]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/infiniband/hw/cxgb4/cm.c
reset: Restrict RESET_HSDK to ARC_SOC_HSDK or COMPILE_TEST
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / hw / cxgb4 / cm.c
1 /*
2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49
50 #include <rdma/ib_addr.h>
51
52 #include <libcxgb_cm.h>
53 #include "iw_cxgb4.h"
54 #include "clip_tbl.h"
55
56 static char *states[] = {
57 "idle",
58 "listen",
59 "connecting",
60 "mpa_wait_req",
61 "mpa_req_sent",
62 "mpa_req_rcvd",
63 "mpa_rep_sent",
64 "fpdu_mode",
65 "aborting",
66 "closing",
67 "moribund",
68 "dead",
69 NULL,
70 };
71
72 static int nocong;
73 module_param(nocong, int, 0644);
74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
75
76 static int enable_ecn;
77 module_param(enable_ecn, int, 0644);
78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
79
80 static int dack_mode = 1;
81 module_param(dack_mode, int, 0644);
82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
83
84 uint c4iw_max_read_depth = 32;
85 module_param(c4iw_max_read_depth, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth,
87 "Per-connection max ORD/IRD (default=32)");
88
89 static int enable_tcp_timestamps;
90 module_param(enable_tcp_timestamps, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
92
93 static int enable_tcp_sack;
94 module_param(enable_tcp_sack, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
96
97 static int enable_tcp_window_scaling = 1;
98 module_param(enable_tcp_window_scaling, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling,
100 "Enable tcp window scaling (default=1)");
101
102 int c4iw_debug;
103 module_param(c4iw_debug, int, 0644);
104 MODULE_PARM_DESC(c4iw_debug, "obsolete");
105
106 static int peer2peer = 1;
107 module_param(peer2peer, int, 0644);
108 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
109
110 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
111 module_param(p2p_type, int, 0644);
112 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
113 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
114
115 static int ep_timeout_secs = 60;
116 module_param(ep_timeout_secs, int, 0644);
117 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
118 "in seconds (default=60)");
119
120 static int mpa_rev = 2;
121 module_param(mpa_rev, int, 0644);
122 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
123 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
124 " compliant (default=2)");
125
126 static int markers_enabled;
127 module_param(markers_enabled, int, 0644);
128 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
129
130 static int crc_enabled = 1;
131 module_param(crc_enabled, int, 0644);
132 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
133
134 static int rcv_win = 256 * 1024;
135 module_param(rcv_win, int, 0644);
136 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
137
138 static int snd_win = 128 * 1024;
139 module_param(snd_win, int, 0644);
140 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
141
142 static struct workqueue_struct *workq;
143
144 static struct sk_buff_head rxq;
145
146 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
147 static void ep_timeout(unsigned long arg);
148 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
149 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
150
151 static LIST_HEAD(timeout_list);
152 static spinlock_t timeout_lock;
153
154 static void deref_cm_id(struct c4iw_ep_common *epc)
155 {
156 epc->cm_id->rem_ref(epc->cm_id);
157 epc->cm_id = NULL;
158 set_bit(CM_ID_DEREFED, &epc->history);
159 }
160
161 static void ref_cm_id(struct c4iw_ep_common *epc)
162 {
163 set_bit(CM_ID_REFED, &epc->history);
164 epc->cm_id->add_ref(epc->cm_id);
165 }
166
167 static void deref_qp(struct c4iw_ep *ep)
168 {
169 c4iw_qp_rem_ref(&ep->com.qp->ibqp);
170 clear_bit(QP_REFERENCED, &ep->com.flags);
171 set_bit(QP_DEREFED, &ep->com.history);
172 }
173
174 static void ref_qp(struct c4iw_ep *ep)
175 {
176 set_bit(QP_REFERENCED, &ep->com.flags);
177 set_bit(QP_REFED, &ep->com.history);
178 c4iw_qp_add_ref(&ep->com.qp->ibqp);
179 }
180
181 static void start_ep_timer(struct c4iw_ep *ep)
182 {
183 pr_debug("%s ep %p\n", __func__, ep);
184 if (timer_pending(&ep->timer)) {
185 pr_err("%s timer already started! ep %p\n",
186 __func__, ep);
187 return;
188 }
189 clear_bit(TIMEOUT, &ep->com.flags);
190 c4iw_get_ep(&ep->com);
191 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
192 ep->timer.data = (unsigned long)ep;
193 ep->timer.function = ep_timeout;
194 add_timer(&ep->timer);
195 }
196
197 static int stop_ep_timer(struct c4iw_ep *ep)
198 {
199 pr_debug("%s ep %p stopping\n", __func__, ep);
200 del_timer_sync(&ep->timer);
201 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
202 c4iw_put_ep(&ep->com);
203 return 0;
204 }
205 return 1;
206 }
207
208 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
209 struct l2t_entry *l2e)
210 {
211 int error = 0;
212
213 if (c4iw_fatal_error(rdev)) {
214 kfree_skb(skb);
215 pr_debug("%s - device in error state - dropping\n", __func__);
216 return -EIO;
217 }
218 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
219 if (error < 0)
220 kfree_skb(skb);
221 else if (error == NET_XMIT_DROP)
222 return -ENOMEM;
223 return error < 0 ? error : 0;
224 }
225
226 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
227 {
228 int error = 0;
229
230 if (c4iw_fatal_error(rdev)) {
231 kfree_skb(skb);
232 pr_debug("%s - device in error state - dropping\n", __func__);
233 return -EIO;
234 }
235 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
236 if (error < 0)
237 kfree_skb(skb);
238 return error < 0 ? error : 0;
239 }
240
241 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
242 {
243 u32 len = roundup(sizeof(struct cpl_tid_release), 16);
244
245 skb = get_skb(skb, len, GFP_KERNEL);
246 if (!skb)
247 return;
248
249 cxgb_mk_tid_release(skb, len, hwtid, 0);
250 c4iw_ofld_send(rdev, skb);
251 return;
252 }
253
254 static void set_emss(struct c4iw_ep *ep, u16 opt)
255 {
256 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
257 ((AF_INET == ep->com.remote_addr.ss_family) ?
258 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
259 sizeof(struct tcphdr);
260 ep->mss = ep->emss;
261 if (TCPOPT_TSTAMP_G(opt))
262 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
263 if (ep->emss < 128)
264 ep->emss = 128;
265 if (ep->emss & 7)
266 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n",
267 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
268 pr_debug("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
269 ep->mss, ep->emss);
270 }
271
272 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
273 {
274 enum c4iw_ep_state state;
275
276 mutex_lock(&epc->mutex);
277 state = epc->state;
278 mutex_unlock(&epc->mutex);
279 return state;
280 }
281
282 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
283 {
284 epc->state = new;
285 }
286
287 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
288 {
289 mutex_lock(&epc->mutex);
290 pr_debug("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
291 __state_set(epc, new);
292 mutex_unlock(&epc->mutex);
293 return;
294 }
295
296 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
297 {
298 struct sk_buff *skb;
299 unsigned int i;
300 size_t len;
301
302 len = roundup(sizeof(union cpl_wr_size), 16);
303 for (i = 0; i < size; i++) {
304 skb = alloc_skb(len, GFP_KERNEL);
305 if (!skb)
306 goto fail;
307 skb_queue_tail(ep_skb_list, skb);
308 }
309 return 0;
310 fail:
311 skb_queue_purge(ep_skb_list);
312 return -ENOMEM;
313 }
314
315 static void *alloc_ep(int size, gfp_t gfp)
316 {
317 struct c4iw_ep_common *epc;
318
319 epc = kzalloc(size, gfp);
320 if (epc) {
321 kref_init(&epc->kref);
322 mutex_init(&epc->mutex);
323 c4iw_init_wr_wait(&epc->wr_wait);
324 }
325 pr_debug("%s alloc ep %p\n", __func__, epc);
326 return epc;
327 }
328
329 static void remove_ep_tid(struct c4iw_ep *ep)
330 {
331 unsigned long flags;
332
333 spin_lock_irqsave(&ep->com.dev->lock, flags);
334 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
335 if (idr_is_empty(&ep->com.dev->hwtid_idr))
336 wake_up(&ep->com.dev->wait);
337 spin_unlock_irqrestore(&ep->com.dev->lock, flags);
338 }
339
340 static void insert_ep_tid(struct c4iw_ep *ep)
341 {
342 unsigned long flags;
343
344 spin_lock_irqsave(&ep->com.dev->lock, flags);
345 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
346 spin_unlock_irqrestore(&ep->com.dev->lock, flags);
347 }
348
349 /*
350 * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
351 */
352 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
353 {
354 struct c4iw_ep *ep;
355 unsigned long flags;
356
357 spin_lock_irqsave(&dev->lock, flags);
358 ep = idr_find(&dev->hwtid_idr, tid);
359 if (ep)
360 c4iw_get_ep(&ep->com);
361 spin_unlock_irqrestore(&dev->lock, flags);
362 return ep;
363 }
364
365 /*
366 * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
367 */
368 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
369 unsigned int stid)
370 {
371 struct c4iw_listen_ep *ep;
372 unsigned long flags;
373
374 spin_lock_irqsave(&dev->lock, flags);
375 ep = idr_find(&dev->stid_idr, stid);
376 if (ep)
377 c4iw_get_ep(&ep->com);
378 spin_unlock_irqrestore(&dev->lock, flags);
379 return ep;
380 }
381
382 void _c4iw_free_ep(struct kref *kref)
383 {
384 struct c4iw_ep *ep;
385
386 ep = container_of(kref, struct c4iw_ep, com.kref);
387 pr_debug("%s ep %p state %s\n", __func__, ep, states[ep->com.state]);
388 if (test_bit(QP_REFERENCED, &ep->com.flags))
389 deref_qp(ep);
390 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
391 if (ep->com.remote_addr.ss_family == AF_INET6) {
392 struct sockaddr_in6 *sin6 =
393 (struct sockaddr_in6 *)
394 &ep->com.local_addr;
395
396 cxgb4_clip_release(
397 ep->com.dev->rdev.lldi.ports[0],
398 (const u32 *)&sin6->sin6_addr.s6_addr,
399 1);
400 }
401 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
402 ep->com.local_addr.ss_family);
403 dst_release(ep->dst);
404 cxgb4_l2t_release(ep->l2t);
405 if (ep->mpa_skb)
406 kfree_skb(ep->mpa_skb);
407 }
408 if (!skb_queue_empty(&ep->com.ep_skb_list))
409 skb_queue_purge(&ep->com.ep_skb_list);
410 kfree(ep);
411 }
412
413 static void release_ep_resources(struct c4iw_ep *ep)
414 {
415 set_bit(RELEASE_RESOURCES, &ep->com.flags);
416
417 /*
418 * If we have a hwtid, then remove it from the idr table
419 * so lookups will no longer find this endpoint. Otherwise
420 * we have a race where one thread finds the ep ptr just
421 * before the other thread is freeing the ep memory.
422 */
423 if (ep->hwtid != -1)
424 remove_ep_tid(ep);
425 c4iw_put_ep(&ep->com);
426 }
427
428 static int status2errno(int status)
429 {
430 switch (status) {
431 case CPL_ERR_NONE:
432 return 0;
433 case CPL_ERR_CONN_RESET:
434 return -ECONNRESET;
435 case CPL_ERR_ARP_MISS:
436 return -EHOSTUNREACH;
437 case CPL_ERR_CONN_TIMEDOUT:
438 return -ETIMEDOUT;
439 case CPL_ERR_TCAM_FULL:
440 return -ENOMEM;
441 case CPL_ERR_CONN_EXIST:
442 return -EADDRINUSE;
443 default:
444 return -EIO;
445 }
446 }
447
448 /*
449 * Try and reuse skbs already allocated...
450 */
451 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
452 {
453 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
454 skb_trim(skb, 0);
455 skb_get(skb);
456 skb_reset_transport_header(skb);
457 } else {
458 skb = alloc_skb(len, gfp);
459 }
460 t4_set_arp_err_handler(skb, NULL, NULL);
461 return skb;
462 }
463
464 static struct net_device *get_real_dev(struct net_device *egress_dev)
465 {
466 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
467 }
468
469 static void arp_failure_discard(void *handle, struct sk_buff *skb)
470 {
471 pr_err("ARP failure\n");
472 kfree_skb(skb);
473 }
474
475 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
476 {
477 pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
478 }
479
480 enum {
481 NUM_FAKE_CPLS = 2,
482 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
483 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
484 };
485
486 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
487 {
488 struct c4iw_ep *ep;
489
490 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
491 release_ep_resources(ep);
492 kfree_skb(skb);
493 return 0;
494 }
495
496 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
497 {
498 struct c4iw_ep *ep;
499
500 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
501 c4iw_put_ep(&ep->parent_ep->com);
502 release_ep_resources(ep);
503 kfree_skb(skb);
504 return 0;
505 }
506
507 /*
508 * Fake up a special CPL opcode and call sched() so process_work() will call
509 * _put_ep_safe() in a safe context to free the ep resources. This is needed
510 * because ARP error handlers are called in an ATOMIC context, and
511 * _c4iw_free_ep() needs to block.
512 */
513 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
514 int cpl)
515 {
516 struct cpl_act_establish *rpl = cplhdr(skb);
517
518 /* Set our special ARP_FAILURE opcode */
519 rpl->ot.opcode = cpl;
520
521 /*
522 * Save ep in the skb->cb area, after where sched() will save the dev
523 * ptr.
524 */
525 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
526 sched(ep->com.dev, skb);
527 }
528
529 /* Handle an ARP failure for an accept */
530 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
531 {
532 struct c4iw_ep *ep = handle;
533
534 pr_err("ARP failure during accept - tid %u - dropping connection\n",
535 ep->hwtid);
536
537 __state_set(&ep->com, DEAD);
538 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
539 }
540
541 /*
542 * Handle an ARP failure for an active open.
543 */
544 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
545 {
546 struct c4iw_ep *ep = handle;
547
548 pr_err("ARP failure during connect\n");
549 connect_reply_upcall(ep, -EHOSTUNREACH);
550 __state_set(&ep->com, DEAD);
551 if (ep->com.remote_addr.ss_family == AF_INET6) {
552 struct sockaddr_in6 *sin6 =
553 (struct sockaddr_in6 *)&ep->com.local_addr;
554 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
555 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
556 }
557 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
558 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
559 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
560 }
561
562 /*
563 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
564 * and send it along.
565 */
566 static void abort_arp_failure(void *handle, struct sk_buff *skb)
567 {
568 int ret;
569 struct c4iw_ep *ep = handle;
570 struct c4iw_rdev *rdev = &ep->com.dev->rdev;
571 struct cpl_abort_req *req = cplhdr(skb);
572
573 pr_debug("%s rdev %p\n", __func__, rdev);
574 req->cmd = CPL_ABORT_NO_RST;
575 skb_get(skb);
576 ret = c4iw_ofld_send(rdev, skb);
577 if (ret) {
578 __state_set(&ep->com, DEAD);
579 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
580 } else
581 kfree_skb(skb);
582 }
583
584 static int send_flowc(struct c4iw_ep *ep)
585 {
586 struct fw_flowc_wr *flowc;
587 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
588 int i;
589 u16 vlan = ep->l2t->vlan;
590 int nparams;
591
592 if (WARN_ON(!skb))
593 return -ENOMEM;
594
595 if (vlan == CPL_L2T_VLAN_NONE)
596 nparams = 8;
597 else
598 nparams = 9;
599
600 flowc = __skb_put(skb, FLOWC_LEN);
601
602 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
603 FW_FLOWC_WR_NPARAMS_V(nparams));
604 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN,
605 16)) | FW_WR_FLOWID_V(ep->hwtid));
606
607 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
608 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
609 (ep->com.dev->rdev.lldi.pf));
610 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
611 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
612 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
613 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
614 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
615 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
616 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
617 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
618 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
619 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
620 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
621 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
622 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
623 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
624 if (nparams == 9) {
625 u16 pri;
626
627 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
628 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
629 flowc->mnemval[8].val = cpu_to_be32(pri);
630 } else {
631 /* Pad WR to 16 byte boundary */
632 flowc->mnemval[8].mnemonic = 0;
633 flowc->mnemval[8].val = 0;
634 }
635 for (i = 0; i < 9; i++) {
636 flowc->mnemval[i].r4[0] = 0;
637 flowc->mnemval[i].r4[1] = 0;
638 flowc->mnemval[i].r4[2] = 0;
639 }
640
641 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
642 return c4iw_ofld_send(&ep->com.dev->rdev, skb);
643 }
644
645 static int send_halfclose(struct c4iw_ep *ep)
646 {
647 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
648 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16);
649
650 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
651 if (WARN_ON(!skb))
652 return -ENOMEM;
653
654 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx,
655 NULL, arp_failure_discard);
656
657 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
658 }
659
660 static int send_abort(struct c4iw_ep *ep)
661 {
662 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16);
663 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
664
665 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
666 if (WARN_ON(!req_skb))
667 return -ENOMEM;
668
669 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx,
670 ep, abort_arp_failure);
671
672 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
673 }
674
675 static int send_connect(struct c4iw_ep *ep)
676 {
677 struct cpl_act_open_req *req = NULL;
678 struct cpl_t5_act_open_req *t5req = NULL;
679 struct cpl_t6_act_open_req *t6req = NULL;
680 struct cpl_act_open_req6 *req6 = NULL;
681 struct cpl_t5_act_open_req6 *t5req6 = NULL;
682 struct cpl_t6_act_open_req6 *t6req6 = NULL;
683 struct sk_buff *skb;
684 u64 opt0;
685 u32 opt2;
686 unsigned int mtu_idx;
687 u32 wscale;
688 int win, sizev4, sizev6, wrlen;
689 struct sockaddr_in *la = (struct sockaddr_in *)
690 &ep->com.local_addr;
691 struct sockaddr_in *ra = (struct sockaddr_in *)
692 &ep->com.remote_addr;
693 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
694 &ep->com.local_addr;
695 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
696 &ep->com.remote_addr;
697 int ret;
698 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
699 u32 isn = (prandom_u32() & ~7UL) - 1;
700 struct net_device *netdev;
701 u64 params;
702
703 netdev = ep->com.dev->rdev.lldi.ports[0];
704
705 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
706 case CHELSIO_T4:
707 sizev4 = sizeof(struct cpl_act_open_req);
708 sizev6 = sizeof(struct cpl_act_open_req6);
709 break;
710 case CHELSIO_T5:
711 sizev4 = sizeof(struct cpl_t5_act_open_req);
712 sizev6 = sizeof(struct cpl_t5_act_open_req6);
713 break;
714 case CHELSIO_T6:
715 sizev4 = sizeof(struct cpl_t6_act_open_req);
716 sizev6 = sizeof(struct cpl_t6_act_open_req6);
717 break;
718 default:
719 pr_err("T%d Chip is not supported\n",
720 CHELSIO_CHIP_VERSION(adapter_type));
721 return -EINVAL;
722 }
723
724 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
725 roundup(sizev4, 16) :
726 roundup(sizev6, 16);
727
728 pr_debug("%s ep %p atid %u\n", __func__, ep, ep->atid);
729
730 skb = get_skb(NULL, wrlen, GFP_KERNEL);
731 if (!skb) {
732 pr_err("%s - failed to alloc skb\n", __func__);
733 return -ENOMEM;
734 }
735 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
736
737 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
738 enable_tcp_timestamps,
739 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
740 wscale = cxgb_compute_wscale(rcv_win);
741
742 /*
743 * Specify the largest window that will fit in opt0. The
744 * remainder will be specified in the rx_data_ack.
745 */
746 win = ep->rcv_win >> 10;
747 if (win > RCV_BUFSIZ_M)
748 win = RCV_BUFSIZ_M;
749
750 opt0 = (nocong ? NO_CONG_F : 0) |
751 KEEP_ALIVE_F |
752 DELACK_F |
753 WND_SCALE_V(wscale) |
754 MSS_IDX_V(mtu_idx) |
755 L2T_IDX_V(ep->l2t->idx) |
756 TX_CHAN_V(ep->tx_chan) |
757 SMAC_SEL_V(ep->smac_idx) |
758 DSCP_V(ep->tos >> 2) |
759 ULP_MODE_V(ULP_MODE_TCPDDP) |
760 RCV_BUFSIZ_V(win);
761 opt2 = RX_CHANNEL_V(0) |
762 CCTRL_ECN_V(enable_ecn) |
763 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
764 if (enable_tcp_timestamps)
765 opt2 |= TSTAMPS_EN_F;
766 if (enable_tcp_sack)
767 opt2 |= SACK_EN_F;
768 if (wscale && enable_tcp_window_scaling)
769 opt2 |= WND_SCALE_EN_F;
770 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
771 if (peer2peer)
772 isn += 4;
773
774 opt2 |= T5_OPT_2_VALID_F;
775 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
776 opt2 |= T5_ISS_F;
777 }
778
779 params = cxgb4_select_ntuple(netdev, ep->l2t);
780
781 if (ep->com.remote_addr.ss_family == AF_INET6)
782 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
783 (const u32 *)&la6->sin6_addr.s6_addr, 1);
784
785 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
786
787 if (ep->com.remote_addr.ss_family == AF_INET) {
788 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
789 case CHELSIO_T4:
790 req = skb_put(skb, wrlen);
791 INIT_TP_WR(req, 0);
792 break;
793 case CHELSIO_T5:
794 t5req = skb_put(skb, wrlen);
795 INIT_TP_WR(t5req, 0);
796 req = (struct cpl_act_open_req *)t5req;
797 break;
798 case CHELSIO_T6:
799 t6req = skb_put(skb, wrlen);
800 INIT_TP_WR(t6req, 0);
801 req = (struct cpl_act_open_req *)t6req;
802 t5req = (struct cpl_t5_act_open_req *)t6req;
803 break;
804 default:
805 pr_err("T%d Chip is not supported\n",
806 CHELSIO_CHIP_VERSION(adapter_type));
807 ret = -EINVAL;
808 goto clip_release;
809 }
810
811 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
812 ((ep->rss_qid<<14) | ep->atid)));
813 req->local_port = la->sin_port;
814 req->peer_port = ra->sin_port;
815 req->local_ip = la->sin_addr.s_addr;
816 req->peer_ip = ra->sin_addr.s_addr;
817 req->opt0 = cpu_to_be64(opt0);
818
819 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
820 req->params = cpu_to_be32(params);
821 req->opt2 = cpu_to_be32(opt2);
822 } else {
823 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
824 t5req->params =
825 cpu_to_be64(FILTER_TUPLE_V(params));
826 t5req->rsvd = cpu_to_be32(isn);
827 pr_debug("%s snd_isn %u\n", __func__, t5req->rsvd);
828 t5req->opt2 = cpu_to_be32(opt2);
829 } else {
830 t6req->params =
831 cpu_to_be64(FILTER_TUPLE_V(params));
832 t6req->rsvd = cpu_to_be32(isn);
833 pr_debug("%s snd_isn %u\n", __func__, t6req->rsvd);
834 t6req->opt2 = cpu_to_be32(opt2);
835 }
836 }
837 } else {
838 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
839 case CHELSIO_T4:
840 req6 = skb_put(skb, wrlen);
841 INIT_TP_WR(req6, 0);
842 break;
843 case CHELSIO_T5:
844 t5req6 = skb_put(skb, wrlen);
845 INIT_TP_WR(t5req6, 0);
846 req6 = (struct cpl_act_open_req6 *)t5req6;
847 break;
848 case CHELSIO_T6:
849 t6req6 = skb_put(skb, wrlen);
850 INIT_TP_WR(t6req6, 0);
851 req6 = (struct cpl_act_open_req6 *)t6req6;
852 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
853 break;
854 default:
855 pr_err("T%d Chip is not supported\n",
856 CHELSIO_CHIP_VERSION(adapter_type));
857 ret = -EINVAL;
858 goto clip_release;
859 }
860
861 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
862 ((ep->rss_qid<<14)|ep->atid)));
863 req6->local_port = la6->sin6_port;
864 req6->peer_port = ra6->sin6_port;
865 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
866 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
867 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
868 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
869 req6->opt0 = cpu_to_be64(opt0);
870
871 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
872 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev,
873 ep->l2t));
874 req6->opt2 = cpu_to_be32(opt2);
875 } else {
876 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
877 t5req6->params =
878 cpu_to_be64(FILTER_TUPLE_V(params));
879 t5req6->rsvd = cpu_to_be32(isn);
880 pr_debug("%s snd_isn %u\n", __func__, t5req6->rsvd);
881 t5req6->opt2 = cpu_to_be32(opt2);
882 } else {
883 t6req6->params =
884 cpu_to_be64(FILTER_TUPLE_V(params));
885 t6req6->rsvd = cpu_to_be32(isn);
886 pr_debug("%s snd_isn %u\n", __func__, t6req6->rsvd);
887 t6req6->opt2 = cpu_to_be32(opt2);
888 }
889
890 }
891 }
892
893 set_bit(ACT_OPEN_REQ, &ep->com.history);
894 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
895 clip_release:
896 if (ret && ep->com.remote_addr.ss_family == AF_INET6)
897 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
898 (const u32 *)&la6->sin6_addr.s6_addr, 1);
899 return ret;
900 }
901
902 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
903 u8 mpa_rev_to_use)
904 {
905 int mpalen, wrlen, ret;
906 struct fw_ofld_tx_data_wr *req;
907 struct mpa_message *mpa;
908 struct mpa_v2_conn_params mpa_v2_params;
909
910 pr_debug("%s ep %p tid %u pd_len %d\n",
911 __func__, ep, ep->hwtid, ep->plen);
912
913 BUG_ON(skb_cloned(skb));
914
915 mpalen = sizeof(*mpa) + ep->plen;
916 if (mpa_rev_to_use == 2)
917 mpalen += sizeof(struct mpa_v2_conn_params);
918 wrlen = roundup(mpalen + sizeof *req, 16);
919 skb = get_skb(skb, wrlen, GFP_KERNEL);
920 if (!skb) {
921 connect_reply_upcall(ep, -ENOMEM);
922 return -ENOMEM;
923 }
924 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
925
926 req = skb_put_zero(skb, wrlen);
927 req->op_to_immdlen = cpu_to_be32(
928 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
929 FW_WR_COMPL_F |
930 FW_WR_IMMDLEN_V(mpalen));
931 req->flowid_len16 = cpu_to_be32(
932 FW_WR_FLOWID_V(ep->hwtid) |
933 FW_WR_LEN16_V(wrlen >> 4));
934 req->plen = cpu_to_be32(mpalen);
935 req->tunnel_to_proxy = cpu_to_be32(
936 FW_OFLD_TX_DATA_WR_FLUSH_F |
937 FW_OFLD_TX_DATA_WR_SHOVE_F);
938
939 mpa = (struct mpa_message *)(req + 1);
940 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
941
942 mpa->flags = 0;
943 if (crc_enabled)
944 mpa->flags |= MPA_CRC;
945 if (markers_enabled) {
946 mpa->flags |= MPA_MARKERS;
947 ep->mpa_attr.recv_marker_enabled = 1;
948 } else {
949 ep->mpa_attr.recv_marker_enabled = 0;
950 }
951 if (mpa_rev_to_use == 2)
952 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
953
954 mpa->private_data_size = htons(ep->plen);
955 mpa->revision = mpa_rev_to_use;
956 if (mpa_rev_to_use == 1) {
957 ep->tried_with_mpa_v1 = 1;
958 ep->retry_with_mpa_v1 = 0;
959 }
960
961 if (mpa_rev_to_use == 2) {
962 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
963 sizeof (struct mpa_v2_conn_params));
964 pr_debug("%s initiator ird %u ord %u\n", __func__, ep->ird,
965 ep->ord);
966 mpa_v2_params.ird = htons((u16)ep->ird);
967 mpa_v2_params.ord = htons((u16)ep->ord);
968
969 if (peer2peer) {
970 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
971 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
972 mpa_v2_params.ord |=
973 htons(MPA_V2_RDMA_WRITE_RTR);
974 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
975 mpa_v2_params.ord |=
976 htons(MPA_V2_RDMA_READ_RTR);
977 }
978 memcpy(mpa->private_data, &mpa_v2_params,
979 sizeof(struct mpa_v2_conn_params));
980
981 if (ep->plen)
982 memcpy(mpa->private_data +
983 sizeof(struct mpa_v2_conn_params),
984 ep->mpa_pkt + sizeof(*mpa), ep->plen);
985 } else
986 if (ep->plen)
987 memcpy(mpa->private_data,
988 ep->mpa_pkt + sizeof(*mpa), ep->plen);
989
990 /*
991 * Reference the mpa skb. This ensures the data area
992 * will remain in memory until the hw acks the tx.
993 * Function fw4_ack() will deref it.
994 */
995 skb_get(skb);
996 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
997 BUG_ON(ep->mpa_skb);
998 ep->mpa_skb = skb;
999 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1000 if (ret)
1001 return ret;
1002 start_ep_timer(ep);
1003 __state_set(&ep->com, MPA_REQ_SENT);
1004 ep->mpa_attr.initiator = 1;
1005 ep->snd_seq += mpalen;
1006 return ret;
1007 }
1008
1009 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1010 {
1011 int mpalen, wrlen;
1012 struct fw_ofld_tx_data_wr *req;
1013 struct mpa_message *mpa;
1014 struct sk_buff *skb;
1015 struct mpa_v2_conn_params mpa_v2_params;
1016
1017 pr_debug("%s ep %p tid %u pd_len %d\n",
1018 __func__, ep, ep->hwtid, ep->plen);
1019
1020 mpalen = sizeof(*mpa) + plen;
1021 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1022 mpalen += sizeof(struct mpa_v2_conn_params);
1023 wrlen = roundup(mpalen + sizeof *req, 16);
1024
1025 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1026 if (!skb) {
1027 pr_err("%s - cannot alloc skb!\n", __func__);
1028 return -ENOMEM;
1029 }
1030 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1031
1032 req = skb_put_zero(skb, wrlen);
1033 req->op_to_immdlen = cpu_to_be32(
1034 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1035 FW_WR_COMPL_F |
1036 FW_WR_IMMDLEN_V(mpalen));
1037 req->flowid_len16 = cpu_to_be32(
1038 FW_WR_FLOWID_V(ep->hwtid) |
1039 FW_WR_LEN16_V(wrlen >> 4));
1040 req->plen = cpu_to_be32(mpalen);
1041 req->tunnel_to_proxy = cpu_to_be32(
1042 FW_OFLD_TX_DATA_WR_FLUSH_F |
1043 FW_OFLD_TX_DATA_WR_SHOVE_F);
1044
1045 mpa = (struct mpa_message *)(req + 1);
1046 memset(mpa, 0, sizeof(*mpa));
1047 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1048 mpa->flags = MPA_REJECT;
1049 mpa->revision = ep->mpa_attr.version;
1050 mpa->private_data_size = htons(plen);
1051
1052 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1053 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1054 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1055 sizeof (struct mpa_v2_conn_params));
1056 mpa_v2_params.ird = htons(((u16)ep->ird) |
1057 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1058 0));
1059 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1060 (p2p_type ==
1061 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1062 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1063 FW_RI_INIT_P2PTYPE_READ_REQ ?
1064 MPA_V2_RDMA_READ_RTR : 0) : 0));
1065 memcpy(mpa->private_data, &mpa_v2_params,
1066 sizeof(struct mpa_v2_conn_params));
1067
1068 if (ep->plen)
1069 memcpy(mpa->private_data +
1070 sizeof(struct mpa_v2_conn_params), pdata, plen);
1071 } else
1072 if (plen)
1073 memcpy(mpa->private_data, pdata, plen);
1074
1075 /*
1076 * Reference the mpa skb again. This ensures the data area
1077 * will remain in memory until the hw acks the tx.
1078 * Function fw4_ack() will deref it.
1079 */
1080 skb_get(skb);
1081 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1082 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1083 BUG_ON(ep->mpa_skb);
1084 ep->mpa_skb = skb;
1085 ep->snd_seq += mpalen;
1086 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1087 }
1088
1089 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1090 {
1091 int mpalen, wrlen;
1092 struct fw_ofld_tx_data_wr *req;
1093 struct mpa_message *mpa;
1094 struct sk_buff *skb;
1095 struct mpa_v2_conn_params mpa_v2_params;
1096
1097 pr_debug("%s ep %p tid %u pd_len %d\n",
1098 __func__, ep, ep->hwtid, ep->plen);
1099
1100 mpalen = sizeof(*mpa) + plen;
1101 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1102 mpalen += sizeof(struct mpa_v2_conn_params);
1103 wrlen = roundup(mpalen + sizeof *req, 16);
1104
1105 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1106 if (!skb) {
1107 pr_err("%s - cannot alloc skb!\n", __func__);
1108 return -ENOMEM;
1109 }
1110 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1111
1112 req = skb_put_zero(skb, wrlen);
1113 req->op_to_immdlen = cpu_to_be32(
1114 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1115 FW_WR_COMPL_F |
1116 FW_WR_IMMDLEN_V(mpalen));
1117 req->flowid_len16 = cpu_to_be32(
1118 FW_WR_FLOWID_V(ep->hwtid) |
1119 FW_WR_LEN16_V(wrlen >> 4));
1120 req->plen = cpu_to_be32(mpalen);
1121 req->tunnel_to_proxy = cpu_to_be32(
1122 FW_OFLD_TX_DATA_WR_FLUSH_F |
1123 FW_OFLD_TX_DATA_WR_SHOVE_F);
1124
1125 mpa = (struct mpa_message *)(req + 1);
1126 memset(mpa, 0, sizeof(*mpa));
1127 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1128 mpa->flags = 0;
1129 if (ep->mpa_attr.crc_enabled)
1130 mpa->flags |= MPA_CRC;
1131 if (ep->mpa_attr.recv_marker_enabled)
1132 mpa->flags |= MPA_MARKERS;
1133 mpa->revision = ep->mpa_attr.version;
1134 mpa->private_data_size = htons(plen);
1135
1136 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1137 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1138 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1139 sizeof (struct mpa_v2_conn_params));
1140 mpa_v2_params.ird = htons((u16)ep->ird);
1141 mpa_v2_params.ord = htons((u16)ep->ord);
1142 if (peer2peer && (ep->mpa_attr.p2p_type !=
1143 FW_RI_INIT_P2PTYPE_DISABLED)) {
1144 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1145
1146 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1147 mpa_v2_params.ord |=
1148 htons(MPA_V2_RDMA_WRITE_RTR);
1149 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1150 mpa_v2_params.ord |=
1151 htons(MPA_V2_RDMA_READ_RTR);
1152 }
1153
1154 memcpy(mpa->private_data, &mpa_v2_params,
1155 sizeof(struct mpa_v2_conn_params));
1156
1157 if (ep->plen)
1158 memcpy(mpa->private_data +
1159 sizeof(struct mpa_v2_conn_params), pdata, plen);
1160 } else
1161 if (plen)
1162 memcpy(mpa->private_data, pdata, plen);
1163
1164 /*
1165 * Reference the mpa skb. This ensures the data area
1166 * will remain in memory until the hw acks the tx.
1167 * Function fw4_ack() will deref it.
1168 */
1169 skb_get(skb);
1170 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1171 ep->mpa_skb = skb;
1172 __state_set(&ep->com, MPA_REP_SENT);
1173 ep->snd_seq += mpalen;
1174 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1175 }
1176
1177 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1178 {
1179 struct c4iw_ep *ep;
1180 struct cpl_act_establish *req = cplhdr(skb);
1181 unsigned int tid = GET_TID(req);
1182 unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1183 struct tid_info *t = dev->rdev.lldi.tids;
1184 int ret;
1185
1186 ep = lookup_atid(t, atid);
1187
1188 pr_debug("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
1189 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1190
1191 mutex_lock(&ep->com.mutex);
1192 dst_confirm(ep->dst);
1193
1194 /* setup the hwtid for this connection */
1195 ep->hwtid = tid;
1196 cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family);
1197 insert_ep_tid(ep);
1198
1199 ep->snd_seq = be32_to_cpu(req->snd_isn);
1200 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1201
1202 set_emss(ep, ntohs(req->tcp_opt));
1203
1204 /* dealloc the atid */
1205 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1206 cxgb4_free_atid(t, atid);
1207 set_bit(ACT_ESTAB, &ep->com.history);
1208
1209 /* start MPA negotiation */
1210 ret = send_flowc(ep);
1211 if (ret)
1212 goto err;
1213 if (ep->retry_with_mpa_v1)
1214 ret = send_mpa_req(ep, skb, 1);
1215 else
1216 ret = send_mpa_req(ep, skb, mpa_rev);
1217 if (ret)
1218 goto err;
1219 mutex_unlock(&ep->com.mutex);
1220 return 0;
1221 err:
1222 mutex_unlock(&ep->com.mutex);
1223 connect_reply_upcall(ep, -ENOMEM);
1224 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1225 return 0;
1226 }
1227
1228 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1229 {
1230 struct iw_cm_event event;
1231
1232 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1233 memset(&event, 0, sizeof(event));
1234 event.event = IW_CM_EVENT_CLOSE;
1235 event.status = status;
1236 if (ep->com.cm_id) {
1237 pr_debug("close complete delivered ep %p cm_id %p tid %u\n",
1238 ep, ep->com.cm_id, ep->hwtid);
1239 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1240 deref_cm_id(&ep->com);
1241 set_bit(CLOSE_UPCALL, &ep->com.history);
1242 }
1243 }
1244
1245 static void peer_close_upcall(struct c4iw_ep *ep)
1246 {
1247 struct iw_cm_event event;
1248
1249 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1250 memset(&event, 0, sizeof(event));
1251 event.event = IW_CM_EVENT_DISCONNECT;
1252 if (ep->com.cm_id) {
1253 pr_debug("peer close delivered ep %p cm_id %p tid %u\n",
1254 ep, ep->com.cm_id, ep->hwtid);
1255 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1256 set_bit(DISCONN_UPCALL, &ep->com.history);
1257 }
1258 }
1259
1260 static void peer_abort_upcall(struct c4iw_ep *ep)
1261 {
1262 struct iw_cm_event event;
1263
1264 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1265 memset(&event, 0, sizeof(event));
1266 event.event = IW_CM_EVENT_CLOSE;
1267 event.status = -ECONNRESET;
1268 if (ep->com.cm_id) {
1269 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep,
1270 ep->com.cm_id, ep->hwtid);
1271 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1272 deref_cm_id(&ep->com);
1273 set_bit(ABORT_UPCALL, &ep->com.history);
1274 }
1275 }
1276
1277 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1278 {
1279 struct iw_cm_event event;
1280
1281 pr_debug("%s ep %p tid %u status %d\n",
1282 __func__, ep, ep->hwtid, status);
1283 memset(&event, 0, sizeof(event));
1284 event.event = IW_CM_EVENT_CONNECT_REPLY;
1285 event.status = status;
1286 memcpy(&event.local_addr, &ep->com.local_addr,
1287 sizeof(ep->com.local_addr));
1288 memcpy(&event.remote_addr, &ep->com.remote_addr,
1289 sizeof(ep->com.remote_addr));
1290
1291 if ((status == 0) || (status == -ECONNREFUSED)) {
1292 if (!ep->tried_with_mpa_v1) {
1293 /* this means MPA_v2 is used */
1294 event.ord = ep->ird;
1295 event.ird = ep->ord;
1296 event.private_data_len = ep->plen -
1297 sizeof(struct mpa_v2_conn_params);
1298 event.private_data = ep->mpa_pkt +
1299 sizeof(struct mpa_message) +
1300 sizeof(struct mpa_v2_conn_params);
1301 } else {
1302 /* this means MPA_v1 is used */
1303 event.ord = cur_max_read_depth(ep->com.dev);
1304 event.ird = cur_max_read_depth(ep->com.dev);
1305 event.private_data_len = ep->plen;
1306 event.private_data = ep->mpa_pkt +
1307 sizeof(struct mpa_message);
1308 }
1309 }
1310
1311 pr_debug("%s ep %p tid %u status %d\n", __func__, ep,
1312 ep->hwtid, status);
1313 set_bit(CONN_RPL_UPCALL, &ep->com.history);
1314 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1315
1316 if (status < 0)
1317 deref_cm_id(&ep->com);
1318 }
1319
1320 static int connect_request_upcall(struct c4iw_ep *ep)
1321 {
1322 struct iw_cm_event event;
1323 int ret;
1324
1325 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1326 memset(&event, 0, sizeof(event));
1327 event.event = IW_CM_EVENT_CONNECT_REQUEST;
1328 memcpy(&event.local_addr, &ep->com.local_addr,
1329 sizeof(ep->com.local_addr));
1330 memcpy(&event.remote_addr, &ep->com.remote_addr,
1331 sizeof(ep->com.remote_addr));
1332 event.provider_data = ep;
1333 if (!ep->tried_with_mpa_v1) {
1334 /* this means MPA_v2 is used */
1335 event.ord = ep->ord;
1336 event.ird = ep->ird;
1337 event.private_data_len = ep->plen -
1338 sizeof(struct mpa_v2_conn_params);
1339 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1340 sizeof(struct mpa_v2_conn_params);
1341 } else {
1342 /* this means MPA_v1 is used. Send max supported */
1343 event.ord = cur_max_read_depth(ep->com.dev);
1344 event.ird = cur_max_read_depth(ep->com.dev);
1345 event.private_data_len = ep->plen;
1346 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1347 }
1348 c4iw_get_ep(&ep->com);
1349 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1350 &event);
1351 if (ret)
1352 c4iw_put_ep(&ep->com);
1353 set_bit(CONNREQ_UPCALL, &ep->com.history);
1354 c4iw_put_ep(&ep->parent_ep->com);
1355 return ret;
1356 }
1357
1358 static void established_upcall(struct c4iw_ep *ep)
1359 {
1360 struct iw_cm_event event;
1361
1362 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1363 memset(&event, 0, sizeof(event));
1364 event.event = IW_CM_EVENT_ESTABLISHED;
1365 event.ird = ep->ord;
1366 event.ord = ep->ird;
1367 if (ep->com.cm_id) {
1368 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1369 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1370 set_bit(ESTAB_UPCALL, &ep->com.history);
1371 }
1372 }
1373
1374 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1375 {
1376 struct sk_buff *skb;
1377 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16);
1378 u32 credit_dack;
1379
1380 pr_debug("%s ep %p tid %u credits %u\n",
1381 __func__, ep, ep->hwtid, credits);
1382 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1383 if (!skb) {
1384 pr_err("update_rx_credits - cannot alloc skb!\n");
1385 return 0;
1386 }
1387
1388 /*
1389 * If we couldn't specify the entire rcv window at connection setup
1390 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1391 * then add the overage in to the credits returned.
1392 */
1393 if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1394 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1395
1396 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F |
1397 RX_DACK_MODE_V(dack_mode);
1398
1399 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx,
1400 credit_dack);
1401
1402 c4iw_ofld_send(&ep->com.dev->rdev, skb);
1403 return credits;
1404 }
1405
1406 #define RELAXED_IRD_NEGOTIATION 1
1407
1408 /*
1409 * process_mpa_reply - process streaming mode MPA reply
1410 *
1411 * Returns:
1412 *
1413 * 0 upon success indicating a connect request was delivered to the ULP
1414 * or the mpa request is incomplete but valid so far.
1415 *
1416 * 1 if a failure requires the caller to close the connection.
1417 *
1418 * 2 if a failure requires the caller to abort the connection.
1419 */
1420 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1421 {
1422 struct mpa_message *mpa;
1423 struct mpa_v2_conn_params *mpa_v2_params;
1424 u16 plen;
1425 u16 resp_ird, resp_ord;
1426 u8 rtr_mismatch = 0, insuff_ird = 0;
1427 struct c4iw_qp_attributes attrs;
1428 enum c4iw_qp_attr_mask mask;
1429 int err;
1430 int disconnect = 0;
1431
1432 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1433
1434 /*
1435 * If we get more than the supported amount of private data
1436 * then we must fail this connection.
1437 */
1438 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1439 err = -EINVAL;
1440 goto err_stop_timer;
1441 }
1442
1443 /*
1444 * copy the new data into our accumulation buffer.
1445 */
1446 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1447 skb->len);
1448 ep->mpa_pkt_len += skb->len;
1449
1450 /*
1451 * if we don't even have the mpa message, then bail.
1452 */
1453 if (ep->mpa_pkt_len < sizeof(*mpa))
1454 return 0;
1455 mpa = (struct mpa_message *) ep->mpa_pkt;
1456
1457 /* Validate MPA header. */
1458 if (mpa->revision > mpa_rev) {
1459 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1460 __func__, mpa_rev, mpa->revision);
1461 err = -EPROTO;
1462 goto err_stop_timer;
1463 }
1464 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1465 err = -EPROTO;
1466 goto err_stop_timer;
1467 }
1468
1469 plen = ntohs(mpa->private_data_size);
1470
1471 /*
1472 * Fail if there's too much private data.
1473 */
1474 if (plen > MPA_MAX_PRIVATE_DATA) {
1475 err = -EPROTO;
1476 goto err_stop_timer;
1477 }
1478
1479 /*
1480 * If plen does not account for pkt size
1481 */
1482 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1483 err = -EPROTO;
1484 goto err_stop_timer;
1485 }
1486
1487 ep->plen = (u8) plen;
1488
1489 /*
1490 * If we don't have all the pdata yet, then bail.
1491 * We'll continue process when more data arrives.
1492 */
1493 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1494 return 0;
1495
1496 if (mpa->flags & MPA_REJECT) {
1497 err = -ECONNREFUSED;
1498 goto err_stop_timer;
1499 }
1500
1501 /*
1502 * Stop mpa timer. If it expired, then
1503 * we ignore the MPA reply. process_timeout()
1504 * will abort the connection.
1505 */
1506 if (stop_ep_timer(ep))
1507 return 0;
1508
1509 /*
1510 * If we get here we have accumulated the entire mpa
1511 * start reply message including private data. And
1512 * the MPA header is valid.
1513 */
1514 __state_set(&ep->com, FPDU_MODE);
1515 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1516 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1517 ep->mpa_attr.version = mpa->revision;
1518 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1519
1520 if (mpa->revision == 2) {
1521 ep->mpa_attr.enhanced_rdma_conn =
1522 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1523 if (ep->mpa_attr.enhanced_rdma_conn) {
1524 mpa_v2_params = (struct mpa_v2_conn_params *)
1525 (ep->mpa_pkt + sizeof(*mpa));
1526 resp_ird = ntohs(mpa_v2_params->ird) &
1527 MPA_V2_IRD_ORD_MASK;
1528 resp_ord = ntohs(mpa_v2_params->ord) &
1529 MPA_V2_IRD_ORD_MASK;
1530 pr_debug("%s responder ird %u ord %u ep ird %u ord %u\n",
1531 __func__,
1532 resp_ird, resp_ord, ep->ird, ep->ord);
1533
1534 /*
1535 * This is a double-check. Ideally, below checks are
1536 * not required since ird/ord stuff has been taken
1537 * care of in c4iw_accept_cr
1538 */
1539 if (ep->ird < resp_ord) {
1540 if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1541 ep->com.dev->rdev.lldi.max_ordird_qp)
1542 ep->ird = resp_ord;
1543 else
1544 insuff_ird = 1;
1545 } else if (ep->ird > resp_ord) {
1546 ep->ird = resp_ord;
1547 }
1548 if (ep->ord > resp_ird) {
1549 if (RELAXED_IRD_NEGOTIATION)
1550 ep->ord = resp_ird;
1551 else
1552 insuff_ird = 1;
1553 }
1554 if (insuff_ird) {
1555 err = -ENOMEM;
1556 ep->ird = resp_ord;
1557 ep->ord = resp_ird;
1558 }
1559
1560 if (ntohs(mpa_v2_params->ird) &
1561 MPA_V2_PEER2PEER_MODEL) {
1562 if (ntohs(mpa_v2_params->ord) &
1563 MPA_V2_RDMA_WRITE_RTR)
1564 ep->mpa_attr.p2p_type =
1565 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1566 else if (ntohs(mpa_v2_params->ord) &
1567 MPA_V2_RDMA_READ_RTR)
1568 ep->mpa_attr.p2p_type =
1569 FW_RI_INIT_P2PTYPE_READ_REQ;
1570 }
1571 }
1572 } else if (mpa->revision == 1)
1573 if (peer2peer)
1574 ep->mpa_attr.p2p_type = p2p_type;
1575
1576 pr_debug("%s - crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n",
1577 __func__, ep->mpa_attr.crc_enabled,
1578 ep->mpa_attr.recv_marker_enabled,
1579 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1580 ep->mpa_attr.p2p_type, p2p_type);
1581
1582 /*
1583 * If responder's RTR does not match with that of initiator, assign
1584 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1585 * generated when moving QP to RTS state.
1586 * A TERM message will be sent after QP has moved to RTS state
1587 */
1588 if ((ep->mpa_attr.version == 2) && peer2peer &&
1589 (ep->mpa_attr.p2p_type != p2p_type)) {
1590 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1591 rtr_mismatch = 1;
1592 }
1593
1594 attrs.mpa_attr = ep->mpa_attr;
1595 attrs.max_ird = ep->ird;
1596 attrs.max_ord = ep->ord;
1597 attrs.llp_stream_handle = ep;
1598 attrs.next_state = C4IW_QP_STATE_RTS;
1599
1600 mask = C4IW_QP_ATTR_NEXT_STATE |
1601 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1602 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1603
1604 /* bind QP and TID with INIT_WR */
1605 err = c4iw_modify_qp(ep->com.qp->rhp,
1606 ep->com.qp, mask, &attrs, 1);
1607 if (err)
1608 goto err;
1609
1610 /*
1611 * If responder's RTR requirement did not match with what initiator
1612 * supports, generate TERM message
1613 */
1614 if (rtr_mismatch) {
1615 pr_err("%s: RTR mismatch, sending TERM\n", __func__);
1616 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1617 attrs.ecode = MPA_NOMATCH_RTR;
1618 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1619 attrs.send_term = 1;
1620 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1621 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1622 err = -ENOMEM;
1623 disconnect = 1;
1624 goto out;
1625 }
1626
1627 /*
1628 * Generate TERM if initiator IRD is not sufficient for responder
1629 * provided ORD. Currently, we do the same behaviour even when
1630 * responder provided IRD is also not sufficient as regards to
1631 * initiator ORD.
1632 */
1633 if (insuff_ird) {
1634 pr_err("%s: Insufficient IRD, sending TERM\n", __func__);
1635 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1636 attrs.ecode = MPA_INSUFF_IRD;
1637 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1638 attrs.send_term = 1;
1639 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1640 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1641 err = -ENOMEM;
1642 disconnect = 1;
1643 goto out;
1644 }
1645 goto out;
1646 err_stop_timer:
1647 stop_ep_timer(ep);
1648 err:
1649 disconnect = 2;
1650 out:
1651 connect_reply_upcall(ep, err);
1652 return disconnect;
1653 }
1654
1655 /*
1656 * process_mpa_request - process streaming mode MPA request
1657 *
1658 * Returns:
1659 *
1660 * 0 upon success indicating a connect request was delivered to the ULP
1661 * or the mpa request is incomplete but valid so far.
1662 *
1663 * 1 if a failure requires the caller to close the connection.
1664 *
1665 * 2 if a failure requires the caller to abort the connection.
1666 */
1667 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1668 {
1669 struct mpa_message *mpa;
1670 struct mpa_v2_conn_params *mpa_v2_params;
1671 u16 plen;
1672
1673 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1674
1675 /*
1676 * If we get more than the supported amount of private data
1677 * then we must fail this connection.
1678 */
1679 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1680 goto err_stop_timer;
1681
1682 pr_debug("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1683
1684 /*
1685 * Copy the new data into our accumulation buffer.
1686 */
1687 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1688 skb->len);
1689 ep->mpa_pkt_len += skb->len;
1690
1691 /*
1692 * If we don't even have the mpa message, then bail.
1693 * We'll continue process when more data arrives.
1694 */
1695 if (ep->mpa_pkt_len < sizeof(*mpa))
1696 return 0;
1697
1698 pr_debug("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1699 mpa = (struct mpa_message *) ep->mpa_pkt;
1700
1701 /*
1702 * Validate MPA Header.
1703 */
1704 if (mpa->revision > mpa_rev) {
1705 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1706 __func__, mpa_rev, mpa->revision);
1707 goto err_stop_timer;
1708 }
1709
1710 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1711 goto err_stop_timer;
1712
1713 plen = ntohs(mpa->private_data_size);
1714
1715 /*
1716 * Fail if there's too much private data.
1717 */
1718 if (plen > MPA_MAX_PRIVATE_DATA)
1719 goto err_stop_timer;
1720
1721 /*
1722 * If plen does not account for pkt size
1723 */
1724 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1725 goto err_stop_timer;
1726 ep->plen = (u8) plen;
1727
1728 /*
1729 * If we don't have all the pdata yet, then bail.
1730 */
1731 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1732 return 0;
1733
1734 /*
1735 * If we get here we have accumulated the entire mpa
1736 * start reply message including private data.
1737 */
1738 ep->mpa_attr.initiator = 0;
1739 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1740 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1741 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1742 ep->mpa_attr.version = mpa->revision;
1743 if (mpa->revision == 1)
1744 ep->tried_with_mpa_v1 = 1;
1745 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1746
1747 if (mpa->revision == 2) {
1748 ep->mpa_attr.enhanced_rdma_conn =
1749 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1750 if (ep->mpa_attr.enhanced_rdma_conn) {
1751 mpa_v2_params = (struct mpa_v2_conn_params *)
1752 (ep->mpa_pkt + sizeof(*mpa));
1753 ep->ird = ntohs(mpa_v2_params->ird) &
1754 MPA_V2_IRD_ORD_MASK;
1755 ep->ird = min_t(u32, ep->ird,
1756 cur_max_read_depth(ep->com.dev));
1757 ep->ord = ntohs(mpa_v2_params->ord) &
1758 MPA_V2_IRD_ORD_MASK;
1759 ep->ord = min_t(u32, ep->ord,
1760 cur_max_read_depth(ep->com.dev));
1761 pr_debug("%s initiator ird %u ord %u\n",
1762 __func__, ep->ird, ep->ord);
1763 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1764 if (peer2peer) {
1765 if (ntohs(mpa_v2_params->ord) &
1766 MPA_V2_RDMA_WRITE_RTR)
1767 ep->mpa_attr.p2p_type =
1768 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1769 else if (ntohs(mpa_v2_params->ord) &
1770 MPA_V2_RDMA_READ_RTR)
1771 ep->mpa_attr.p2p_type =
1772 FW_RI_INIT_P2PTYPE_READ_REQ;
1773 }
1774 }
1775 } else if (mpa->revision == 1)
1776 if (peer2peer)
1777 ep->mpa_attr.p2p_type = p2p_type;
1778
1779 pr_debug("%s - crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n",
1780 __func__,
1781 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1782 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1783 ep->mpa_attr.p2p_type);
1784
1785 __state_set(&ep->com, MPA_REQ_RCVD);
1786
1787 /* drive upcall */
1788 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1789 if (ep->parent_ep->com.state != DEAD) {
1790 if (connect_request_upcall(ep))
1791 goto err_unlock_parent;
1792 } else {
1793 goto err_unlock_parent;
1794 }
1795 mutex_unlock(&ep->parent_ep->com.mutex);
1796 return 0;
1797
1798 err_unlock_parent:
1799 mutex_unlock(&ep->parent_ep->com.mutex);
1800 goto err_out;
1801 err_stop_timer:
1802 (void)stop_ep_timer(ep);
1803 err_out:
1804 return 2;
1805 }
1806
1807 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1808 {
1809 struct c4iw_ep *ep;
1810 struct cpl_rx_data *hdr = cplhdr(skb);
1811 unsigned int dlen = ntohs(hdr->len);
1812 unsigned int tid = GET_TID(hdr);
1813 __u8 status = hdr->status;
1814 int disconnect = 0;
1815
1816 ep = get_ep_from_tid(dev, tid);
1817 if (!ep)
1818 return 0;
1819 pr_debug("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1820 skb_pull(skb, sizeof(*hdr));
1821 skb_trim(skb, dlen);
1822 mutex_lock(&ep->com.mutex);
1823
1824 switch (ep->com.state) {
1825 case MPA_REQ_SENT:
1826 update_rx_credits(ep, dlen);
1827 ep->rcv_seq += dlen;
1828 disconnect = process_mpa_reply(ep, skb);
1829 break;
1830 case MPA_REQ_WAIT:
1831 update_rx_credits(ep, dlen);
1832 ep->rcv_seq += dlen;
1833 disconnect = process_mpa_request(ep, skb);
1834 break;
1835 case FPDU_MODE: {
1836 struct c4iw_qp_attributes attrs;
1837
1838 update_rx_credits(ep, dlen);
1839 BUG_ON(!ep->com.qp);
1840 if (status)
1841 pr_err("%s Unexpected streaming data." \
1842 " qpid %u ep %p state %d tid %u status %d\n",
1843 __func__, ep->com.qp->wq.sq.qid, ep,
1844 ep->com.state, ep->hwtid, status);
1845 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1846 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1847 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1848 disconnect = 1;
1849 break;
1850 }
1851 default:
1852 break;
1853 }
1854 mutex_unlock(&ep->com.mutex);
1855 if (disconnect)
1856 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1857 c4iw_put_ep(&ep->com);
1858 return 0;
1859 }
1860
1861 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1862 {
1863 struct c4iw_ep *ep;
1864 struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1865 int release = 0;
1866 unsigned int tid = GET_TID(rpl);
1867
1868 ep = get_ep_from_tid(dev, tid);
1869 if (!ep) {
1870 pr_warn("Abort rpl to freed endpoint\n");
1871 return 0;
1872 }
1873 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1874 mutex_lock(&ep->com.mutex);
1875 switch (ep->com.state) {
1876 case ABORTING:
1877 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1878 __state_set(&ep->com, DEAD);
1879 release = 1;
1880 break;
1881 default:
1882 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state);
1883 break;
1884 }
1885 mutex_unlock(&ep->com.mutex);
1886
1887 if (release)
1888 release_ep_resources(ep);
1889 c4iw_put_ep(&ep->com);
1890 return 0;
1891 }
1892
1893 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1894 {
1895 struct sk_buff *skb;
1896 struct fw_ofld_connection_wr *req;
1897 unsigned int mtu_idx;
1898 u32 wscale;
1899 struct sockaddr_in *sin;
1900 int win;
1901
1902 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1903 req = __skb_put_zero(skb, sizeof(*req));
1904 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1905 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1906 req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1907 ep->com.dev->rdev.lldi.ports[0],
1908 ep->l2t));
1909 sin = (struct sockaddr_in *)&ep->com.local_addr;
1910 req->le.lport = sin->sin_port;
1911 req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1912 sin = (struct sockaddr_in *)&ep->com.remote_addr;
1913 req->le.pport = sin->sin_port;
1914 req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1915 req->tcb.t_state_to_astid =
1916 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1917 FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1918 req->tcb.cplrxdataack_cplpassacceptrpl =
1919 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1920 req->tcb.tx_max = (__force __be32) jiffies;
1921 req->tcb.rcv_adv = htons(1);
1922 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1923 enable_tcp_timestamps,
1924 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
1925 wscale = cxgb_compute_wscale(rcv_win);
1926
1927 /*
1928 * Specify the largest window that will fit in opt0. The
1929 * remainder will be specified in the rx_data_ack.
1930 */
1931 win = ep->rcv_win >> 10;
1932 if (win > RCV_BUFSIZ_M)
1933 win = RCV_BUFSIZ_M;
1934
1935 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
1936 (nocong ? NO_CONG_F : 0) |
1937 KEEP_ALIVE_F |
1938 DELACK_F |
1939 WND_SCALE_V(wscale) |
1940 MSS_IDX_V(mtu_idx) |
1941 L2T_IDX_V(ep->l2t->idx) |
1942 TX_CHAN_V(ep->tx_chan) |
1943 SMAC_SEL_V(ep->smac_idx) |
1944 DSCP_V(ep->tos >> 2) |
1945 ULP_MODE_V(ULP_MODE_TCPDDP) |
1946 RCV_BUFSIZ_V(win));
1947 req->tcb.opt2 = (__force __be32) (PACE_V(1) |
1948 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
1949 RX_CHANNEL_V(0) |
1950 CCTRL_ECN_V(enable_ecn) |
1951 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
1952 if (enable_tcp_timestamps)
1953 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
1954 if (enable_tcp_sack)
1955 req->tcb.opt2 |= (__force __be32)SACK_EN_F;
1956 if (wscale && enable_tcp_window_scaling)
1957 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
1958 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
1959 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
1960 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
1961 set_bit(ACT_OFLD_CONN, &ep->com.history);
1962 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1963 }
1964
1965 /*
1966 * Some of the error codes above implicitly indicate that there is no TID
1967 * allocated with the result of an ACT_OPEN. We use this predicate to make
1968 * that explicit.
1969 */
1970 static inline int act_open_has_tid(int status)
1971 {
1972 return (status != CPL_ERR_TCAM_PARITY &&
1973 status != CPL_ERR_TCAM_MISS &&
1974 status != CPL_ERR_TCAM_FULL &&
1975 status != CPL_ERR_CONN_EXIST_SYNRECV &&
1976 status != CPL_ERR_CONN_EXIST);
1977 }
1978
1979 static char *neg_adv_str(unsigned int status)
1980 {
1981 switch (status) {
1982 case CPL_ERR_RTX_NEG_ADVICE:
1983 return "Retransmit timeout";
1984 case CPL_ERR_PERSIST_NEG_ADVICE:
1985 return "Persist timeout";
1986 case CPL_ERR_KEEPALV_NEG_ADVICE:
1987 return "Keepalive timeout";
1988 default:
1989 return "Unknown";
1990 }
1991 }
1992
1993 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
1994 {
1995 ep->snd_win = snd_win;
1996 ep->rcv_win = rcv_win;
1997 pr_debug("%s snd_win %d rcv_win %d\n",
1998 __func__, ep->snd_win, ep->rcv_win);
1999 }
2000
2001 #define ACT_OPEN_RETRY_COUNT 2
2002
2003 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2004 struct dst_entry *dst, struct c4iw_dev *cdev,
2005 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2006 {
2007 struct neighbour *n;
2008 int err, step;
2009 struct net_device *pdev;
2010
2011 n = dst_neigh_lookup(dst, peer_ip);
2012 if (!n)
2013 return -ENODEV;
2014
2015 rcu_read_lock();
2016 err = -ENOMEM;
2017 if (n->dev->flags & IFF_LOOPBACK) {
2018 if (iptype == 4)
2019 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2020 else if (IS_ENABLED(CONFIG_IPV6))
2021 for_each_netdev(&init_net, pdev) {
2022 if (ipv6_chk_addr(&init_net,
2023 (struct in6_addr *)peer_ip,
2024 pdev, 1))
2025 break;
2026 }
2027 else
2028 pdev = NULL;
2029
2030 if (!pdev) {
2031 err = -ENODEV;
2032 goto out;
2033 }
2034 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2035 n, pdev, rt_tos2priority(tos));
2036 if (!ep->l2t) {
2037 dev_put(pdev);
2038 goto out;
2039 }
2040 ep->mtu = pdev->mtu;
2041 ep->tx_chan = cxgb4_port_chan(pdev);
2042 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2043 cxgb4_port_viid(pdev));
2044 step = cdev->rdev.lldi.ntxq /
2045 cdev->rdev.lldi.nchan;
2046 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2047 step = cdev->rdev.lldi.nrxq /
2048 cdev->rdev.lldi.nchan;
2049 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2050 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2051 cxgb4_port_idx(pdev) * step];
2052 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2053 dev_put(pdev);
2054 } else {
2055 pdev = get_real_dev(n->dev);
2056 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2057 n, pdev, 0);
2058 if (!ep->l2t)
2059 goto out;
2060 ep->mtu = dst_mtu(dst);
2061 ep->tx_chan = cxgb4_port_chan(pdev);
2062 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2063 cxgb4_port_viid(pdev));
2064 step = cdev->rdev.lldi.ntxq /
2065 cdev->rdev.lldi.nchan;
2066 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2067 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2068 step = cdev->rdev.lldi.nrxq /
2069 cdev->rdev.lldi.nchan;
2070 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2071 cxgb4_port_idx(pdev) * step];
2072 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2073
2074 if (clear_mpa_v1) {
2075 ep->retry_with_mpa_v1 = 0;
2076 ep->tried_with_mpa_v1 = 0;
2077 }
2078 }
2079 err = 0;
2080 out:
2081 rcu_read_unlock();
2082
2083 neigh_release(n);
2084
2085 return err;
2086 }
2087
2088 static int c4iw_reconnect(struct c4iw_ep *ep)
2089 {
2090 int err = 0;
2091 int size = 0;
2092 struct sockaddr_in *laddr = (struct sockaddr_in *)
2093 &ep->com.cm_id->m_local_addr;
2094 struct sockaddr_in *raddr = (struct sockaddr_in *)
2095 &ep->com.cm_id->m_remote_addr;
2096 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2097 &ep->com.cm_id->m_local_addr;
2098 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2099 &ep->com.cm_id->m_remote_addr;
2100 int iptype;
2101 __u8 *ra;
2102
2103 pr_debug("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
2104 init_timer(&ep->timer);
2105 c4iw_init_wr_wait(&ep->com.wr_wait);
2106
2107 /* When MPA revision is different on nodes, the node with MPA_rev=2
2108 * tries to reconnect with MPA_rev 1 for the same EP through
2109 * c4iw_reconnect(), where the same EP is assigned with new tid for
2110 * further connection establishment. As we are using the same EP pointer
2111 * for reconnect, few skbs are used during the previous c4iw_connect(),
2112 * which leaves the EP with inadequate skbs for further
2113 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty
2114 * skb_list() during peer_abort(). Allocate skbs which is already used.
2115 */
2116 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2117 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2118 err = -ENOMEM;
2119 goto fail1;
2120 }
2121
2122 /*
2123 * Allocate an active TID to initiate a TCP connection.
2124 */
2125 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2126 if (ep->atid == -1) {
2127 pr_err("%s - cannot alloc atid\n", __func__);
2128 err = -ENOMEM;
2129 goto fail2;
2130 }
2131 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2132
2133 /* find a route */
2134 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2135 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev,
2136 laddr->sin_addr.s_addr,
2137 raddr->sin_addr.s_addr,
2138 laddr->sin_port,
2139 raddr->sin_port, ep->com.cm_id->tos);
2140 iptype = 4;
2141 ra = (__u8 *)&raddr->sin_addr;
2142 } else {
2143 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi,
2144 get_real_dev,
2145 laddr6->sin6_addr.s6_addr,
2146 raddr6->sin6_addr.s6_addr,
2147 laddr6->sin6_port,
2148 raddr6->sin6_port, 0,
2149 raddr6->sin6_scope_id);
2150 iptype = 6;
2151 ra = (__u8 *)&raddr6->sin6_addr;
2152 }
2153 if (!ep->dst) {
2154 pr_err("%s - cannot find route\n", __func__);
2155 err = -EHOSTUNREACH;
2156 goto fail3;
2157 }
2158 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2159 ep->com.dev->rdev.lldi.adapter_type,
2160 ep->com.cm_id->tos);
2161 if (err) {
2162 pr_err("%s - cannot alloc l2e\n", __func__);
2163 goto fail4;
2164 }
2165
2166 pr_debug("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2167 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2168 ep->l2t->idx);
2169
2170 state_set(&ep->com, CONNECTING);
2171 ep->tos = ep->com.cm_id->tos;
2172
2173 /* send connect request to rnic */
2174 err = send_connect(ep);
2175 if (!err)
2176 goto out;
2177
2178 cxgb4_l2t_release(ep->l2t);
2179 fail4:
2180 dst_release(ep->dst);
2181 fail3:
2182 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2183 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2184 fail2:
2185 /*
2186 * remember to send notification to upper layer.
2187 * We are in here so the upper layer is not aware that this is
2188 * re-connect attempt and so, upper layer is still waiting for
2189 * response of 1st connect request.
2190 */
2191 connect_reply_upcall(ep, -ECONNRESET);
2192 fail1:
2193 c4iw_put_ep(&ep->com);
2194 out:
2195 return err;
2196 }
2197
2198 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2199 {
2200 struct c4iw_ep *ep;
2201 struct cpl_act_open_rpl *rpl = cplhdr(skb);
2202 unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2203 ntohl(rpl->atid_status)));
2204 struct tid_info *t = dev->rdev.lldi.tids;
2205 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2206 struct sockaddr_in *la;
2207 struct sockaddr_in *ra;
2208 struct sockaddr_in6 *la6;
2209 struct sockaddr_in6 *ra6;
2210 int ret = 0;
2211
2212 ep = lookup_atid(t, atid);
2213 la = (struct sockaddr_in *)&ep->com.local_addr;
2214 ra = (struct sockaddr_in *)&ep->com.remote_addr;
2215 la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2216 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2217
2218 pr_debug("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
2219 status, status2errno(status));
2220
2221 if (cxgb_is_neg_adv(status)) {
2222 pr_debug("%s Connection problems for atid %u status %u (%s)\n",
2223 __func__, atid, status, neg_adv_str(status));
2224 ep->stats.connect_neg_adv++;
2225 mutex_lock(&dev->rdev.stats.lock);
2226 dev->rdev.stats.neg_adv++;
2227 mutex_unlock(&dev->rdev.stats.lock);
2228 return 0;
2229 }
2230
2231 set_bit(ACT_OPEN_RPL, &ep->com.history);
2232
2233 /*
2234 * Log interesting failures.
2235 */
2236 switch (status) {
2237 case CPL_ERR_CONN_RESET:
2238 case CPL_ERR_CONN_TIMEDOUT:
2239 break;
2240 case CPL_ERR_TCAM_FULL:
2241 mutex_lock(&dev->rdev.stats.lock);
2242 dev->rdev.stats.tcam_full++;
2243 mutex_unlock(&dev->rdev.stats.lock);
2244 if (ep->com.local_addr.ss_family == AF_INET &&
2245 dev->rdev.lldi.enable_fw_ofld_conn) {
2246 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2247 ntohl(rpl->atid_status))));
2248 if (ret)
2249 goto fail;
2250 return 0;
2251 }
2252 break;
2253 case CPL_ERR_CONN_EXIST:
2254 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2255 set_bit(ACT_RETRY_INUSE, &ep->com.history);
2256 if (ep->com.remote_addr.ss_family == AF_INET6) {
2257 struct sockaddr_in6 *sin6 =
2258 (struct sockaddr_in6 *)
2259 &ep->com.local_addr;
2260 cxgb4_clip_release(
2261 ep->com.dev->rdev.lldi.ports[0],
2262 (const u32 *)
2263 &sin6->sin6_addr.s6_addr, 1);
2264 }
2265 remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2266 atid);
2267 cxgb4_free_atid(t, atid);
2268 dst_release(ep->dst);
2269 cxgb4_l2t_release(ep->l2t);
2270 c4iw_reconnect(ep);
2271 return 0;
2272 }
2273 break;
2274 default:
2275 if (ep->com.local_addr.ss_family == AF_INET) {
2276 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2277 atid, status, status2errno(status),
2278 &la->sin_addr.s_addr, ntohs(la->sin_port),
2279 &ra->sin_addr.s_addr, ntohs(ra->sin_port));
2280 } else {
2281 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2282 atid, status, status2errno(status),
2283 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2284 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2285 }
2286 break;
2287 }
2288
2289 fail:
2290 connect_reply_upcall(ep, status2errno(status));
2291 state_set(&ep->com, DEAD);
2292
2293 if (ep->com.remote_addr.ss_family == AF_INET6) {
2294 struct sockaddr_in6 *sin6 =
2295 (struct sockaddr_in6 *)&ep->com.local_addr;
2296 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2297 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2298 }
2299 if (status && act_open_has_tid(status))
2300 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl),
2301 ep->com.local_addr.ss_family);
2302
2303 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2304 cxgb4_free_atid(t, atid);
2305 dst_release(ep->dst);
2306 cxgb4_l2t_release(ep->l2t);
2307 c4iw_put_ep(&ep->com);
2308
2309 return 0;
2310 }
2311
2312 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2313 {
2314 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2315 unsigned int stid = GET_TID(rpl);
2316 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2317
2318 if (!ep) {
2319 pr_debug("%s stid %d lookup failure!\n", __func__, stid);
2320 goto out;
2321 }
2322 pr_debug("%s ep %p status %d error %d\n", __func__, ep,
2323 rpl->status, status2errno(rpl->status));
2324 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2325 c4iw_put_ep(&ep->com);
2326 out:
2327 return 0;
2328 }
2329
2330 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2331 {
2332 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2333 unsigned int stid = GET_TID(rpl);
2334 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2335
2336 pr_debug("%s ep %p\n", __func__, ep);
2337 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2338 c4iw_put_ep(&ep->com);
2339 return 0;
2340 }
2341
2342 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2343 struct cpl_pass_accept_req *req)
2344 {
2345 struct cpl_pass_accept_rpl *rpl;
2346 unsigned int mtu_idx;
2347 u64 opt0;
2348 u32 opt2;
2349 u32 wscale;
2350 struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2351 int win;
2352 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2353
2354 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2355 BUG_ON(skb_cloned(skb));
2356
2357 skb_get(skb);
2358 rpl = cplhdr(skb);
2359 if (!is_t4(adapter_type)) {
2360 skb_trim(skb, roundup(sizeof(*rpl5), 16));
2361 rpl5 = (void *)rpl;
2362 INIT_TP_WR(rpl5, ep->hwtid);
2363 } else {
2364 skb_trim(skb, sizeof(*rpl));
2365 INIT_TP_WR(rpl, ep->hwtid);
2366 }
2367 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2368 ep->hwtid));
2369
2370 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2371 enable_tcp_timestamps && req->tcpopt.tstamp,
2372 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
2373 wscale = cxgb_compute_wscale(rcv_win);
2374
2375 /*
2376 * Specify the largest window that will fit in opt0. The
2377 * remainder will be specified in the rx_data_ack.
2378 */
2379 win = ep->rcv_win >> 10;
2380 if (win > RCV_BUFSIZ_M)
2381 win = RCV_BUFSIZ_M;
2382 opt0 = (nocong ? NO_CONG_F : 0) |
2383 KEEP_ALIVE_F |
2384 DELACK_F |
2385 WND_SCALE_V(wscale) |
2386 MSS_IDX_V(mtu_idx) |
2387 L2T_IDX_V(ep->l2t->idx) |
2388 TX_CHAN_V(ep->tx_chan) |
2389 SMAC_SEL_V(ep->smac_idx) |
2390 DSCP_V(ep->tos >> 2) |
2391 ULP_MODE_V(ULP_MODE_TCPDDP) |
2392 RCV_BUFSIZ_V(win);
2393 opt2 = RX_CHANNEL_V(0) |
2394 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2395
2396 if (enable_tcp_timestamps && req->tcpopt.tstamp)
2397 opt2 |= TSTAMPS_EN_F;
2398 if (enable_tcp_sack && req->tcpopt.sack)
2399 opt2 |= SACK_EN_F;
2400 if (wscale && enable_tcp_window_scaling)
2401 opt2 |= WND_SCALE_EN_F;
2402 if (enable_ecn) {
2403 const struct tcphdr *tcph;
2404 u32 hlen = ntohl(req->hdr_len);
2405
2406 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2407 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2408 IP_HDR_LEN_G(hlen);
2409 else
2410 tcph = (const void *)(req + 1) +
2411 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2412 if (tcph->ece && tcph->cwr)
2413 opt2 |= CCTRL_ECN_V(1);
2414 }
2415 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2416 u32 isn = (prandom_u32() & ~7UL) - 1;
2417 opt2 |= T5_OPT_2_VALID_F;
2418 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2419 opt2 |= T5_ISS_F;
2420 rpl5 = (void *)rpl;
2421 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2422 if (peer2peer)
2423 isn += 4;
2424 rpl5->iss = cpu_to_be32(isn);
2425 pr_debug("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
2426 }
2427
2428 rpl->opt0 = cpu_to_be64(opt0);
2429 rpl->opt2 = cpu_to_be32(opt2);
2430 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2431 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2432
2433 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2434 }
2435
2436 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2437 {
2438 pr_debug("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
2439 BUG_ON(skb_cloned(skb));
2440 skb_trim(skb, sizeof(struct cpl_tid_release));
2441 release_tid(&dev->rdev, hwtid, skb);
2442 return;
2443 }
2444
2445 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2446 {
2447 struct c4iw_ep *child_ep = NULL, *parent_ep;
2448 struct cpl_pass_accept_req *req = cplhdr(skb);
2449 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2450 struct tid_info *t = dev->rdev.lldi.tids;
2451 unsigned int hwtid = GET_TID(req);
2452 struct dst_entry *dst;
2453 __u8 local_ip[16], peer_ip[16];
2454 __be16 local_port, peer_port;
2455 struct sockaddr_in6 *sin6;
2456 int err;
2457 u16 peer_mss = ntohs(req->tcpopt.mss);
2458 int iptype;
2459 unsigned short hdrs;
2460 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2461
2462 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2463 if (!parent_ep) {
2464 pr_debug("%s connect request on invalid stid %d\n",
2465 __func__, stid);
2466 goto reject;
2467 }
2468
2469 if (state_read(&parent_ep->com) != LISTEN) {
2470 pr_debug("%s - listening ep not in LISTEN\n", __func__);
2471 goto reject;
2472 }
2473
2474 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type,
2475 &iptype, local_ip, peer_ip, &local_port, &peer_port);
2476
2477 /* Find output route */
2478 if (iptype == 4) {
2479 pr_debug("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2480 , __func__, parent_ep, hwtid,
2481 local_ip, peer_ip, ntohs(local_port),
2482 ntohs(peer_port), peer_mss);
2483 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
2484 *(__be32 *)local_ip, *(__be32 *)peer_ip,
2485 local_port, peer_port, tos);
2486 } else {
2487 pr_debug("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2488 , __func__, parent_ep, hwtid,
2489 local_ip, peer_ip, ntohs(local_port),
2490 ntohs(peer_port), peer_mss);
2491 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
2492 local_ip, peer_ip, local_port, peer_port,
2493 PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
2494 ((struct sockaddr_in6 *)
2495 &parent_ep->com.local_addr)->sin6_scope_id);
2496 }
2497 if (!dst) {
2498 pr_err("%s - failed to find dst entry!\n", __func__);
2499 goto reject;
2500 }
2501
2502 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2503 if (!child_ep) {
2504 pr_err("%s - failed to allocate ep entry!\n", __func__);
2505 dst_release(dst);
2506 goto reject;
2507 }
2508
2509 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2510 parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2511 if (err) {
2512 pr_err("%s - failed to allocate l2t entry!\n", __func__);
2513 dst_release(dst);
2514 kfree(child_ep);
2515 goto reject;
2516 }
2517
2518 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
2519 sizeof(struct tcphdr) +
2520 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2521 if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2522 child_ep->mtu = peer_mss + hdrs;
2523
2524 skb_queue_head_init(&child_ep->com.ep_skb_list);
2525 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2526 goto fail;
2527
2528 state_set(&child_ep->com, CONNECTING);
2529 child_ep->com.dev = dev;
2530 child_ep->com.cm_id = NULL;
2531
2532 if (iptype == 4) {
2533 struct sockaddr_in *sin = (struct sockaddr_in *)
2534 &child_ep->com.local_addr;
2535
2536 sin->sin_family = AF_INET;
2537 sin->sin_port = local_port;
2538 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2539
2540 sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2541 sin->sin_family = AF_INET;
2542 sin->sin_port = ((struct sockaddr_in *)
2543 &parent_ep->com.local_addr)->sin_port;
2544 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2545
2546 sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2547 sin->sin_family = AF_INET;
2548 sin->sin_port = peer_port;
2549 sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2550 } else {
2551 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2552 sin6->sin6_family = PF_INET6;
2553 sin6->sin6_port = local_port;
2554 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2555
2556 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2557 sin6->sin6_family = PF_INET6;
2558 sin6->sin6_port = ((struct sockaddr_in6 *)
2559 &parent_ep->com.local_addr)->sin6_port;
2560 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2561
2562 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2563 sin6->sin6_family = PF_INET6;
2564 sin6->sin6_port = peer_port;
2565 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2566 }
2567
2568 c4iw_get_ep(&parent_ep->com);
2569 child_ep->parent_ep = parent_ep;
2570 child_ep->tos = tos;
2571 child_ep->dst = dst;
2572 child_ep->hwtid = hwtid;
2573
2574 pr_debug("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
2575 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2576
2577 init_timer(&child_ep->timer);
2578 cxgb4_insert_tid(t, child_ep, hwtid,
2579 child_ep->com.local_addr.ss_family);
2580 insert_ep_tid(child_ep);
2581 if (accept_cr(child_ep, skb, req)) {
2582 c4iw_put_ep(&parent_ep->com);
2583 release_ep_resources(child_ep);
2584 } else {
2585 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2586 }
2587 if (iptype == 6) {
2588 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2589 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2590 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2591 }
2592 goto out;
2593 fail:
2594 c4iw_put_ep(&child_ep->com);
2595 reject:
2596 reject_cr(dev, hwtid, skb);
2597 if (parent_ep)
2598 c4iw_put_ep(&parent_ep->com);
2599 out:
2600 return 0;
2601 }
2602
2603 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2604 {
2605 struct c4iw_ep *ep;
2606 struct cpl_pass_establish *req = cplhdr(skb);
2607 unsigned int tid = GET_TID(req);
2608 int ret;
2609
2610 ep = get_ep_from_tid(dev, tid);
2611 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2612 ep->snd_seq = be32_to_cpu(req->snd_isn);
2613 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2614
2615 pr_debug("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2616 ntohs(req->tcp_opt));
2617
2618 set_emss(ep, ntohs(req->tcp_opt));
2619
2620 dst_confirm(ep->dst);
2621 mutex_lock(&ep->com.mutex);
2622 ep->com.state = MPA_REQ_WAIT;
2623 start_ep_timer(ep);
2624 set_bit(PASS_ESTAB, &ep->com.history);
2625 ret = send_flowc(ep);
2626 mutex_unlock(&ep->com.mutex);
2627 if (ret)
2628 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2629 c4iw_put_ep(&ep->com);
2630
2631 return 0;
2632 }
2633
2634 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2635 {
2636 struct cpl_peer_close *hdr = cplhdr(skb);
2637 struct c4iw_ep *ep;
2638 struct c4iw_qp_attributes attrs;
2639 int disconnect = 1;
2640 int release = 0;
2641 unsigned int tid = GET_TID(hdr);
2642 int ret;
2643
2644 ep = get_ep_from_tid(dev, tid);
2645 if (!ep)
2646 return 0;
2647
2648 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2649 dst_confirm(ep->dst);
2650
2651 set_bit(PEER_CLOSE, &ep->com.history);
2652 mutex_lock(&ep->com.mutex);
2653 switch (ep->com.state) {
2654 case MPA_REQ_WAIT:
2655 __state_set(&ep->com, CLOSING);
2656 break;
2657 case MPA_REQ_SENT:
2658 __state_set(&ep->com, CLOSING);
2659 connect_reply_upcall(ep, -ECONNRESET);
2660 break;
2661 case MPA_REQ_RCVD:
2662
2663 /*
2664 * We're gonna mark this puppy DEAD, but keep
2665 * the reference on it until the ULP accepts or
2666 * rejects the CR. Also wake up anyone waiting
2667 * in rdma connection migration (see c4iw_accept_cr()).
2668 */
2669 __state_set(&ep->com, CLOSING);
2670 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2671 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2672 break;
2673 case MPA_REP_SENT:
2674 __state_set(&ep->com, CLOSING);
2675 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2676 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2677 break;
2678 case FPDU_MODE:
2679 start_ep_timer(ep);
2680 __state_set(&ep->com, CLOSING);
2681 attrs.next_state = C4IW_QP_STATE_CLOSING;
2682 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2683 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2684 if (ret != -ECONNRESET) {
2685 peer_close_upcall(ep);
2686 disconnect = 1;
2687 }
2688 break;
2689 case ABORTING:
2690 disconnect = 0;
2691 break;
2692 case CLOSING:
2693 __state_set(&ep->com, MORIBUND);
2694 disconnect = 0;
2695 break;
2696 case MORIBUND:
2697 (void)stop_ep_timer(ep);
2698 if (ep->com.cm_id && ep->com.qp) {
2699 attrs.next_state = C4IW_QP_STATE_IDLE;
2700 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2701 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2702 }
2703 close_complete_upcall(ep, 0);
2704 __state_set(&ep->com, DEAD);
2705 release = 1;
2706 disconnect = 0;
2707 break;
2708 case DEAD:
2709 disconnect = 0;
2710 break;
2711 default:
2712 BUG_ON(1);
2713 }
2714 mutex_unlock(&ep->com.mutex);
2715 if (disconnect)
2716 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2717 if (release)
2718 release_ep_resources(ep);
2719 c4iw_put_ep(&ep->com);
2720 return 0;
2721 }
2722
2723 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2724 {
2725 struct cpl_abort_req_rss *req = cplhdr(skb);
2726 struct c4iw_ep *ep;
2727 struct sk_buff *rpl_skb;
2728 struct c4iw_qp_attributes attrs;
2729 int ret;
2730 int release = 0;
2731 unsigned int tid = GET_TID(req);
2732 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16);
2733
2734 ep = get_ep_from_tid(dev, tid);
2735 if (!ep)
2736 return 0;
2737
2738 if (cxgb_is_neg_adv(req->status)) {
2739 pr_debug("%s Negative advice on abort- tid %u status %d (%s)\n",
2740 __func__, ep->hwtid, req->status,
2741 neg_adv_str(req->status));
2742 ep->stats.abort_neg_adv++;
2743 mutex_lock(&dev->rdev.stats.lock);
2744 dev->rdev.stats.neg_adv++;
2745 mutex_unlock(&dev->rdev.stats.lock);
2746 goto deref_ep;
2747 }
2748 pr_debug("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2749 ep->com.state);
2750 set_bit(PEER_ABORT, &ep->com.history);
2751
2752 /*
2753 * Wake up any threads in rdma_init() or rdma_fini().
2754 * However, this is not needed if com state is just
2755 * MPA_REQ_SENT
2756 */
2757 if (ep->com.state != MPA_REQ_SENT)
2758 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2759
2760 mutex_lock(&ep->com.mutex);
2761 switch (ep->com.state) {
2762 case CONNECTING:
2763 c4iw_put_ep(&ep->parent_ep->com);
2764 break;
2765 case MPA_REQ_WAIT:
2766 (void)stop_ep_timer(ep);
2767 break;
2768 case MPA_REQ_SENT:
2769 (void)stop_ep_timer(ep);
2770 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
2771 connect_reply_upcall(ep, -ECONNRESET);
2772 else {
2773 /*
2774 * we just don't send notification upwards because we
2775 * want to retry with mpa_v1 without upper layers even
2776 * knowing it.
2777 *
2778 * do some housekeeping so as to re-initiate the
2779 * connection
2780 */
2781 pr_debug("%s: mpa_rev=%d. Retrying with mpav1\n",
2782 __func__, mpa_rev);
2783 ep->retry_with_mpa_v1 = 1;
2784 }
2785 break;
2786 case MPA_REP_SENT:
2787 break;
2788 case MPA_REQ_RCVD:
2789 break;
2790 case MORIBUND:
2791 case CLOSING:
2792 stop_ep_timer(ep);
2793 /*FALLTHROUGH*/
2794 case FPDU_MODE:
2795 if (ep->com.cm_id && ep->com.qp) {
2796 attrs.next_state = C4IW_QP_STATE_ERROR;
2797 ret = c4iw_modify_qp(ep->com.qp->rhp,
2798 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2799 &attrs, 1);
2800 if (ret)
2801 pr_err("%s - qp <- error failed!\n", __func__);
2802 }
2803 peer_abort_upcall(ep);
2804 break;
2805 case ABORTING:
2806 break;
2807 case DEAD:
2808 pr_debug("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2809 mutex_unlock(&ep->com.mutex);
2810 goto deref_ep;
2811 default:
2812 BUG_ON(1);
2813 break;
2814 }
2815 dst_confirm(ep->dst);
2816 if (ep->com.state != ABORTING) {
2817 __state_set(&ep->com, DEAD);
2818 /* we don't release if we want to retry with mpa_v1 */
2819 if (!ep->retry_with_mpa_v1)
2820 release = 1;
2821 }
2822 mutex_unlock(&ep->com.mutex);
2823
2824 rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2825 if (WARN_ON(!rpl_skb)) {
2826 release = 1;
2827 goto out;
2828 }
2829
2830 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx);
2831
2832 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2833 out:
2834 if (release)
2835 release_ep_resources(ep);
2836 else if (ep->retry_with_mpa_v1) {
2837 if (ep->com.remote_addr.ss_family == AF_INET6) {
2838 struct sockaddr_in6 *sin6 =
2839 (struct sockaddr_in6 *)
2840 &ep->com.local_addr;
2841 cxgb4_clip_release(
2842 ep->com.dev->rdev.lldi.ports[0],
2843 (const u32 *)&sin6->sin6_addr.s6_addr,
2844 1);
2845 }
2846 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2847 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
2848 ep->com.local_addr.ss_family);
2849 dst_release(ep->dst);
2850 cxgb4_l2t_release(ep->l2t);
2851 c4iw_reconnect(ep);
2852 }
2853
2854 deref_ep:
2855 c4iw_put_ep(&ep->com);
2856 /* Dereferencing ep, referenced in peer_abort_intr() */
2857 c4iw_put_ep(&ep->com);
2858 return 0;
2859 }
2860
2861 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2862 {
2863 struct c4iw_ep *ep;
2864 struct c4iw_qp_attributes attrs;
2865 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2866 int release = 0;
2867 unsigned int tid = GET_TID(rpl);
2868
2869 ep = get_ep_from_tid(dev, tid);
2870 if (!ep)
2871 return 0;
2872
2873 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2874
2875 /* The cm_id may be null if we failed to connect */
2876 mutex_lock(&ep->com.mutex);
2877 set_bit(CLOSE_CON_RPL, &ep->com.history);
2878 switch (ep->com.state) {
2879 case CLOSING:
2880 __state_set(&ep->com, MORIBUND);
2881 break;
2882 case MORIBUND:
2883 (void)stop_ep_timer(ep);
2884 if ((ep->com.cm_id) && (ep->com.qp)) {
2885 attrs.next_state = C4IW_QP_STATE_IDLE;
2886 c4iw_modify_qp(ep->com.qp->rhp,
2887 ep->com.qp,
2888 C4IW_QP_ATTR_NEXT_STATE,
2889 &attrs, 1);
2890 }
2891 close_complete_upcall(ep, 0);
2892 __state_set(&ep->com, DEAD);
2893 release = 1;
2894 break;
2895 case ABORTING:
2896 case DEAD:
2897 break;
2898 default:
2899 BUG_ON(1);
2900 break;
2901 }
2902 mutex_unlock(&ep->com.mutex);
2903 if (release)
2904 release_ep_resources(ep);
2905 c4iw_put_ep(&ep->com);
2906 return 0;
2907 }
2908
2909 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
2910 {
2911 struct cpl_rdma_terminate *rpl = cplhdr(skb);
2912 unsigned int tid = GET_TID(rpl);
2913 struct c4iw_ep *ep;
2914 struct c4iw_qp_attributes attrs;
2915
2916 ep = get_ep_from_tid(dev, tid);
2917 BUG_ON(!ep);
2918
2919 if (ep && ep->com.qp) {
2920 pr_warn("TERM received tid %u qpid %u\n",
2921 tid, ep->com.qp->wq.sq.qid);
2922 attrs.next_state = C4IW_QP_STATE_TERMINATE;
2923 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2924 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2925 } else
2926 pr_warn("TERM received tid %u no ep/qp\n", tid);
2927 c4iw_put_ep(&ep->com);
2928
2929 return 0;
2930 }
2931
2932 /*
2933 * Upcall from the adapter indicating data has been transmitted.
2934 * For us its just the single MPA request or reply. We can now free
2935 * the skb holding the mpa message.
2936 */
2937 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
2938 {
2939 struct c4iw_ep *ep;
2940 struct cpl_fw4_ack *hdr = cplhdr(skb);
2941 u8 credits = hdr->credits;
2942 unsigned int tid = GET_TID(hdr);
2943
2944
2945 ep = get_ep_from_tid(dev, tid);
2946 if (!ep)
2947 return 0;
2948 pr_debug("%s ep %p tid %u credits %u\n",
2949 __func__, ep, ep->hwtid, credits);
2950 if (credits == 0) {
2951 pr_debug("%s 0 credit ack ep %p tid %u state %u\n",
2952 __func__, ep, ep->hwtid, state_read(&ep->com));
2953 goto out;
2954 }
2955
2956 dst_confirm(ep->dst);
2957 if (ep->mpa_skb) {
2958 pr_debug("%s last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n",
2959 __func__, ep, ep->hwtid,
2960 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
2961 mutex_lock(&ep->com.mutex);
2962 kfree_skb(ep->mpa_skb);
2963 ep->mpa_skb = NULL;
2964 if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
2965 stop_ep_timer(ep);
2966 mutex_unlock(&ep->com.mutex);
2967 }
2968 out:
2969 c4iw_put_ep(&ep->com);
2970 return 0;
2971 }
2972
2973 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
2974 {
2975 int abort;
2976 struct c4iw_ep *ep = to_ep(cm_id);
2977
2978 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2979
2980 mutex_lock(&ep->com.mutex);
2981 if (ep->com.state != MPA_REQ_RCVD) {
2982 mutex_unlock(&ep->com.mutex);
2983 c4iw_put_ep(&ep->com);
2984 return -ECONNRESET;
2985 }
2986 set_bit(ULP_REJECT, &ep->com.history);
2987 if (mpa_rev == 0)
2988 abort = 1;
2989 else
2990 abort = send_mpa_reject(ep, pdata, pdata_len);
2991 mutex_unlock(&ep->com.mutex);
2992
2993 stop_ep_timer(ep);
2994 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
2995 c4iw_put_ep(&ep->com);
2996 return 0;
2997 }
2998
2999 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3000 {
3001 int err;
3002 struct c4iw_qp_attributes attrs;
3003 enum c4iw_qp_attr_mask mask;
3004 struct c4iw_ep *ep = to_ep(cm_id);
3005 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3006 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3007 int abort = 0;
3008
3009 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3010
3011 mutex_lock(&ep->com.mutex);
3012 if (ep->com.state != MPA_REQ_RCVD) {
3013 err = -ECONNRESET;
3014 goto err_out;
3015 }
3016
3017 BUG_ON(!qp);
3018
3019 set_bit(ULP_ACCEPT, &ep->com.history);
3020 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3021 (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3022 err = -EINVAL;
3023 goto err_abort;
3024 }
3025
3026 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3027 if (conn_param->ord > ep->ird) {
3028 if (RELAXED_IRD_NEGOTIATION) {
3029 conn_param->ord = ep->ird;
3030 } else {
3031 ep->ird = conn_param->ird;
3032 ep->ord = conn_param->ord;
3033 send_mpa_reject(ep, conn_param->private_data,
3034 conn_param->private_data_len);
3035 err = -ENOMEM;
3036 goto err_abort;
3037 }
3038 }
3039 if (conn_param->ird < ep->ord) {
3040 if (RELAXED_IRD_NEGOTIATION &&
3041 ep->ord <= h->rdev.lldi.max_ordird_qp) {
3042 conn_param->ird = ep->ord;
3043 } else {
3044 err = -ENOMEM;
3045 goto err_abort;
3046 }
3047 }
3048 }
3049 ep->ird = conn_param->ird;
3050 ep->ord = conn_param->ord;
3051
3052 if (ep->mpa_attr.version == 1) {
3053 if (peer2peer && ep->ird == 0)
3054 ep->ird = 1;
3055 } else {
3056 if (peer2peer &&
3057 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3058 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3059 ep->ird = 1;
3060 }
3061
3062 pr_debug("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
3063
3064 ep->com.cm_id = cm_id;
3065 ref_cm_id(&ep->com);
3066 ep->com.qp = qp;
3067 ref_qp(ep);
3068
3069 /* bind QP to EP and move to RTS */
3070 attrs.mpa_attr = ep->mpa_attr;
3071 attrs.max_ird = ep->ird;
3072 attrs.max_ord = ep->ord;
3073 attrs.llp_stream_handle = ep;
3074 attrs.next_state = C4IW_QP_STATE_RTS;
3075
3076 /* bind QP and TID with INIT_WR */
3077 mask = C4IW_QP_ATTR_NEXT_STATE |
3078 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3079 C4IW_QP_ATTR_MPA_ATTR |
3080 C4IW_QP_ATTR_MAX_IRD |
3081 C4IW_QP_ATTR_MAX_ORD;
3082
3083 err = c4iw_modify_qp(ep->com.qp->rhp,
3084 ep->com.qp, mask, &attrs, 1);
3085 if (err)
3086 goto err_deref_cm_id;
3087
3088 set_bit(STOP_MPA_TIMER, &ep->com.flags);
3089 err = send_mpa_reply(ep, conn_param->private_data,
3090 conn_param->private_data_len);
3091 if (err)
3092 goto err_deref_cm_id;
3093
3094 __state_set(&ep->com, FPDU_MODE);
3095 established_upcall(ep);
3096 mutex_unlock(&ep->com.mutex);
3097 c4iw_put_ep(&ep->com);
3098 return 0;
3099 err_deref_cm_id:
3100 deref_cm_id(&ep->com);
3101 err_abort:
3102 abort = 1;
3103 err_out:
3104 mutex_unlock(&ep->com.mutex);
3105 if (abort)
3106 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3107 c4iw_put_ep(&ep->com);
3108 return err;
3109 }
3110
3111 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3112 {
3113 struct in_device *ind;
3114 int found = 0;
3115 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3116 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3117
3118 ind = in_dev_get(dev->rdev.lldi.ports[0]);
3119 if (!ind)
3120 return -EADDRNOTAVAIL;
3121 for_primary_ifa(ind) {
3122 laddr->sin_addr.s_addr = ifa->ifa_address;
3123 raddr->sin_addr.s_addr = ifa->ifa_address;
3124 found = 1;
3125 break;
3126 }
3127 endfor_ifa(ind);
3128 in_dev_put(ind);
3129 return found ? 0 : -EADDRNOTAVAIL;
3130 }
3131
3132 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3133 unsigned char banned_flags)
3134 {
3135 struct inet6_dev *idev;
3136 int err = -EADDRNOTAVAIL;
3137
3138 rcu_read_lock();
3139 idev = __in6_dev_get(dev);
3140 if (idev != NULL) {
3141 struct inet6_ifaddr *ifp;
3142
3143 read_lock_bh(&idev->lock);
3144 list_for_each_entry(ifp, &idev->addr_list, if_list) {
3145 if (ifp->scope == IFA_LINK &&
3146 !(ifp->flags & banned_flags)) {
3147 memcpy(addr, &ifp->addr, 16);
3148 err = 0;
3149 break;
3150 }
3151 }
3152 read_unlock_bh(&idev->lock);
3153 }
3154 rcu_read_unlock();
3155 return err;
3156 }
3157
3158 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3159 {
3160 struct in6_addr uninitialized_var(addr);
3161 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3162 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3163
3164 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3165 memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3166 memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3167 return 0;
3168 }
3169 return -EADDRNOTAVAIL;
3170 }
3171
3172 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3173 {
3174 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3175 struct c4iw_ep *ep;
3176 int err = 0;
3177 struct sockaddr_in *laddr;
3178 struct sockaddr_in *raddr;
3179 struct sockaddr_in6 *laddr6;
3180 struct sockaddr_in6 *raddr6;
3181 __u8 *ra;
3182 int iptype;
3183
3184 if ((conn_param->ord > cur_max_read_depth(dev)) ||
3185 (conn_param->ird > cur_max_read_depth(dev))) {
3186 err = -EINVAL;
3187 goto out;
3188 }
3189 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3190 if (!ep) {
3191 pr_err("%s - cannot alloc ep\n", __func__);
3192 err = -ENOMEM;
3193 goto out;
3194 }
3195
3196 skb_queue_head_init(&ep->com.ep_skb_list);
3197 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3198 err = -ENOMEM;
3199 goto fail1;
3200 }
3201
3202 init_timer(&ep->timer);
3203 ep->plen = conn_param->private_data_len;
3204 if (ep->plen)
3205 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3206 conn_param->private_data, ep->plen);
3207 ep->ird = conn_param->ird;
3208 ep->ord = conn_param->ord;
3209
3210 if (peer2peer && ep->ord == 0)
3211 ep->ord = 1;
3212
3213 ep->com.cm_id = cm_id;
3214 ref_cm_id(&ep->com);
3215 ep->com.dev = dev;
3216 ep->com.qp = get_qhp(dev, conn_param->qpn);
3217 if (!ep->com.qp) {
3218 pr_debug("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3219 err = -EINVAL;
3220 goto fail2;
3221 }
3222 ref_qp(ep);
3223 pr_debug("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
3224 ep->com.qp, cm_id);
3225
3226 /*
3227 * Allocate an active TID to initiate a TCP connection.
3228 */
3229 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3230 if (ep->atid == -1) {
3231 pr_err("%s - cannot alloc atid\n", __func__);
3232 err = -ENOMEM;
3233 goto fail2;
3234 }
3235 insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3236
3237 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3238 sizeof(ep->com.local_addr));
3239 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3240 sizeof(ep->com.remote_addr));
3241
3242 laddr = (struct sockaddr_in *)&ep->com.local_addr;
3243 raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3244 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3245 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3246
3247 if (cm_id->m_remote_addr.ss_family == AF_INET) {
3248 iptype = 4;
3249 ra = (__u8 *)&raddr->sin_addr;
3250
3251 /*
3252 * Handle loopback requests to INADDR_ANY.
3253 */
3254 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3255 err = pick_local_ipaddrs(dev, cm_id);
3256 if (err)
3257 goto fail2;
3258 }
3259
3260 /* find a route */
3261 pr_debug("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3262 __func__, &laddr->sin_addr, ntohs(laddr->sin_port),
3263 ra, ntohs(raddr->sin_port));
3264 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3265 laddr->sin_addr.s_addr,
3266 raddr->sin_addr.s_addr,
3267 laddr->sin_port,
3268 raddr->sin_port, cm_id->tos);
3269 } else {
3270 iptype = 6;
3271 ra = (__u8 *)&raddr6->sin6_addr;
3272
3273 /*
3274 * Handle loopback requests to INADDR_ANY.
3275 */
3276 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3277 err = pick_local_ip6addrs(dev, cm_id);
3278 if (err)
3279 goto fail2;
3280 }
3281
3282 /* find a route */
3283 pr_debug("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3284 __func__, laddr6->sin6_addr.s6_addr,
3285 ntohs(laddr6->sin6_port),
3286 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3287 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
3288 laddr6->sin6_addr.s6_addr,
3289 raddr6->sin6_addr.s6_addr,
3290 laddr6->sin6_port,
3291 raddr6->sin6_port, 0,
3292 raddr6->sin6_scope_id);
3293 }
3294 if (!ep->dst) {
3295 pr_err("%s - cannot find route\n", __func__);
3296 err = -EHOSTUNREACH;
3297 goto fail3;
3298 }
3299
3300 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3301 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3302 if (err) {
3303 pr_err("%s - cannot alloc l2e\n", __func__);
3304 goto fail4;
3305 }
3306
3307 pr_debug("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3308 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3309 ep->l2t->idx);
3310
3311 state_set(&ep->com, CONNECTING);
3312 ep->tos = cm_id->tos;
3313
3314 /* send connect request to rnic */
3315 err = send_connect(ep);
3316 if (!err)
3317 goto out;
3318
3319 cxgb4_l2t_release(ep->l2t);
3320 fail4:
3321 dst_release(ep->dst);
3322 fail3:
3323 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3324 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3325 fail2:
3326 skb_queue_purge(&ep->com.ep_skb_list);
3327 deref_cm_id(&ep->com);
3328 fail1:
3329 c4iw_put_ep(&ep->com);
3330 out:
3331 return err;
3332 }
3333
3334 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3335 {
3336 int err;
3337 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3338 &ep->com.local_addr;
3339
3340 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3341 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3342 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3343 if (err)
3344 return err;
3345 }
3346 c4iw_init_wr_wait(&ep->com.wr_wait);
3347 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3348 ep->stid, &sin6->sin6_addr,
3349 sin6->sin6_port,
3350 ep->com.dev->rdev.lldi.rxq_ids[0]);
3351 if (!err)
3352 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3353 &ep->com.wr_wait,
3354 0, 0, __func__);
3355 else if (err > 0)
3356 err = net_xmit_errno(err);
3357 if (err) {
3358 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3359 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3360 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3361 err, ep->stid,
3362 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3363 }
3364 return err;
3365 }
3366
3367 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3368 {
3369 int err;
3370 struct sockaddr_in *sin = (struct sockaddr_in *)
3371 &ep->com.local_addr;
3372
3373 if (dev->rdev.lldi.enable_fw_ofld_conn) {
3374 do {
3375 err = cxgb4_create_server_filter(
3376 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3377 sin->sin_addr.s_addr, sin->sin_port, 0,
3378 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3379 if (err == -EBUSY) {
3380 if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3381 err = -EIO;
3382 break;
3383 }
3384 set_current_state(TASK_UNINTERRUPTIBLE);
3385 schedule_timeout(usecs_to_jiffies(100));
3386 }
3387 } while (err == -EBUSY);
3388 } else {
3389 c4iw_init_wr_wait(&ep->com.wr_wait);
3390 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3391 ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3392 0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3393 if (!err)
3394 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3395 &ep->com.wr_wait,
3396 0, 0, __func__);
3397 else if (err > 0)
3398 err = net_xmit_errno(err);
3399 }
3400 if (err)
3401 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3402 , err, ep->stid,
3403 &sin->sin_addr, ntohs(sin->sin_port));
3404 return err;
3405 }
3406
3407 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3408 {
3409 int err = 0;
3410 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3411 struct c4iw_listen_ep *ep;
3412
3413 might_sleep();
3414
3415 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3416 if (!ep) {
3417 pr_err("%s - cannot alloc ep\n", __func__);
3418 err = -ENOMEM;
3419 goto fail1;
3420 }
3421 skb_queue_head_init(&ep->com.ep_skb_list);
3422 pr_debug("%s ep %p\n", __func__, ep);
3423 ep->com.cm_id = cm_id;
3424 ref_cm_id(&ep->com);
3425 ep->com.dev = dev;
3426 ep->backlog = backlog;
3427 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3428 sizeof(ep->com.local_addr));
3429
3430 /*
3431 * Allocate a server TID.
3432 */
3433 if (dev->rdev.lldi.enable_fw_ofld_conn &&
3434 ep->com.local_addr.ss_family == AF_INET)
3435 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3436 cm_id->m_local_addr.ss_family, ep);
3437 else
3438 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3439 cm_id->m_local_addr.ss_family, ep);
3440
3441 if (ep->stid == -1) {
3442 pr_err("%s - cannot alloc stid\n", __func__);
3443 err = -ENOMEM;
3444 goto fail2;
3445 }
3446 insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3447
3448 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3449 sizeof(ep->com.local_addr));
3450
3451 state_set(&ep->com, LISTEN);
3452 if (ep->com.local_addr.ss_family == AF_INET)
3453 err = create_server4(dev, ep);
3454 else
3455 err = create_server6(dev, ep);
3456 if (!err) {
3457 cm_id->provider_data = ep;
3458 goto out;
3459 }
3460
3461 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3462 ep->com.local_addr.ss_family);
3463 fail2:
3464 deref_cm_id(&ep->com);
3465 c4iw_put_ep(&ep->com);
3466 fail1:
3467 out:
3468 return err;
3469 }
3470
3471 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3472 {
3473 int err;
3474 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3475
3476 pr_debug("%s ep %p\n", __func__, ep);
3477
3478 might_sleep();
3479 state_set(&ep->com, DEAD);
3480 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3481 ep->com.local_addr.ss_family == AF_INET) {
3482 err = cxgb4_remove_server_filter(
3483 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3484 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3485 } else {
3486 struct sockaddr_in6 *sin6;
3487 c4iw_init_wr_wait(&ep->com.wr_wait);
3488 err = cxgb4_remove_server(
3489 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3490 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3491 if (err)
3492 goto done;
3493 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
3494 0, 0, __func__);
3495 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3496 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3497 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3498 }
3499 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3500 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3501 ep->com.local_addr.ss_family);
3502 done:
3503 deref_cm_id(&ep->com);
3504 c4iw_put_ep(&ep->com);
3505 return err;
3506 }
3507
3508 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3509 {
3510 int ret = 0;
3511 int close = 0;
3512 int fatal = 0;
3513 struct c4iw_rdev *rdev;
3514
3515 mutex_lock(&ep->com.mutex);
3516
3517 pr_debug("%s ep %p state %s, abrupt %d\n", __func__, ep,
3518 states[ep->com.state], abrupt);
3519
3520 /*
3521 * Ref the ep here in case we have fatal errors causing the
3522 * ep to be released and freed.
3523 */
3524 c4iw_get_ep(&ep->com);
3525
3526 rdev = &ep->com.dev->rdev;
3527 if (c4iw_fatal_error(rdev)) {
3528 fatal = 1;
3529 close_complete_upcall(ep, -EIO);
3530 ep->com.state = DEAD;
3531 }
3532 switch (ep->com.state) {
3533 case MPA_REQ_WAIT:
3534 case MPA_REQ_SENT:
3535 case MPA_REQ_RCVD:
3536 case MPA_REP_SENT:
3537 case FPDU_MODE:
3538 case CONNECTING:
3539 close = 1;
3540 if (abrupt)
3541 ep->com.state = ABORTING;
3542 else {
3543 ep->com.state = CLOSING;
3544
3545 /*
3546 * if we close before we see the fw4_ack() then we fix
3547 * up the timer state since we're reusing it.
3548 */
3549 if (ep->mpa_skb &&
3550 test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3551 clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3552 stop_ep_timer(ep);
3553 }
3554 start_ep_timer(ep);
3555 }
3556 set_bit(CLOSE_SENT, &ep->com.flags);
3557 break;
3558 case CLOSING:
3559 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3560 close = 1;
3561 if (abrupt) {
3562 (void)stop_ep_timer(ep);
3563 ep->com.state = ABORTING;
3564 } else
3565 ep->com.state = MORIBUND;
3566 }
3567 break;
3568 case MORIBUND:
3569 case ABORTING:
3570 case DEAD:
3571 pr_debug("%s ignoring disconnect ep %p state %u\n",
3572 __func__, ep, ep->com.state);
3573 break;
3574 default:
3575 BUG();
3576 break;
3577 }
3578
3579 if (close) {
3580 if (abrupt) {
3581 set_bit(EP_DISC_ABORT, &ep->com.history);
3582 close_complete_upcall(ep, -ECONNRESET);
3583 ret = send_abort(ep);
3584 } else {
3585 set_bit(EP_DISC_CLOSE, &ep->com.history);
3586 ret = send_halfclose(ep);
3587 }
3588 if (ret) {
3589 set_bit(EP_DISC_FAIL, &ep->com.history);
3590 if (!abrupt) {
3591 stop_ep_timer(ep);
3592 close_complete_upcall(ep, -EIO);
3593 }
3594 if (ep->com.qp) {
3595 struct c4iw_qp_attributes attrs;
3596
3597 attrs.next_state = C4IW_QP_STATE_ERROR;
3598 ret = c4iw_modify_qp(ep->com.qp->rhp,
3599 ep->com.qp,
3600 C4IW_QP_ATTR_NEXT_STATE,
3601 &attrs, 1);
3602 if (ret)
3603 pr_err("%s - qp <- error failed!\n",
3604 __func__);
3605 }
3606 fatal = 1;
3607 }
3608 }
3609 mutex_unlock(&ep->com.mutex);
3610 c4iw_put_ep(&ep->com);
3611 if (fatal)
3612 release_ep_resources(ep);
3613 return ret;
3614 }
3615
3616 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3617 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3618 {
3619 struct c4iw_ep *ep;
3620 int atid = be32_to_cpu(req->tid);
3621
3622 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3623 (__force u32) req->tid);
3624 if (!ep)
3625 return;
3626
3627 switch (req->retval) {
3628 case FW_ENOMEM:
3629 set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3630 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3631 send_fw_act_open_req(ep, atid);
3632 return;
3633 }
3634 case FW_EADDRINUSE:
3635 set_bit(ACT_RETRY_INUSE, &ep->com.history);
3636 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3637 send_fw_act_open_req(ep, atid);
3638 return;
3639 }
3640 break;
3641 default:
3642 pr_info("%s unexpected ofld conn wr retval %d\n",
3643 __func__, req->retval);
3644 break;
3645 }
3646 pr_err("active ofld_connect_wr failure %d atid %d\n",
3647 req->retval, atid);
3648 mutex_lock(&dev->rdev.stats.lock);
3649 dev->rdev.stats.act_ofld_conn_fails++;
3650 mutex_unlock(&dev->rdev.stats.lock);
3651 connect_reply_upcall(ep, status2errno(req->retval));
3652 state_set(&ep->com, DEAD);
3653 if (ep->com.remote_addr.ss_family == AF_INET6) {
3654 struct sockaddr_in6 *sin6 =
3655 (struct sockaddr_in6 *)&ep->com.local_addr;
3656 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3657 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3658 }
3659 remove_handle(dev, &dev->atid_idr, atid);
3660 cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3661 dst_release(ep->dst);
3662 cxgb4_l2t_release(ep->l2t);
3663 c4iw_put_ep(&ep->com);
3664 }
3665
3666 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3667 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3668 {
3669 struct sk_buff *rpl_skb;
3670 struct cpl_pass_accept_req *cpl;
3671 int ret;
3672
3673 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3674 BUG_ON(!rpl_skb);
3675 if (req->retval) {
3676 pr_debug("%s passive open failure %d\n", __func__, req->retval);
3677 mutex_lock(&dev->rdev.stats.lock);
3678 dev->rdev.stats.pas_ofld_conn_fails++;
3679 mutex_unlock(&dev->rdev.stats.lock);
3680 kfree_skb(rpl_skb);
3681 } else {
3682 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3683 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3684 (__force u32) htonl(
3685 (__force u32) req->tid)));
3686 ret = pass_accept_req(dev, rpl_skb);
3687 if (!ret)
3688 kfree_skb(rpl_skb);
3689 }
3690 return;
3691 }
3692
3693 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3694 {
3695 struct cpl_fw6_msg *rpl = cplhdr(skb);
3696 struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3697
3698 switch (rpl->type) {
3699 case FW6_TYPE_CQE:
3700 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3701 break;
3702 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3703 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3704 switch (req->t_state) {
3705 case TCP_SYN_SENT:
3706 active_ofld_conn_reply(dev, skb, req);
3707 break;
3708 case TCP_SYN_RECV:
3709 passive_ofld_conn_reply(dev, skb, req);
3710 break;
3711 default:
3712 pr_err("%s unexpected ofld conn wr state %d\n",
3713 __func__, req->t_state);
3714 break;
3715 }
3716 break;
3717 }
3718 return 0;
3719 }
3720
3721 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3722 {
3723 __be32 l2info;
3724 __be16 hdr_len, vlantag, len;
3725 u16 eth_hdr_len;
3726 int tcp_hdr_len, ip_hdr_len;
3727 u8 intf;
3728 struct cpl_rx_pkt *cpl = cplhdr(skb);
3729 struct cpl_pass_accept_req *req;
3730 struct tcp_options_received tmp_opt;
3731 struct c4iw_dev *dev;
3732 enum chip_type type;
3733
3734 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3735 /* Store values from cpl_rx_pkt in temporary location. */
3736 vlantag = cpl->vlan;
3737 len = cpl->len;
3738 l2info = cpl->l2info;
3739 hdr_len = cpl->hdr_len;
3740 intf = cpl->iff;
3741
3742 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3743
3744 /*
3745 * We need to parse the TCP options from SYN packet.
3746 * to generate cpl_pass_accept_req.
3747 */
3748 memset(&tmp_opt, 0, sizeof(tmp_opt));
3749 tcp_clear_options(&tmp_opt);
3750 tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL);
3751
3752 req = __skb_push(skb, sizeof(*req));
3753 memset(req, 0, sizeof(*req));
3754 req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3755 SYN_MAC_IDX_V(RX_MACIDX_G(
3756 be32_to_cpu(l2info))) |
3757 SYN_XACT_MATCH_F);
3758 type = dev->rdev.lldi.adapter_type;
3759 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3760 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3761 req->hdr_len =
3762 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3763 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3764 eth_hdr_len = is_t4(type) ?
3765 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3766 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3767 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3768 IP_HDR_LEN_V(ip_hdr_len) |
3769 ETH_HDR_LEN_V(eth_hdr_len));
3770 } else { /* T6 and later */
3771 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3772 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3773 T6_IP_HDR_LEN_V(ip_hdr_len) |
3774 T6_ETH_HDR_LEN_V(eth_hdr_len));
3775 }
3776 req->vlan = vlantag;
3777 req->len = len;
3778 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3779 PASS_OPEN_TOS_V(tos));
3780 req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3781 if (tmp_opt.wscale_ok)
3782 req->tcpopt.wsf = tmp_opt.snd_wscale;
3783 req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3784 if (tmp_opt.sack_ok)
3785 req->tcpopt.sack = 1;
3786 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3787 return;
3788 }
3789
3790 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3791 __be32 laddr, __be16 lport,
3792 __be32 raddr, __be16 rport,
3793 u32 rcv_isn, u32 filter, u16 window,
3794 u32 rss_qid, u8 port_id)
3795 {
3796 struct sk_buff *req_skb;
3797 struct fw_ofld_connection_wr *req;
3798 struct cpl_pass_accept_req *cpl = cplhdr(skb);
3799 int ret;
3800
3801 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3802 if (!req_skb)
3803 return;
3804 req = __skb_put_zero(req_skb, sizeof(*req));
3805 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3806 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3807 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3808 req->le.filter = (__force __be32) filter;
3809 req->le.lport = lport;
3810 req->le.pport = rport;
3811 req->le.u.ipv4.lip = laddr;
3812 req->le.u.ipv4.pip = raddr;
3813 req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3814 req->tcb.rcv_adv = htons(window);
3815 req->tcb.t_state_to_astid =
3816 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3817 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3818 FW_OFLD_CONNECTION_WR_ASTID_V(
3819 PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
3820
3821 /*
3822 * We store the qid in opt2 which will be used by the firmware
3823 * to send us the wr response.
3824 */
3825 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
3826
3827 /*
3828 * We initialize the MSS index in TCB to 0xF.
3829 * So that when driver sends cpl_pass_accept_rpl
3830 * TCB picks up the correct value. If this was 0
3831 * TP will ignore any value > 0 for MSS index.
3832 */
3833 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
3834 req->cookie = (uintptr_t)skb;
3835
3836 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
3837 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
3838 if (ret < 0) {
3839 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
3840 ret);
3841 kfree_skb(skb);
3842 kfree_skb(req_skb);
3843 }
3844 }
3845
3846 /*
3847 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3848 * messages when a filter is being used instead of server to
3849 * redirect a syn packet. When packets hit filter they are redirected
3850 * to the offload queue and driver tries to establish the connection
3851 * using firmware work request.
3852 */
3853 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
3854 {
3855 int stid;
3856 unsigned int filter;
3857 struct ethhdr *eh = NULL;
3858 struct vlan_ethhdr *vlan_eh = NULL;
3859 struct iphdr *iph;
3860 struct tcphdr *tcph;
3861 struct rss_header *rss = (void *)skb->data;
3862 struct cpl_rx_pkt *cpl = (void *)skb->data;
3863 struct cpl_pass_accept_req *req = (void *)(rss + 1);
3864 struct l2t_entry *e;
3865 struct dst_entry *dst;
3866 struct c4iw_ep *lep = NULL;
3867 u16 window;
3868 struct port_info *pi;
3869 struct net_device *pdev;
3870 u16 rss_qid, eth_hdr_len;
3871 int step;
3872 u32 tx_chan;
3873 struct neighbour *neigh;
3874
3875 /* Drop all non-SYN packets */
3876 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
3877 goto reject;
3878
3879 /*
3880 * Drop all packets which did not hit the filter.
3881 * Unlikely to happen.
3882 */
3883 if (!(rss->filter_hit && rss->filter_tid))
3884 goto reject;
3885
3886 /*
3887 * Calculate the server tid from filter hit index from cpl_rx_pkt.
3888 */
3889 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
3890
3891 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
3892 if (!lep) {
3893 pr_debug("%s connect request on invalid stid %d\n",
3894 __func__, stid);
3895 goto reject;
3896 }
3897
3898 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
3899 case CHELSIO_T4:
3900 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3901 break;
3902 case CHELSIO_T5:
3903 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3904 break;
3905 case CHELSIO_T6:
3906 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3907 break;
3908 default:
3909 pr_err("T%d Chip is not supported\n",
3910 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
3911 goto reject;
3912 }
3913
3914 if (eth_hdr_len == ETH_HLEN) {
3915 eh = (struct ethhdr *)(req + 1);
3916 iph = (struct iphdr *)(eh + 1);
3917 } else {
3918 vlan_eh = (struct vlan_ethhdr *)(req + 1);
3919 iph = (struct iphdr *)(vlan_eh + 1);
3920 skb->vlan_tci = ntohs(cpl->vlan);
3921 }
3922
3923 if (iph->version != 0x4)
3924 goto reject;
3925
3926 tcph = (struct tcphdr *)(iph + 1);
3927 skb_set_network_header(skb, (void *)iph - (void *)rss);
3928 skb_set_transport_header(skb, (void *)tcph - (void *)rss);
3929 skb_get(skb);
3930
3931 pr_debug("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
3932 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
3933 ntohs(tcph->source), iph->tos);
3934
3935 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3936 iph->daddr, iph->saddr, tcph->dest,
3937 tcph->source, iph->tos);
3938 if (!dst) {
3939 pr_err("%s - failed to find dst entry!\n",
3940 __func__);
3941 goto reject;
3942 }
3943 neigh = dst_neigh_lookup_skb(dst, skb);
3944
3945 if (!neigh) {
3946 pr_err("%s - failed to allocate neigh!\n",
3947 __func__);
3948 goto free_dst;
3949 }
3950
3951 if (neigh->dev->flags & IFF_LOOPBACK) {
3952 pdev = ip_dev_find(&init_net, iph->daddr);
3953 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3954 pdev, 0);
3955 pi = (struct port_info *)netdev_priv(pdev);
3956 tx_chan = cxgb4_port_chan(pdev);
3957 dev_put(pdev);
3958 } else {
3959 pdev = get_real_dev(neigh->dev);
3960 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3961 pdev, 0);
3962 pi = (struct port_info *)netdev_priv(pdev);
3963 tx_chan = cxgb4_port_chan(pdev);
3964 }
3965 neigh_release(neigh);
3966 if (!e) {
3967 pr_err("%s - failed to allocate l2t entry!\n",
3968 __func__);
3969 goto free_dst;
3970 }
3971
3972 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
3973 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
3974 window = (__force u16) htons((__force u16)tcph->window);
3975
3976 /* Calcuate filter portion for LE region. */
3977 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
3978 dev->rdev.lldi.ports[0],
3979 e));
3980
3981 /*
3982 * Synthesize the cpl_pass_accept_req. We have everything except the
3983 * TID. Once firmware sends a reply with TID we update the TID field
3984 * in cpl and pass it through the regular cpl_pass_accept_req path.
3985 */
3986 build_cpl_pass_accept_req(skb, stid, iph->tos);
3987 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
3988 tcph->source, ntohl(tcph->seq), filter, window,
3989 rss_qid, pi->port_id);
3990 cxgb4_l2t_release(e);
3991 free_dst:
3992 dst_release(dst);
3993 reject:
3994 if (lep)
3995 c4iw_put_ep(&lep->com);
3996 return 0;
3997 }
3998
3999 /*
4000 * These are the real handlers that are called from a
4001 * work queue.
4002 */
4003 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4004 [CPL_ACT_ESTABLISH] = act_establish,
4005 [CPL_ACT_OPEN_RPL] = act_open_rpl,
4006 [CPL_RX_DATA] = rx_data,
4007 [CPL_ABORT_RPL_RSS] = abort_rpl,
4008 [CPL_ABORT_RPL] = abort_rpl,
4009 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
4010 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4011 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4012 [CPL_PASS_ESTABLISH] = pass_establish,
4013 [CPL_PEER_CLOSE] = peer_close,
4014 [CPL_ABORT_REQ_RSS] = peer_abort,
4015 [CPL_CLOSE_CON_RPL] = close_con_rpl,
4016 [CPL_RDMA_TERMINATE] = terminate,
4017 [CPL_FW4_ACK] = fw4_ack,
4018 [CPL_FW6_MSG] = deferred_fw6_msg,
4019 [CPL_RX_PKT] = rx_pkt,
4020 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4021 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4022 };
4023
4024 static void process_timeout(struct c4iw_ep *ep)
4025 {
4026 struct c4iw_qp_attributes attrs;
4027 int abort = 1;
4028
4029 mutex_lock(&ep->com.mutex);
4030 pr_debug("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
4031 ep->com.state);
4032 set_bit(TIMEDOUT, &ep->com.history);
4033 switch (ep->com.state) {
4034 case MPA_REQ_SENT:
4035 connect_reply_upcall(ep, -ETIMEDOUT);
4036 break;
4037 case MPA_REQ_WAIT:
4038 case MPA_REQ_RCVD:
4039 case MPA_REP_SENT:
4040 case FPDU_MODE:
4041 break;
4042 case CLOSING:
4043 case MORIBUND:
4044 if (ep->com.cm_id && ep->com.qp) {
4045 attrs.next_state = C4IW_QP_STATE_ERROR;
4046 c4iw_modify_qp(ep->com.qp->rhp,
4047 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4048 &attrs, 1);
4049 }
4050 close_complete_upcall(ep, -ETIMEDOUT);
4051 break;
4052 case ABORTING:
4053 case DEAD:
4054
4055 /*
4056 * These states are expected if the ep timed out at the same
4057 * time as another thread was calling stop_ep_timer().
4058 * So we silently do nothing for these states.
4059 */
4060 abort = 0;
4061 break;
4062 default:
4063 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4064 __func__, ep, ep->hwtid, ep->com.state);
4065 abort = 0;
4066 }
4067 mutex_unlock(&ep->com.mutex);
4068 if (abort)
4069 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4070 c4iw_put_ep(&ep->com);
4071 }
4072
4073 static void process_timedout_eps(void)
4074 {
4075 struct c4iw_ep *ep;
4076
4077 spin_lock_irq(&timeout_lock);
4078 while (!list_empty(&timeout_list)) {
4079 struct list_head *tmp;
4080
4081 tmp = timeout_list.next;
4082 list_del(tmp);
4083 tmp->next = NULL;
4084 tmp->prev = NULL;
4085 spin_unlock_irq(&timeout_lock);
4086 ep = list_entry(tmp, struct c4iw_ep, entry);
4087 process_timeout(ep);
4088 spin_lock_irq(&timeout_lock);
4089 }
4090 spin_unlock_irq(&timeout_lock);
4091 }
4092
4093 static void process_work(struct work_struct *work)
4094 {
4095 struct sk_buff *skb = NULL;
4096 struct c4iw_dev *dev;
4097 struct cpl_act_establish *rpl;
4098 unsigned int opcode;
4099 int ret;
4100
4101 process_timedout_eps();
4102 while ((skb = skb_dequeue(&rxq))) {
4103 rpl = cplhdr(skb);
4104 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4105 opcode = rpl->ot.opcode;
4106
4107 BUG_ON(!work_handlers[opcode]);
4108 ret = work_handlers[opcode](dev, skb);
4109 if (!ret)
4110 kfree_skb(skb);
4111 process_timedout_eps();
4112 }
4113 }
4114
4115 static DECLARE_WORK(skb_work, process_work);
4116
4117 static void ep_timeout(unsigned long arg)
4118 {
4119 struct c4iw_ep *ep = (struct c4iw_ep *)arg;
4120 int kickit = 0;
4121
4122 spin_lock(&timeout_lock);
4123 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4124 /*
4125 * Only insert if it is not already on the list.
4126 */
4127 if (!ep->entry.next) {
4128 list_add_tail(&ep->entry, &timeout_list);
4129 kickit = 1;
4130 }
4131 }
4132 spin_unlock(&timeout_lock);
4133 if (kickit)
4134 queue_work(workq, &skb_work);
4135 }
4136
4137 /*
4138 * All the CM events are handled on a work queue to have a safe context.
4139 */
4140 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4141 {
4142
4143 /*
4144 * Save dev in the skb->cb area.
4145 */
4146 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4147
4148 /*
4149 * Queue the skb and schedule the worker thread.
4150 */
4151 skb_queue_tail(&rxq, skb);
4152 queue_work(workq, &skb_work);
4153 return 0;
4154 }
4155
4156 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4157 {
4158 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4159
4160 if (rpl->status != CPL_ERR_NONE) {
4161 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n",
4162 rpl->status, GET_TID(rpl));
4163 }
4164 kfree_skb(skb);
4165 return 0;
4166 }
4167
4168 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4169 {
4170 struct cpl_fw6_msg *rpl = cplhdr(skb);
4171 struct c4iw_wr_wait *wr_waitp;
4172 int ret;
4173
4174 pr_debug("%s type %u\n", __func__, rpl->type);
4175
4176 switch (rpl->type) {
4177 case FW6_TYPE_WR_RPL:
4178 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4179 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4180 pr_debug("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
4181 if (wr_waitp)
4182 c4iw_wake_up(wr_waitp, ret ? -ret : 0);
4183 kfree_skb(skb);
4184 break;
4185 case FW6_TYPE_CQE:
4186 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4187 sched(dev, skb);
4188 break;
4189 default:
4190 pr_err("%s unexpected fw6 msg type %u\n",
4191 __func__, rpl->type);
4192 kfree_skb(skb);
4193 break;
4194 }
4195 return 0;
4196 }
4197
4198 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4199 {
4200 struct cpl_abort_req_rss *req = cplhdr(skb);
4201 struct c4iw_ep *ep;
4202 unsigned int tid = GET_TID(req);
4203
4204 ep = get_ep_from_tid(dev, tid);
4205 /* This EP will be dereferenced in peer_abort() */
4206 if (!ep) {
4207 pr_warn("Abort on non-existent endpoint, tid %d\n", tid);
4208 kfree_skb(skb);
4209 return 0;
4210 }
4211 if (cxgb_is_neg_adv(req->status)) {
4212 pr_debug("%s Negative advice on abort- tid %u status %d (%s)\n",
4213 __func__, ep->hwtid, req->status,
4214 neg_adv_str(req->status));
4215 goto out;
4216 }
4217 pr_debug("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
4218 ep->com.state);
4219
4220 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4221 out:
4222 sched(dev, skb);
4223 return 0;
4224 }
4225
4226 /*
4227 * Most upcalls from the T4 Core go to sched() to
4228 * schedule the processing on a work queue.
4229 */
4230 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4231 [CPL_ACT_ESTABLISH] = sched,
4232 [CPL_ACT_OPEN_RPL] = sched,
4233 [CPL_RX_DATA] = sched,
4234 [CPL_ABORT_RPL_RSS] = sched,
4235 [CPL_ABORT_RPL] = sched,
4236 [CPL_PASS_OPEN_RPL] = sched,
4237 [CPL_CLOSE_LISTSRV_RPL] = sched,
4238 [CPL_PASS_ACCEPT_REQ] = sched,
4239 [CPL_PASS_ESTABLISH] = sched,
4240 [CPL_PEER_CLOSE] = sched,
4241 [CPL_CLOSE_CON_RPL] = sched,
4242 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
4243 [CPL_RDMA_TERMINATE] = sched,
4244 [CPL_FW4_ACK] = sched,
4245 [CPL_SET_TCB_RPL] = set_tcb_rpl,
4246 [CPL_FW6_MSG] = fw6_msg,
4247 [CPL_RX_PKT] = sched
4248 };
4249
4250 int __init c4iw_cm_init(void)
4251 {
4252 spin_lock_init(&timeout_lock);
4253 skb_queue_head_init(&rxq);
4254
4255 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM);
4256 if (!workq)
4257 return -ENOMEM;
4258
4259 return 0;
4260 }
4261
4262 void c4iw_cm_term(void)
4263 {
4264 WARN_ON(!list_empty(&timeout_list));
4265 flush_workqueue(workq);
4266 destroy_workqueue(workq);
4267 }