
1145 if (plen)
1146 memcpy(mpa->private_data, pdata, plen);
1147
1148 /*
1149 * Reference the mpa skb again. This ensures the data area
1150 * will remain in memory until the hw acks the tx.
1151 * Function fw4_ack() will deref it.
1152 */
1153 skb_get(skb);
1154 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1155 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1156 BUG_ON(ep->mpa_skb);
1157 ep->mpa_skb = skb;
1158 ep->snd_seq += mpalen;
1159 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1160 }
1161
1162 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1163 {
1164 int mpalen, wrlen;
1165 struct fw_ofld_tx_data_wr *req;
1166 struct mpa_message *mpa;
1167 struct sk_buff *skb;
1168 struct mpa_v2_conn_params mpa_v2_params;
1169
1170 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1171
1172 mpalen = sizeof(*mpa) + plen;
1173 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1174 mpalen += sizeof(struct mpa_v2_conn_params);
1175 wrlen = roundup(mpalen + sizeof *req, 16);
1176
1177 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1178 if (!skb) {
1179 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1180 return -ENOMEM;
1181 }
1182 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1183
1184 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
1185 memset(req, 0, wrlen);
1186 req->op_to_immdlen = cpu_to_be32(
1187 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1188 FW_WR_COMPL_F |
1189 FW_WR_IMMDLEN_V(mpalen));
1190 req->flowid_len16 = cpu_to_be32(
1191 FW_WR_FLOWID_V(ep->hwtid) |
1192 FW_WR_LEN16_V(wrlen >> 4));
1193 req->plen = cpu_to_be32(mpalen);
1194 req->tunnel_to_proxy = cpu_to_be32(
1195 FW_OFLD_TX_DATA_WR_FLUSH_F |
1196 FW_OFLD_TX_DATA_WR_SHOVE_F);
1197
1198 mpa = (struct mpa_message *)(req + 1);
1199 memset(mpa, 0, sizeof(*mpa));
1200 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1201 mpa->flags = 0;
1202 if (ep->mpa_attr.crc_enabled)
1203 mpa->flags |= MPA_CRC;
1204 if (ep->mpa_attr.recv_marker_enabled)
1205 mpa->flags |= MPA_MARKERS;
1206 mpa->revision = ep->mpa_attr.version;
1207 mpa->private_data_size = htons(plen);
1208
1209 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1210 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1211 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1212 sizeof (struct mpa_v2_conn_params));
1213 mpa_v2_params.ird = htons((u16)ep->ird);
1214 mpa_v2_params.ord = htons((u16)ep->ord);
1215 if (peer2peer && (ep->mpa_attr.p2p_type !=
1216 FW_RI_INIT_P2PTYPE_DISABLED)) {
1217 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1218
1219 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1220 mpa_v2_params.ord |=
1221 htons(MPA_V2_RDMA_WRITE_RTR);
1222 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1223 mpa_v2_params.ord |=
1224 htons(MPA_V2_RDMA_READ_RTR);
1225 }
1226
1227 memcpy(mpa->private_data, &mpa_v2_params,
1228 sizeof(struct mpa_v2_conn_params));
1229
1230 if (ep->plen)
1231 memcpy(mpa->private_data +
1232 sizeof(struct mpa_v2_conn_params), pdata, plen);
1233 } else
1234 if (plen)
1235 memcpy(mpa->private_data, pdata, plen);
1236
1237 /*
1238 * Reference the mpa skb. This ensures the data area
1239 * will remain in memory until the hw acks the tx.
1240 * Function fw4_ack() will deref it.
1241 */
1242 skb_get(skb);
1243 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1244 ep->mpa_skb = skb;
1245 __state_set(&ep->com, MPA_REP_SENT);
1246 ep->snd_seq += mpalen;
1247 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1248 }
1249
1250 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1251 {
1252 struct c4iw_ep *ep;
1253 struct cpl_act_establish *req = cplhdr(skb);
1254 unsigned int tid = GET_TID(req);
1255 unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1256 struct tid_info *t = dev->rdev.lldi.tids;
1257 int ret;
1258
1259 ep = lookup_atid(t, atid);
1260
1261 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
1262 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1263
1264 mutex_lock(&ep->com.mutex);
1265 dst_confirm(ep->dst);
1266
1267 /* setup the hwtid for this connection */
1268 ep->hwtid = tid;
1269 cxgb4_insert_tid(t, ep, tid);
1270 insert_ep_tid(ep);
1271
1272 ep->snd_seq = be32_to_cpu(req->snd_isn);
1273 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1274
1275 set_emss(ep, ntohs(req->tcp_opt));
1276
1277 /* dealloc the atid */
1278 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1279 cxgb4_free_atid(t, atid);
1280 set_bit(ACT_ESTAB, &ep->com.history);
1281
1282 /* start MPA negotiation */
1283 ret = send_flowc(ep);
1284 if (ret)
1285 goto err;
1286 if (ep->retry_with_mpa_v1)
1287 ret = send_mpa_req(ep, skb, 1);
1288 else
1289 ret = send_mpa_req(ep, skb, mpa_rev);
1290 if (ret)
1291 goto err;
1292 mutex_unlock(&ep->com.mutex);
1293 return 0;
1294 err:
1295 mutex_unlock(&ep->com.mutex);
1296 connect_reply_upcall(ep, -ENOMEM);
1297 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1298 return 0;
1299 }
1300
1301 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1302 {
1303 struct iw_cm_event event;
1304
1305 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1306 memset(&event, 0, sizeof(event));
1307 event.event = IW_CM_EVENT_CLOSE;
1308 event.status = status;
1309 if (ep->com.cm_id) {
1310 PDBG("close complete delivered ep %p cm_id %p tid %u\n",
1311 ep, ep->com.cm_id, ep->hwtid);
1312 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1313 deref_cm_id(&ep->com);
1314 set_bit(CLOSE_UPCALL, &ep->com.history);
1315 }
1316 }
1317
1318 static void peer_close_upcall(struct c4iw_ep *ep)
1319 {
1320 struct iw_cm_event event;
1321
1322 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1323 memset(&event, 0, sizeof(event));
1324 event.event = IW_CM_EVENT_DISCONNECT;
1325 if (ep->com.cm_id) {
1326 PDBG("peer close delivered ep %p cm_id %p tid %u\n",
1327 ep, ep->com.cm_id, ep->hwtid);
1328 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1329 set_bit(DISCONN_UPCALL, &ep->com.history);
1330 }
1331 }
1332
1333 static void peer_abort_upcall(struct c4iw_ep *ep)
1334 {
1335 struct iw_cm_event event;
1336
1337 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1338 memset(&event, 0, sizeof(event));
1339 event.event = IW_CM_EVENT_CLOSE;
1340 event.status = -ECONNRESET;
1341 if (ep->com.cm_id) {
1342 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
1343 ep->com.cm_id, ep->hwtid);
1344 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1345 deref_cm_id(&ep->com);
1346 set_bit(ABORT_UPCALL, &ep->com.history);
1347 }
1348 }
1349
1350 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1351 {
1352 struct iw_cm_event event;
1353
1354 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
1355 memset(&event, 0, sizeof(event));
1356 event.event = IW_CM_EVENT_CONNECT_REPLY;
1357 event.status = status;
1358 memcpy(&event.local_addr, &ep->com.local_addr,
1359 sizeof(ep->com.local_addr));
1360 memcpy(&event.remote_addr, &ep->com.remote_addr,
1361 sizeof(ep->com.remote_addr));
1362
1363 if ((status == 0) || (status == -ECONNREFUSED)) {
1364 if (!ep->tried_with_mpa_v1) {
1365 /* this means MPA_v2 is used */
1366 event.ord = ep->ird;
1367 event.ird = ep->ord;
1368 event.private_data_len = ep->plen -
1369 sizeof(struct mpa_v2_conn_params);
1370 event.private_data = ep->mpa_pkt +
1371 sizeof(struct mpa_message) +
1372 sizeof(struct mpa_v2_conn_params);
1373 } else {
1374 /* this means MPA_v1 is used */
1375 event.ord = cur_max_read_depth(ep->com.dev);
1376 event.ird = cur_max_read_depth(ep->com.dev);
1377 event.private_data_len = ep->plen;
1378 event.private_data = ep->mpa_pkt +
1379 sizeof(struct mpa_message);
1380 }
1381 }
1382
1383 PDBG("%s ep %p tid %u status %d\n", __func__, ep,
1384 ep->hwtid, status);
1385 set_bit(CONN_RPL_UPCALL, &ep->com.history);
1386 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1387
1388 if (status < 0)
1389 deref_cm_id(&ep->com);
1390 }
1391
1392 static int connect_request_upcall(struct c4iw_ep *ep)
1393 {
1394 struct iw_cm_event event;
1395 int ret;
1396
1397 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1398 memset(&event, 0, sizeof(event));
1399 event.event = IW_CM_EVENT_CONNECT_REQUEST;
1400 memcpy(&event.local_addr, &ep->com.local_addr,
1401 sizeof(ep->com.local_addr));
1402 memcpy(&event.remote_addr, &ep->com.remote_addr,
1403 sizeof(ep->com.remote_addr));
1404 event.provider_data = ep;
1405 if (!ep->tried_with_mpa_v1) {
1406 /* this means MPA_v2 is used */
1407 event.ord = ep->ord;
1408 event.ird = ep->ird;
1409 event.private_data_len = ep->plen -
1410 sizeof(struct mpa_v2_conn_params);
1411 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1412 sizeof(struct mpa_v2_conn_params);
1413 } else {
1414 /* this means MPA_v1 is used. Send max supported */
1415 event.ord = cur_max_read_depth(ep->com.dev);
1416 event.ird = cur_max_read_depth(ep->com.dev);
1417 event.private_data_len = ep->plen;
1418 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1419 }
1420 c4iw_get_ep(&ep->com);
1421 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1422 &event);
1423 if (ret)
1424 c4iw_put_ep(&ep->com);
1425 set_bit(CONNREQ_UPCALL, &ep->com.history);
1426 c4iw_put_ep(&ep->parent_ep->com);
1427 return ret;
1428 }
1429
1430 static void established_upcall(struct c4iw_ep *ep)
1431 {
1432 struct iw_cm_event event;
1433
1434 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1435 memset(&event, 0, sizeof(event));
1436 event.event = IW_CM_EVENT_ESTABLISHED;
1437 event.ird = ep->ord;
1438 event.ord = ep->ird;
1439 if (ep->com.cm_id) {
1440 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1441 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1442 set_bit(ESTAB_UPCALL, &ep->com.history);
1443 }
1444 }
1445
1446 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1447 {
1448 struct cpl_rx_data_ack *req;
1449 struct sk_buff *skb;
1450 int wrlen = roundup(sizeof *req, 16);
1451
1452 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
1453 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1454 if (!skb) {
1455 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
1456 return 0;
1457 }
1458
1459 /*
1460 * If we couldn't specify the entire rcv window at connection setup
1461 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1462 * then add the overage in to the credits returned.
1463 */
1464 if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1465 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1466
1467 req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
1468 memset(req, 0, wrlen);
1469 INIT_TP_WR(req, ep->hwtid);
1470 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
1471 ep->hwtid));
1472 req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK_F |
1473 RX_DACK_CHANGE_F |
1474 RX_DACK_MODE_V(dack_mode));
1475 set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
1476 c4iw_ofld_send(&ep->com.dev->rdev, skb);
1477 return credits;
1478 }
1479
1480 #define RELAXED_IRD_NEGOTIATION 1
1481
1482 /*
1483 * process_mpa_reply - process streaming mode MPA reply
1484 *
1485 * Returns:
1486 *
1487 * 0 upon success indicating a connect request was delivered to the ULP
1488 * or the mpa request is incomplete but valid so far.
1489 *
1490 * 1 if a failure requires the caller to close the connection.
1491 *
1492 * 2 if a failure requires the caller to abort the connection.
1493 */
1494 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1495 {
1496 struct mpa_message *mpa;
1497 struct mpa_v2_conn_params *mpa_v2_params;
1498 u16 plen;
1499 u16 resp_ird, resp_ord;
1500 u8 rtr_mismatch = 0, insuff_ird = 0;
1501 struct c4iw_qp_attributes attrs;
1502 enum c4iw_qp_attr_mask mask;
1503 int err;
1504 int disconnect = 0;
1505
1506 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1507
1508 /*
1509 * If we get more than the supported amount of private data
1510 * then we must fail this connection.
1511 */
1512 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1513 err = -EINVAL;
1514 goto err_stop_timer;
1515 }
1516
1517 /*
1518 * copy the new data into our accumulation buffer.
1519 */
1520 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1521 skb->len);
1522 ep->mpa_pkt_len += skb->len;
1523
1524 /*
1525 * if we don't even have the mpa message, then bail.
1526 */
1527 if (ep->mpa_pkt_len < sizeof(*mpa))
1528 return 0;
1529 mpa = (struct mpa_message *) ep->mpa_pkt;
1530
1531 /* Validate MPA header. */
1532 if (mpa->revision > mpa_rev) {
1533 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1534 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1535 err = -EPROTO;
1536 goto err_stop_timer;
1537 }
1538 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1539 err = -EPROTO;
1540 goto err_stop_timer;
1541 }
1542
1543 plen = ntohs(mpa->private_data_size);
1544
1545 /*
1546 * Fail if there's too much private data.
1547 */
1548 if (plen > MPA_MAX_PRIVATE_DATA) {
1549 err = -EPROTO;
1550 goto err_stop_timer;
1551 }
1552
1553 /*
1554 * If plen does not account for pkt size
1555 */
1556 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1557 err = -EPROTO;
1558 goto err_stop_timer;
1559 }
1560
1561 ep->plen = (u8) plen;
1562
1563 /*
1564 * If we don't have all the pdata yet, then bail.
1565 * We'll continue process when more data arrives.
1566 */
1567 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1568 return 0;
1569
1570 if (mpa->flags & MPA_REJECT) {
1571 err = -ECONNREFUSED;
1572 goto err_stop_timer;
1573 }
1574
1575 /*
1576 * Stop mpa timer. If it expired, then
1577 * we ignore the MPA reply. process_timeout()
1578 * will abort the connection.
1579 */
1580 if (stop_ep_timer(ep))
1581 return 0;
1582
1583 /*
1584 * If we get here we have accumulated the entire mpa
1585 * start reply message including private data. And
1586 * the MPA header is valid.
1587 */
1588 __state_set(&ep->com, FPDU_MODE);
1589 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1590 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1591 ep->mpa_attr.version = mpa->revision;
1592 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1593
1594 if (mpa->revision == 2) {
1595 ep->mpa_attr.enhanced_rdma_conn =
1596 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1597 if (ep->mpa_attr.enhanced_rdma_conn) {
1598 mpa_v2_params = (struct mpa_v2_conn_params *)
1599 (ep->mpa_pkt + sizeof(*mpa));
1600 resp_ird = ntohs(mpa_v2_params->ird) &
1601 MPA_V2_IRD_ORD_MASK;
1602 resp_ord = ntohs(mpa_v2_params->ord) &
1603 MPA_V2_IRD_ORD_MASK;
1604 PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
1605 __func__, resp_ird, resp_ord, ep->ird, ep->ord);
1606
1607 /*
1608 * This is a double-check. Ideally, below checks are
1609 * not required since ird/ord stuff has been taken
1610 * care of in c4iw_accept_cr
1611 */
1612 if (ep->ird < resp_ord) {
1613 if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1614 ep->com.dev->rdev.lldi.max_ordird_qp)
1615 ep->ird = resp_ord;
1616 else
1617 insuff_ird = 1;
1618 } else if (ep->ird > resp_ord) {
1619 ep->ird = resp_ord;
1620 }
1621 if (ep->ord > resp_ird) {
1622 if (RELAXED_IRD_NEGOTIATION)
1623 ep->ord = resp_ird;
1624 else
1625 insuff_ird = 1;
1626 }
1627 if (insuff_ird) {
1628 err = -ENOMEM;
1629 ep->ird = resp_ord;
1630 ep->ord = resp_ird;
1631 }
1632
1633 if (ntohs(mpa_v2_params->ird) &
1634 MPA_V2_PEER2PEER_MODEL) {
1635 if (ntohs(mpa_v2_params->ord) &
1636 MPA_V2_RDMA_WRITE_RTR)
1637 ep->mpa_attr.p2p_type =
1638 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1639 else if (ntohs(mpa_v2_params->ord) &
1640 MPA_V2_RDMA_READ_RTR)
1641 ep->mpa_attr.p2p_type =
1642 FW_RI_INIT_P2PTYPE_READ_REQ;
1643 }
1644 }
1645 } else if (mpa->revision == 1)
1646 if (peer2peer)
1647 ep->mpa_attr.p2p_type = p2p_type;
1648
1649 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1650 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1651 "%d\n", __func__, ep->mpa_attr.crc_enabled,
1652 ep->mpa_attr.recv_marker_enabled,
1653 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1654 ep->mpa_attr.p2p_type, p2p_type);
1655
1656 /*
1657 * If responder's RTR does not match with that of initiator, assign
1658 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1659 * generated when moving QP to RTS state.
1660 * A TERM message will be sent after QP has moved to RTS state
1661 */
1662 if ((ep->mpa_attr.version == 2) && peer2peer &&
1663 (ep->mpa_attr.p2p_type != p2p_type)) {
1664 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1665 rtr_mismatch = 1;
1666 }
1667
1668 attrs.mpa_attr = ep->mpa_attr;
1669 attrs.max_ird = ep->ird;
1670 attrs.max_ord = ep->ord;
1671 attrs.llp_stream_handle = ep;
1672 attrs.next_state = C4IW_QP_STATE_RTS;
1673
1674 mask = C4IW_QP_ATTR_NEXT_STATE |
1675 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1676 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1677
1678 /* bind QP and TID with INIT_WR */
1679 err = c4iw_modify_qp(ep->com.qp->rhp,
1680 ep->com.qp, mask, &attrs, 1);
1681 if (err)
1682 goto err;
1683
1684 /*
1685 * If responder's RTR requirement did not match with what initiator
1686 * supports, generate TERM message
1687 */
1688 if (rtr_mismatch) {
1689 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1690 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1691 attrs.ecode = MPA_NOMATCH_RTR;
1692 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1693 attrs.send_term = 1;
1694 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1695 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1696 err = -ENOMEM;
1697 disconnect = 1;
1698 goto out;
1699 }
1700
1701 /*
1702 * Generate TERM if initiator IRD is not sufficient for responder
1703 * provided ORD. Currently, we do the same behaviour even when
1704 * responder provided IRD is also not sufficient as regards to
1705 * initiator ORD.
1706 */
1707 if (insuff_ird) {
1708 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1709 __func__);
1710 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1711 attrs.ecode = MPA_INSUFF_IRD;
1712 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1713 attrs.send_term = 1;
1714 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1715 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1716 err = -ENOMEM;
1717 disconnect = 1;
1718 goto out;
1719 }
1720 goto out;
1721 err_stop_timer:
1722 stop_ep_timer(ep);
1723 err:
1724 disconnect = 2;
1725 out:
1726 connect_reply_upcall(ep, err);
1727 return disconnect;
1728 }
1729
1730 /*
1731 * process_mpa_request - process streaming mode MPA request
1732 *
1733 * Returns:
1734 *
1735 * 0 upon success indicating a connect request was delivered to the ULP
1736 * or the mpa request is incomplete but valid so far.
1737 *
1738 * 1 if a failure requires the caller to close the connection.
1739 *
1740 * 2 if a failure requires the caller to abort the connection.
1741 */
1742 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1743 {
1744 struct mpa_message *mpa;
1745 struct mpa_v2_conn_params *mpa_v2_params;
1746 u16 plen;
1747
1748 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1749
1750 /*
1751 * If we get more than the supported amount of private data
1752 * then we must fail this connection.
1753 */
1754 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1755 goto err_stop_timer;
1756
1757 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1758
1759 /*
1760 * Copy the new data into our accumulation buffer.
1761 */
1762 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1763 skb->len);
1764 ep->mpa_pkt_len += skb->len;
1765
1766 /*
1767 * If we don't even have the mpa message, then bail.
1768 * We'll continue process when more data arrives.
1769 */
1770 if (ep->mpa_pkt_len < sizeof(*mpa))
1771 return 0;
1772
1773 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1774 mpa = (struct mpa_message *) ep->mpa_pkt;
1775
1776 /*
1777 * Validate MPA Header.
1778 */
1779 if (mpa->revision > mpa_rev) {
1780 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1781 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1782 goto err_stop_timer;
1783 }
1784
1785 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1786 goto err_stop_timer;
1787
1788 plen = ntohs(mpa->private_data_size);
1789
1790 /*
1791 * Fail if there's too much private data.
1792 */
1793 if (plen > MPA_MAX_PRIVATE_DATA)
1794 goto err_stop_timer;
1795
1796 /*
1797 * If plen does not account for pkt size
1798 */
1799 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1800 goto err_stop_timer;
1801 ep->plen = (u8) plen;
1802
1803 /*
1804 * If we don't have all the pdata yet, then bail.
1805 */
1806 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1807 return 0;
1808
1809 /*
1810 * If we get here we have accumulated the entire mpa
1811 * start reply message including private data.
1812 */
1813 ep->mpa_attr.initiator = 0;
1814 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1815 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1816 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1817 ep->mpa_attr.version = mpa->revision;
1818 if (mpa->revision == 1)
1819 ep->tried_with_mpa_v1 = 1;
1820 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1821
1822 if (mpa->revision == 2) {
1823 ep->mpa_attr.enhanced_rdma_conn =
1824 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1825 if (ep->mpa_attr.enhanced_rdma_conn) {
1826 mpa_v2_params = (struct mpa_v2_conn_params *)
1827 (ep->mpa_pkt + sizeof(*mpa));
1828 ep->ird = ntohs(mpa_v2_params->ird) &
1829 MPA_V2_IRD_ORD_MASK;
1830 ep->ord = ntohs(mpa_v2_params->ord) &
1831 MPA_V2_IRD_ORD_MASK;
1832 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1833 ep->ord);
1834 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1835 if (peer2peer) {
1836 if (ntohs(mpa_v2_params->ord) &
1837 MPA_V2_RDMA_WRITE_RTR)
1838 ep->mpa_attr.p2p_type =
1839 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1840 else if (ntohs(mpa_v2_params->ord) &
1841 MPA_V2_RDMA_READ_RTR)
1842 ep->mpa_attr.p2p_type =
1843 FW_RI_INIT_P2PTYPE_READ_REQ;
1844 }
1845 }
1846 } else if (mpa->revision == 1)
1847 if (peer2peer)
1848 ep->mpa_attr.p2p_type = p2p_type;
1849
1850 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1851 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1852 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1853 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1854 ep->mpa_attr.p2p_type);
1855
1856 __state_set(&ep->com, MPA_REQ_RCVD);
1857
1858 /* drive upcall */
1859 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1860 if (ep->parent_ep->com.state != DEAD) {
1861 if (connect_request_upcall(ep))
1862 goto err_unlock_parent;
1863 } else {
1864 goto err_unlock_parent;
1865 }
1866 mutex_unlock(&ep->parent_ep->com.mutex);
1867 return 0;
1868
1869 err_unlock_parent:
1870 mutex_unlock(&ep->parent_ep->com.mutex);
1871 goto err_out;
1872 err_stop_timer:
1873 (void)stop_ep_timer(ep);
1874 err_out:
1875 return 2;
1876 }
1877
1878 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1879 {
1880 struct c4iw_ep *ep;
1881 struct cpl_rx_data *hdr = cplhdr(skb);
1882 unsigned int dlen = ntohs(hdr->len);
1883 unsigned int tid = GET_TID(hdr);
1884 __u8 status = hdr->status;
1885 int disconnect = 0;
1886
1887 ep = get_ep_from_tid(dev, tid);
1888 if (!ep)
1889 return 0;
1890 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1891 skb_pull(skb, sizeof(*hdr));
1892 skb_trim(skb, dlen);
1893 mutex_lock(&ep->com.mutex);
1894
1895 /* update RX credits */
1896 update_rx_credits(ep, dlen);
1897
1898 switch (ep->com.state) {
1899 case MPA_REQ_SENT:
1900 ep->rcv_seq += dlen;
1901 disconnect = process_mpa_reply(ep, skb);
1902 break;
1903 case MPA_REQ_WAIT:
1904 ep->rcv_seq += dlen;
1905 disconnect = process_mpa_request(ep, skb);
1906 break;
1907 case FPDU_MODE: {
1908 struct c4iw_qp_attributes attrs;
1909 BUG_ON(!ep->com.qp);
1910 if (status)
1911 pr_err("%s Unexpected streaming data." \
1912 " qpid %u ep %p state %d tid %u status %d\n",
1913 __func__, ep->com.qp->wq.sq.qid, ep,
1914 ep->com.state, ep->hwtid, status);
1915 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1916 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1917 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1918 disconnect = 1;
1919 break;
1920 }
1921 default:
1922 break;
1923 }
1924 mutex_unlock(&ep->com.mutex);
1925 if (disconnect)
1926 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1927 c4iw_put_ep(&ep->com);
1928 return 0;
1929 }
1930
1931 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1932 {
1933 struct c4iw_ep *ep;
1934 struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1935 int release = 0;
1936 unsigned int tid = GET_TID(rpl);
1937
1938 ep = get_ep_from_tid(dev, tid);
1939 if (!ep) {
1940 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1941 return 0;
1942 }
1943 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1944 mutex_lock(&ep->com.mutex);
1945 switch (ep->com.state) {
1946 case ABORTING:
1947 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1948 __state_set(&ep->com, DEAD);
1949 release = 1;
1950 break;
1951 default:
1952 printk(KERN_ERR "%s ep %p state %d\n",
1953 __func__, ep, ep->com.state);
1954 break;
1955 }
1956 mutex_unlock(&ep->com.mutex);
1957
1958 if (release)
1959 release_ep_resources(ep);
1960 c4iw_put_ep(&ep->com);
1961 return 0;
1962 }
1963
1964 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1965 {
1966 struct sk_buff *skb;
1967 struct fw_ofld_connection_wr *req;
1968 unsigned int mtu_idx;
1969 int wscale;
1970 struct sockaddr_in *sin;
1971 int win;
1972
1973 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1974 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
1975 memset(req, 0, sizeof(*req));
1976 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1977 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1978 req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1979 ep->com.dev->rdev.lldi.ports[0],
1980 ep->l2t));
1981 sin = (struct sockaddr_in *)&ep->com.local_addr;
1982 req->le.lport = sin->sin_port;
1983 req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1984 sin = (struct sockaddr_in *)&ep->com.remote_addr;
1985 req->le.pport = sin->sin_port;
1986 req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1987 req->tcb.t_state_to_astid =
1988 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1989 FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1990 req->tcb.cplrxdataack_cplpassacceptrpl =
1991 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1992 req->tcb.tx_max = (__force __be32) jiffies;
1993 req->tcb.rcv_adv = htons(1);
1994 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1995 enable_tcp_timestamps,
1996 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
1997 wscale = compute_wscale(rcv_win);
1998
1999 /*
2000 * Specify the largest window that will fit in opt0. The
2001 * remainder will be specified in the rx_data_ack.
2002 */
2003 win = ep->rcv_win >> 10;
2004 if (win > RCV_BUFSIZ_M)
2005 win = RCV_BUFSIZ_M;
2006
2007 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2008 (nocong ? NO_CONG_F : 0) |
2009 KEEP_ALIVE_F |
2010 DELACK_F |
2011 WND_SCALE_V(wscale) |
2012 MSS_IDX_V(mtu_idx) |
2013 L2T_IDX_V(ep->l2t->idx) |
2014 TX_CHAN_V(ep->tx_chan) |
2015 SMAC_SEL_V(ep->smac_idx) |
2016 DSCP_V(ep->tos >> 2) |
2017 ULP_MODE_V(ULP_MODE_TCPDDP) |
2018 RCV_BUFSIZ_V(win));
2019 req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2020 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2021 RX_CHANNEL_V(0) |
2022 CCTRL_ECN_V(enable_ecn) |
2023 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2024 if (enable_tcp_timestamps)
2025 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2026 if (enable_tcp_sack)
2027 req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2028 if (wscale && enable_tcp_window_scaling)
2029 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2030 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2031 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2032 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2033 set_bit(ACT_OFLD_CONN, &ep->com.history);
2034 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2035 }
2036
2037 /*
2038 * Some of the error codes above implicitly indicate that there is no TID
2039 * allocated with the result of an ACT_OPEN. We use this predicate to make
2040 * that explicit.
2041 */
2042 static inline int act_open_has_tid(int status)
2043 {
2044 return (status != CPL_ERR_TCAM_PARITY &&
2045 status != CPL_ERR_TCAM_MISS &&
2046 status != CPL_ERR_TCAM_FULL &&
2047 status != CPL_ERR_CONN_EXIST_SYNRECV &&
2048 status != CPL_ERR_CONN_EXIST);
2049 }
2050
2051 /* Returns whether a CPL status conveys negative advice.
2052 */
2053 static int is_neg_adv(unsigned int status)
2054 {
2055 return status == CPL_ERR_RTX_NEG_ADVICE ||
2056 status == CPL_ERR_PERSIST_NEG_ADVICE ||
2057 status == CPL_ERR_KEEPALV_NEG_ADVICE;
2058 }
2059
2060 static char *neg_adv_str(unsigned int status)
2061 {
2062 switch (status) {
2063 case CPL_ERR_RTX_NEG_ADVICE:
2064 return "Retransmit timeout";
2065 case CPL_ERR_PERSIST_NEG_ADVICE:
2066 return "Persist timeout";
2067 case CPL_ERR_KEEPALV_NEG_ADVICE:
2068 return "Keepalive timeout";
2069 default:
2070 return "Unknown";
2071 }
2072 }
2073
2074 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2075 {
2076 ep->snd_win = snd_win;
2077 ep->rcv_win = rcv_win;
2078 PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win);
2079 }
2080
2081 #define ACT_OPEN_RETRY_COUNT 2
2082
2083 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2084 struct dst_entry *dst, struct c4iw_dev *cdev,
2085 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2086 {
2087 struct neighbour *n;
2088 int err, step;
2089 struct net_device *pdev;
2090
2091 n = dst_neigh_lookup(dst, peer_ip);
2092 if (!n)
2093 return -ENODEV;
2094
2095 rcu_read_lock();
2096 err = -ENOMEM;
2097 if (n->dev->flags & IFF_LOOPBACK) {
2098 if (iptype == 4)
2099 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2100 else if (IS_ENABLED(CONFIG_IPV6))
2101 for_each_netdev(&init_net, pdev) {
2102 if (ipv6_chk_addr(&init_net,
2103 (struct in6_addr *)peer_ip,
2104 pdev, 1))
2105 break;
2106 }
2107 else
2108 pdev = NULL;
2109
2110 if (!pdev) {
2111 err = -ENODEV;
2112 goto out;
2113 }
2114 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2115 n, pdev, rt_tos2priority(tos));
2116 if (!ep->l2t)
2117 goto out;
2118 ep->mtu = pdev->mtu;
2119 ep->tx_chan = cxgb4_port_chan(pdev);
2120 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2121 cxgb4_port_viid(pdev));
2122 step = cdev->rdev.lldi.ntxq /
2123 cdev->rdev.lldi.nchan;
2124 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2125 step = cdev->rdev.lldi.nrxq /
2126 cdev->rdev.lldi.nchan;
2127 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2128 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2129 cxgb4_port_idx(pdev) * step];
2130 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2131 dev_put(pdev);
2132 } else {
2133 pdev = get_real_dev(n->dev);
2134 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2135 n, pdev, 0);
2136 if (!ep->l2t)
2137 goto out;
2138 ep->mtu = dst_mtu(dst);
2139 ep->tx_chan = cxgb4_port_chan(pdev);
2140 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2141 cxgb4_port_viid(pdev));
2142 step = cdev->rdev.lldi.ntxq /
2143 cdev->rdev.lldi.nchan;
2144 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2145 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2146 step = cdev->rdev.lldi.nrxq /
2147 cdev->rdev.lldi.nchan;
2148 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2149 cxgb4_port_idx(pdev) * step];
2150 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2151
2152 if (clear_mpa_v1) {
2153 ep->retry_with_mpa_v1 = 0;
2154 ep->tried_with_mpa_v1 = 0;
2155 }
2156 }
2157 err = 0;
2158 out:
2159 rcu_read_unlock();
2160
2161 neigh_release(n);
2162
2163 return err;
2164 }
2165
2166 static int c4iw_reconnect(struct c4iw_ep *ep)
2167 {
2168 int err = 0;
2169 int size = 0;
2170 struct sockaddr_in *laddr = (struct sockaddr_in *)
2171 &ep->com.cm_id->m_local_addr;
2172 struct sockaddr_in *raddr = (struct sockaddr_in *)
2173 &ep->com.cm_id->m_remote_addr;
2174 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2175 &ep->com.cm_id->m_local_addr;
2176 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2177 &ep->com.cm_id->m_remote_addr;
2178 int iptype;
2179 __u8 *ra;
2180
2181 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
2182 init_timer(&ep->timer);
2183 c4iw_init_wr_wait(&ep->com.wr_wait);
2184
2185 /* When MPA revision is different on nodes, the node with MPA_rev=2
2186 * tries to reconnect with MPA_rev 1 for the same EP through
2187 * c4iw_reconnect(), where the same EP is assigned with new tid for
2188 * further connection establishment. As we are using the same EP pointer
2189 * for reconnect, few skbs are used during the previous c4iw_connect(),
2190 * which leaves the EP with inadequate skbs for further
2191 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty
2192 * skb_list() during peer_abort(). Allocate skbs which is already used.
2193 */
2194 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2195 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2196 err = -ENOMEM;
2197 goto fail1;
2198 }
2199
2200 /*
2201 * Allocate an active TID to initiate a TCP connection.
2202 */
2203 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2204 if (ep->atid == -1) {
2205 pr_err("%s - cannot alloc atid.\n", __func__);
2206 err = -ENOMEM;
2207 goto fail2;
2208 }
2209 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2210
2211 /* find a route */
2212 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2213 ep->dst = find_route(ep->com.dev, laddr->sin_addr.s_addr,
2214 raddr->sin_addr.s_addr, laddr->sin_port,
2215 raddr->sin_port, ep->com.cm_id->tos);
2216 iptype = 4;
2217 ra = (__u8 *)&raddr->sin_addr;
2218 } else {
2219 ep->dst = find_route6(ep->com.dev, laddr6->sin6_addr.s6_addr,
2220 raddr6->sin6_addr.s6_addr,
2221 laddr6->sin6_port, raddr6->sin6_port, 0,
2222 raddr6->sin6_scope_id);
2223 iptype = 6;
2224 ra = (__u8 *)&raddr6->sin6_addr;
2225 }
2226 if (!ep->dst) {
2227 pr_err("%s - cannot find route.\n", __func__);
2228 err = -EHOSTUNREACH;
2229 goto fail3;
2230 }
2231 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2232 ep->com.dev->rdev.lldi.adapter_type,
2233 ep->com.cm_id->tos);
2234 if (err) {
2235 pr_err("%s - cannot alloc l2e.\n", __func__);
2236 goto fail4;
2237 }
2238
2239 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2240 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2241 ep->l2t->idx);
2242
2243 state_set(&ep->com, CONNECTING);
2244 ep->tos = ep->com.cm_id->tos;
2245
2246 /* send connect request to rnic */
2247 err = send_connect(ep);
2248 if (!err)
2249 goto out;
2250
2251 cxgb4_l2t_release(ep->l2t);
2252 fail4:
2253 dst_release(ep->dst);
2254 fail3:
2255 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2256 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2257 fail2:
2258 /*
2259 * remember to send notification to upper layer.
2260 * We are in here so the upper layer is not aware that this is
2261 * re-connect attempt and so, upper layer is still waiting for
2262 * response of 1st connect request.
2263 */
2264 connect_reply_upcall(ep, -ECONNRESET);
2265 fail1:
2266 c4iw_put_ep(&ep->com);
2267 out:
2268 return err;
2269 }
2270
2271 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2272 {
2273 struct c4iw_ep *ep;
2274 struct cpl_act_open_rpl *rpl = cplhdr(skb);
2275 unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2276 ntohl(rpl->atid_status)));
2277 struct tid_info *t = dev->rdev.lldi.tids;
2278 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2279 struct sockaddr_in *la;
2280 struct sockaddr_in *ra;
2281 struct sockaddr_in6 *la6;
2282 struct sockaddr_in6 *ra6;
2283 int ret = 0;
2284
2285 ep = lookup_atid(t, atid);
2286 la = (struct sockaddr_in *)&ep->com.local_addr;
2287 ra = (struct sockaddr_in *)&ep->com.remote_addr;
2288 la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2289 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2290
2291 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
2292 status, status2errno(status));
2293
2294 if (is_neg_adv(status)) {
2295 PDBG("%s Connection problems for atid %u status %u (%s)\n",
2296 __func__, atid, status, neg_adv_str(status));
2297 ep->stats.connect_neg_adv++;
2298 mutex_lock(&dev->rdev.stats.lock);
2299 dev->rdev.stats.neg_adv++;
2300 mutex_unlock(&dev->rdev.stats.lock);
2301 return 0;
2302 }
2303
2304 set_bit(ACT_OPEN_RPL, &ep->com.history);
2305
2306 /*
2307 * Log interesting failures.
2308 */
2309 switch (status) {
2310 case CPL_ERR_CONN_RESET:
2311 case CPL_ERR_CONN_TIMEDOUT:
2312 break;
2313 case CPL_ERR_TCAM_FULL:
2314 mutex_lock(&dev->rdev.stats.lock);
2315 dev->rdev.stats.tcam_full++;
2316 mutex_unlock(&dev->rdev.stats.lock);
2317 if (ep->com.local_addr.ss_family == AF_INET &&
2318 dev->rdev.lldi.enable_fw_ofld_conn) {
2319 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2320 ntohl(rpl->atid_status))));
2321 if (ret)
2322 goto fail;
2323 return 0;
2324 }
2325 break;
2326 case CPL_ERR_CONN_EXIST:
2327 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2328 set_bit(ACT_RETRY_INUSE, &ep->com.history);
2329 if (ep->com.remote_addr.ss_family == AF_INET6) {
2330 struct sockaddr_in6 *sin6 =
2331 (struct sockaddr_in6 *)
2332 &ep->com.local_addr;
2333 cxgb4_clip_release(
2334 ep->com.dev->rdev.lldi.ports[0],
2335 (const u32 *)
2336 &sin6->sin6_addr.s6_addr, 1);
2337 }
2338 remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2339 atid);
2340 cxgb4_free_atid(t, atid);
2341 dst_release(ep->dst);
2342 cxgb4_l2t_release(ep->l2t);
2343 c4iw_reconnect(ep);
2344 return 0;
2345 }
2346 break;
2347 default:
2348 if (ep->com.local_addr.ss_family == AF_INET) {
2349 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2350 atid, status, status2errno(status),
2351 &la->sin_addr.s_addr, ntohs(la->sin_port),
2352 &ra->sin_addr.s_addr, ntohs(ra->sin_port));
2353 } else {
2354 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2355 atid, status, status2errno(status),
2356 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2357 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2358 }
2359 break;
2360 }
2361
2362 fail:
2363 connect_reply_upcall(ep, status2errno(status));
2364 state_set(&ep->com, DEAD);
2365
2366 if (ep->com.remote_addr.ss_family == AF_INET6) {
2367 struct sockaddr_in6 *sin6 =
2368 (struct sockaddr_in6 *)&ep->com.local_addr;
2369 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2370 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2371 }
2372 if (status && act_open_has_tid(status))
2373 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
2374
2375 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2376 cxgb4_free_atid(t, atid);
2377 dst_release(ep->dst);
2378 cxgb4_l2t_release(ep->l2t);
2379 c4iw_put_ep(&ep->com);
2380
2381 return 0;
2382 }
2383
2384 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2385 {
2386 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2387 unsigned int stid = GET_TID(rpl);
2388 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2389
2390 if (!ep) {
2391 PDBG("%s stid %d lookup failure!\n", __func__, stid);
2392 goto out;
2393 }
2394 PDBG("%s ep %p status %d error %d\n", __func__, ep,
2395 rpl->status, status2errno(rpl->status));
2396 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2397 c4iw_put_ep(&ep->com);
2398 out:
2399 return 0;
2400 }
2401
2402 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2403 {
2404 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2405 unsigned int stid = GET_TID(rpl);
2406 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2407
2408 PDBG("%s ep %p\n", __func__, ep);
2409 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2410 c4iw_put_ep(&ep->com);
2411 return 0;
2412 }
2413
2414 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2415 struct cpl_pass_accept_req *req)
2416 {
2417 struct cpl_pass_accept_rpl *rpl;
2418 unsigned int mtu_idx;
2419 u64 opt0;
2420 u32 opt2;
2421 int wscale;
2422 struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2423 int win;
2424 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2425
2426 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2427 BUG_ON(skb_cloned(skb));
2428
2429 skb_get(skb);
2430 rpl = cplhdr(skb);
2431 if (!is_t4(adapter_type)) {
2432 skb_trim(skb, roundup(sizeof(*rpl5), 16));
2433 rpl5 = (void *)rpl;
2434 INIT_TP_WR(rpl5, ep->hwtid);
2435 } else {
2436 skb_trim(skb, sizeof(*rpl));
2437 INIT_TP_WR(rpl, ep->hwtid);
2438 }
2439 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2440 ep->hwtid));
2441
2442 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2443 enable_tcp_timestamps && req->tcpopt.tstamp,
2444 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
2445 wscale = compute_wscale(rcv_win);
2446
2447 /*
2448 * Specify the largest window that will fit in opt0. The
2449 * remainder will be specified in the rx_data_ack.
2450 */
2451 win = ep->rcv_win >> 10;
2452 if (win > RCV_BUFSIZ_M)
2453 win = RCV_BUFSIZ_M;
2454 opt0 = (nocong ? NO_CONG_F : 0) |
2455 KEEP_ALIVE_F |
2456 DELACK_F |
2457 WND_SCALE_V(wscale) |
2458 MSS_IDX_V(mtu_idx) |
2459 L2T_IDX_V(ep->l2t->idx) |
2460 TX_CHAN_V(ep->tx_chan) |
2461 SMAC_SEL_V(ep->smac_idx) |
2462 DSCP_V(ep->tos >> 2) |
2463 ULP_MODE_V(ULP_MODE_TCPDDP) |
2464 RCV_BUFSIZ_V(win);
2465 opt2 = RX_CHANNEL_V(0) |
2466 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2467
2468 if (enable_tcp_timestamps && req->tcpopt.tstamp)
2469 opt2 |= TSTAMPS_EN_F;
2470 if (enable_tcp_sack && req->tcpopt.sack)
2471 opt2 |= SACK_EN_F;
2472 if (wscale && enable_tcp_window_scaling)
2473 opt2 |= WND_SCALE_EN_F;
2474 if (enable_ecn) {
2475 const struct tcphdr *tcph;
2476 u32 hlen = ntohl(req->hdr_len);
2477
2478 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2479 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2480 IP_HDR_LEN_G(hlen);
2481 else
2482 tcph = (const void *)(req + 1) +
2483 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2484 if (tcph->ece && tcph->cwr)
2485 opt2 |= CCTRL_ECN_V(1);
2486 }
2487 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2488 u32 isn = (prandom_u32() & ~7UL) - 1;
2489 opt2 |= T5_OPT_2_VALID_F;
2490 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2491 opt2 |= T5_ISS_F;
2492 rpl5 = (void *)rpl;
2493 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2494 if (peer2peer)
2495 isn += 4;
2496 rpl5->iss = cpu_to_be32(isn);
2497 PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
2498 }
2499
2500 rpl->opt0 = cpu_to_be64(opt0);
2501 rpl->opt2 = cpu_to_be32(opt2);
2502 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2503 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2504
2505 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2506 }
2507
2508 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2509 {
2510 PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
2511 BUG_ON(skb_cloned(skb));
2512 skb_trim(skb, sizeof(struct cpl_tid_release));
2513 release_tid(&dev->rdev, hwtid, skb);
2514 return;
2515 }
2516
2517 static void get_4tuple(struct cpl_pass_accept_req *req, enum chip_type type,
2518 int *iptype, __u8 *local_ip, __u8 *peer_ip,
2519 __be16 *local_port, __be16 *peer_port)
2520 {
2521 int eth_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2522 ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2523 T6_ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2524 int ip_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2525 IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2526 T6_IP_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2527 struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
2528 struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len);
2529 struct tcphdr *tcp = (struct tcphdr *)
2530 ((u8 *)(req + 1) + eth_len + ip_len);
2531
2532 if (ip->version == 4) {
2533 PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
2534 ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
2535 ntohs(tcp->dest));
2536 *iptype = 4;
2537 memcpy(peer_ip, &ip->saddr, 4);
2538 memcpy(local_ip, &ip->daddr, 4);
2539 } else {
2540 PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__,
2541 ip6->saddr.s6_addr, ip6->daddr.s6_addr, ntohs(tcp->source),
2542 ntohs(tcp->dest));
2543 *iptype = 6;
2544 memcpy(peer_ip, ip6->saddr.s6_addr, 16);
2545 memcpy(local_ip, ip6->daddr.s6_addr, 16);
2546 }
2547 *peer_port = tcp->source;
2548 *local_port = tcp->dest;
2549
2550 return;
2551 }
2552
2553 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2554 {
2555 struct c4iw_ep *child_ep = NULL, *parent_ep;
2556 struct cpl_pass_accept_req *req = cplhdr(skb);
2557 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2558 struct tid_info *t = dev->rdev.lldi.tids;
2559 unsigned int hwtid = GET_TID(req);
2560 struct dst_entry *dst;
2561 __u8 local_ip[16], peer_ip[16];
2562 __be16 local_port, peer_port;
2563 struct sockaddr_in6 *sin6;
2564 int err;
2565 u16 peer_mss = ntohs(req->tcpopt.mss);
2566 int iptype;
2567 unsigned short hdrs;
2568 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2569
2570 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2571 if (!parent_ep) {
2572 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
2573 goto reject;
2574 }
2575
2576 if (state_read(&parent_ep->com) != LISTEN) {
2577 PDBG("%s - listening ep not in LISTEN\n", __func__);
2578 goto reject;
2579 }
2580
2581 get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype,
2582 local_ip, peer_ip, &local_port, &peer_port);
2583
2584 /* Find output route */
2585 if (iptype == 4) {
2586 PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2587 , __func__, parent_ep, hwtid,
2588 local_ip, peer_ip, ntohs(local_port),
2589 ntohs(peer_port), peer_mss);
2590 dst = find_route(dev, *(__be32 *)local_ip, *(__be32 *)peer_ip,
2591 local_port, peer_port,
2592 tos);
2593 } else {
2594 PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2595 , __func__, parent_ep, hwtid,
2596 local_ip, peer_ip, ntohs(local_port),
2597 ntohs(peer_port), peer_mss);
2598 dst = find_route6(dev, local_ip, peer_ip, local_port, peer_port,
2599 PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
2600 ((struct sockaddr_in6 *)
2601 &parent_ep->com.local_addr)->sin6_scope_id);
2602 }
2603 if (!dst) {
2604 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
2605 __func__);
2606 goto reject;
2607 }
2608
2609 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2610 if (!child_ep) {
2611 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
2612 __func__);
2613 dst_release(dst);
2614 goto reject;
2615 }
2616
2617 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2618 parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2619 if (err) {
2620 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
2621 __func__);
2622 dst_release(dst);
2623 kfree(child_ep);
2624 goto reject;
2625 }
2626
2627 hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) +
2628 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2629 if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2630 child_ep->mtu = peer_mss + hdrs;
2631
2632 skb_queue_head_init(&child_ep->com.ep_skb_list);
2633 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2634 goto fail;
2635
2636 state_set(&child_ep->com, CONNECTING);
2637 child_ep->com.dev = dev;
2638 child_ep->com.cm_id = NULL;
2639
2640 if (iptype == 4) {
2641 struct sockaddr_in *sin = (struct sockaddr_in *)
2642 &child_ep->com.local_addr;
2643
2644 sin->sin_family = PF_INET;
2645 sin->sin_port = local_port;
2646 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2647
2648 sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2649 sin->sin_family = PF_INET;
2650 sin->sin_port = ((struct sockaddr_in *)
2651 &parent_ep->com.local_addr)->sin_port;
2652 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2653
2654 sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2655 sin->sin_family = PF_INET;
2656 sin->sin_port = peer_port;
2657 sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2658 } else {
2659 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2660 sin6->sin6_family = PF_INET6;
2661 sin6->sin6_port = local_port;
2662 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2663
2664 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2665 sin6->sin6_family = PF_INET6;
2666 sin6->sin6_port = ((struct sockaddr_in6 *)
2667 &parent_ep->com.local_addr)->sin6_port;
2668 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2669
2670 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2671 sin6->sin6_family = PF_INET6;
2672 sin6->sin6_port = peer_port;
2673 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2674 }
2675
2676 c4iw_get_ep(&parent_ep->com);
2677 child_ep->parent_ep = parent_ep;
2678 child_ep->tos = tos;
2679 child_ep->dst = dst;
2680 child_ep->hwtid = hwtid;
2681
2682 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
2683 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2684
2685 init_timer(&child_ep->timer);
2686 cxgb4_insert_tid(t, child_ep, hwtid);
2687 insert_ep_tid(child_ep);
2688 if (accept_cr(child_ep, skb, req)) {
2689 c4iw_put_ep(&parent_ep->com);
2690 release_ep_resources(child_ep);
2691 } else {
2692 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2693 }
2694 if (iptype == 6) {
2695 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2696 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2697 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2698 }
2699 goto out;
2700 fail:
2701 c4iw_put_ep(&child_ep->com);
2702 reject:
2703 reject_cr(dev, hwtid, skb);
2704 if (parent_ep)
2705 c4iw_put_ep(&parent_ep->com);
2706 out:
2707 return 0;
2708 }
2709
2710 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2711 {
2712 struct c4iw_ep *ep;
2713 struct cpl_pass_establish *req = cplhdr(skb);
2714 unsigned int tid = GET_TID(req);
2715 int ret;
2716
2717 ep = get_ep_from_tid(dev, tid);
2718 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2719 ep->snd_seq = be32_to_cpu(req->snd_isn);
2720 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2721
2722 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2723 ntohs(req->tcp_opt));
2724
2725 set_emss(ep, ntohs(req->tcp_opt));
2726
2727 dst_confirm(ep->dst);
2728 mutex_lock(&ep->com.mutex);
2729 ep->com.state = MPA_REQ_WAIT;
2730 start_ep_timer(ep);
2731 set_bit(PASS_ESTAB, &ep->com.history);
2732 ret = send_flowc(ep);
2733 mutex_unlock(&ep->com.mutex);
2734 if (ret)
2735 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2736 c4iw_put_ep(&ep->com);
2737
2738 return 0;
2739 }
2740
2741 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2742 {
2743 struct cpl_peer_close *hdr = cplhdr(skb);
2744 struct c4iw_ep *ep;
2745 struct c4iw_qp_attributes attrs;
2746 int disconnect = 1;
2747 int release = 0;
2748 unsigned int tid = GET_TID(hdr);
2749 int ret;
2750
2751 ep = get_ep_from_tid(dev, tid);
2752 if (!ep)
2753 return 0;
2754
2755 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2756 dst_confirm(ep->dst);
2757
2758 set_bit(PEER_CLOSE, &ep->com.history);
2759 mutex_lock(&ep->com.mutex);
2760 switch (ep->com.state) {
2761 case MPA_REQ_WAIT:
2762 __state_set(&ep->com, CLOSING);
2763 break;
2764 case MPA_REQ_SENT:
2765 __state_set(&ep->com, CLOSING);
2766 connect_reply_upcall(ep, -ECONNRESET);
2767 break;
2768 case MPA_REQ_RCVD:
2769
2770 /*
2771 * We're gonna mark this puppy DEAD, but keep
2772 * the reference on it until the ULP accepts or
2773 * rejects the CR. Also wake up anyone waiting
2774 * in rdma connection migration (see c4iw_accept_cr()).
2775 */
2776 __state_set(&ep->com, CLOSING);
2777 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2778 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2779 break;
2780 case MPA_REP_SENT:
2781 __state_set(&ep->com, CLOSING);
2782 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2783 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2784 break;
2785 case FPDU_MODE:
2786 start_ep_timer(ep);
2787 __state_set(&ep->com, CLOSING);
2788 attrs.next_state = C4IW_QP_STATE_CLOSING;
2789 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2790 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2791 if (ret != -ECONNRESET) {
2792 peer_close_upcall(ep);
2793 disconnect = 1;
2794 }
2795 break;
2796 case ABORTING:
2797 disconnect = 0;
2798 break;
2799 case CLOSING:
2800 __state_set(&ep->com, MORIBUND);
2801 disconnect = 0;
2802 break;
2803 case MORIBUND:
2804 (void)stop_ep_timer(ep);
2805 if (ep->com.cm_id && ep->com.qp) {
2806 attrs.next_state = C4IW_QP_STATE_IDLE;
2807 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2808 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2809 }
2810 close_complete_upcall(ep, 0);
2811 __state_set(&ep->com, DEAD);
2812 release = 1;
2813 disconnect = 0;
2814 break;
2815 case DEAD:
2816 disconnect = 0;
2817 break;
2818 default:
2819 BUG_ON(1);
2820 }
2821 mutex_unlock(&ep->com.mutex);
2822 if (disconnect)
2823 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2824 if (release)
2825 release_ep_resources(ep);
2826 c4iw_put_ep(&ep->com);
2827 return 0;
2828 }
2829
2830 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2831 {
2832 struct cpl_abort_req_rss *req = cplhdr(skb);
2833 struct c4iw_ep *ep;
2834 struct cpl_abort_rpl *rpl;
2835 struct sk_buff *rpl_skb;
2836 struct c4iw_qp_attributes attrs;
2837 int ret;
2838 int release = 0;
2839 unsigned int tid = GET_TID(req);
2840
2841 ep = get_ep_from_tid(dev, tid);
2842 if (!ep)
2843 return 0;
2844
2845 if (is_neg_adv(req->status)) {
2846 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
2847 __func__, ep->hwtid, req->status,
2848 neg_adv_str(req->status));
2849 ep->stats.abort_neg_adv++;
2850 mutex_lock(&dev->rdev.stats.lock);
2851 dev->rdev.stats.neg_adv++;
2852 mutex_unlock(&dev->rdev.stats.lock);
2853 goto deref_ep;
2854 }
2855 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2856 ep->com.state);
2857 set_bit(PEER_ABORT, &ep->com.history);
2858
2859 /*
2860 * Wake up any threads in rdma_init() or rdma_fini().
2861 * However, this is not needed if com state is just
2862 * MPA_REQ_SENT
2863 */
2864 if (ep->com.state != MPA_REQ_SENT)
2865 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2866
2867 mutex_lock(&ep->com.mutex);
2868 switch (ep->com.state) {
2869 case CONNECTING:
2870 c4iw_put_ep(&ep->parent_ep->com);
2871 break;
2872 case MPA_REQ_WAIT:
2873 (void)stop_ep_timer(ep);
2874 break;
2875 case MPA_REQ_SENT:
2876 (void)stop_ep_timer(ep);
2877 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
2878 connect_reply_upcall(ep, -ECONNRESET);
2879 else {
2880 /*
2881 * we just don't send notification upwards because we
2882 * want to retry with mpa_v1 without upper layers even
2883 * knowing it.
2884 *
2885 * do some housekeeping so as to re-initiate the
2886 * connection
2887 */
2888 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
2889 mpa_rev);
2890 ep->retry_with_mpa_v1 = 1;
2891 }
2892 break;
2893 case MPA_REP_SENT:
2894 break;
2895 case MPA_REQ_RCVD:
2896 break;
2897 case MORIBUND:
2898 case CLOSING:
2899 stop_ep_timer(ep);
2900 /*FALLTHROUGH*/
2901 case FPDU_MODE:
2902 if (ep->com.cm_id && ep->com.qp) {
2903 attrs.next_state = C4IW_QP_STATE_ERROR;
2904 ret = c4iw_modify_qp(ep->com.qp->rhp,
2905 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2906 &attrs, 1);
2907 if (ret)
2908 printk(KERN_ERR MOD
2909 "%s - qp <- error failed!\n",
2910 __func__);
2911 }
2912 peer_abort_upcall(ep);
2913 break;
2914 case ABORTING:
2915 break;
2916 case DEAD:
2917 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2918 mutex_unlock(&ep->com.mutex);
2919 goto deref_ep;
2920 default:
2921 BUG_ON(1);
2922 break;
2923 }
2924 dst_confirm(ep->dst);
2925 if (ep->com.state != ABORTING) {
2926 __state_set(&ep->com, DEAD);
2927 /* we don't release if we want to retry with mpa_v1 */
2928 if (!ep->retry_with_mpa_v1)
2929 release = 1;
2930 }
2931 mutex_unlock(&ep->com.mutex);
2932
2933 rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2934 if (WARN_ON(!rpl_skb)) {
2935 release = 1;
2936 goto out;
2937 }
2938 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
2939 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
2940 INIT_TP_WR(rpl, ep->hwtid);
2941 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
2942 rpl->cmd = CPL_ABORT_NO_RST;
2943 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2944 out:
2945 if (release)
2946 release_ep_resources(ep);
2947 else if (ep->retry_with_mpa_v1) {
2948 if (ep->com.remote_addr.ss_family == AF_INET6) {
2949 struct sockaddr_in6 *sin6 =
2950 (struct sockaddr_in6 *)
2951 &ep->com.local_addr;
2952 cxgb4_clip_release(
2953 ep->com.dev->rdev.lldi.ports[0],
2954 (const u32 *)&sin6->sin6_addr.s6_addr,
2955 1);
2956 }
2957 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2958 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2959 dst_release(ep->dst);
2960 cxgb4_l2t_release(ep->l2t);
2961 c4iw_reconnect(ep);
2962 }
2963
2964 deref_ep:
2965 c4iw_put_ep(&ep->com);
2966 /* Dereferencing ep, referenced in peer_abort_intr() */
2967 c4iw_put_ep(&ep->com);
2968 return 0;
2969 }
2970
2971 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2972 {
2973 struct c4iw_ep *ep;
2974 struct c4iw_qp_attributes attrs;
2975 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2976 int release = 0;
2977 unsigned int tid = GET_TID(rpl);
2978
2979 ep = get_ep_from_tid(dev, tid);
2980 if (!ep)
2981 return 0;
2982
2983 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2984 BUG_ON(!ep);
2985
2986 /* The cm_id may be null if we failed to connect */
2987 mutex_lock(&ep->com.mutex);
2988 set_bit(CLOSE_CON_RPL, &ep->com.history);
2989 switch (ep->com.state) {
2990 case CLOSING:
2991 __state_set(&ep->com, MORIBUND);
2992 break;
2993 case MORIBUND:
2994 (void)stop_ep_timer(ep);
2995 if ((ep->com.cm_id) && (ep->com.qp)) {
2996 attrs.next_state = C4IW_QP_STATE_IDLE;
2997 c4iw_modify_qp(ep->com.qp->rhp,
2998 ep->com.qp,
2999 C4IW_QP_ATTR_NEXT_STATE,
3000 &attrs, 1);
3001 }
3002 close_complete_upcall(ep, 0);
3003 __state_set(&ep->com, DEAD);
3004 release = 1;
3005 break;
3006 case ABORTING:
3007 case DEAD:
3008 break;
3009 default:
3010 BUG_ON(1);
3011 break;
3012 }
3013 mutex_unlock(&ep->com.mutex);
3014 if (release)
3015 release_ep_resources(ep);
3016 c4iw_put_ep(&ep->com);
3017 return 0;
3018 }
3019
3020 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3021 {
3022 struct cpl_rdma_terminate *rpl = cplhdr(skb);
3023 unsigned int tid = GET_TID(rpl);
3024 struct c4iw_ep *ep;
3025 struct c4iw_qp_attributes attrs;
3026
3027 ep = get_ep_from_tid(dev, tid);
3028 BUG_ON(!ep);
3029
3030 if (ep && ep->com.qp) {
3031 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
3032 ep->com.qp->wq.sq.qid);
3033 attrs.next_state = C4IW_QP_STATE_TERMINATE;
3034 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3035 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3036 } else
3037 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
3038 c4iw_put_ep(&ep->com);
3039
3040 return 0;
3041 }
3042
3043 /*
3044 * Upcall from the adapter indicating data has been transmitted.
3045 * For us its just the single MPA request or reply. We can now free
3046 * the skb holding the mpa message.
3047 */
3048 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3049 {
3050 struct c4iw_ep *ep;
3051 struct cpl_fw4_ack *hdr = cplhdr(skb);
3052 u8 credits = hdr->credits;
3053 unsigned int tid = GET_TID(hdr);
3054
3055
3056 ep = get_ep_from_tid(dev, tid);
3057 if (!ep)
3058 return 0;
3059 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
3060 if (credits == 0) {
3061 PDBG("%s 0 credit ack ep %p tid %u state %u\n",
3062 __func__, ep, ep->hwtid, state_read(&ep->com));
3063 goto out;
3064 }
3065
3066 dst_confirm(ep->dst);
3067 if (ep->mpa_skb) {
3068 PDBG("%s last streaming msg ack ep %p tid %u state %u "
3069 "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
3070 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
3071 mutex_lock(&ep->com.mutex);
3072 kfree_skb(ep->mpa_skb);
3073 ep->mpa_skb = NULL;
3074 if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3075 stop_ep_timer(ep);
3076 mutex_unlock(&ep->com.mutex);
3077 }
3078 out:
3079 c4iw_put_ep(&ep->com);
3080 return 0;
3081 }
3082
3083 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3084 {
3085 int abort;
3086 struct c4iw_ep *ep = to_ep(cm_id);
3087
3088 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3089
3090 mutex_lock(&ep->com.mutex);
3091 if (ep->com.state != MPA_REQ_RCVD) {
3092 mutex_unlock(&ep->com.mutex);
3093 c4iw_put_ep(&ep->com);
3094 return -ECONNRESET;
3095 }
3096 set_bit(ULP_REJECT, &ep->com.history);
3097 if (mpa_rev == 0)
3098 abort = 1;
3099 else
3100 abort = send_mpa_reject(ep, pdata, pdata_len);
3101 mutex_unlock(&ep->com.mutex);
3102
3103 stop_ep_timer(ep);
3104 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3105 c4iw_put_ep(&ep->com);
3106 return 0;
3107 }
3108
3109 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3110 {
3111 int err;
3112 struct c4iw_qp_attributes attrs;
3113 enum c4iw_qp_attr_mask mask;
3114 struct c4iw_ep *ep = to_ep(cm_id);
3115 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3116 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3117 int abort = 0;
3118
3119 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3120
3121 mutex_lock(&ep->com.mutex);
3122 if (ep->com.state != MPA_REQ_RCVD) {
3123 err = -ECONNRESET;
3124 goto err_out;
3125 }
3126
3127 BUG_ON(!qp);
3128
3129 set_bit(ULP_ACCEPT, &ep->com.history);
3130 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3131 (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3132 err = -EINVAL;
3133 goto err_abort;
3134 }
3135
3136 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3137 if (conn_param->ord > ep->ird) {
3138 if (RELAXED_IRD_NEGOTIATION) {
3139 ep->ord = ep->ird;
3140 } else {
3141 ep->ird = conn_param->ird;
3142 ep->ord = conn_param->ord;
3143 send_mpa_reject(ep, conn_param->private_data,
3144 conn_param->private_data_len);
3145 err = -ENOMEM;
3146 goto err_abort;
3147 }
3148 }
3149 if (conn_param->ird < ep->ord) {
3150 if (RELAXED_IRD_NEGOTIATION &&
3151 ep->ord <= h->rdev.lldi.max_ordird_qp) {
3152 conn_param->ird = ep->ord;
3153 } else {
3154 err = -ENOMEM;
3155 goto err_abort;
3156 }
3157 }
3158 }
3159 ep->ird = conn_param->ird;
3160 ep->ord = conn_param->ord;
3161
3162 if (ep->mpa_attr.version == 1) {
3163 if (peer2peer && ep->ird == 0)
3164 ep->ird = 1;
3165 } else {
3166 if (peer2peer &&
3167 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3168 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3169 ep->ird = 1;
3170 }
3171
3172 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
3173
3174 ep->com.cm_id = cm_id;
3175 ref_cm_id(&ep->com);
3176 ep->com.qp = qp;
3177 ref_qp(ep);
3178
3179 /* bind QP to EP and move to RTS */
3180 attrs.mpa_attr = ep->mpa_attr;
3181 attrs.max_ird = ep->ird;
3182 attrs.max_ord = ep->ord;
3183 attrs.llp_stream_handle = ep;
3184 attrs.next_state = C4IW_QP_STATE_RTS;
3185
3186 /* bind QP and TID with INIT_WR */
3187 mask = C4IW_QP_ATTR_NEXT_STATE |
3188 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3189 C4IW_QP_ATTR_MPA_ATTR |
3190 C4IW_QP_ATTR_MAX_IRD |
3191 C4IW_QP_ATTR_MAX_ORD;
3192
3193 err = c4iw_modify_qp(ep->com.qp->rhp,
3194 ep->com.qp, mask, &attrs, 1);
3195 if (err)
3196 goto err_deref_cm_id;
3197
3198 set_bit(STOP_MPA_TIMER, &ep->com.flags);
3199 err = send_mpa_reply(ep, conn_param->private_data,
3200 conn_param->private_data_len);
3201 if (err)
3202 goto err_deref_cm_id;
3203
3204 __state_set(&ep->com, FPDU_MODE);
3205 established_upcall(ep);
3206 mutex_unlock(&ep->com.mutex);
3207 c4iw_put_ep(&ep->com);
3208 return 0;
3209 err_deref_cm_id:
3210 deref_cm_id(&ep->com);
3211 err_abort:
3212 abort = 1;
3213 err_out:
3214 mutex_unlock(&ep->com.mutex);
3215 if (abort)
3216 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3217 c4iw_put_ep(&ep->com);
3218 return err;
3219 }
3220
3221 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3222 {
3223 struct in_device *ind;
3224 int found = 0;
3225 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3226 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3227
3228 ind = in_dev_get(dev->rdev.lldi.ports[0]);
3229 if (!ind)
3230 return -EADDRNOTAVAIL;
3231 for_primary_ifa(ind) {
3232 laddr->sin_addr.s_addr = ifa->ifa_address;
3233 raddr->sin_addr.s_addr = ifa->ifa_address;
3234 found = 1;
3235 break;
3236 }
3237 endfor_ifa(ind);
3238 in_dev_put(ind);
3239 return found ? 0 : -EADDRNOTAVAIL;
3240 }
3241
3242 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3243 unsigned char banned_flags)
3244 {
3245 struct inet6_dev *idev;
3246 int err = -EADDRNOTAVAIL;
3247
3248 rcu_read_lock();
3249 idev = __in6_dev_get(dev);
3250 if (idev != NULL) {
3251 struct inet6_ifaddr *ifp;
3252
3253 read_lock_bh(&idev->lock);
3254 list_for_each_entry(ifp, &idev->addr_list, if_list) {
3255 if (ifp->scope == IFA_LINK &&
3256 !(ifp->flags & banned_flags)) {
3257 memcpy(addr, &ifp->addr, 16);
3258 err = 0;
3259 break;
3260 }
3261 }
3262 read_unlock_bh(&idev->lock);
3263 }
3264 rcu_read_unlock();
3265 return err;
3266 }
3267
3268 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3269 {
3270 struct in6_addr uninitialized_var(addr);
3271 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3272 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3273
3274 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3275 memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3276 memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3277 return 0;
3278 }
3279 return -EADDRNOTAVAIL;
3280 }
3281
3282 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3283 {
3284 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3285 struct c4iw_ep *ep;
3286 int err = 0;
3287 struct sockaddr_in *laddr;
3288 struct sockaddr_in *raddr;
3289 struct sockaddr_in6 *laddr6;
3290 struct sockaddr_in6 *raddr6;
3291 __u8 *ra;
3292 int iptype;
3293
3294 if ((conn_param->ord > cur_max_read_depth(dev)) ||
3295 (conn_param->ird > cur_max_read_depth(dev))) {
3296 err = -EINVAL;
3297 goto out;
3298 }
3299 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3300 if (!ep) {
3301 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3302 err = -ENOMEM;
3303 goto out;
3304 }
3305
3306 skb_queue_head_init(&ep->com.ep_skb_list);
3307 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3308 err = -ENOMEM;
3309 goto fail1;
3310 }
3311
3312 init_timer(&ep->timer);
3313 ep->plen = conn_param->private_data_len;
3314 if (ep->plen)
3315 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3316 conn_param->private_data, ep->plen);
3317 ep->ird = conn_param->ird;
3318 ep->ord = conn_param->ord;
3319
3320 if (peer2peer && ep->ord == 0)
3321 ep->ord = 1;
3322
3323 ep->com.cm_id = cm_id;
3324 ref_cm_id(&ep->com);
3325 ep->com.dev = dev;
3326 ep->com.qp = get_qhp(dev, conn_param->qpn);
3327 if (!ep->com.qp) {
3328 PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3329 err = -EINVAL;
3330 goto fail2;
3331 }
3332 ref_qp(ep);
3333 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
3334 ep->com.qp, cm_id);
3335
3336 /*
3337 * Allocate an active TID to initiate a TCP connection.
3338 */
3339 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3340 if (ep->atid == -1) {
3341 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
3342 err = -ENOMEM;
3343 goto fail2;
3344 }
3345 insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3346
3347 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3348 sizeof(ep->com.local_addr));
3349 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3350 sizeof(ep->com.remote_addr));
3351
3352 laddr = (struct sockaddr_in *)&ep->com.local_addr;
3353 raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3354 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3355 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3356
3357 if (cm_id->m_remote_addr.ss_family == AF_INET) {
3358 iptype = 4;
3359 ra = (__u8 *)&raddr->sin_addr;
3360
3361 /*
3362 * Handle loopback requests to INADDR_ANY.
3363 */
3364 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3365 err = pick_local_ipaddrs(dev, cm_id);
3366 if (err)
3367 goto fail2;
3368 }
3369
3370 /* find a route */
3371 PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3372 __func__, &laddr->sin_addr, ntohs(laddr->sin_port),
3373 ra, ntohs(raddr->sin_port));
3374 ep->dst = find_route(dev, laddr->sin_addr.s_addr,
3375 raddr->sin_addr.s_addr, laddr->sin_port,
3376 raddr->sin_port, cm_id->tos);
3377 } else {
3378 iptype = 6;
3379 ra = (__u8 *)&raddr6->sin6_addr;
3380
3381 /*
3382 * Handle loopback requests to INADDR_ANY.
3383 */
3384 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3385 err = pick_local_ip6addrs(dev, cm_id);
3386 if (err)
3387 goto fail2;
3388 }
3389
3390 /* find a route */
3391 PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3392 __func__, laddr6->sin6_addr.s6_addr,
3393 ntohs(laddr6->sin6_port),
3394 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3395 ep->dst = find_route6(dev, laddr6->sin6_addr.s6_addr,
3396 raddr6->sin6_addr.s6_addr,
3397 laddr6->sin6_port, raddr6->sin6_port, 0,
3398 raddr6->sin6_scope_id);
3399 }
3400 if (!ep->dst) {
3401 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
3402 err = -EHOSTUNREACH;
3403 goto fail3;
3404 }
3405
3406 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3407 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3408 if (err) {
3409 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
3410 goto fail4;
3411 }
3412
3413 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3414 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3415 ep->l2t->idx);
3416
3417 state_set(&ep->com, CONNECTING);
3418 ep->tos = cm_id->tos;
3419
3420 /* send connect request to rnic */
3421 err = send_connect(ep);
3422 if (!err)
3423 goto out;
3424
3425 cxgb4_l2t_release(ep->l2t);
3426 fail4:
3427 dst_release(ep->dst);
3428 fail3:
3429 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3430 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3431 fail2:
3432 skb_queue_purge(&ep->com.ep_skb_list);
3433 deref_cm_id(&ep->com);
3434 fail1:
3435 c4iw_put_ep(&ep->com);
3436 out:
3437 return err;
3438 }
3439
3440 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3441 {
3442 int err;
3443 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3444 &ep->com.local_addr;
3445
3446 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3447 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3448 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3449 if (err)
3450 return err;
3451 }
3452 c4iw_init_wr_wait(&ep->com.wr_wait);
3453 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3454 ep->stid, &sin6->sin6_addr,
3455 sin6->sin6_port,
3456 ep->com.dev->rdev.lldi.rxq_ids[0]);
3457 if (!err)
3458 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3459 &ep->com.wr_wait,
3460 0, 0, __func__);
3461 else if (err > 0)
3462 err = net_xmit_errno(err);
3463 if (err) {
3464 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3465 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3466 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3467 err, ep->stid,
3468 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3469 }
3470 return err;
3471 }
3472
3473 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3474 {
3475 int err;
3476 struct sockaddr_in *sin = (struct sockaddr_in *)
3477 &ep->com.local_addr;
3478
3479 if (dev->rdev.lldi.enable_fw_ofld_conn) {
3480 do {
3481 err = cxgb4_create_server_filter(
3482 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3483 sin->sin_addr.s_addr, sin->sin_port, 0,
3484 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3485 if (err == -EBUSY) {
3486 if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3487 err = -EIO;
3488 break;
3489 }
3490 set_current_state(TASK_UNINTERRUPTIBLE);
3491 schedule_timeout(usecs_to_jiffies(100));
3492 }
3493 } while (err == -EBUSY);
3494 } else {
3495 c4iw_init_wr_wait(&ep->com.wr_wait);
3496 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3497 ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3498 0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3499 if (!err)
3500 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3501 &ep->com.wr_wait,
3502 0, 0, __func__);
3503 else if (err > 0)
3504 err = net_xmit_errno(err);
3505 }
3506 if (err)
3507 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3508 , err, ep->stid,
3509 &sin->sin_addr, ntohs(sin->sin_port));
3510 return err;
3511 }
3512
3513 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3514 {
3515 int err = 0;
3516 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3517 struct c4iw_listen_ep *ep;
3518
3519 might_sleep();
3520
3521 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3522 if (!ep) {
3523 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3524 err = -ENOMEM;
3525 goto fail1;
3526 }
3527 skb_queue_head_init(&ep->com.ep_skb_list);
3528 PDBG("%s ep %p\n", __func__, ep);
3529 ep->com.cm_id = cm_id;
3530 ref_cm_id(&ep->com);
3531 ep->com.dev = dev;
3532 ep->backlog = backlog;
3533 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3534 sizeof(ep->com.local_addr));
3535
3536 /*
3537 * Allocate a server TID.
3538 */
3539 if (dev->rdev.lldi.enable_fw_ofld_conn &&
3540 ep->com.local_addr.ss_family == AF_INET)
3541 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3542 cm_id->m_local_addr.ss_family, ep);
3543 else
3544 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3545 cm_id->m_local_addr.ss_family, ep);
3546
3547 if (ep->stid == -1) {
3548 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
3549 err = -ENOMEM;
3550 goto fail2;
3551 }
3552 insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3553
3554 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3555 sizeof(ep->com.local_addr));
3556
3557 state_set(&ep->com, LISTEN);
3558 if (ep->com.local_addr.ss_family == AF_INET)
3559 err = create_server4(dev, ep);
3560 else
3561 err = create_server6(dev, ep);
3562 if (!err) {
3563 cm_id->provider_data = ep;
3564 goto out;
3565 }
3566
3567 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3568 ep->com.local_addr.ss_family);
3569 fail2:
3570 deref_cm_id(&ep->com);
3571 c4iw_put_ep(&ep->com);
3572 fail1:
3573 out:
3574 return err;
3575 }
3576
3577 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3578 {
3579 int err;
3580 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3581
3582 PDBG("%s ep %p\n", __func__, ep);
3583
3584 might_sleep();
3585 state_set(&ep->com, DEAD);
3586 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3587 ep->com.local_addr.ss_family == AF_INET) {
3588 err = cxgb4_remove_server_filter(
3589 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3590 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3591 } else {
3592 struct sockaddr_in6 *sin6;
3593 c4iw_init_wr_wait(&ep->com.wr_wait);
3594 err = cxgb4_remove_server(
3595 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3596 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3597 if (err)
3598 goto done;
3599 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
3600 0, 0, __func__);
3601 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3602 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3603 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3604 }
3605 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3606 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3607 ep->com.local_addr.ss_family);
3608 done:
3609 deref_cm_id(&ep->com);
3610 c4iw_put_ep(&ep->com);
3611 return err;
3612 }
3613
3614 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3615 {
3616 int ret = 0;
3617 int close = 0;
3618 int fatal = 0;
3619 struct c4iw_rdev *rdev;
3620
3621 mutex_lock(&ep->com.mutex);
3622
3623 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
3624 states[ep->com.state], abrupt);
3625
3626 /*
3627 * Ref the ep here in case we have fatal errors causing the
3628 * ep to be released and freed.
3629 */
3630 c4iw_get_ep(&ep->com);
3631
3632 rdev = &ep->com.dev->rdev;
3633 if (c4iw_fatal_error(rdev)) {
3634 fatal = 1;
3635 close_complete_upcall(ep, -EIO);
3636 ep->com.state = DEAD;
3637 }
3638 switch (ep->com.state) {
3639 case MPA_REQ_WAIT:
3640 case MPA_REQ_SENT:
3641 case MPA_REQ_RCVD:
3642 case MPA_REP_SENT:
3643 case FPDU_MODE:
3644 case CONNECTING:
3645 close = 1;
3646 if (abrupt)
3647 ep->com.state = ABORTING;
3648 else {
3649 ep->com.state = CLOSING;
3650
3651 /*
3652 * if we close before we see the fw4_ack() then we fix
3653 * up the timer state since we're reusing it.
3654 */
3655 if (ep->mpa_skb &&
3656 test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3657 clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3658 stop_ep_timer(ep);
3659 }
3660 start_ep_timer(ep);
3661 }
3662 set_bit(CLOSE_SENT, &ep->com.flags);
3663 break;
3664 case CLOSING:
3665 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3666 close = 1;
3667 if (abrupt) {
3668 (void)stop_ep_timer(ep);
3669 ep->com.state = ABORTING;
3670 } else
3671 ep->com.state = MORIBUND;
3672 }
3673 break;
3674 case MORIBUND:
3675 case ABORTING:
3676 case DEAD:
3677 PDBG("%s ignoring disconnect ep %p state %u\n",
3678 __func__, ep, ep->com.state);
3679 break;
3680 default:
3681 BUG();
3682 break;
3683 }
3684
3685 if (close) {
3686 if (abrupt) {
3687 set_bit(EP_DISC_ABORT, &ep->com.history);
3688 close_complete_upcall(ep, -ECONNRESET);
3689 ret = send_abort(ep);
3690 } else {
3691 set_bit(EP_DISC_CLOSE, &ep->com.history);
3692 ret = send_halfclose(ep);
3693 }
3694 if (ret) {
3695 set_bit(EP_DISC_FAIL, &ep->com.history);
3696 if (!abrupt) {
3697 stop_ep_timer(ep);
3698 close_complete_upcall(ep, -EIO);
3699 }
3700 if (ep->com.qp) {
3701 struct c4iw_qp_attributes attrs;
3702
3703 attrs.next_state = C4IW_QP_STATE_ERROR;
3704 ret = c4iw_modify_qp(ep->com.qp->rhp,
3705 ep->com.qp,
3706 C4IW_QP_ATTR_NEXT_STATE,
3707 &attrs, 1);
3708 if (ret)
3709 pr_err(MOD
3710 "%s - qp <- error failed!\n",
3711 __func__);
3712 }
3713 fatal = 1;
3714 }
3715 }
3716 mutex_unlock(&ep->com.mutex);
3717 c4iw_put_ep(&ep->com);
3718 if (fatal)
3719 release_ep_resources(ep);
3720 return ret;
3721 }
3722
3723 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3724 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3725 {
3726 struct c4iw_ep *ep;
3727 int atid = be32_to_cpu(req->tid);
3728
3729 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3730 (__force u32) req->tid);
3731 if (!ep)
3732 return;
3733
3734 switch (req->retval) {
3735 case FW_ENOMEM:
3736 set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3737 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3738 send_fw_act_open_req(ep, atid);
3739 return;
3740 }
3741 case FW_EADDRINUSE:
3742 set_bit(ACT_RETRY_INUSE, &ep->com.history);
3743 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3744 send_fw_act_open_req(ep, atid);
3745 return;
3746 }
3747 break;
3748 default:
3749 pr_info("%s unexpected ofld conn wr retval %d\n",
3750 __func__, req->retval);
3751 break;
3752 }
3753 pr_err("active ofld_connect_wr failure %d atid %d\n",
3754 req->retval, atid);
3755 mutex_lock(&dev->rdev.stats.lock);
3756 dev->rdev.stats.act_ofld_conn_fails++;
3757 mutex_unlock(&dev->rdev.stats.lock);
3758 connect_reply_upcall(ep, status2errno(req->retval));
3759 state_set(&ep->com, DEAD);
3760 if (ep->com.remote_addr.ss_family == AF_INET6) {
3761 struct sockaddr_in6 *sin6 =
3762 (struct sockaddr_in6 *)&ep->com.local_addr;
3763 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3764 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3765 }
3766 remove_handle(dev, &dev->atid_idr, atid);
3767 cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3768 dst_release(ep->dst);
3769 cxgb4_l2t_release(ep->l2t);
3770 c4iw_put_ep(&ep->com);
3771 }
3772
3773 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3774 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3775 {
3776 struct sk_buff *rpl_skb;
3777 struct cpl_pass_accept_req *cpl;
3778 int ret;
3779
3780 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3781 BUG_ON(!rpl_skb);
3782 if (req->retval) {
3783 PDBG("%s passive open failure %d\n", __func__, req->retval);
3784 mutex_lock(&dev->rdev.stats.lock);
3785 dev->rdev.stats.pas_ofld_conn_fails++;
3786 mutex_unlock(&dev->rdev.stats.lock);
3787 kfree_skb(rpl_skb);
3788 } else {
3789 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3790 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3791 (__force u32) htonl(
3792 (__force u32) req->tid)));
3793 ret = pass_accept_req(dev, rpl_skb);
3794 if (!ret)
3795 kfree_skb(rpl_skb);
3796 }
3797 return;
3798 }
3799
3800 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3801 {
3802 struct cpl_fw6_msg *rpl = cplhdr(skb);
3803 struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3804
3805 switch (rpl->type) {
3806 case FW6_TYPE_CQE:
3807 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3808 break;
3809 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3810 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3811 switch (req->t_state) {
3812 case TCP_SYN_SENT:
3813 active_ofld_conn_reply(dev, skb, req);
3814 break;
3815 case TCP_SYN_RECV:
3816 passive_ofld_conn_reply(dev, skb, req);
3817 break;
3818 default:
3819 pr_err("%s unexpected ofld conn wr state %d\n",
3820 __func__, req->t_state);
3821 break;
3822 }
3823 break;
3824 }
3825 return 0;
3826 }
3827
3828 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3829 {
3830 __be32 l2info;
3831 __be16 hdr_len, vlantag, len;
3832 u16 eth_hdr_len;
3833 int tcp_hdr_len, ip_hdr_len;
3834 u8 intf;
3835 struct cpl_rx_pkt *cpl = cplhdr(skb);
3836 struct cpl_pass_accept_req *req;
3837 struct tcp_options_received tmp_opt;
3838 struct c4iw_dev *dev;
3839 enum chip_type type;
3840
3841 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3842 /* Store values from cpl_rx_pkt in temporary location. */
3843 vlantag = cpl->vlan;
3844 len = cpl->len;
3845 l2info = cpl->l2info;
3846 hdr_len = cpl->hdr_len;
3847 intf = cpl->iff;
3848
3849 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3850
3851 /*
3852 * We need to parse the TCP options from SYN packet.
3853 * to generate cpl_pass_accept_req.
3854 */
3855 memset(&tmp_opt, 0, sizeof(tmp_opt));
3856 tcp_clear_options(&tmp_opt);
3857 tcp_parse_options(skb, &tmp_opt, 0, NULL);
3858
3859 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
3860 memset(req, 0, sizeof(*req));
3861 req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3862 SYN_MAC_IDX_V(RX_MACIDX_G(
3863 be32_to_cpu(l2info))) |
3864 SYN_XACT_MATCH_F);
3865 type = dev->rdev.lldi.adapter_type;
3866 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3867 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3868 req->hdr_len =
3869 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3870 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3871 eth_hdr_len = is_t4(type) ?
3872 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3873 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3874 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3875 IP_HDR_LEN_V(ip_hdr_len) |
3876 ETH_HDR_LEN_V(eth_hdr_len));
3877 } else { /* T6 and later */
3878 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3879 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3880 T6_IP_HDR_LEN_V(ip_hdr_len) |
3881 T6_ETH_HDR_LEN_V(eth_hdr_len));
3882 }
3883 req->vlan = vlantag;
3884 req->len = len;
3885 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3886 PASS_OPEN_TOS_V(tos));
3887 req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3888 if (tmp_opt.wscale_ok)
3889 req->tcpopt.wsf = tmp_opt.snd_wscale;
3890 req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3891 if (tmp_opt.sack_ok)
3892 req->tcpopt.sack = 1;
3893 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3894 return;
3895 }
3896
3897 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3898 __be32 laddr, __be16 lport,
3899 __be32 raddr, __be16 rport,
3900 u32 rcv_isn, u32 filter, u16 window,
3901 u32 rss_qid, u8 port_id)
3902 {
3903 struct sk_buff *req_skb;
3904 struct fw_ofld_connection_wr *req;
3905 struct cpl_pass_accept_req *cpl = cplhdr(skb);
3906 int ret;
3907
3908 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3909 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
3910 memset(req, 0, sizeof(*req));
3911 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3912 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3913 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3914 req->le.filter = (__force __be32) filter;
3915 req->le.lport = lport;
3916 req->le.pport = rport;
3917 req->le.u.ipv4.lip = laddr;
3918 req->le.u.ipv4.pip = raddr;
3919 req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3920 req->tcb.rcv_adv = htons(window);
3921 req->tcb.t_state_to_astid =
3922 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3923 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3924 FW_OFLD_CONNECTION_WR_ASTID_V(
3925 PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
3926
3927 /*
3928 * We store the qid in opt2 which will be used by the firmware
3929 * to send us the wr response.
3930 */
3931 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
3932
3933 /*
3934 * We initialize the MSS index in TCB to 0xF.
3935 * So that when driver sends cpl_pass_accept_rpl
3936 * TCB picks up the correct value. If this was 0
3937 * TP will ignore any value > 0 for MSS index.
3938 */
3939 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
3940 req->cookie = (uintptr_t)skb;
3941
3942 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
3943 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
3944 if (ret < 0) {
3945 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
3946 ret);
3947 kfree_skb(skb);
3948 kfree_skb(req_skb);
3949 }
3950 }
3951
3952 /*
3953 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3954 * messages when a filter is being used instead of server to
3955 * redirect a syn packet. When packets hit filter they are redirected
3956 * to the offload queue and driver tries to establish the connection
3957 * using firmware work request.
3958 */
3959 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
3960 {
3961 int stid;
3962 unsigned int filter;
3963 struct ethhdr *eh = NULL;
3964 struct vlan_ethhdr *vlan_eh = NULL;
3965 struct iphdr *iph;
3966 struct tcphdr *tcph;
3967 struct rss_header *rss = (void *)skb->data;
3968 struct cpl_rx_pkt *cpl = (void *)skb->data;
3969 struct cpl_pass_accept_req *req = (void *)(rss + 1);
3970 struct l2t_entry *e;
3971 struct dst_entry *dst;
3972 struct c4iw_ep *lep = NULL;
3973 u16 window;
3974 struct port_info *pi;
3975 struct net_device *pdev;
3976 u16 rss_qid, eth_hdr_len;
3977 int step;
3978 u32 tx_chan;
3979 struct neighbour *neigh;
3980
3981 /* Drop all non-SYN packets */
3982 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
3983 goto reject;
3984
3985 /*
3986 * Drop all packets which did not hit the filter.
3987 * Unlikely to happen.
3988 */
3989 if (!(rss->filter_hit && rss->filter_tid))
3990 goto reject;
3991
3992 /*
3993 * Calculate the server tid from filter hit index from cpl_rx_pkt.
3994 */
3995 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
3996
3997 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
3998 if (!lep) {
3999 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
4000 goto reject;
4001 }
4002
4003 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4004 case CHELSIO_T4:
4005 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4006 break;
4007 case CHELSIO_T5:
4008 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4009 break;
4010 case CHELSIO_T6:
4011 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4012 break;
4013 default:
4014 pr_err("T%d Chip is not supported\n",
4015 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4016 goto reject;
4017 }
4018
4019 if (eth_hdr_len == ETH_HLEN) {
4020 eh = (struct ethhdr *)(req + 1);
4021 iph = (struct iphdr *)(eh + 1);
4022 } else {
4023 vlan_eh = (struct vlan_ethhdr *)(req + 1);
4024 iph = (struct iphdr *)(vlan_eh + 1);
4025 skb->vlan_tci = ntohs(cpl->vlan);
4026 }
4027
4028 if (iph->version != 0x4)
4029 goto reject;
4030
4031 tcph = (struct tcphdr *)(iph + 1);
4032 skb_set_network_header(skb, (void *)iph - (void *)rss);
4033 skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4034 skb_get(skb);
4035
4036 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
4037 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4038 ntohs(tcph->source), iph->tos);
4039
4040 dst = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source,
4041 iph->tos);
4042 if (!dst) {
4043 pr_err("%s - failed to find dst entry!\n",
4044 __func__);
4045 goto reject;
4046 }
4047 neigh = dst_neigh_lookup_skb(dst, skb);
4048
4049 if (!neigh) {
4050 pr_err("%s - failed to allocate neigh!\n",
4051 __func__);
4052 goto free_dst;
4053 }
4054
4055 if (neigh->dev->flags & IFF_LOOPBACK) {
4056 pdev = ip_dev_find(&init_net, iph->daddr);
4057 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4058 pdev, 0);
4059 pi = (struct port_info *)netdev_priv(pdev);
4060 tx_chan = cxgb4_port_chan(pdev);
4061 dev_put(pdev);
4062 } else {
4063 pdev = get_real_dev(neigh->dev);
4064 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4065 pdev, 0);
4066 pi = (struct port_info *)netdev_priv(pdev);
4067 tx_chan = cxgb4_port_chan(pdev);
4068 }
4069 neigh_release(neigh);
4070 if (!e) {
4071 pr_err("%s - failed to allocate l2t entry!\n",
4072 __func__);
4073 goto free_dst;
4074 }
4075
4076 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4077 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4078 window = (__force u16) htons((__force u16)tcph->window);
4079
4080 /* Calcuate filter portion for LE region. */
4081 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4082 dev->rdev.lldi.ports[0],
4083 e));
4084
4085 /*
4086 * Synthesize the cpl_pass_accept_req. We have everything except the
4087 * TID. Once firmware sends a reply with TID we update the TID field
4088 * in cpl and pass it through the regular cpl_pass_accept_req path.
4089 */
4090 build_cpl_pass_accept_req(skb, stid, iph->tos);
4091 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4092 tcph->source, ntohl(tcph->seq), filter, window,
4093 rss_qid, pi->port_id);
4094 cxgb4_l2t_release(e);
4095 free_dst:
4096 dst_release(dst);
4097 reject:
4098 if (lep)
4099 c4iw_put_ep(&lep->com);
4100 return 0;
4101 }
4102
4103 /*
4104 * These are the real handlers that are called from a
4105 * work queue.
4106 */
4107 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4108 [CPL_ACT_ESTABLISH] = act_establish,
4109 [CPL_ACT_OPEN_RPL] = act_open_rpl,
4110 [CPL_RX_DATA] = rx_data,
4111 [CPL_ABORT_RPL_RSS] = abort_rpl,
4112 [CPL_ABORT_RPL] = abort_rpl,
4113 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
4114 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4115 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4116 [CPL_PASS_ESTABLISH] = pass_establish,
4117 [CPL_PEER_CLOSE] = peer_close,
4118 [CPL_ABORT_REQ_RSS] = peer_abort,
4119 [CPL_CLOSE_CON_RPL] = close_con_rpl,
4120 [CPL_RDMA_TERMINATE] = terminate,
4121 [CPL_FW4_ACK] = fw4_ack,
4122 [CPL_FW6_MSG] = deferred_fw6_msg,
4123 [CPL_RX_PKT] = rx_pkt,
4124 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4125 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4126 };
4127
4128 static void process_timeout(struct c4iw_ep *ep)
4129 {
4130 struct c4iw_qp_attributes attrs;
4131 int abort = 1;
4132
4133 mutex_lock(&ep->com.mutex);
4134 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
4135 ep->com.state);
4136 set_bit(TIMEDOUT, &ep->com.history);
4137 switch (ep->com.state) {
4138 case MPA_REQ_SENT:
4139 connect_reply_upcall(ep, -ETIMEDOUT);
4140 break;
4141 case MPA_REQ_WAIT:
4142 case MPA_REQ_RCVD:
4143 case MPA_REP_SENT:
4144 case FPDU_MODE:
4145 break;
4146 case CLOSING:
4147 case MORIBUND:
4148 if (ep->com.cm_id && ep->com.qp) {
4149 attrs.next_state = C4IW_QP_STATE_ERROR;
4150 c4iw_modify_qp(ep->com.qp->rhp,
4151 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4152 &attrs, 1);
4153 }
4154 close_complete_upcall(ep, -ETIMEDOUT);
4155 break;
4156 case ABORTING:
4157 case DEAD:
4158
4159 /*
4160 * These states are expected if the ep timed out at the same
4161 * time as another thread was calling stop_ep_timer().
4162 * So we silently do nothing for these states.
4163 */
4164 abort = 0;
4165 break;
4166 default:
4167 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4168 __func__, ep, ep->hwtid, ep->com.state);
4169 abort = 0;
4170 }
4171 mutex_unlock(&ep->com.mutex);
4172 if (abort)
4173 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4174 c4iw_put_ep(&ep->com);
4175 }
4176
4177 static void process_timedout_eps(void)
4178 {
4179 struct c4iw_ep *ep;
4180
4181 spin_lock_irq(&timeout_lock);
4182 while (!list_empty(&timeout_list)) {
4183 struct list_head *tmp;
4184
4185 tmp = timeout_list.next;
4186 list_del(tmp);
4187 tmp->next = NULL;
4188 tmp->prev = NULL;
4189 spin_unlock_irq(&timeout_lock);
4190 ep = list_entry(tmp, struct c4iw_ep, entry);
4191 process_timeout(ep);
4192 spin_lock_irq(&timeout_lock);
4193 }
4194 spin_unlock_irq(&timeout_lock);
4195 }
4196
4197 static void process_work(struct work_struct *work)
4198 {
4199 struct sk_buff *skb = NULL;
4200 struct c4iw_dev *dev;
4201 struct cpl_act_establish *rpl;
4202 unsigned int opcode;
4203 int ret;
4204
4205 process_timedout_eps();
4206 while ((skb = skb_dequeue(&rxq))) {
4207 rpl = cplhdr(skb);
4208 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4209 opcode = rpl->ot.opcode;
4210
4211 BUG_ON(!work_handlers[opcode]);
4212 ret = work_handlers[opcode](dev, skb);
4213 if (!ret)
4214 kfree_skb(skb);
4215 process_timedout_eps();
4216 }
4217 }
4218
4219 static DECLARE_WORK(skb_work, process_work);
4220
4221 static void ep_timeout(unsigned long arg)
4222 {
4223 struct c4iw_ep *ep = (struct c4iw_ep *)arg;
4224 int kickit = 0;
4225
4226 spin_lock(&timeout_lock);
4227 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4228 /*
4229 * Only insert if it is not already on the list.
4230 */
4231 if (!ep->entry.next) {
4232 list_add_tail(&ep->entry, &timeout_list);
4233 kickit = 1;
4234 }
4235 }
4236 spin_unlock(&timeout_lock);
4237 if (kickit)
4238 queue_work(workq, &skb_work);
4239 }
4240
4241 /*
4242 * All the CM events are handled on a work queue to have a safe context.
4243 */
4244 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4245 {
4246
4247 /*
4248 * Save dev in the skb->cb area.
4249 */
4250 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4251
4252 /*
4253 * Queue the skb and schedule the worker thread.
4254 */
4255 skb_queue_tail(&rxq, skb);
4256 queue_work(workq, &skb_work);
4257 return 0;
4258 }
4259
4260 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4261 {
4262 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4263
4264 if (rpl->status != CPL_ERR_NONE) {
4265 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
4266 "for tid %u\n", rpl->status, GET_TID(rpl));
4267 }
4268 kfree_skb(skb);
4269 return 0;
4270 }
4271
4272 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4273 {
4274 struct cpl_fw6_msg *rpl = cplhdr(skb);
4275 struct c4iw_wr_wait *wr_waitp;
4276 int ret;
4277
4278 PDBG("%s type %u\n", __func__, rpl->type);
4279
4280 switch (rpl->type) {
4281 case FW6_TYPE_WR_RPL:
4282 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4283 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4284 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
4285 if (wr_waitp)
4286 c4iw_wake_up(wr_waitp, ret ? -ret : 0);
4287 kfree_skb(skb);
4288 break;
4289 case FW6_TYPE_CQE:
4290 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4291 sched(dev, skb);
4292 break;
4293 default:
4294 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
4295 rpl->type);
4296 kfree_skb(skb);
4297 break;
4298 }
4299 return 0;
4300 }
4301
4302 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4303 {
4304 struct cpl_abort_req_rss *req = cplhdr(skb);
4305 struct c4iw_ep *ep;
4306 unsigned int tid = GET_TID(req);
4307
4308 ep = get_ep_from_tid(dev, tid);
4309 /* This EP will be dereferenced in peer_abort() */
4310 if (!ep) {
4311 printk(KERN_WARNING MOD
4312 "Abort on non-existent endpoint, tid %d\n", tid);
4313 kfree_skb(skb);
4314 return 0;
4315 }
4316 if (is_neg_adv(req->status)) {
4317 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
4318 __func__, ep->hwtid, req->status,
4319 neg_adv_str(req->status));
4320 goto out;
4321 }
4322 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
4323 ep->com.state);
4324
4325 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4326 out:
4327 sched(dev, skb);
4328 return 0;
4329 }
4330
4331 /*
4332 * Most upcalls from the T4 Core go to sched() to
4333 * schedule the processing on a work queue.
4334 */
4335 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4336 [CPL_ACT_ESTABLISH] = sched,
4337 [CPL_ACT_OPEN_RPL] = sched,
4338 [CPL_RX_DATA] = sched,
4339 [CPL_ABORT_RPL_RSS] = sched,
4340 [CPL_ABORT_RPL] = sched,
4341 [CPL_PASS_OPEN_RPL] = sched,
4342 [CPL_CLOSE_LISTSRV_RPL] = sched,
4343 [CPL_PASS_ACCEPT_REQ] = sched,
4344 [CPL_PASS_ESTABLISH] = sched,
4345 [CPL_PEER_CLOSE] = sched,
4346 [CPL_CLOSE_CON_RPL] = sched,
4347 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
4348 [CPL_RDMA_TERMINATE] = sched,
4349 [CPL_FW4_ACK] = sched,
4350 [CPL_SET_TCB_RPL] = set_tcb_rpl,
4351 [CPL_FW6_MSG] = fw6_msg,
4352 [CPL_RX_PKT] = sched
4353 };
4354
4355 int __init c4iw_cm_init(void)
4356 {
4357 spin_lock_init(&timeout_lock);
4358 skb_queue_head_init(&rxq);
4359
4360 workq = create_singlethread_workqueue("iw_cxgb4");
4361 if (!workq)
4362 return -ENOMEM;
4363
4364 return 0;
4365 }
4366
4367 void c4iw_cm_term(void)
4368 {
4369 WARN_ON(!list_empty(&timeout_list));
4370 flush_workqueue(workq);
4371 destroy_workqueue(workq);
4372 }