]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/infiniband/hw/cxgb4/cm.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-eoan-kernel.git] / drivers / infiniband / hw / cxgb4 / cm.c
1 /*
2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49
50 #include <rdma/ib_addr.h>
51
52 #include <libcxgb_cm.h>
53 #include "iw_cxgb4.h"
54 #include "clip_tbl.h"
55
56 static char *states[] = {
57 "idle",
58 "listen",
59 "connecting",
60 "mpa_wait_req",
61 "mpa_req_sent",
62 "mpa_req_rcvd",
63 "mpa_rep_sent",
64 "fpdu_mode",
65 "aborting",
66 "closing",
67 "moribund",
68 "dead",
69 NULL,
70 };
71
72 static int nocong;
73 module_param(nocong, int, 0644);
74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
75
76 static int enable_ecn;
77 module_param(enable_ecn, int, 0644);
78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
79
80 static int dack_mode = 1;
81 module_param(dack_mode, int, 0644);
82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
83
84 uint c4iw_max_read_depth = 32;
85 module_param(c4iw_max_read_depth, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth,
87 "Per-connection max ORD/IRD (default=32)");
88
89 static int enable_tcp_timestamps;
90 module_param(enable_tcp_timestamps, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
92
93 static int enable_tcp_sack;
94 module_param(enable_tcp_sack, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
96
97 static int enable_tcp_window_scaling = 1;
98 module_param(enable_tcp_window_scaling, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling,
100 "Enable tcp window scaling (default=1)");
101
102 static int peer2peer = 1;
103 module_param(peer2peer, int, 0644);
104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
105
106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
107 module_param(p2p_type, int, 0644);
108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
109 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
110
111 static int ep_timeout_secs = 60;
112 module_param(ep_timeout_secs, int, 0644);
113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
114 "in seconds (default=60)");
115
116 static int mpa_rev = 2;
117 module_param(mpa_rev, int, 0644);
118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
119 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
120 " compliant (default=2)");
121
122 static int markers_enabled;
123 module_param(markers_enabled, int, 0644);
124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
125
126 static int crc_enabled = 1;
127 module_param(crc_enabled, int, 0644);
128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
129
130 static int rcv_win = 256 * 1024;
131 module_param(rcv_win, int, 0644);
132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
133
134 static int snd_win = 128 * 1024;
135 module_param(snd_win, int, 0644);
136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
137
138 static struct workqueue_struct *workq;
139
140 static struct sk_buff_head rxq;
141
142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
143 static void ep_timeout(struct timer_list *t);
144 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
146
147 static LIST_HEAD(timeout_list);
148 static spinlock_t timeout_lock;
149
150 static void deref_cm_id(struct c4iw_ep_common *epc)
151 {
152 epc->cm_id->rem_ref(epc->cm_id);
153 epc->cm_id = NULL;
154 set_bit(CM_ID_DEREFED, &epc->history);
155 }
156
157 static void ref_cm_id(struct c4iw_ep_common *epc)
158 {
159 set_bit(CM_ID_REFED, &epc->history);
160 epc->cm_id->add_ref(epc->cm_id);
161 }
162
163 static void deref_qp(struct c4iw_ep *ep)
164 {
165 c4iw_qp_rem_ref(&ep->com.qp->ibqp);
166 clear_bit(QP_REFERENCED, &ep->com.flags);
167 set_bit(QP_DEREFED, &ep->com.history);
168 }
169
170 static void ref_qp(struct c4iw_ep *ep)
171 {
172 set_bit(QP_REFERENCED, &ep->com.flags);
173 set_bit(QP_REFED, &ep->com.history);
174 c4iw_qp_add_ref(&ep->com.qp->ibqp);
175 }
176
177 static void start_ep_timer(struct c4iw_ep *ep)
178 {
179 pr_debug("ep %p\n", ep);
180 if (timer_pending(&ep->timer)) {
181 pr_err("%s timer already started! ep %p\n",
182 __func__, ep);
183 return;
184 }
185 clear_bit(TIMEOUT, &ep->com.flags);
186 c4iw_get_ep(&ep->com);
187 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
188 add_timer(&ep->timer);
189 }
190
191 static int stop_ep_timer(struct c4iw_ep *ep)
192 {
193 pr_debug("ep %p stopping\n", ep);
194 del_timer_sync(&ep->timer);
195 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
196 c4iw_put_ep(&ep->com);
197 return 0;
198 }
199 return 1;
200 }
201
202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
203 struct l2t_entry *l2e)
204 {
205 int error = 0;
206
207 if (c4iw_fatal_error(rdev)) {
208 kfree_skb(skb);
209 pr_err("%s - device in error state - dropping\n", __func__);
210 return -EIO;
211 }
212 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
213 if (error < 0)
214 kfree_skb(skb);
215 else if (error == NET_XMIT_DROP)
216 return -ENOMEM;
217 return error < 0 ? error : 0;
218 }
219
220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
221 {
222 int error = 0;
223
224 if (c4iw_fatal_error(rdev)) {
225 kfree_skb(skb);
226 pr_err("%s - device in error state - dropping\n", __func__);
227 return -EIO;
228 }
229 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
230 if (error < 0)
231 kfree_skb(skb);
232 return error < 0 ? error : 0;
233 }
234
235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
236 {
237 u32 len = roundup(sizeof(struct cpl_tid_release), 16);
238
239 skb = get_skb(skb, len, GFP_KERNEL);
240 if (!skb)
241 return;
242
243 cxgb_mk_tid_release(skb, len, hwtid, 0);
244 c4iw_ofld_send(rdev, skb);
245 return;
246 }
247
248 static void set_emss(struct c4iw_ep *ep, u16 opt)
249 {
250 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
251 ((AF_INET == ep->com.remote_addr.ss_family) ?
252 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
253 sizeof(struct tcphdr);
254 ep->mss = ep->emss;
255 if (TCPOPT_TSTAMP_G(opt))
256 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
257 if (ep->emss < 128)
258 ep->emss = 128;
259 if (ep->emss & 7)
260 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n",
261 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
262 pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss,
263 ep->emss);
264 }
265
266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
267 {
268 enum c4iw_ep_state state;
269
270 mutex_lock(&epc->mutex);
271 state = epc->state;
272 mutex_unlock(&epc->mutex);
273 return state;
274 }
275
276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
277 {
278 epc->state = new;
279 }
280
281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
282 {
283 mutex_lock(&epc->mutex);
284 pr_debug("%s -> %s\n", states[epc->state], states[new]);
285 __state_set(epc, new);
286 mutex_unlock(&epc->mutex);
287 return;
288 }
289
290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
291 {
292 struct sk_buff *skb;
293 unsigned int i;
294 size_t len;
295
296 len = roundup(sizeof(union cpl_wr_size), 16);
297 for (i = 0; i < size; i++) {
298 skb = alloc_skb(len, GFP_KERNEL);
299 if (!skb)
300 goto fail;
301 skb_queue_tail(ep_skb_list, skb);
302 }
303 return 0;
304 fail:
305 skb_queue_purge(ep_skb_list);
306 return -ENOMEM;
307 }
308
309 static void *alloc_ep(int size, gfp_t gfp)
310 {
311 struct c4iw_ep_common *epc;
312
313 epc = kzalloc(size, gfp);
314 if (epc) {
315 epc->wr_waitp = c4iw_alloc_wr_wait(gfp);
316 if (!epc->wr_waitp) {
317 kfree(epc);
318 epc = NULL;
319 goto out;
320 }
321 kref_init(&epc->kref);
322 mutex_init(&epc->mutex);
323 c4iw_init_wr_wait(epc->wr_waitp);
324 }
325 pr_debug("alloc ep %p\n", epc);
326 out:
327 return epc;
328 }
329
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 unsigned long flags;
333
334 xa_lock_irqsave(&ep->com.dev->hwtids, flags);
335 __xa_erase(&ep->com.dev->hwtids, ep->hwtid);
336 if (xa_empty(&ep->com.dev->hwtids))
337 wake_up(&ep->com.dev->wait);
338 xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
339 }
340
341 static int insert_ep_tid(struct c4iw_ep *ep)
342 {
343 unsigned long flags;
344 int err;
345
346 xa_lock_irqsave(&ep->com.dev->hwtids, flags);
347 err = __xa_insert(&ep->com.dev->hwtids, ep->hwtid, ep, GFP_KERNEL);
348 xa_unlock_irqrestore(&ep->com.dev->hwtids, flags);
349
350 return err;
351 }
352
353 /*
354 * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
355 */
356 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
357 {
358 struct c4iw_ep *ep;
359 unsigned long flags;
360
361 xa_lock_irqsave(&dev->hwtids, flags);
362 ep = xa_load(&dev->hwtids, tid);
363 if (ep)
364 c4iw_get_ep(&ep->com);
365 xa_unlock_irqrestore(&dev->hwtids, flags);
366 return ep;
367 }
368
369 /*
370 * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
371 */
372 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
373 unsigned int stid)
374 {
375 struct c4iw_listen_ep *ep;
376 unsigned long flags;
377
378 xa_lock_irqsave(&dev->stids, flags);
379 ep = xa_load(&dev->stids, stid);
380 if (ep)
381 c4iw_get_ep(&ep->com);
382 xa_unlock_irqrestore(&dev->stids, flags);
383 return ep;
384 }
385
386 void _c4iw_free_ep(struct kref *kref)
387 {
388 struct c4iw_ep *ep;
389
390 ep = container_of(kref, struct c4iw_ep, com.kref);
391 pr_debug("ep %p state %s\n", ep, states[ep->com.state]);
392 if (test_bit(QP_REFERENCED, &ep->com.flags))
393 deref_qp(ep);
394 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
395 if (ep->com.remote_addr.ss_family == AF_INET6) {
396 struct sockaddr_in6 *sin6 =
397 (struct sockaddr_in6 *)
398 &ep->com.local_addr;
399
400 cxgb4_clip_release(
401 ep->com.dev->rdev.lldi.ports[0],
402 (const u32 *)&sin6->sin6_addr.s6_addr,
403 1);
404 }
405 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
406 ep->com.local_addr.ss_family);
407 dst_release(ep->dst);
408 cxgb4_l2t_release(ep->l2t);
409 kfree_skb(ep->mpa_skb);
410 }
411 if (!skb_queue_empty(&ep->com.ep_skb_list))
412 skb_queue_purge(&ep->com.ep_skb_list);
413 c4iw_put_wr_wait(ep->com.wr_waitp);
414 kfree(ep);
415 }
416
417 static void release_ep_resources(struct c4iw_ep *ep)
418 {
419 set_bit(RELEASE_RESOURCES, &ep->com.flags);
420
421 /*
422 * If we have a hwtid, then remove it from the idr table
423 * so lookups will no longer find this endpoint. Otherwise
424 * we have a race where one thread finds the ep ptr just
425 * before the other thread is freeing the ep memory.
426 */
427 if (ep->hwtid != -1)
428 remove_ep_tid(ep);
429 c4iw_put_ep(&ep->com);
430 }
431
432 static int status2errno(int status)
433 {
434 switch (status) {
435 case CPL_ERR_NONE:
436 return 0;
437 case CPL_ERR_CONN_RESET:
438 return -ECONNRESET;
439 case CPL_ERR_ARP_MISS:
440 return -EHOSTUNREACH;
441 case CPL_ERR_CONN_TIMEDOUT:
442 return -ETIMEDOUT;
443 case CPL_ERR_TCAM_FULL:
444 return -ENOMEM;
445 case CPL_ERR_CONN_EXIST:
446 return -EADDRINUSE;
447 default:
448 return -EIO;
449 }
450 }
451
452 /*
453 * Try and reuse skbs already allocated...
454 */
455 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
456 {
457 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
458 skb_trim(skb, 0);
459 skb_get(skb);
460 skb_reset_transport_header(skb);
461 } else {
462 skb = alloc_skb(len, gfp);
463 if (!skb)
464 return NULL;
465 }
466 t4_set_arp_err_handler(skb, NULL, NULL);
467 return skb;
468 }
469
470 static struct net_device *get_real_dev(struct net_device *egress_dev)
471 {
472 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
473 }
474
475 static void arp_failure_discard(void *handle, struct sk_buff *skb)
476 {
477 pr_err("ARP failure\n");
478 kfree_skb(skb);
479 }
480
481 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
482 {
483 pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
484 }
485
486 enum {
487 NUM_FAKE_CPLS = 2,
488 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
489 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
490 };
491
492 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
493 {
494 struct c4iw_ep *ep;
495
496 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
497 release_ep_resources(ep);
498 kfree_skb(skb);
499 return 0;
500 }
501
502 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
503 {
504 struct c4iw_ep *ep;
505
506 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
507 c4iw_put_ep(&ep->parent_ep->com);
508 release_ep_resources(ep);
509 kfree_skb(skb);
510 return 0;
511 }
512
513 /*
514 * Fake up a special CPL opcode and call sched() so process_work() will call
515 * _put_ep_safe() in a safe context to free the ep resources. This is needed
516 * because ARP error handlers are called in an ATOMIC context, and
517 * _c4iw_free_ep() needs to block.
518 */
519 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
520 int cpl)
521 {
522 struct cpl_act_establish *rpl = cplhdr(skb);
523
524 /* Set our special ARP_FAILURE opcode */
525 rpl->ot.opcode = cpl;
526
527 /*
528 * Save ep in the skb->cb area, after where sched() will save the dev
529 * ptr.
530 */
531 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
532 sched(ep->com.dev, skb);
533 }
534
535 /* Handle an ARP failure for an accept */
536 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
537 {
538 struct c4iw_ep *ep = handle;
539
540 pr_err("ARP failure during accept - tid %u - dropping connection\n",
541 ep->hwtid);
542
543 __state_set(&ep->com, DEAD);
544 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
545 }
546
547 /*
548 * Handle an ARP failure for an active open.
549 */
550 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
551 {
552 struct c4iw_ep *ep = handle;
553
554 pr_err("ARP failure during connect\n");
555 connect_reply_upcall(ep, -EHOSTUNREACH);
556 __state_set(&ep->com, DEAD);
557 if (ep->com.remote_addr.ss_family == AF_INET6) {
558 struct sockaddr_in6 *sin6 =
559 (struct sockaddr_in6 *)&ep->com.local_addr;
560 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
561 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
562 }
563 xa_erase_irq(&ep->com.dev->atids, ep->atid);
564 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
565 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
566 }
567
568 /*
569 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
570 * and send it along.
571 */
572 static void abort_arp_failure(void *handle, struct sk_buff *skb)
573 {
574 int ret;
575 struct c4iw_ep *ep = handle;
576 struct c4iw_rdev *rdev = &ep->com.dev->rdev;
577 struct cpl_abort_req *req = cplhdr(skb);
578
579 pr_debug("rdev %p\n", rdev);
580 req->cmd = CPL_ABORT_NO_RST;
581 skb_get(skb);
582 ret = c4iw_ofld_send(rdev, skb);
583 if (ret) {
584 __state_set(&ep->com, DEAD);
585 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
586 } else
587 kfree_skb(skb);
588 }
589
590 static int send_flowc(struct c4iw_ep *ep)
591 {
592 struct fw_flowc_wr *flowc;
593 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
594 u16 vlan = ep->l2t->vlan;
595 int nparams;
596 int flowclen, flowclen16;
597
598 if (WARN_ON(!skb))
599 return -ENOMEM;
600
601 if (vlan == CPL_L2T_VLAN_NONE)
602 nparams = 9;
603 else
604 nparams = 10;
605
606 flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
607 flowclen16 = DIV_ROUND_UP(flowclen, 16);
608 flowclen = flowclen16 * 16;
609
610 flowc = __skb_put(skb, flowclen);
611 memset(flowc, 0, flowclen);
612
613 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
614 FW_FLOWC_WR_NPARAMS_V(nparams));
615 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
616 FW_WR_FLOWID_V(ep->hwtid));
617
618 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
619 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
620 (ep->com.dev->rdev.lldi.pf));
621 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
622 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
623 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
624 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
625 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
626 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
627 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
628 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
629 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
630 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
631 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
632 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
633 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
634 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
635 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE;
636 flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale);
637 if (nparams == 10) {
638 u16 pri;
639 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
640 flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
641 flowc->mnemval[9].val = cpu_to_be32(pri);
642 }
643
644 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
645 return c4iw_ofld_send(&ep->com.dev->rdev, skb);
646 }
647
648 static int send_halfclose(struct c4iw_ep *ep)
649 {
650 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
651 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16);
652
653 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
654 if (WARN_ON(!skb))
655 return -ENOMEM;
656
657 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx,
658 NULL, arp_failure_discard);
659
660 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
661 }
662
663 static void read_tcb(struct c4iw_ep *ep)
664 {
665 struct sk_buff *skb;
666 struct cpl_get_tcb *req;
667 int wrlen = roundup(sizeof(*req), 16);
668
669 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
670 if (WARN_ON(!skb))
671 return;
672
673 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
674 req = (struct cpl_get_tcb *) skb_put(skb, wrlen);
675 memset(req, 0, wrlen);
676 INIT_TP_WR(req, ep->hwtid);
677 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid));
678 req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid));
679
680 /*
681 * keep a ref on the ep so the tcb is not unlocked before this
682 * cpl completes. The ref is released in read_tcb_rpl().
683 */
684 c4iw_get_ep(&ep->com);
685 if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb)))
686 c4iw_put_ep(&ep->com);
687 }
688
689 static int send_abort_req(struct c4iw_ep *ep)
690 {
691 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16);
692 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
693
694 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
695 if (WARN_ON(!req_skb))
696 return -ENOMEM;
697
698 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx,
699 ep, abort_arp_failure);
700
701 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
702 }
703
704 static int send_abort(struct c4iw_ep *ep)
705 {
706 if (!ep->com.qp || !ep->com.qp->srq) {
707 send_abort_req(ep);
708 return 0;
709 }
710 set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags);
711 read_tcb(ep);
712 return 0;
713 }
714
715 static int send_connect(struct c4iw_ep *ep)
716 {
717 struct cpl_act_open_req *req = NULL;
718 struct cpl_t5_act_open_req *t5req = NULL;
719 struct cpl_t6_act_open_req *t6req = NULL;
720 struct cpl_act_open_req6 *req6 = NULL;
721 struct cpl_t5_act_open_req6 *t5req6 = NULL;
722 struct cpl_t6_act_open_req6 *t6req6 = NULL;
723 struct sk_buff *skb;
724 u64 opt0;
725 u32 opt2;
726 unsigned int mtu_idx;
727 u32 wscale;
728 int win, sizev4, sizev6, wrlen;
729 struct sockaddr_in *la = (struct sockaddr_in *)
730 &ep->com.local_addr;
731 struct sockaddr_in *ra = (struct sockaddr_in *)
732 &ep->com.remote_addr;
733 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
734 &ep->com.local_addr;
735 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
736 &ep->com.remote_addr;
737 int ret;
738 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
739 u32 isn = (prandom_u32() & ~7UL) - 1;
740 struct net_device *netdev;
741 u64 params;
742
743 netdev = ep->com.dev->rdev.lldi.ports[0];
744
745 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
746 case CHELSIO_T4:
747 sizev4 = sizeof(struct cpl_act_open_req);
748 sizev6 = sizeof(struct cpl_act_open_req6);
749 break;
750 case CHELSIO_T5:
751 sizev4 = sizeof(struct cpl_t5_act_open_req);
752 sizev6 = sizeof(struct cpl_t5_act_open_req6);
753 break;
754 case CHELSIO_T6:
755 sizev4 = sizeof(struct cpl_t6_act_open_req);
756 sizev6 = sizeof(struct cpl_t6_act_open_req6);
757 break;
758 default:
759 pr_err("T%d Chip is not supported\n",
760 CHELSIO_CHIP_VERSION(adapter_type));
761 return -EINVAL;
762 }
763
764 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
765 roundup(sizev4, 16) :
766 roundup(sizev6, 16);
767
768 pr_debug("ep %p atid %u\n", ep, ep->atid);
769
770 skb = get_skb(NULL, wrlen, GFP_KERNEL);
771 if (!skb) {
772 pr_err("%s - failed to alloc skb\n", __func__);
773 return -ENOMEM;
774 }
775 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
776
777 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
778 enable_tcp_timestamps,
779 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
780 wscale = cxgb_compute_wscale(rcv_win);
781
782 /*
783 * Specify the largest window that will fit in opt0. The
784 * remainder will be specified in the rx_data_ack.
785 */
786 win = ep->rcv_win >> 10;
787 if (win > RCV_BUFSIZ_M)
788 win = RCV_BUFSIZ_M;
789
790 opt0 = (nocong ? NO_CONG_F : 0) |
791 KEEP_ALIVE_F |
792 DELACK_F |
793 WND_SCALE_V(wscale) |
794 MSS_IDX_V(mtu_idx) |
795 L2T_IDX_V(ep->l2t->idx) |
796 TX_CHAN_V(ep->tx_chan) |
797 SMAC_SEL_V(ep->smac_idx) |
798 DSCP_V(ep->tos >> 2) |
799 ULP_MODE_V(ULP_MODE_TCPDDP) |
800 RCV_BUFSIZ_V(win);
801 opt2 = RX_CHANNEL_V(0) |
802 CCTRL_ECN_V(enable_ecn) |
803 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
804 if (enable_tcp_timestamps)
805 opt2 |= TSTAMPS_EN_F;
806 if (enable_tcp_sack)
807 opt2 |= SACK_EN_F;
808 if (wscale && enable_tcp_window_scaling)
809 opt2 |= WND_SCALE_EN_F;
810 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
811 if (peer2peer)
812 isn += 4;
813
814 opt2 |= T5_OPT_2_VALID_F;
815 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
816 opt2 |= T5_ISS_F;
817 }
818
819 params = cxgb4_select_ntuple(netdev, ep->l2t);
820
821 if (ep->com.remote_addr.ss_family == AF_INET6)
822 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
823 (const u32 *)&la6->sin6_addr.s6_addr, 1);
824
825 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
826
827 if (ep->com.remote_addr.ss_family == AF_INET) {
828 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
829 case CHELSIO_T4:
830 req = skb_put(skb, wrlen);
831 INIT_TP_WR(req, 0);
832 break;
833 case CHELSIO_T5:
834 t5req = skb_put(skb, wrlen);
835 INIT_TP_WR(t5req, 0);
836 req = (struct cpl_act_open_req *)t5req;
837 break;
838 case CHELSIO_T6:
839 t6req = skb_put(skb, wrlen);
840 INIT_TP_WR(t6req, 0);
841 req = (struct cpl_act_open_req *)t6req;
842 t5req = (struct cpl_t5_act_open_req *)t6req;
843 break;
844 default:
845 pr_err("T%d Chip is not supported\n",
846 CHELSIO_CHIP_VERSION(adapter_type));
847 ret = -EINVAL;
848 goto clip_release;
849 }
850
851 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
852 ((ep->rss_qid<<14) | ep->atid)));
853 req->local_port = la->sin_port;
854 req->peer_port = ra->sin_port;
855 req->local_ip = la->sin_addr.s_addr;
856 req->peer_ip = ra->sin_addr.s_addr;
857 req->opt0 = cpu_to_be64(opt0);
858
859 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
860 req->params = cpu_to_be32(params);
861 req->opt2 = cpu_to_be32(opt2);
862 } else {
863 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
864 t5req->params =
865 cpu_to_be64(FILTER_TUPLE_V(params));
866 t5req->rsvd = cpu_to_be32(isn);
867 pr_debug("snd_isn %u\n", t5req->rsvd);
868 t5req->opt2 = cpu_to_be32(opt2);
869 } else {
870 t6req->params =
871 cpu_to_be64(FILTER_TUPLE_V(params));
872 t6req->rsvd = cpu_to_be32(isn);
873 pr_debug("snd_isn %u\n", t6req->rsvd);
874 t6req->opt2 = cpu_to_be32(opt2);
875 }
876 }
877 } else {
878 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
879 case CHELSIO_T4:
880 req6 = skb_put(skb, wrlen);
881 INIT_TP_WR(req6, 0);
882 break;
883 case CHELSIO_T5:
884 t5req6 = skb_put(skb, wrlen);
885 INIT_TP_WR(t5req6, 0);
886 req6 = (struct cpl_act_open_req6 *)t5req6;
887 break;
888 case CHELSIO_T6:
889 t6req6 = skb_put(skb, wrlen);
890 INIT_TP_WR(t6req6, 0);
891 req6 = (struct cpl_act_open_req6 *)t6req6;
892 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
893 break;
894 default:
895 pr_err("T%d Chip is not supported\n",
896 CHELSIO_CHIP_VERSION(adapter_type));
897 ret = -EINVAL;
898 goto clip_release;
899 }
900
901 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
902 ((ep->rss_qid<<14)|ep->atid)));
903 req6->local_port = la6->sin6_port;
904 req6->peer_port = ra6->sin6_port;
905 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
906 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
907 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
908 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
909 req6->opt0 = cpu_to_be64(opt0);
910
911 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
912 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev,
913 ep->l2t));
914 req6->opt2 = cpu_to_be32(opt2);
915 } else {
916 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
917 t5req6->params =
918 cpu_to_be64(FILTER_TUPLE_V(params));
919 t5req6->rsvd = cpu_to_be32(isn);
920 pr_debug("snd_isn %u\n", t5req6->rsvd);
921 t5req6->opt2 = cpu_to_be32(opt2);
922 } else {
923 t6req6->params =
924 cpu_to_be64(FILTER_TUPLE_V(params));
925 t6req6->rsvd = cpu_to_be32(isn);
926 pr_debug("snd_isn %u\n", t6req6->rsvd);
927 t6req6->opt2 = cpu_to_be32(opt2);
928 }
929
930 }
931 }
932
933 set_bit(ACT_OPEN_REQ, &ep->com.history);
934 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
935 clip_release:
936 if (ret && ep->com.remote_addr.ss_family == AF_INET6)
937 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
938 (const u32 *)&la6->sin6_addr.s6_addr, 1);
939 return ret;
940 }
941
942 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
943 u8 mpa_rev_to_use)
944 {
945 int mpalen, wrlen, ret;
946 struct fw_ofld_tx_data_wr *req;
947 struct mpa_message *mpa;
948 struct mpa_v2_conn_params mpa_v2_params;
949
950 pr_debug("ep %p tid %u pd_len %d\n",
951 ep, ep->hwtid, ep->plen);
952
953 mpalen = sizeof(*mpa) + ep->plen;
954 if (mpa_rev_to_use == 2)
955 mpalen += sizeof(struct mpa_v2_conn_params);
956 wrlen = roundup(mpalen + sizeof(*req), 16);
957 skb = get_skb(skb, wrlen, GFP_KERNEL);
958 if (!skb) {
959 connect_reply_upcall(ep, -ENOMEM);
960 return -ENOMEM;
961 }
962 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
963
964 req = skb_put_zero(skb, wrlen);
965 req->op_to_immdlen = cpu_to_be32(
966 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
967 FW_WR_COMPL_F |
968 FW_WR_IMMDLEN_V(mpalen));
969 req->flowid_len16 = cpu_to_be32(
970 FW_WR_FLOWID_V(ep->hwtid) |
971 FW_WR_LEN16_V(wrlen >> 4));
972 req->plen = cpu_to_be32(mpalen);
973 req->tunnel_to_proxy = cpu_to_be32(
974 FW_OFLD_TX_DATA_WR_FLUSH_F |
975 FW_OFLD_TX_DATA_WR_SHOVE_F);
976
977 mpa = (struct mpa_message *)(req + 1);
978 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
979
980 mpa->flags = 0;
981 if (crc_enabled)
982 mpa->flags |= MPA_CRC;
983 if (markers_enabled) {
984 mpa->flags |= MPA_MARKERS;
985 ep->mpa_attr.recv_marker_enabled = 1;
986 } else {
987 ep->mpa_attr.recv_marker_enabled = 0;
988 }
989 if (mpa_rev_to_use == 2)
990 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
991
992 mpa->private_data_size = htons(ep->plen);
993 mpa->revision = mpa_rev_to_use;
994 if (mpa_rev_to_use == 1) {
995 ep->tried_with_mpa_v1 = 1;
996 ep->retry_with_mpa_v1 = 0;
997 }
998
999 if (mpa_rev_to_use == 2) {
1000 mpa->private_data_size =
1001 htons(ntohs(mpa->private_data_size) +
1002 sizeof(struct mpa_v2_conn_params));
1003 pr_debug("initiator ird %u ord %u\n", ep->ird,
1004 ep->ord);
1005 mpa_v2_params.ird = htons((u16)ep->ird);
1006 mpa_v2_params.ord = htons((u16)ep->ord);
1007
1008 if (peer2peer) {
1009 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1010 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1011 mpa_v2_params.ord |=
1012 htons(MPA_V2_RDMA_WRITE_RTR);
1013 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1014 mpa_v2_params.ord |=
1015 htons(MPA_V2_RDMA_READ_RTR);
1016 }
1017 memcpy(mpa->private_data, &mpa_v2_params,
1018 sizeof(struct mpa_v2_conn_params));
1019
1020 if (ep->plen)
1021 memcpy(mpa->private_data +
1022 sizeof(struct mpa_v2_conn_params),
1023 ep->mpa_pkt + sizeof(*mpa), ep->plen);
1024 } else
1025 if (ep->plen)
1026 memcpy(mpa->private_data,
1027 ep->mpa_pkt + sizeof(*mpa), ep->plen);
1028
1029 /*
1030 * Reference the mpa skb. This ensures the data area
1031 * will remain in memory until the hw acks the tx.
1032 * Function fw4_ack() will deref it.
1033 */
1034 skb_get(skb);
1035 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1036 ep->mpa_skb = skb;
1037 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1038 if (ret)
1039 return ret;
1040 start_ep_timer(ep);
1041 __state_set(&ep->com, MPA_REQ_SENT);
1042 ep->mpa_attr.initiator = 1;
1043 ep->snd_seq += mpalen;
1044 return ret;
1045 }
1046
1047 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1048 {
1049 int mpalen, wrlen;
1050 struct fw_ofld_tx_data_wr *req;
1051 struct mpa_message *mpa;
1052 struct sk_buff *skb;
1053 struct mpa_v2_conn_params mpa_v2_params;
1054
1055 pr_debug("ep %p tid %u pd_len %d\n",
1056 ep, ep->hwtid, ep->plen);
1057
1058 mpalen = sizeof(*mpa) + plen;
1059 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1060 mpalen += sizeof(struct mpa_v2_conn_params);
1061 wrlen = roundup(mpalen + sizeof(*req), 16);
1062
1063 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1064 if (!skb) {
1065 pr_err("%s - cannot alloc skb!\n", __func__);
1066 return -ENOMEM;
1067 }
1068 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1069
1070 req = skb_put_zero(skb, wrlen);
1071 req->op_to_immdlen = cpu_to_be32(
1072 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1073 FW_WR_COMPL_F |
1074 FW_WR_IMMDLEN_V(mpalen));
1075 req->flowid_len16 = cpu_to_be32(
1076 FW_WR_FLOWID_V(ep->hwtid) |
1077 FW_WR_LEN16_V(wrlen >> 4));
1078 req->plen = cpu_to_be32(mpalen);
1079 req->tunnel_to_proxy = cpu_to_be32(
1080 FW_OFLD_TX_DATA_WR_FLUSH_F |
1081 FW_OFLD_TX_DATA_WR_SHOVE_F);
1082
1083 mpa = (struct mpa_message *)(req + 1);
1084 memset(mpa, 0, sizeof(*mpa));
1085 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1086 mpa->flags = MPA_REJECT;
1087 mpa->revision = ep->mpa_attr.version;
1088 mpa->private_data_size = htons(plen);
1089
1090 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1091 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1092 mpa->private_data_size =
1093 htons(ntohs(mpa->private_data_size) +
1094 sizeof(struct mpa_v2_conn_params));
1095 mpa_v2_params.ird = htons(((u16)ep->ird) |
1096 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1097 0));
1098 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1099 (p2p_type ==
1100 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1101 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1102 FW_RI_INIT_P2PTYPE_READ_REQ ?
1103 MPA_V2_RDMA_READ_RTR : 0) : 0));
1104 memcpy(mpa->private_data, &mpa_v2_params,
1105 sizeof(struct mpa_v2_conn_params));
1106
1107 if (ep->plen)
1108 memcpy(mpa->private_data +
1109 sizeof(struct mpa_v2_conn_params), pdata, plen);
1110 } else
1111 if (plen)
1112 memcpy(mpa->private_data, pdata, plen);
1113
1114 /*
1115 * Reference the mpa skb again. This ensures the data area
1116 * will remain in memory until the hw acks the tx.
1117 * Function fw4_ack() will deref it.
1118 */
1119 skb_get(skb);
1120 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1121 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1122 ep->mpa_skb = skb;
1123 ep->snd_seq += mpalen;
1124 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1125 }
1126
1127 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1128 {
1129 int mpalen, wrlen;
1130 struct fw_ofld_tx_data_wr *req;
1131 struct mpa_message *mpa;
1132 struct sk_buff *skb;
1133 struct mpa_v2_conn_params mpa_v2_params;
1134
1135 pr_debug("ep %p tid %u pd_len %d\n",
1136 ep, ep->hwtid, ep->plen);
1137
1138 mpalen = sizeof(*mpa) + plen;
1139 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1140 mpalen += sizeof(struct mpa_v2_conn_params);
1141 wrlen = roundup(mpalen + sizeof(*req), 16);
1142
1143 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1144 if (!skb) {
1145 pr_err("%s - cannot alloc skb!\n", __func__);
1146 return -ENOMEM;
1147 }
1148 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1149
1150 req = skb_put_zero(skb, wrlen);
1151 req->op_to_immdlen = cpu_to_be32(
1152 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1153 FW_WR_COMPL_F |
1154 FW_WR_IMMDLEN_V(mpalen));
1155 req->flowid_len16 = cpu_to_be32(
1156 FW_WR_FLOWID_V(ep->hwtid) |
1157 FW_WR_LEN16_V(wrlen >> 4));
1158 req->plen = cpu_to_be32(mpalen);
1159 req->tunnel_to_proxy = cpu_to_be32(
1160 FW_OFLD_TX_DATA_WR_FLUSH_F |
1161 FW_OFLD_TX_DATA_WR_SHOVE_F);
1162
1163 mpa = (struct mpa_message *)(req + 1);
1164 memset(mpa, 0, sizeof(*mpa));
1165 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1166 mpa->flags = 0;
1167 if (ep->mpa_attr.crc_enabled)
1168 mpa->flags |= MPA_CRC;
1169 if (ep->mpa_attr.recv_marker_enabled)
1170 mpa->flags |= MPA_MARKERS;
1171 mpa->revision = ep->mpa_attr.version;
1172 mpa->private_data_size = htons(plen);
1173
1174 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1175 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1176 mpa->private_data_size =
1177 htons(ntohs(mpa->private_data_size) +
1178 sizeof(struct mpa_v2_conn_params));
1179 mpa_v2_params.ird = htons((u16)ep->ird);
1180 mpa_v2_params.ord = htons((u16)ep->ord);
1181 if (peer2peer && (ep->mpa_attr.p2p_type !=
1182 FW_RI_INIT_P2PTYPE_DISABLED)) {
1183 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1184
1185 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1186 mpa_v2_params.ord |=
1187 htons(MPA_V2_RDMA_WRITE_RTR);
1188 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1189 mpa_v2_params.ord |=
1190 htons(MPA_V2_RDMA_READ_RTR);
1191 }
1192
1193 memcpy(mpa->private_data, &mpa_v2_params,
1194 sizeof(struct mpa_v2_conn_params));
1195
1196 if (ep->plen)
1197 memcpy(mpa->private_data +
1198 sizeof(struct mpa_v2_conn_params), pdata, plen);
1199 } else
1200 if (plen)
1201 memcpy(mpa->private_data, pdata, plen);
1202
1203 /*
1204 * Reference the mpa skb. This ensures the data area
1205 * will remain in memory until the hw acks the tx.
1206 * Function fw4_ack() will deref it.
1207 */
1208 skb_get(skb);
1209 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1210 ep->mpa_skb = skb;
1211 __state_set(&ep->com, MPA_REP_SENT);
1212 ep->snd_seq += mpalen;
1213 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1214 }
1215
1216 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1217 {
1218 struct c4iw_ep *ep;
1219 struct cpl_act_establish *req = cplhdr(skb);
1220 unsigned short tcp_opt = ntohs(req->tcp_opt);
1221 unsigned int tid = GET_TID(req);
1222 unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1223 struct tid_info *t = dev->rdev.lldi.tids;
1224 int ret;
1225
1226 ep = lookup_atid(t, atid);
1227
1228 pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid,
1229 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1230
1231 mutex_lock(&ep->com.mutex);
1232 dst_confirm(ep->dst);
1233
1234 /* setup the hwtid for this connection */
1235 ep->hwtid = tid;
1236 cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family);
1237 insert_ep_tid(ep);
1238
1239 ep->snd_seq = be32_to_cpu(req->snd_isn);
1240 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1241 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
1242
1243 set_emss(ep, tcp_opt);
1244
1245 /* dealloc the atid */
1246 xa_erase_irq(&ep->com.dev->atids, atid);
1247 cxgb4_free_atid(t, atid);
1248 set_bit(ACT_ESTAB, &ep->com.history);
1249
1250 /* start MPA negotiation */
1251 ret = send_flowc(ep);
1252 if (ret)
1253 goto err;
1254 if (ep->retry_with_mpa_v1)
1255 ret = send_mpa_req(ep, skb, 1);
1256 else
1257 ret = send_mpa_req(ep, skb, mpa_rev);
1258 if (ret)
1259 goto err;
1260 mutex_unlock(&ep->com.mutex);
1261 return 0;
1262 err:
1263 mutex_unlock(&ep->com.mutex);
1264 connect_reply_upcall(ep, -ENOMEM);
1265 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1266 return 0;
1267 }
1268
1269 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1270 {
1271 struct iw_cm_event event;
1272
1273 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1274 memset(&event, 0, sizeof(event));
1275 event.event = IW_CM_EVENT_CLOSE;
1276 event.status = status;
1277 if (ep->com.cm_id) {
1278 pr_debug("close complete delivered ep %p cm_id %p tid %u\n",
1279 ep, ep->com.cm_id, ep->hwtid);
1280 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1281 deref_cm_id(&ep->com);
1282 set_bit(CLOSE_UPCALL, &ep->com.history);
1283 }
1284 }
1285
1286 static void peer_close_upcall(struct c4iw_ep *ep)
1287 {
1288 struct iw_cm_event event;
1289
1290 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1291 memset(&event, 0, sizeof(event));
1292 event.event = IW_CM_EVENT_DISCONNECT;
1293 if (ep->com.cm_id) {
1294 pr_debug("peer close delivered ep %p cm_id %p tid %u\n",
1295 ep, ep->com.cm_id, ep->hwtid);
1296 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1297 set_bit(DISCONN_UPCALL, &ep->com.history);
1298 }
1299 }
1300
1301 static void peer_abort_upcall(struct c4iw_ep *ep)
1302 {
1303 struct iw_cm_event event;
1304
1305 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1306 memset(&event, 0, sizeof(event));
1307 event.event = IW_CM_EVENT_CLOSE;
1308 event.status = -ECONNRESET;
1309 if (ep->com.cm_id) {
1310 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep,
1311 ep->com.cm_id, ep->hwtid);
1312 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1313 deref_cm_id(&ep->com);
1314 set_bit(ABORT_UPCALL, &ep->com.history);
1315 }
1316 }
1317
1318 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1319 {
1320 struct iw_cm_event event;
1321
1322 pr_debug("ep %p tid %u status %d\n",
1323 ep, ep->hwtid, status);
1324 memset(&event, 0, sizeof(event));
1325 event.event = IW_CM_EVENT_CONNECT_REPLY;
1326 event.status = status;
1327 memcpy(&event.local_addr, &ep->com.local_addr,
1328 sizeof(ep->com.local_addr));
1329 memcpy(&event.remote_addr, &ep->com.remote_addr,
1330 sizeof(ep->com.remote_addr));
1331
1332 if ((status == 0) || (status == -ECONNREFUSED)) {
1333 if (!ep->tried_with_mpa_v1) {
1334 /* this means MPA_v2 is used */
1335 event.ord = ep->ird;
1336 event.ird = ep->ord;
1337 event.private_data_len = ep->plen -
1338 sizeof(struct mpa_v2_conn_params);
1339 event.private_data = ep->mpa_pkt +
1340 sizeof(struct mpa_message) +
1341 sizeof(struct mpa_v2_conn_params);
1342 } else {
1343 /* this means MPA_v1 is used */
1344 event.ord = cur_max_read_depth(ep->com.dev);
1345 event.ird = cur_max_read_depth(ep->com.dev);
1346 event.private_data_len = ep->plen;
1347 event.private_data = ep->mpa_pkt +
1348 sizeof(struct mpa_message);
1349 }
1350 }
1351
1352 pr_debug("ep %p tid %u status %d\n", ep,
1353 ep->hwtid, status);
1354 set_bit(CONN_RPL_UPCALL, &ep->com.history);
1355 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1356
1357 if (status < 0)
1358 deref_cm_id(&ep->com);
1359 }
1360
1361 static int connect_request_upcall(struct c4iw_ep *ep)
1362 {
1363 struct iw_cm_event event;
1364 int ret;
1365
1366 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1367 memset(&event, 0, sizeof(event));
1368 event.event = IW_CM_EVENT_CONNECT_REQUEST;
1369 memcpy(&event.local_addr, &ep->com.local_addr,
1370 sizeof(ep->com.local_addr));
1371 memcpy(&event.remote_addr, &ep->com.remote_addr,
1372 sizeof(ep->com.remote_addr));
1373 event.provider_data = ep;
1374 if (!ep->tried_with_mpa_v1) {
1375 /* this means MPA_v2 is used */
1376 event.ord = ep->ord;
1377 event.ird = ep->ird;
1378 event.private_data_len = ep->plen -
1379 sizeof(struct mpa_v2_conn_params);
1380 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1381 sizeof(struct mpa_v2_conn_params);
1382 } else {
1383 /* this means MPA_v1 is used. Send max supported */
1384 event.ord = cur_max_read_depth(ep->com.dev);
1385 event.ird = cur_max_read_depth(ep->com.dev);
1386 event.private_data_len = ep->plen;
1387 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1388 }
1389 c4iw_get_ep(&ep->com);
1390 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1391 &event);
1392 if (ret)
1393 c4iw_put_ep(&ep->com);
1394 set_bit(CONNREQ_UPCALL, &ep->com.history);
1395 c4iw_put_ep(&ep->parent_ep->com);
1396 return ret;
1397 }
1398
1399 static void established_upcall(struct c4iw_ep *ep)
1400 {
1401 struct iw_cm_event event;
1402
1403 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1404 memset(&event, 0, sizeof(event));
1405 event.event = IW_CM_EVENT_ESTABLISHED;
1406 event.ird = ep->ord;
1407 event.ord = ep->ird;
1408 if (ep->com.cm_id) {
1409 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1410 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1411 set_bit(ESTAB_UPCALL, &ep->com.history);
1412 }
1413 }
1414
1415 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1416 {
1417 struct sk_buff *skb;
1418 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16);
1419 u32 credit_dack;
1420
1421 pr_debug("ep %p tid %u credits %u\n",
1422 ep, ep->hwtid, credits);
1423 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1424 if (!skb) {
1425 pr_err("update_rx_credits - cannot alloc skb!\n");
1426 return 0;
1427 }
1428
1429 /*
1430 * If we couldn't specify the entire rcv window at connection setup
1431 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1432 * then add the overage in to the credits returned.
1433 */
1434 if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1435 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1436
1437 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F |
1438 RX_DACK_MODE_V(dack_mode);
1439
1440 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx,
1441 credit_dack);
1442
1443 c4iw_ofld_send(&ep->com.dev->rdev, skb);
1444 return credits;
1445 }
1446
1447 #define RELAXED_IRD_NEGOTIATION 1
1448
1449 /*
1450 * process_mpa_reply - process streaming mode MPA reply
1451 *
1452 * Returns:
1453 *
1454 * 0 upon success indicating a connect request was delivered to the ULP
1455 * or the mpa request is incomplete but valid so far.
1456 *
1457 * 1 if a failure requires the caller to close the connection.
1458 *
1459 * 2 if a failure requires the caller to abort the connection.
1460 */
1461 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1462 {
1463 struct mpa_message *mpa;
1464 struct mpa_v2_conn_params *mpa_v2_params;
1465 u16 plen;
1466 u16 resp_ird, resp_ord;
1467 u8 rtr_mismatch = 0, insuff_ird = 0;
1468 struct c4iw_qp_attributes attrs;
1469 enum c4iw_qp_attr_mask mask;
1470 int err;
1471 int disconnect = 0;
1472
1473 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1474
1475 /*
1476 * If we get more than the supported amount of private data
1477 * then we must fail this connection.
1478 */
1479 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1480 err = -EINVAL;
1481 goto err_stop_timer;
1482 }
1483
1484 /*
1485 * copy the new data into our accumulation buffer.
1486 */
1487 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1488 skb->len);
1489 ep->mpa_pkt_len += skb->len;
1490
1491 /*
1492 * if we don't even have the mpa message, then bail.
1493 */
1494 if (ep->mpa_pkt_len < sizeof(*mpa))
1495 return 0;
1496 mpa = (struct mpa_message *) ep->mpa_pkt;
1497
1498 /* Validate MPA header. */
1499 if (mpa->revision > mpa_rev) {
1500 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1501 __func__, mpa_rev, mpa->revision);
1502 err = -EPROTO;
1503 goto err_stop_timer;
1504 }
1505 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1506 err = -EPROTO;
1507 goto err_stop_timer;
1508 }
1509
1510 plen = ntohs(mpa->private_data_size);
1511
1512 /*
1513 * Fail if there's too much private data.
1514 */
1515 if (plen > MPA_MAX_PRIVATE_DATA) {
1516 err = -EPROTO;
1517 goto err_stop_timer;
1518 }
1519
1520 /*
1521 * If plen does not account for pkt size
1522 */
1523 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1524 err = -EPROTO;
1525 goto err_stop_timer;
1526 }
1527
1528 ep->plen = (u8) plen;
1529
1530 /*
1531 * If we don't have all the pdata yet, then bail.
1532 * We'll continue process when more data arrives.
1533 */
1534 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1535 return 0;
1536
1537 if (mpa->flags & MPA_REJECT) {
1538 err = -ECONNREFUSED;
1539 goto err_stop_timer;
1540 }
1541
1542 /*
1543 * Stop mpa timer. If it expired, then
1544 * we ignore the MPA reply. process_timeout()
1545 * will abort the connection.
1546 */
1547 if (stop_ep_timer(ep))
1548 return 0;
1549
1550 /*
1551 * If we get here we have accumulated the entire mpa
1552 * start reply message including private data. And
1553 * the MPA header is valid.
1554 */
1555 __state_set(&ep->com, FPDU_MODE);
1556 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1557 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1558 ep->mpa_attr.version = mpa->revision;
1559 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1560
1561 if (mpa->revision == 2) {
1562 ep->mpa_attr.enhanced_rdma_conn =
1563 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1564 if (ep->mpa_attr.enhanced_rdma_conn) {
1565 mpa_v2_params = (struct mpa_v2_conn_params *)
1566 (ep->mpa_pkt + sizeof(*mpa));
1567 resp_ird = ntohs(mpa_v2_params->ird) &
1568 MPA_V2_IRD_ORD_MASK;
1569 resp_ord = ntohs(mpa_v2_params->ord) &
1570 MPA_V2_IRD_ORD_MASK;
1571 pr_debug("responder ird %u ord %u ep ird %u ord %u\n",
1572 resp_ird, resp_ord, ep->ird, ep->ord);
1573
1574 /*
1575 * This is a double-check. Ideally, below checks are
1576 * not required since ird/ord stuff has been taken
1577 * care of in c4iw_accept_cr
1578 */
1579 if (ep->ird < resp_ord) {
1580 if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1581 ep->com.dev->rdev.lldi.max_ordird_qp)
1582 ep->ird = resp_ord;
1583 else
1584 insuff_ird = 1;
1585 } else if (ep->ird > resp_ord) {
1586 ep->ird = resp_ord;
1587 }
1588 if (ep->ord > resp_ird) {
1589 if (RELAXED_IRD_NEGOTIATION)
1590 ep->ord = resp_ird;
1591 else
1592 insuff_ird = 1;
1593 }
1594 if (insuff_ird) {
1595 err = -ENOMEM;
1596 ep->ird = resp_ord;
1597 ep->ord = resp_ird;
1598 }
1599
1600 if (ntohs(mpa_v2_params->ird) &
1601 MPA_V2_PEER2PEER_MODEL) {
1602 if (ntohs(mpa_v2_params->ord) &
1603 MPA_V2_RDMA_WRITE_RTR)
1604 ep->mpa_attr.p2p_type =
1605 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1606 else if (ntohs(mpa_v2_params->ord) &
1607 MPA_V2_RDMA_READ_RTR)
1608 ep->mpa_attr.p2p_type =
1609 FW_RI_INIT_P2PTYPE_READ_REQ;
1610 }
1611 }
1612 } else if (mpa->revision == 1)
1613 if (peer2peer)
1614 ep->mpa_attr.p2p_type = p2p_type;
1615
1616 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n",
1617 ep->mpa_attr.crc_enabled,
1618 ep->mpa_attr.recv_marker_enabled,
1619 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1620 ep->mpa_attr.p2p_type, p2p_type);
1621
1622 /*
1623 * If responder's RTR does not match with that of initiator, assign
1624 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1625 * generated when moving QP to RTS state.
1626 * A TERM message will be sent after QP has moved to RTS state
1627 */
1628 if ((ep->mpa_attr.version == 2) && peer2peer &&
1629 (ep->mpa_attr.p2p_type != p2p_type)) {
1630 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1631 rtr_mismatch = 1;
1632 }
1633
1634 attrs.mpa_attr = ep->mpa_attr;
1635 attrs.max_ird = ep->ird;
1636 attrs.max_ord = ep->ord;
1637 attrs.llp_stream_handle = ep;
1638 attrs.next_state = C4IW_QP_STATE_RTS;
1639
1640 mask = C4IW_QP_ATTR_NEXT_STATE |
1641 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1642 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1643
1644 /* bind QP and TID with INIT_WR */
1645 err = c4iw_modify_qp(ep->com.qp->rhp,
1646 ep->com.qp, mask, &attrs, 1);
1647 if (err)
1648 goto err;
1649
1650 /*
1651 * If responder's RTR requirement did not match with what initiator
1652 * supports, generate TERM message
1653 */
1654 if (rtr_mismatch) {
1655 pr_err("%s: RTR mismatch, sending TERM\n", __func__);
1656 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1657 attrs.ecode = MPA_NOMATCH_RTR;
1658 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1659 attrs.send_term = 1;
1660 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1661 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1662 err = -ENOMEM;
1663 disconnect = 1;
1664 goto out;
1665 }
1666
1667 /*
1668 * Generate TERM if initiator IRD is not sufficient for responder
1669 * provided ORD. Currently, we do the same behaviour even when
1670 * responder provided IRD is also not sufficient as regards to
1671 * initiator ORD.
1672 */
1673 if (insuff_ird) {
1674 pr_err("%s: Insufficient IRD, sending TERM\n", __func__);
1675 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1676 attrs.ecode = MPA_INSUFF_IRD;
1677 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1678 attrs.send_term = 1;
1679 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1680 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1681 err = -ENOMEM;
1682 disconnect = 1;
1683 goto out;
1684 }
1685 goto out;
1686 err_stop_timer:
1687 stop_ep_timer(ep);
1688 err:
1689 disconnect = 2;
1690 out:
1691 connect_reply_upcall(ep, err);
1692 return disconnect;
1693 }
1694
1695 /*
1696 * process_mpa_request - process streaming mode MPA request
1697 *
1698 * Returns:
1699 *
1700 * 0 upon success indicating a connect request was delivered to the ULP
1701 * or the mpa request is incomplete but valid so far.
1702 *
1703 * 1 if a failure requires the caller to close the connection.
1704 *
1705 * 2 if a failure requires the caller to abort the connection.
1706 */
1707 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1708 {
1709 struct mpa_message *mpa;
1710 struct mpa_v2_conn_params *mpa_v2_params;
1711 u16 plen;
1712
1713 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1714
1715 /*
1716 * If we get more than the supported amount of private data
1717 * then we must fail this connection.
1718 */
1719 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1720 goto err_stop_timer;
1721
1722 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1723
1724 /*
1725 * Copy the new data into our accumulation buffer.
1726 */
1727 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1728 skb->len);
1729 ep->mpa_pkt_len += skb->len;
1730
1731 /*
1732 * If we don't even have the mpa message, then bail.
1733 * We'll continue process when more data arrives.
1734 */
1735 if (ep->mpa_pkt_len < sizeof(*mpa))
1736 return 0;
1737
1738 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1739 mpa = (struct mpa_message *) ep->mpa_pkt;
1740
1741 /*
1742 * Validate MPA Header.
1743 */
1744 if (mpa->revision > mpa_rev) {
1745 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1746 __func__, mpa_rev, mpa->revision);
1747 goto err_stop_timer;
1748 }
1749
1750 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1751 goto err_stop_timer;
1752
1753 plen = ntohs(mpa->private_data_size);
1754
1755 /*
1756 * Fail if there's too much private data.
1757 */
1758 if (plen > MPA_MAX_PRIVATE_DATA)
1759 goto err_stop_timer;
1760
1761 /*
1762 * If plen does not account for pkt size
1763 */
1764 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1765 goto err_stop_timer;
1766 ep->plen = (u8) plen;
1767
1768 /*
1769 * If we don't have all the pdata yet, then bail.
1770 */
1771 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1772 return 0;
1773
1774 /*
1775 * If we get here we have accumulated the entire mpa
1776 * start reply message including private data.
1777 */
1778 ep->mpa_attr.initiator = 0;
1779 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1780 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1781 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1782 ep->mpa_attr.version = mpa->revision;
1783 if (mpa->revision == 1)
1784 ep->tried_with_mpa_v1 = 1;
1785 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1786
1787 if (mpa->revision == 2) {
1788 ep->mpa_attr.enhanced_rdma_conn =
1789 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1790 if (ep->mpa_attr.enhanced_rdma_conn) {
1791 mpa_v2_params = (struct mpa_v2_conn_params *)
1792 (ep->mpa_pkt + sizeof(*mpa));
1793 ep->ird = ntohs(mpa_v2_params->ird) &
1794 MPA_V2_IRD_ORD_MASK;
1795 ep->ird = min_t(u32, ep->ird,
1796 cur_max_read_depth(ep->com.dev));
1797 ep->ord = ntohs(mpa_v2_params->ord) &
1798 MPA_V2_IRD_ORD_MASK;
1799 ep->ord = min_t(u32, ep->ord,
1800 cur_max_read_depth(ep->com.dev));
1801 pr_debug("initiator ird %u ord %u\n",
1802 ep->ird, ep->ord);
1803 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1804 if (peer2peer) {
1805 if (ntohs(mpa_v2_params->ord) &
1806 MPA_V2_RDMA_WRITE_RTR)
1807 ep->mpa_attr.p2p_type =
1808 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1809 else if (ntohs(mpa_v2_params->ord) &
1810 MPA_V2_RDMA_READ_RTR)
1811 ep->mpa_attr.p2p_type =
1812 FW_RI_INIT_P2PTYPE_READ_REQ;
1813 }
1814 }
1815 } else if (mpa->revision == 1)
1816 if (peer2peer)
1817 ep->mpa_attr.p2p_type = p2p_type;
1818
1819 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n",
1820 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1821 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1822 ep->mpa_attr.p2p_type);
1823
1824 __state_set(&ep->com, MPA_REQ_RCVD);
1825
1826 /* drive upcall */
1827 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1828 if (ep->parent_ep->com.state != DEAD) {
1829 if (connect_request_upcall(ep))
1830 goto err_unlock_parent;
1831 } else {
1832 goto err_unlock_parent;
1833 }
1834 mutex_unlock(&ep->parent_ep->com.mutex);
1835 return 0;
1836
1837 err_unlock_parent:
1838 mutex_unlock(&ep->parent_ep->com.mutex);
1839 goto err_out;
1840 err_stop_timer:
1841 (void)stop_ep_timer(ep);
1842 err_out:
1843 return 2;
1844 }
1845
1846 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1847 {
1848 struct c4iw_ep *ep;
1849 struct cpl_rx_data *hdr = cplhdr(skb);
1850 unsigned int dlen = ntohs(hdr->len);
1851 unsigned int tid = GET_TID(hdr);
1852 __u8 status = hdr->status;
1853 int disconnect = 0;
1854
1855 ep = get_ep_from_tid(dev, tid);
1856 if (!ep)
1857 return 0;
1858 pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen);
1859 skb_pull(skb, sizeof(*hdr));
1860 skb_trim(skb, dlen);
1861 mutex_lock(&ep->com.mutex);
1862
1863 switch (ep->com.state) {
1864 case MPA_REQ_SENT:
1865 update_rx_credits(ep, dlen);
1866 ep->rcv_seq += dlen;
1867 disconnect = process_mpa_reply(ep, skb);
1868 break;
1869 case MPA_REQ_WAIT:
1870 update_rx_credits(ep, dlen);
1871 ep->rcv_seq += dlen;
1872 disconnect = process_mpa_request(ep, skb);
1873 break;
1874 case FPDU_MODE: {
1875 struct c4iw_qp_attributes attrs;
1876
1877 update_rx_credits(ep, dlen);
1878 if (status)
1879 pr_err("%s Unexpected streaming data." \
1880 " qpid %u ep %p state %d tid %u status %d\n",
1881 __func__, ep->com.qp->wq.sq.qid, ep,
1882 ep->com.state, ep->hwtid, status);
1883 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1884 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1885 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1886 disconnect = 1;
1887 break;
1888 }
1889 default:
1890 break;
1891 }
1892 mutex_unlock(&ep->com.mutex);
1893 if (disconnect)
1894 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1895 c4iw_put_ep(&ep->com);
1896 return 0;
1897 }
1898
1899 static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx)
1900 {
1901 enum chip_type adapter_type;
1902
1903 adapter_type = ep->com.dev->rdev.lldi.adapter_type;
1904
1905 /*
1906 * If this TCB had a srq buffer cached, then we must complete
1907 * it. For user mode, that means saving the srqidx in the
1908 * user/kernel status page for this qp. For kernel mode, just
1909 * synthesize the CQE now.
1910 */
1911 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) {
1912 if (ep->com.qp->ibqp.uobject)
1913 t4_set_wq_in_error(&ep->com.qp->wq, srqidx);
1914 else
1915 c4iw_flush_srqidx(ep->com.qp, srqidx);
1916 }
1917 }
1918
1919 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1920 {
1921 u32 srqidx;
1922 struct c4iw_ep *ep;
1923 struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb);
1924 int release = 0;
1925 unsigned int tid = GET_TID(rpl);
1926
1927 ep = get_ep_from_tid(dev, tid);
1928 if (!ep) {
1929 pr_warn("Abort rpl to freed endpoint\n");
1930 return 0;
1931 }
1932
1933 if (ep->com.qp && ep->com.qp->srq) {
1934 srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status));
1935 complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx);
1936 }
1937
1938 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1939 mutex_lock(&ep->com.mutex);
1940 switch (ep->com.state) {
1941 case ABORTING:
1942 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
1943 __state_set(&ep->com, DEAD);
1944 release = 1;
1945 break;
1946 default:
1947 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state);
1948 break;
1949 }
1950 mutex_unlock(&ep->com.mutex);
1951
1952 if (release) {
1953 close_complete_upcall(ep, -ECONNRESET);
1954 release_ep_resources(ep);
1955 }
1956 c4iw_put_ep(&ep->com);
1957 return 0;
1958 }
1959
1960 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1961 {
1962 struct sk_buff *skb;
1963 struct fw_ofld_connection_wr *req;
1964 unsigned int mtu_idx;
1965 u32 wscale;
1966 struct sockaddr_in *sin;
1967 int win;
1968
1969 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1970 req = __skb_put_zero(skb, sizeof(*req));
1971 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1972 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1973 req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1974 ep->com.dev->rdev.lldi.ports[0],
1975 ep->l2t));
1976 sin = (struct sockaddr_in *)&ep->com.local_addr;
1977 req->le.lport = sin->sin_port;
1978 req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1979 sin = (struct sockaddr_in *)&ep->com.remote_addr;
1980 req->le.pport = sin->sin_port;
1981 req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1982 req->tcb.t_state_to_astid =
1983 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1984 FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1985 req->tcb.cplrxdataack_cplpassacceptrpl =
1986 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1987 req->tcb.tx_max = (__force __be32) jiffies;
1988 req->tcb.rcv_adv = htons(1);
1989 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1990 enable_tcp_timestamps,
1991 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
1992 wscale = cxgb_compute_wscale(rcv_win);
1993
1994 /*
1995 * Specify the largest window that will fit in opt0. The
1996 * remainder will be specified in the rx_data_ack.
1997 */
1998 win = ep->rcv_win >> 10;
1999 if (win > RCV_BUFSIZ_M)
2000 win = RCV_BUFSIZ_M;
2001
2002 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2003 (nocong ? NO_CONG_F : 0) |
2004 KEEP_ALIVE_F |
2005 DELACK_F |
2006 WND_SCALE_V(wscale) |
2007 MSS_IDX_V(mtu_idx) |
2008 L2T_IDX_V(ep->l2t->idx) |
2009 TX_CHAN_V(ep->tx_chan) |
2010 SMAC_SEL_V(ep->smac_idx) |
2011 DSCP_V(ep->tos >> 2) |
2012 ULP_MODE_V(ULP_MODE_TCPDDP) |
2013 RCV_BUFSIZ_V(win));
2014 req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2015 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2016 RX_CHANNEL_V(0) |
2017 CCTRL_ECN_V(enable_ecn) |
2018 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2019 if (enable_tcp_timestamps)
2020 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2021 if (enable_tcp_sack)
2022 req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2023 if (wscale && enable_tcp_window_scaling)
2024 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2025 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2026 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2027 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2028 set_bit(ACT_OFLD_CONN, &ep->com.history);
2029 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2030 }
2031
2032 /*
2033 * Some of the error codes above implicitly indicate that there is no TID
2034 * allocated with the result of an ACT_OPEN. We use this predicate to make
2035 * that explicit.
2036 */
2037 static inline int act_open_has_tid(int status)
2038 {
2039 return (status != CPL_ERR_TCAM_PARITY &&
2040 status != CPL_ERR_TCAM_MISS &&
2041 status != CPL_ERR_TCAM_FULL &&
2042 status != CPL_ERR_CONN_EXIST_SYNRECV &&
2043 status != CPL_ERR_CONN_EXIST);
2044 }
2045
2046 static char *neg_adv_str(unsigned int status)
2047 {
2048 switch (status) {
2049 case CPL_ERR_RTX_NEG_ADVICE:
2050 return "Retransmit timeout";
2051 case CPL_ERR_PERSIST_NEG_ADVICE:
2052 return "Persist timeout";
2053 case CPL_ERR_KEEPALV_NEG_ADVICE:
2054 return "Keepalive timeout";
2055 default:
2056 return "Unknown";
2057 }
2058 }
2059
2060 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2061 {
2062 ep->snd_win = snd_win;
2063 ep->rcv_win = rcv_win;
2064 pr_debug("snd_win %d rcv_win %d\n",
2065 ep->snd_win, ep->rcv_win);
2066 }
2067
2068 #define ACT_OPEN_RETRY_COUNT 2
2069
2070 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2071 struct dst_entry *dst, struct c4iw_dev *cdev,
2072 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2073 {
2074 struct neighbour *n;
2075 int err, step;
2076 struct net_device *pdev;
2077
2078 n = dst_neigh_lookup(dst, peer_ip);
2079 if (!n)
2080 return -ENODEV;
2081
2082 rcu_read_lock();
2083 err = -ENOMEM;
2084 if (n->dev->flags & IFF_LOOPBACK) {
2085 if (iptype == 4)
2086 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2087 else if (IS_ENABLED(CONFIG_IPV6))
2088 for_each_netdev(&init_net, pdev) {
2089 if (ipv6_chk_addr(&init_net,
2090 (struct in6_addr *)peer_ip,
2091 pdev, 1))
2092 break;
2093 }
2094 else
2095 pdev = NULL;
2096
2097 if (!pdev) {
2098 err = -ENODEV;
2099 goto out;
2100 }
2101 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2102 n, pdev, rt_tos2priority(tos));
2103 if (!ep->l2t) {
2104 dev_put(pdev);
2105 goto out;
2106 }
2107 ep->mtu = pdev->mtu;
2108 ep->tx_chan = cxgb4_port_chan(pdev);
2109 ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2110 step = cdev->rdev.lldi.ntxq /
2111 cdev->rdev.lldi.nchan;
2112 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2113 step = cdev->rdev.lldi.nrxq /
2114 cdev->rdev.lldi.nchan;
2115 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2116 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2117 cxgb4_port_idx(pdev) * step];
2118 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2119 dev_put(pdev);
2120 } else {
2121 pdev = get_real_dev(n->dev);
2122 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2123 n, pdev, rt_tos2priority(tos));
2124 if (!ep->l2t)
2125 goto out;
2126 ep->mtu = dst_mtu(dst);
2127 ep->tx_chan = cxgb4_port_chan(pdev);
2128 ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2129 step = cdev->rdev.lldi.ntxq /
2130 cdev->rdev.lldi.nchan;
2131 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2132 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2133 step = cdev->rdev.lldi.nrxq /
2134 cdev->rdev.lldi.nchan;
2135 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2136 cxgb4_port_idx(pdev) * step];
2137 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2138
2139 if (clear_mpa_v1) {
2140 ep->retry_with_mpa_v1 = 0;
2141 ep->tried_with_mpa_v1 = 0;
2142 }
2143 }
2144 err = 0;
2145 out:
2146 rcu_read_unlock();
2147
2148 neigh_release(n);
2149
2150 return err;
2151 }
2152
2153 static int c4iw_reconnect(struct c4iw_ep *ep)
2154 {
2155 int err = 0;
2156 int size = 0;
2157 struct sockaddr_in *laddr = (struct sockaddr_in *)
2158 &ep->com.cm_id->m_local_addr;
2159 struct sockaddr_in *raddr = (struct sockaddr_in *)
2160 &ep->com.cm_id->m_remote_addr;
2161 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2162 &ep->com.cm_id->m_local_addr;
2163 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2164 &ep->com.cm_id->m_remote_addr;
2165 int iptype;
2166 __u8 *ra;
2167
2168 pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id);
2169 c4iw_init_wr_wait(ep->com.wr_waitp);
2170
2171 /* When MPA revision is different on nodes, the node with MPA_rev=2
2172 * tries to reconnect with MPA_rev 1 for the same EP through
2173 * c4iw_reconnect(), where the same EP is assigned with new tid for
2174 * further connection establishment. As we are using the same EP pointer
2175 * for reconnect, few skbs are used during the previous c4iw_connect(),
2176 * which leaves the EP with inadequate skbs for further
2177 * c4iw_reconnect(), Further causing a crash due to an empty
2178 * skb_list() during peer_abort(). Allocate skbs which is already used.
2179 */
2180 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2181 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2182 err = -ENOMEM;
2183 goto fail1;
2184 }
2185
2186 /*
2187 * Allocate an active TID to initiate a TCP connection.
2188 */
2189 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2190 if (ep->atid == -1) {
2191 pr_err("%s - cannot alloc atid\n", __func__);
2192 err = -ENOMEM;
2193 goto fail2;
2194 }
2195 err = xa_insert_irq(&ep->com.dev->atids, ep->atid, ep, GFP_KERNEL);
2196 if (err)
2197 goto fail2a;
2198
2199 /* find a route */
2200 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2201 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev,
2202 laddr->sin_addr.s_addr,
2203 raddr->sin_addr.s_addr,
2204 laddr->sin_port,
2205 raddr->sin_port, ep->com.cm_id->tos);
2206 iptype = 4;
2207 ra = (__u8 *)&raddr->sin_addr;
2208 } else {
2209 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi,
2210 get_real_dev,
2211 laddr6->sin6_addr.s6_addr,
2212 raddr6->sin6_addr.s6_addr,
2213 laddr6->sin6_port,
2214 raddr6->sin6_port,
2215 ep->com.cm_id->tos,
2216 raddr6->sin6_scope_id);
2217 iptype = 6;
2218 ra = (__u8 *)&raddr6->sin6_addr;
2219 }
2220 if (!ep->dst) {
2221 pr_err("%s - cannot find route\n", __func__);
2222 err = -EHOSTUNREACH;
2223 goto fail3;
2224 }
2225 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2226 ep->com.dev->rdev.lldi.adapter_type,
2227 ep->com.cm_id->tos);
2228 if (err) {
2229 pr_err("%s - cannot alloc l2e\n", __func__);
2230 goto fail4;
2231 }
2232
2233 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2234 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2235 ep->l2t->idx);
2236
2237 state_set(&ep->com, CONNECTING);
2238 ep->tos = ep->com.cm_id->tos;
2239
2240 /* send connect request to rnic */
2241 err = send_connect(ep);
2242 if (!err)
2243 goto out;
2244
2245 cxgb4_l2t_release(ep->l2t);
2246 fail4:
2247 dst_release(ep->dst);
2248 fail3:
2249 xa_erase_irq(&ep->com.dev->atids, ep->atid);
2250 fail2a:
2251 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2252 fail2:
2253 /*
2254 * remember to send notification to upper layer.
2255 * We are in here so the upper layer is not aware that this is
2256 * re-connect attempt and so, upper layer is still waiting for
2257 * response of 1st connect request.
2258 */
2259 connect_reply_upcall(ep, -ECONNRESET);
2260 fail1:
2261 c4iw_put_ep(&ep->com);
2262 out:
2263 return err;
2264 }
2265
2266 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2267 {
2268 struct c4iw_ep *ep;
2269 struct cpl_act_open_rpl *rpl = cplhdr(skb);
2270 unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2271 ntohl(rpl->atid_status)));
2272 struct tid_info *t = dev->rdev.lldi.tids;
2273 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2274 struct sockaddr_in *la;
2275 struct sockaddr_in *ra;
2276 struct sockaddr_in6 *la6;
2277 struct sockaddr_in6 *ra6;
2278 int ret = 0;
2279
2280 ep = lookup_atid(t, atid);
2281 la = (struct sockaddr_in *)&ep->com.local_addr;
2282 ra = (struct sockaddr_in *)&ep->com.remote_addr;
2283 la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2284 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2285
2286 pr_debug("ep %p atid %u status %u errno %d\n", ep, atid,
2287 status, status2errno(status));
2288
2289 if (cxgb_is_neg_adv(status)) {
2290 pr_debug("Connection problems for atid %u status %u (%s)\n",
2291 atid, status, neg_adv_str(status));
2292 ep->stats.connect_neg_adv++;
2293 mutex_lock(&dev->rdev.stats.lock);
2294 dev->rdev.stats.neg_adv++;
2295 mutex_unlock(&dev->rdev.stats.lock);
2296 return 0;
2297 }
2298
2299 set_bit(ACT_OPEN_RPL, &ep->com.history);
2300
2301 /*
2302 * Log interesting failures.
2303 */
2304 switch (status) {
2305 case CPL_ERR_CONN_RESET:
2306 case CPL_ERR_CONN_TIMEDOUT:
2307 break;
2308 case CPL_ERR_TCAM_FULL:
2309 mutex_lock(&dev->rdev.stats.lock);
2310 dev->rdev.stats.tcam_full++;
2311 mutex_unlock(&dev->rdev.stats.lock);
2312 if (ep->com.local_addr.ss_family == AF_INET &&
2313 dev->rdev.lldi.enable_fw_ofld_conn) {
2314 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2315 ntohl(rpl->atid_status))));
2316 if (ret)
2317 goto fail;
2318 return 0;
2319 }
2320 break;
2321 case CPL_ERR_CONN_EXIST:
2322 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2323 set_bit(ACT_RETRY_INUSE, &ep->com.history);
2324 if (ep->com.remote_addr.ss_family == AF_INET6) {
2325 struct sockaddr_in6 *sin6 =
2326 (struct sockaddr_in6 *)
2327 &ep->com.local_addr;
2328 cxgb4_clip_release(
2329 ep->com.dev->rdev.lldi.ports[0],
2330 (const u32 *)
2331 &sin6->sin6_addr.s6_addr, 1);
2332 }
2333 xa_erase_irq(&ep->com.dev->atids, atid);
2334 cxgb4_free_atid(t, atid);
2335 dst_release(ep->dst);
2336 cxgb4_l2t_release(ep->l2t);
2337 c4iw_reconnect(ep);
2338 return 0;
2339 }
2340 break;
2341 default:
2342 if (ep->com.local_addr.ss_family == AF_INET) {
2343 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2344 atid, status, status2errno(status),
2345 &la->sin_addr.s_addr, ntohs(la->sin_port),
2346 &ra->sin_addr.s_addr, ntohs(ra->sin_port));
2347 } else {
2348 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2349 atid, status, status2errno(status),
2350 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2351 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2352 }
2353 break;
2354 }
2355
2356 fail:
2357 connect_reply_upcall(ep, status2errno(status));
2358 state_set(&ep->com, DEAD);
2359
2360 if (ep->com.remote_addr.ss_family == AF_INET6) {
2361 struct sockaddr_in6 *sin6 =
2362 (struct sockaddr_in6 *)&ep->com.local_addr;
2363 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2364 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2365 }
2366 if (status && act_open_has_tid(status))
2367 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl),
2368 ep->com.local_addr.ss_family);
2369
2370 xa_erase_irq(&ep->com.dev->atids, atid);
2371 cxgb4_free_atid(t, atid);
2372 dst_release(ep->dst);
2373 cxgb4_l2t_release(ep->l2t);
2374 c4iw_put_ep(&ep->com);
2375
2376 return 0;
2377 }
2378
2379 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2380 {
2381 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2382 unsigned int stid = GET_TID(rpl);
2383 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2384
2385 if (!ep) {
2386 pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2387 goto out;
2388 }
2389 pr_debug("ep %p status %d error %d\n", ep,
2390 rpl->status, status2errno(rpl->status));
2391 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2392 c4iw_put_ep(&ep->com);
2393 out:
2394 return 0;
2395 }
2396
2397 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2398 {
2399 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2400 unsigned int stid = GET_TID(rpl);
2401 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2402
2403 if (!ep) {
2404 pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2405 goto out;
2406 }
2407 pr_debug("ep %p\n", ep);
2408 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2409 c4iw_put_ep(&ep->com);
2410 out:
2411 return 0;
2412 }
2413
2414 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2415 struct cpl_pass_accept_req *req)
2416 {
2417 struct cpl_pass_accept_rpl *rpl;
2418 unsigned int mtu_idx;
2419 u64 opt0;
2420 u32 opt2;
2421 u32 wscale;
2422 struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2423 int win;
2424 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2425
2426 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2427
2428 skb_get(skb);
2429 rpl = cplhdr(skb);
2430 if (!is_t4(adapter_type)) {
2431 skb_trim(skb, roundup(sizeof(*rpl5), 16));
2432 rpl5 = (void *)rpl;
2433 INIT_TP_WR(rpl5, ep->hwtid);
2434 } else {
2435 skb_trim(skb, sizeof(*rpl));
2436 INIT_TP_WR(rpl, ep->hwtid);
2437 }
2438 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2439 ep->hwtid));
2440
2441 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2442 enable_tcp_timestamps && req->tcpopt.tstamp,
2443 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
2444 wscale = cxgb_compute_wscale(rcv_win);
2445
2446 /*
2447 * Specify the largest window that will fit in opt0. The
2448 * remainder will be specified in the rx_data_ack.
2449 */
2450 win = ep->rcv_win >> 10;
2451 if (win > RCV_BUFSIZ_M)
2452 win = RCV_BUFSIZ_M;
2453 opt0 = (nocong ? NO_CONG_F : 0) |
2454 KEEP_ALIVE_F |
2455 DELACK_F |
2456 WND_SCALE_V(wscale) |
2457 MSS_IDX_V(mtu_idx) |
2458 L2T_IDX_V(ep->l2t->idx) |
2459 TX_CHAN_V(ep->tx_chan) |
2460 SMAC_SEL_V(ep->smac_idx) |
2461 DSCP_V(ep->tos >> 2) |
2462 ULP_MODE_V(ULP_MODE_TCPDDP) |
2463 RCV_BUFSIZ_V(win);
2464 opt2 = RX_CHANNEL_V(0) |
2465 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2466
2467 if (enable_tcp_timestamps && req->tcpopt.tstamp)
2468 opt2 |= TSTAMPS_EN_F;
2469 if (enable_tcp_sack && req->tcpopt.sack)
2470 opt2 |= SACK_EN_F;
2471 if (wscale && enable_tcp_window_scaling)
2472 opt2 |= WND_SCALE_EN_F;
2473 if (enable_ecn) {
2474 const struct tcphdr *tcph;
2475 u32 hlen = ntohl(req->hdr_len);
2476
2477 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2478 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2479 IP_HDR_LEN_G(hlen);
2480 else
2481 tcph = (const void *)(req + 1) +
2482 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2483 if (tcph->ece && tcph->cwr)
2484 opt2 |= CCTRL_ECN_V(1);
2485 }
2486 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2487 u32 isn = (prandom_u32() & ~7UL) - 1;
2488 opt2 |= T5_OPT_2_VALID_F;
2489 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2490 opt2 |= T5_ISS_F;
2491 rpl5 = (void *)rpl;
2492 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2493 if (peer2peer)
2494 isn += 4;
2495 rpl5->iss = cpu_to_be32(isn);
2496 pr_debug("iss %u\n", be32_to_cpu(rpl5->iss));
2497 }
2498
2499 rpl->opt0 = cpu_to_be64(opt0);
2500 rpl->opt2 = cpu_to_be32(opt2);
2501 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2502 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2503
2504 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2505 }
2506
2507 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2508 {
2509 pr_debug("c4iw_dev %p tid %u\n", dev, hwtid);
2510 skb_trim(skb, sizeof(struct cpl_tid_release));
2511 release_tid(&dev->rdev, hwtid, skb);
2512 return;
2513 }
2514
2515 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2516 {
2517 struct c4iw_ep *child_ep = NULL, *parent_ep;
2518 struct cpl_pass_accept_req *req = cplhdr(skb);
2519 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2520 struct tid_info *t = dev->rdev.lldi.tids;
2521 unsigned int hwtid = GET_TID(req);
2522 struct dst_entry *dst;
2523 __u8 local_ip[16], peer_ip[16];
2524 __be16 local_port, peer_port;
2525 struct sockaddr_in6 *sin6;
2526 int err;
2527 u16 peer_mss = ntohs(req->tcpopt.mss);
2528 int iptype;
2529 unsigned short hdrs;
2530 u8 tos;
2531
2532 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2533 if (!parent_ep) {
2534 pr_err("%s connect request on invalid stid %d\n",
2535 __func__, stid);
2536 goto reject;
2537 }
2538
2539 if (state_read(&parent_ep->com) != LISTEN) {
2540 pr_err("%s - listening ep not in LISTEN\n", __func__);
2541 goto reject;
2542 }
2543
2544 if (parent_ep->com.cm_id->tos_set)
2545 tos = parent_ep->com.cm_id->tos;
2546 else
2547 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2548
2549 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type,
2550 &iptype, local_ip, peer_ip, &local_port, &peer_port);
2551
2552 /* Find output route */
2553 if (iptype == 4) {
2554 pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2555 , parent_ep, hwtid,
2556 local_ip, peer_ip, ntohs(local_port),
2557 ntohs(peer_port), peer_mss);
2558 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
2559 *(__be32 *)local_ip, *(__be32 *)peer_ip,
2560 local_port, peer_port, tos);
2561 } else {
2562 pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2563 , parent_ep, hwtid,
2564 local_ip, peer_ip, ntohs(local_port),
2565 ntohs(peer_port), peer_mss);
2566 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
2567 local_ip, peer_ip, local_port, peer_port,
2568 tos,
2569 ((struct sockaddr_in6 *)
2570 &parent_ep->com.local_addr)->sin6_scope_id);
2571 }
2572 if (!dst) {
2573 pr_err("%s - failed to find dst entry!\n", __func__);
2574 goto reject;
2575 }
2576
2577 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2578 if (!child_ep) {
2579 pr_err("%s - failed to allocate ep entry!\n", __func__);
2580 dst_release(dst);
2581 goto reject;
2582 }
2583
2584 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2585 parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2586 if (err) {
2587 pr_err("%s - failed to allocate l2t entry!\n", __func__);
2588 dst_release(dst);
2589 kfree(child_ep);
2590 goto reject;
2591 }
2592
2593 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
2594 sizeof(struct tcphdr) +
2595 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2596 if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2597 child_ep->mtu = peer_mss + hdrs;
2598
2599 skb_queue_head_init(&child_ep->com.ep_skb_list);
2600 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2601 goto fail;
2602
2603 state_set(&child_ep->com, CONNECTING);
2604 child_ep->com.dev = dev;
2605 child_ep->com.cm_id = NULL;
2606
2607 if (iptype == 4) {
2608 struct sockaddr_in *sin = (struct sockaddr_in *)
2609 &child_ep->com.local_addr;
2610
2611 sin->sin_family = AF_INET;
2612 sin->sin_port = local_port;
2613 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2614
2615 sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2616 sin->sin_family = AF_INET;
2617 sin->sin_port = ((struct sockaddr_in *)
2618 &parent_ep->com.local_addr)->sin_port;
2619 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2620
2621 sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2622 sin->sin_family = AF_INET;
2623 sin->sin_port = peer_port;
2624 sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2625 } else {
2626 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2627 sin6->sin6_family = PF_INET6;
2628 sin6->sin6_port = local_port;
2629 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2630
2631 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2632 sin6->sin6_family = PF_INET6;
2633 sin6->sin6_port = ((struct sockaddr_in6 *)
2634 &parent_ep->com.local_addr)->sin6_port;
2635 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2636
2637 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2638 sin6->sin6_family = PF_INET6;
2639 sin6->sin6_port = peer_port;
2640 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2641 }
2642
2643 c4iw_get_ep(&parent_ep->com);
2644 child_ep->parent_ep = parent_ep;
2645 child_ep->tos = tos;
2646 child_ep->dst = dst;
2647 child_ep->hwtid = hwtid;
2648
2649 pr_debug("tx_chan %u smac_idx %u rss_qid %u\n",
2650 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2651
2652 timer_setup(&child_ep->timer, ep_timeout, 0);
2653 cxgb4_insert_tid(t, child_ep, hwtid,
2654 child_ep->com.local_addr.ss_family);
2655 insert_ep_tid(child_ep);
2656 if (accept_cr(child_ep, skb, req)) {
2657 c4iw_put_ep(&parent_ep->com);
2658 release_ep_resources(child_ep);
2659 } else {
2660 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2661 }
2662 if (iptype == 6) {
2663 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2664 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2665 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2666 }
2667 goto out;
2668 fail:
2669 c4iw_put_ep(&child_ep->com);
2670 reject:
2671 reject_cr(dev, hwtid, skb);
2672 out:
2673 if (parent_ep)
2674 c4iw_put_ep(&parent_ep->com);
2675 return 0;
2676 }
2677
2678 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2679 {
2680 struct c4iw_ep *ep;
2681 struct cpl_pass_establish *req = cplhdr(skb);
2682 unsigned int tid = GET_TID(req);
2683 int ret;
2684 u16 tcp_opt = ntohs(req->tcp_opt);
2685
2686 ep = get_ep_from_tid(dev, tid);
2687 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2688 ep->snd_seq = be32_to_cpu(req->snd_isn);
2689 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2690 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
2691
2692 pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt);
2693
2694 set_emss(ep, tcp_opt);
2695
2696 dst_confirm(ep->dst);
2697 mutex_lock(&ep->com.mutex);
2698 ep->com.state = MPA_REQ_WAIT;
2699 start_ep_timer(ep);
2700 set_bit(PASS_ESTAB, &ep->com.history);
2701 ret = send_flowc(ep);
2702 mutex_unlock(&ep->com.mutex);
2703 if (ret)
2704 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2705 c4iw_put_ep(&ep->com);
2706
2707 return 0;
2708 }
2709
2710 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2711 {
2712 struct cpl_peer_close *hdr = cplhdr(skb);
2713 struct c4iw_ep *ep;
2714 struct c4iw_qp_attributes attrs;
2715 int disconnect = 1;
2716 int release = 0;
2717 unsigned int tid = GET_TID(hdr);
2718 int ret;
2719
2720 ep = get_ep_from_tid(dev, tid);
2721 if (!ep)
2722 return 0;
2723
2724 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2725 dst_confirm(ep->dst);
2726
2727 set_bit(PEER_CLOSE, &ep->com.history);
2728 mutex_lock(&ep->com.mutex);
2729 switch (ep->com.state) {
2730 case MPA_REQ_WAIT:
2731 __state_set(&ep->com, CLOSING);
2732 break;
2733 case MPA_REQ_SENT:
2734 __state_set(&ep->com, CLOSING);
2735 connect_reply_upcall(ep, -ECONNRESET);
2736 break;
2737 case MPA_REQ_RCVD:
2738
2739 /*
2740 * We're gonna mark this puppy DEAD, but keep
2741 * the reference on it until the ULP accepts or
2742 * rejects the CR. Also wake up anyone waiting
2743 * in rdma connection migration (see c4iw_accept_cr()).
2744 */
2745 __state_set(&ep->com, CLOSING);
2746 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2747 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2748 break;
2749 case MPA_REP_SENT:
2750 __state_set(&ep->com, CLOSING);
2751 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2752 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2753 break;
2754 case FPDU_MODE:
2755 start_ep_timer(ep);
2756 __state_set(&ep->com, CLOSING);
2757 attrs.next_state = C4IW_QP_STATE_CLOSING;
2758 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2759 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2760 if (ret != -ECONNRESET) {
2761 peer_close_upcall(ep);
2762 disconnect = 1;
2763 }
2764 break;
2765 case ABORTING:
2766 disconnect = 0;
2767 break;
2768 case CLOSING:
2769 __state_set(&ep->com, MORIBUND);
2770 disconnect = 0;
2771 break;
2772 case MORIBUND:
2773 (void)stop_ep_timer(ep);
2774 if (ep->com.cm_id && ep->com.qp) {
2775 attrs.next_state = C4IW_QP_STATE_IDLE;
2776 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2777 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2778 }
2779 close_complete_upcall(ep, 0);
2780 __state_set(&ep->com, DEAD);
2781 release = 1;
2782 disconnect = 0;
2783 break;
2784 case DEAD:
2785 disconnect = 0;
2786 break;
2787 default:
2788 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2789 }
2790 mutex_unlock(&ep->com.mutex);
2791 if (disconnect)
2792 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2793 if (release)
2794 release_ep_resources(ep);
2795 c4iw_put_ep(&ep->com);
2796 return 0;
2797 }
2798
2799 static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep)
2800 {
2801 complete_cached_srq_buffers(ep, ep->srqe_idx);
2802 if (ep->com.cm_id && ep->com.qp) {
2803 struct c4iw_qp_attributes attrs;
2804
2805 attrs.next_state = C4IW_QP_STATE_ERROR;
2806 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2807 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2808 }
2809 peer_abort_upcall(ep);
2810 release_ep_resources(ep);
2811 c4iw_put_ep(&ep->com);
2812 }
2813
2814 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2815 {
2816 struct cpl_abort_req_rss6 *req = cplhdr(skb);
2817 struct c4iw_ep *ep;
2818 struct sk_buff *rpl_skb;
2819 struct c4iw_qp_attributes attrs;
2820 int ret;
2821 int release = 0;
2822 unsigned int tid = GET_TID(req);
2823 u8 status;
2824 u32 srqidx;
2825
2826 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16);
2827
2828 ep = get_ep_from_tid(dev, tid);
2829 if (!ep)
2830 return 0;
2831
2832 status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status));
2833
2834 if (cxgb_is_neg_adv(status)) {
2835 pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
2836 ep->hwtid, status, neg_adv_str(status));
2837 ep->stats.abort_neg_adv++;
2838 mutex_lock(&dev->rdev.stats.lock);
2839 dev->rdev.stats.neg_adv++;
2840 mutex_unlock(&dev->rdev.stats.lock);
2841 goto deref_ep;
2842 }
2843
2844 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid,
2845 ep->com.state);
2846 set_bit(PEER_ABORT, &ep->com.history);
2847
2848 /*
2849 * Wake up any threads in rdma_init() or rdma_fini().
2850 * However, this is not needed if com state is just
2851 * MPA_REQ_SENT
2852 */
2853 if (ep->com.state != MPA_REQ_SENT)
2854 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2855
2856 mutex_lock(&ep->com.mutex);
2857 switch (ep->com.state) {
2858 case CONNECTING:
2859 c4iw_put_ep(&ep->parent_ep->com);
2860 break;
2861 case MPA_REQ_WAIT:
2862 (void)stop_ep_timer(ep);
2863 break;
2864 case MPA_REQ_SENT:
2865 (void)stop_ep_timer(ep);
2866 if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 ||
2867 (mpa_rev == 2 && ep->tried_with_mpa_v1))
2868 connect_reply_upcall(ep, -ECONNRESET);
2869 else {
2870 /*
2871 * we just don't send notification upwards because we
2872 * want to retry with mpa_v1 without upper layers even
2873 * knowing it.
2874 *
2875 * do some housekeeping so as to re-initiate the
2876 * connection
2877 */
2878 pr_info("%s: mpa_rev=%d. Retrying with mpav1\n",
2879 __func__, mpa_rev);
2880 ep->retry_with_mpa_v1 = 1;
2881 }
2882 break;
2883 case MPA_REP_SENT:
2884 break;
2885 case MPA_REQ_RCVD:
2886 break;
2887 case MORIBUND:
2888 case CLOSING:
2889 stop_ep_timer(ep);
2890 /*FALLTHROUGH*/
2891 case FPDU_MODE:
2892 if (ep->com.qp && ep->com.qp->srq) {
2893 srqidx = ABORT_RSS_SRQIDX_G(
2894 be32_to_cpu(req->srqidx_status));
2895 if (srqidx) {
2896 complete_cached_srq_buffers(ep,
2897 req->srqidx_status);
2898 } else {
2899 /* Hold ep ref until finish_peer_abort() */
2900 c4iw_get_ep(&ep->com);
2901 __state_set(&ep->com, ABORTING);
2902 set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags);
2903 read_tcb(ep);
2904 break;
2905
2906 }
2907 }
2908
2909 if (ep->com.cm_id && ep->com.qp) {
2910 attrs.next_state = C4IW_QP_STATE_ERROR;
2911 ret = c4iw_modify_qp(ep->com.qp->rhp,
2912 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2913 &attrs, 1);
2914 if (ret)
2915 pr_err("%s - qp <- error failed!\n", __func__);
2916 }
2917 peer_abort_upcall(ep);
2918 break;
2919 case ABORTING:
2920 break;
2921 case DEAD:
2922 pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2923 mutex_unlock(&ep->com.mutex);
2924 goto deref_ep;
2925 default:
2926 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2927 break;
2928 }
2929 dst_confirm(ep->dst);
2930 if (ep->com.state != ABORTING) {
2931 __state_set(&ep->com, DEAD);
2932 /* we don't release if we want to retry with mpa_v1 */
2933 if (!ep->retry_with_mpa_v1)
2934 release = 1;
2935 }
2936 mutex_unlock(&ep->com.mutex);
2937
2938 rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2939 if (WARN_ON(!rpl_skb)) {
2940 release = 1;
2941 goto out;
2942 }
2943
2944 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx);
2945
2946 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2947 out:
2948 if (release)
2949 release_ep_resources(ep);
2950 else if (ep->retry_with_mpa_v1) {
2951 if (ep->com.remote_addr.ss_family == AF_INET6) {
2952 struct sockaddr_in6 *sin6 =
2953 (struct sockaddr_in6 *)
2954 &ep->com.local_addr;
2955 cxgb4_clip_release(
2956 ep->com.dev->rdev.lldi.ports[0],
2957 (const u32 *)&sin6->sin6_addr.s6_addr,
2958 1);
2959 }
2960 xa_erase_irq(&ep->com.dev->hwtids, ep->hwtid);
2961 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
2962 ep->com.local_addr.ss_family);
2963 dst_release(ep->dst);
2964 cxgb4_l2t_release(ep->l2t);
2965 c4iw_reconnect(ep);
2966 }
2967
2968 deref_ep:
2969 c4iw_put_ep(&ep->com);
2970 /* Dereferencing ep, referenced in peer_abort_intr() */
2971 c4iw_put_ep(&ep->com);
2972 return 0;
2973 }
2974
2975 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2976 {
2977 struct c4iw_ep *ep;
2978 struct c4iw_qp_attributes attrs;
2979 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2980 int release = 0;
2981 unsigned int tid = GET_TID(rpl);
2982
2983 ep = get_ep_from_tid(dev, tid);
2984 if (!ep)
2985 return 0;
2986
2987 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2988
2989 /* The cm_id may be null if we failed to connect */
2990 mutex_lock(&ep->com.mutex);
2991 set_bit(CLOSE_CON_RPL, &ep->com.history);
2992 switch (ep->com.state) {
2993 case CLOSING:
2994 __state_set(&ep->com, MORIBUND);
2995 break;
2996 case MORIBUND:
2997 (void)stop_ep_timer(ep);
2998 if ((ep->com.cm_id) && (ep->com.qp)) {
2999 attrs.next_state = C4IW_QP_STATE_IDLE;
3000 c4iw_modify_qp(ep->com.qp->rhp,
3001 ep->com.qp,
3002 C4IW_QP_ATTR_NEXT_STATE,
3003 &attrs, 1);
3004 }
3005 close_complete_upcall(ep, 0);
3006 __state_set(&ep->com, DEAD);
3007 release = 1;
3008 break;
3009 case ABORTING:
3010 case DEAD:
3011 break;
3012 default:
3013 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3014 break;
3015 }
3016 mutex_unlock(&ep->com.mutex);
3017 if (release)
3018 release_ep_resources(ep);
3019 c4iw_put_ep(&ep->com);
3020 return 0;
3021 }
3022
3023 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3024 {
3025 struct cpl_rdma_terminate *rpl = cplhdr(skb);
3026 unsigned int tid = GET_TID(rpl);
3027 struct c4iw_ep *ep;
3028 struct c4iw_qp_attributes attrs;
3029
3030 ep = get_ep_from_tid(dev, tid);
3031
3032 if (ep) {
3033 if (ep->com.qp) {
3034 pr_warn("TERM received tid %u qpid %u\n", tid,
3035 ep->com.qp->wq.sq.qid);
3036 attrs.next_state = C4IW_QP_STATE_TERMINATE;
3037 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3038 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3039 }
3040
3041 c4iw_put_ep(&ep->com);
3042 } else
3043 pr_warn("TERM received tid %u no ep/qp\n", tid);
3044
3045 return 0;
3046 }
3047
3048 /*
3049 * Upcall from the adapter indicating data has been transmitted.
3050 * For us its just the single MPA request or reply. We can now free
3051 * the skb holding the mpa message.
3052 */
3053 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3054 {
3055 struct c4iw_ep *ep;
3056 struct cpl_fw4_ack *hdr = cplhdr(skb);
3057 u8 credits = hdr->credits;
3058 unsigned int tid = GET_TID(hdr);
3059
3060
3061 ep = get_ep_from_tid(dev, tid);
3062 if (!ep)
3063 return 0;
3064 pr_debug("ep %p tid %u credits %u\n",
3065 ep, ep->hwtid, credits);
3066 if (credits == 0) {
3067 pr_debug("0 credit ack ep %p tid %u state %u\n",
3068 ep, ep->hwtid, state_read(&ep->com));
3069 goto out;
3070 }
3071
3072 dst_confirm(ep->dst);
3073 if (ep->mpa_skb) {
3074 pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n",
3075 ep, ep->hwtid, state_read(&ep->com),
3076 ep->mpa_attr.initiator ? 1 : 0);
3077 mutex_lock(&ep->com.mutex);
3078 kfree_skb(ep->mpa_skb);
3079 ep->mpa_skb = NULL;
3080 if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3081 stop_ep_timer(ep);
3082 mutex_unlock(&ep->com.mutex);
3083 }
3084 out:
3085 c4iw_put_ep(&ep->com);
3086 return 0;
3087 }
3088
3089 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3090 {
3091 int abort;
3092 struct c4iw_ep *ep = to_ep(cm_id);
3093
3094 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3095
3096 mutex_lock(&ep->com.mutex);
3097 if (ep->com.state != MPA_REQ_RCVD) {
3098 mutex_unlock(&ep->com.mutex);
3099 c4iw_put_ep(&ep->com);
3100 return -ECONNRESET;
3101 }
3102 set_bit(ULP_REJECT, &ep->com.history);
3103 if (mpa_rev == 0)
3104 abort = 1;
3105 else
3106 abort = send_mpa_reject(ep, pdata, pdata_len);
3107 mutex_unlock(&ep->com.mutex);
3108
3109 stop_ep_timer(ep);
3110 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3111 c4iw_put_ep(&ep->com);
3112 return 0;
3113 }
3114
3115 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3116 {
3117 int err;
3118 struct c4iw_qp_attributes attrs;
3119 enum c4iw_qp_attr_mask mask;
3120 struct c4iw_ep *ep = to_ep(cm_id);
3121 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3122 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3123 int abort = 0;
3124
3125 pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3126
3127 mutex_lock(&ep->com.mutex);
3128 if (ep->com.state != MPA_REQ_RCVD) {
3129 err = -ECONNRESET;
3130 goto err_out;
3131 }
3132
3133 if (!qp) {
3134 err = -EINVAL;
3135 goto err_out;
3136 }
3137
3138 set_bit(ULP_ACCEPT, &ep->com.history);
3139 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3140 (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3141 err = -EINVAL;
3142 goto err_abort;
3143 }
3144
3145 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3146 if (conn_param->ord > ep->ird) {
3147 if (RELAXED_IRD_NEGOTIATION) {
3148 conn_param->ord = ep->ird;
3149 } else {
3150 ep->ird = conn_param->ird;
3151 ep->ord = conn_param->ord;
3152 send_mpa_reject(ep, conn_param->private_data,
3153 conn_param->private_data_len);
3154 err = -ENOMEM;
3155 goto err_abort;
3156 }
3157 }
3158 if (conn_param->ird < ep->ord) {
3159 if (RELAXED_IRD_NEGOTIATION &&
3160 ep->ord <= h->rdev.lldi.max_ordird_qp) {
3161 conn_param->ird = ep->ord;
3162 } else {
3163 err = -ENOMEM;
3164 goto err_abort;
3165 }
3166 }
3167 }
3168 ep->ird = conn_param->ird;
3169 ep->ord = conn_param->ord;
3170
3171 if (ep->mpa_attr.version == 1) {
3172 if (peer2peer && ep->ird == 0)
3173 ep->ird = 1;
3174 } else {
3175 if (peer2peer &&
3176 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3177 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3178 ep->ird = 1;
3179 }
3180
3181 pr_debug("ird %d ord %d\n", ep->ird, ep->ord);
3182
3183 ep->com.cm_id = cm_id;
3184 ref_cm_id(&ep->com);
3185 ep->com.qp = qp;
3186 ref_qp(ep);
3187
3188 /* bind QP to EP and move to RTS */
3189 attrs.mpa_attr = ep->mpa_attr;
3190 attrs.max_ird = ep->ird;
3191 attrs.max_ord = ep->ord;
3192 attrs.llp_stream_handle = ep;
3193 attrs.next_state = C4IW_QP_STATE_RTS;
3194
3195 /* bind QP and TID with INIT_WR */
3196 mask = C4IW_QP_ATTR_NEXT_STATE |
3197 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3198 C4IW_QP_ATTR_MPA_ATTR |
3199 C4IW_QP_ATTR_MAX_IRD |
3200 C4IW_QP_ATTR_MAX_ORD;
3201
3202 err = c4iw_modify_qp(ep->com.qp->rhp,
3203 ep->com.qp, mask, &attrs, 1);
3204 if (err)
3205 goto err_deref_cm_id;
3206
3207 set_bit(STOP_MPA_TIMER, &ep->com.flags);
3208 err = send_mpa_reply(ep, conn_param->private_data,
3209 conn_param->private_data_len);
3210 if (err)
3211 goto err_deref_cm_id;
3212
3213 __state_set(&ep->com, FPDU_MODE);
3214 established_upcall(ep);
3215 mutex_unlock(&ep->com.mutex);
3216 c4iw_put_ep(&ep->com);
3217 return 0;
3218 err_deref_cm_id:
3219 deref_cm_id(&ep->com);
3220 err_abort:
3221 abort = 1;
3222 err_out:
3223 mutex_unlock(&ep->com.mutex);
3224 if (abort)
3225 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3226 c4iw_put_ep(&ep->com);
3227 return err;
3228 }
3229
3230 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3231 {
3232 struct in_device *ind;
3233 int found = 0;
3234 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3235 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3236 const struct in_ifaddr *ifa;
3237
3238 ind = in_dev_get(dev->rdev.lldi.ports[0]);
3239 if (!ind)
3240 return -EADDRNOTAVAIL;
3241 rcu_read_lock();
3242 in_dev_for_each_ifa_rcu(ifa, ind) {
3243 if (ifa->ifa_flags & IFA_F_SECONDARY)
3244 continue;
3245 laddr->sin_addr.s_addr = ifa->ifa_address;
3246 raddr->sin_addr.s_addr = ifa->ifa_address;
3247 found = 1;
3248 break;
3249 }
3250 rcu_read_unlock();
3251
3252 in_dev_put(ind);
3253 return found ? 0 : -EADDRNOTAVAIL;
3254 }
3255
3256 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3257 unsigned char banned_flags)
3258 {
3259 struct inet6_dev *idev;
3260 int err = -EADDRNOTAVAIL;
3261
3262 rcu_read_lock();
3263 idev = __in6_dev_get(dev);
3264 if (idev != NULL) {
3265 struct inet6_ifaddr *ifp;
3266
3267 read_lock_bh(&idev->lock);
3268 list_for_each_entry(ifp, &idev->addr_list, if_list) {
3269 if (ifp->scope == IFA_LINK &&
3270 !(ifp->flags & banned_flags)) {
3271 memcpy(addr, &ifp->addr, 16);
3272 err = 0;
3273 break;
3274 }
3275 }
3276 read_unlock_bh(&idev->lock);
3277 }
3278 rcu_read_unlock();
3279 return err;
3280 }
3281
3282 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3283 {
3284 struct in6_addr uninitialized_var(addr);
3285 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3286 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3287
3288 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3289 memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3290 memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3291 return 0;
3292 }
3293 return -EADDRNOTAVAIL;
3294 }
3295
3296 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3297 {
3298 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3299 struct c4iw_ep *ep;
3300 int err = 0;
3301 struct sockaddr_in *laddr;
3302 struct sockaddr_in *raddr;
3303 struct sockaddr_in6 *laddr6;
3304 struct sockaddr_in6 *raddr6;
3305 __u8 *ra;
3306 int iptype;
3307
3308 if ((conn_param->ord > cur_max_read_depth(dev)) ||
3309 (conn_param->ird > cur_max_read_depth(dev))) {
3310 err = -EINVAL;
3311 goto out;
3312 }
3313 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3314 if (!ep) {
3315 pr_err("%s - cannot alloc ep\n", __func__);
3316 err = -ENOMEM;
3317 goto out;
3318 }
3319
3320 skb_queue_head_init(&ep->com.ep_skb_list);
3321 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3322 err = -ENOMEM;
3323 goto fail1;
3324 }
3325
3326 timer_setup(&ep->timer, ep_timeout, 0);
3327 ep->plen = conn_param->private_data_len;
3328 if (ep->plen)
3329 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3330 conn_param->private_data, ep->plen);
3331 ep->ird = conn_param->ird;
3332 ep->ord = conn_param->ord;
3333
3334 if (peer2peer && ep->ord == 0)
3335 ep->ord = 1;
3336
3337 ep->com.cm_id = cm_id;
3338 ref_cm_id(&ep->com);
3339 cm_id->provider_data = ep;
3340 ep->com.dev = dev;
3341 ep->com.qp = get_qhp(dev, conn_param->qpn);
3342 if (!ep->com.qp) {
3343 pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3344 err = -EINVAL;
3345 goto fail2;
3346 }
3347 ref_qp(ep);
3348 pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn,
3349 ep->com.qp, cm_id);
3350
3351 /*
3352 * Allocate an active TID to initiate a TCP connection.
3353 */
3354 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3355 if (ep->atid == -1) {
3356 pr_err("%s - cannot alloc atid\n", __func__);
3357 err = -ENOMEM;
3358 goto fail2;
3359 }
3360 err = xa_insert_irq(&dev->atids, ep->atid, ep, GFP_KERNEL);
3361 if (err)
3362 goto fail5;
3363
3364 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3365 sizeof(ep->com.local_addr));
3366 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3367 sizeof(ep->com.remote_addr));
3368
3369 laddr = (struct sockaddr_in *)&ep->com.local_addr;
3370 raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3371 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3372 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3373
3374 if (cm_id->m_remote_addr.ss_family == AF_INET) {
3375 iptype = 4;
3376 ra = (__u8 *)&raddr->sin_addr;
3377
3378 /*
3379 * Handle loopback requests to INADDR_ANY.
3380 */
3381 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3382 err = pick_local_ipaddrs(dev, cm_id);
3383 if (err)
3384 goto fail2;
3385 }
3386
3387 /* find a route */
3388 pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3389 &laddr->sin_addr, ntohs(laddr->sin_port),
3390 ra, ntohs(raddr->sin_port));
3391 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3392 laddr->sin_addr.s_addr,
3393 raddr->sin_addr.s_addr,
3394 laddr->sin_port,
3395 raddr->sin_port, cm_id->tos);
3396 } else {
3397 iptype = 6;
3398 ra = (__u8 *)&raddr6->sin6_addr;
3399
3400 /*
3401 * Handle loopback requests to INADDR_ANY.
3402 */
3403 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3404 err = pick_local_ip6addrs(dev, cm_id);
3405 if (err)
3406 goto fail2;
3407 }
3408
3409 /* find a route */
3410 pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3411 laddr6->sin6_addr.s6_addr,
3412 ntohs(laddr6->sin6_port),
3413 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3414 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
3415 laddr6->sin6_addr.s6_addr,
3416 raddr6->sin6_addr.s6_addr,
3417 laddr6->sin6_port,
3418 raddr6->sin6_port, cm_id->tos,
3419 raddr6->sin6_scope_id);
3420 }
3421 if (!ep->dst) {
3422 pr_err("%s - cannot find route\n", __func__);
3423 err = -EHOSTUNREACH;
3424 goto fail3;
3425 }
3426
3427 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3428 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3429 if (err) {
3430 pr_err("%s - cannot alloc l2e\n", __func__);
3431 goto fail4;
3432 }
3433
3434 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3435 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3436 ep->l2t->idx);
3437
3438 state_set(&ep->com, CONNECTING);
3439 ep->tos = cm_id->tos;
3440
3441 /* send connect request to rnic */
3442 err = send_connect(ep);
3443 if (!err)
3444 goto out;
3445
3446 cxgb4_l2t_release(ep->l2t);
3447 fail4:
3448 dst_release(ep->dst);
3449 fail3:
3450 xa_erase_irq(&ep->com.dev->atids, ep->atid);
3451 fail5:
3452 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3453 fail2:
3454 skb_queue_purge(&ep->com.ep_skb_list);
3455 deref_cm_id(&ep->com);
3456 fail1:
3457 c4iw_put_ep(&ep->com);
3458 out:
3459 return err;
3460 }
3461
3462 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3463 {
3464 int err;
3465 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3466 &ep->com.local_addr;
3467
3468 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3469 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3470 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3471 if (err)
3472 return err;
3473 }
3474 c4iw_init_wr_wait(ep->com.wr_waitp);
3475 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3476 ep->stid, &sin6->sin6_addr,
3477 sin6->sin6_port,
3478 ep->com.dev->rdev.lldi.rxq_ids[0]);
3479 if (!err)
3480 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3481 ep->com.wr_waitp,
3482 0, 0, __func__);
3483 else if (err > 0)
3484 err = net_xmit_errno(err);
3485 if (err) {
3486 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3487 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3488 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3489 err, ep->stid,
3490 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3491 }
3492 return err;
3493 }
3494
3495 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3496 {
3497 int err;
3498 struct sockaddr_in *sin = (struct sockaddr_in *)
3499 &ep->com.local_addr;
3500
3501 if (dev->rdev.lldi.enable_fw_ofld_conn) {
3502 do {
3503 err = cxgb4_create_server_filter(
3504 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3505 sin->sin_addr.s_addr, sin->sin_port, 0,
3506 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3507 if (err == -EBUSY) {
3508 if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3509 err = -EIO;
3510 break;
3511 }
3512 set_current_state(TASK_UNINTERRUPTIBLE);
3513 schedule_timeout(usecs_to_jiffies(100));
3514 }
3515 } while (err == -EBUSY);
3516 } else {
3517 c4iw_init_wr_wait(ep->com.wr_waitp);
3518 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3519 ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3520 0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3521 if (!err)
3522 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3523 ep->com.wr_waitp,
3524 0, 0, __func__);
3525 else if (err > 0)
3526 err = net_xmit_errno(err);
3527 }
3528 if (err)
3529 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3530 , err, ep->stid,
3531 &sin->sin_addr, ntohs(sin->sin_port));
3532 return err;
3533 }
3534
3535 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3536 {
3537 int err = 0;
3538 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3539 struct c4iw_listen_ep *ep;
3540
3541 might_sleep();
3542
3543 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3544 if (!ep) {
3545 pr_err("%s - cannot alloc ep\n", __func__);
3546 err = -ENOMEM;
3547 goto fail1;
3548 }
3549 skb_queue_head_init(&ep->com.ep_skb_list);
3550 pr_debug("ep %p\n", ep);
3551 ep->com.cm_id = cm_id;
3552 ref_cm_id(&ep->com);
3553 ep->com.dev = dev;
3554 ep->backlog = backlog;
3555 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3556 sizeof(ep->com.local_addr));
3557
3558 /*
3559 * Allocate a server TID.
3560 */
3561 if (dev->rdev.lldi.enable_fw_ofld_conn &&
3562 ep->com.local_addr.ss_family == AF_INET)
3563 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3564 cm_id->m_local_addr.ss_family, ep);
3565 else
3566 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3567 cm_id->m_local_addr.ss_family, ep);
3568
3569 if (ep->stid == -1) {
3570 pr_err("%s - cannot alloc stid\n", __func__);
3571 err = -ENOMEM;
3572 goto fail2;
3573 }
3574 err = xa_insert_irq(&dev->stids, ep->stid, ep, GFP_KERNEL);
3575 if (err)
3576 goto fail3;
3577
3578 state_set(&ep->com, LISTEN);
3579 if (ep->com.local_addr.ss_family == AF_INET)
3580 err = create_server4(dev, ep);
3581 else
3582 err = create_server6(dev, ep);
3583 if (!err) {
3584 cm_id->provider_data = ep;
3585 goto out;
3586 }
3587 xa_erase_irq(&ep->com.dev->stids, ep->stid);
3588 fail3:
3589 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3590 ep->com.local_addr.ss_family);
3591 fail2:
3592 deref_cm_id(&ep->com);
3593 c4iw_put_ep(&ep->com);
3594 fail1:
3595 out:
3596 return err;
3597 }
3598
3599 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3600 {
3601 int err;
3602 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3603
3604 pr_debug("ep %p\n", ep);
3605
3606 might_sleep();
3607 state_set(&ep->com, DEAD);
3608 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3609 ep->com.local_addr.ss_family == AF_INET) {
3610 err = cxgb4_remove_server_filter(
3611 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3612 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3613 } else {
3614 struct sockaddr_in6 *sin6;
3615 c4iw_init_wr_wait(ep->com.wr_waitp);
3616 err = cxgb4_remove_server(
3617 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3618 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3619 if (err)
3620 goto done;
3621 err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp,
3622 0, 0, __func__);
3623 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3624 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3625 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3626 }
3627 xa_erase_irq(&ep->com.dev->stids, ep->stid);
3628 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3629 ep->com.local_addr.ss_family);
3630 done:
3631 deref_cm_id(&ep->com);
3632 c4iw_put_ep(&ep->com);
3633 return err;
3634 }
3635
3636 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3637 {
3638 int ret = 0;
3639 int close = 0;
3640 int fatal = 0;
3641 struct c4iw_rdev *rdev;
3642
3643 mutex_lock(&ep->com.mutex);
3644
3645 pr_debug("ep %p state %s, abrupt %d\n", ep,
3646 states[ep->com.state], abrupt);
3647
3648 /*
3649 * Ref the ep here in case we have fatal errors causing the
3650 * ep to be released and freed.
3651 */
3652 c4iw_get_ep(&ep->com);
3653
3654 rdev = &ep->com.dev->rdev;
3655 if (c4iw_fatal_error(rdev)) {
3656 fatal = 1;
3657 close_complete_upcall(ep, -EIO);
3658 ep->com.state = DEAD;
3659 }
3660 switch (ep->com.state) {
3661 case MPA_REQ_WAIT:
3662 case MPA_REQ_SENT:
3663 case MPA_REQ_RCVD:
3664 case MPA_REP_SENT:
3665 case FPDU_MODE:
3666 case CONNECTING:
3667 close = 1;
3668 if (abrupt)
3669 ep->com.state = ABORTING;
3670 else {
3671 ep->com.state = CLOSING;
3672
3673 /*
3674 * if we close before we see the fw4_ack() then we fix
3675 * up the timer state since we're reusing it.
3676 */
3677 if (ep->mpa_skb &&
3678 test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3679 clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3680 stop_ep_timer(ep);
3681 }
3682 start_ep_timer(ep);
3683 }
3684 set_bit(CLOSE_SENT, &ep->com.flags);
3685 break;
3686 case CLOSING:
3687 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3688 close = 1;
3689 if (abrupt) {
3690 (void)stop_ep_timer(ep);
3691 ep->com.state = ABORTING;
3692 } else
3693 ep->com.state = MORIBUND;
3694 }
3695 break;
3696 case MORIBUND:
3697 case ABORTING:
3698 case DEAD:
3699 pr_debug("ignoring disconnect ep %p state %u\n",
3700 ep, ep->com.state);
3701 break;
3702 default:
3703 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3704 break;
3705 }
3706
3707 if (close) {
3708 if (abrupt) {
3709 set_bit(EP_DISC_ABORT, &ep->com.history);
3710 ret = send_abort(ep);
3711 } else {
3712 set_bit(EP_DISC_CLOSE, &ep->com.history);
3713 ret = send_halfclose(ep);
3714 }
3715 if (ret) {
3716 set_bit(EP_DISC_FAIL, &ep->com.history);
3717 if (!abrupt) {
3718 stop_ep_timer(ep);
3719 close_complete_upcall(ep, -EIO);
3720 }
3721 if (ep->com.qp) {
3722 struct c4iw_qp_attributes attrs;
3723
3724 attrs.next_state = C4IW_QP_STATE_ERROR;
3725 ret = c4iw_modify_qp(ep->com.qp->rhp,
3726 ep->com.qp,
3727 C4IW_QP_ATTR_NEXT_STATE,
3728 &attrs, 1);
3729 if (ret)
3730 pr_err("%s - qp <- error failed!\n",
3731 __func__);
3732 }
3733 fatal = 1;
3734 }
3735 }
3736 mutex_unlock(&ep->com.mutex);
3737 c4iw_put_ep(&ep->com);
3738 if (fatal)
3739 release_ep_resources(ep);
3740 return ret;
3741 }
3742
3743 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3744 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3745 {
3746 struct c4iw_ep *ep;
3747 int atid = be32_to_cpu(req->tid);
3748
3749 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3750 (__force u32) req->tid);
3751 if (!ep)
3752 return;
3753
3754 switch (req->retval) {
3755 case FW_ENOMEM:
3756 set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3757 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3758 send_fw_act_open_req(ep, atid);
3759 return;
3760 }
3761 /* fall through */
3762 case FW_EADDRINUSE:
3763 set_bit(ACT_RETRY_INUSE, &ep->com.history);
3764 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3765 send_fw_act_open_req(ep, atid);
3766 return;
3767 }
3768 break;
3769 default:
3770 pr_info("%s unexpected ofld conn wr retval %d\n",
3771 __func__, req->retval);
3772 break;
3773 }
3774 pr_err("active ofld_connect_wr failure %d atid %d\n",
3775 req->retval, atid);
3776 mutex_lock(&dev->rdev.stats.lock);
3777 dev->rdev.stats.act_ofld_conn_fails++;
3778 mutex_unlock(&dev->rdev.stats.lock);
3779 connect_reply_upcall(ep, status2errno(req->retval));
3780 state_set(&ep->com, DEAD);
3781 if (ep->com.remote_addr.ss_family == AF_INET6) {
3782 struct sockaddr_in6 *sin6 =
3783 (struct sockaddr_in6 *)&ep->com.local_addr;
3784 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3785 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3786 }
3787 xa_erase_irq(&dev->atids, atid);
3788 cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3789 dst_release(ep->dst);
3790 cxgb4_l2t_release(ep->l2t);
3791 c4iw_put_ep(&ep->com);
3792 }
3793
3794 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3795 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3796 {
3797 struct sk_buff *rpl_skb;
3798 struct cpl_pass_accept_req *cpl;
3799 int ret;
3800
3801 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3802 if (req->retval) {
3803 pr_err("%s passive open failure %d\n", __func__, req->retval);
3804 mutex_lock(&dev->rdev.stats.lock);
3805 dev->rdev.stats.pas_ofld_conn_fails++;
3806 mutex_unlock(&dev->rdev.stats.lock);
3807 kfree_skb(rpl_skb);
3808 } else {
3809 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3810 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3811 (__force u32) htonl(
3812 (__force u32) req->tid)));
3813 ret = pass_accept_req(dev, rpl_skb);
3814 if (!ret)
3815 kfree_skb(rpl_skb);
3816 }
3817 return;
3818 }
3819
3820 static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word)
3821 {
3822 u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]);
3823 u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]);
3824 u64 t;
3825 u32 shift = 32;
3826
3827 t = (thi << shift) | (tlo >> shift);
3828
3829 return t;
3830 }
3831
3832 static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift)
3833 {
3834 u32 v;
3835 u64 t = be64_to_cpu(tcb[(31 - word) / 2]);
3836
3837 if (word & 0x1)
3838 shift += 32;
3839 v = (t >> shift) & mask;
3840 return v;
3841 }
3842
3843 static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
3844 {
3845 struct cpl_get_tcb_rpl *rpl = cplhdr(skb);
3846 __be64 *tcb = (__be64 *)(rpl + 1);
3847 unsigned int tid = GET_TID(rpl);
3848 struct c4iw_ep *ep;
3849 u64 t_flags_64;
3850 u32 rx_pdu_out;
3851
3852 ep = get_ep_from_tid(dev, tid);
3853 if (!ep)
3854 return 0;
3855 /* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to
3856 * determine if there's a rx PDU feedback event pending.
3857 *
3858 * If that bit is set, it means we'll need to re-read the TCB's
3859 * rq_start value. The final value is the one present in a TCB
3860 * with the TF_RX_PDU_OUT bit cleared.
3861 */
3862
3863 t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W);
3864 rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S;
3865
3866 c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */
3867 c4iw_put_ep(&ep->com); /* from read_tcb() */
3868
3869 /* If TF_RX_PDU_OUT bit is set, re-read the TCB */
3870 if (rx_pdu_out) {
3871 if (++ep->rx_pdu_out_cnt >= 2) {
3872 WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n");
3873 goto cleanup;
3874 }
3875 read_tcb(ep);
3876 return 0;
3877 }
3878
3879 ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_W,
3880 TCB_RQ_START_S);
3881 cleanup:
3882 pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx);
3883
3884 if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags))
3885 finish_peer_abort(dev, ep);
3886 else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags))
3887 send_abort_req(ep);
3888 else
3889 WARN_ONCE(1, "unexpected state!");
3890
3891 return 0;
3892 }
3893
3894 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3895 {
3896 struct cpl_fw6_msg *rpl = cplhdr(skb);
3897 struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3898
3899 switch (rpl->type) {
3900 case FW6_TYPE_CQE:
3901 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3902 break;
3903 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3904 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3905 switch (req->t_state) {
3906 case TCP_SYN_SENT:
3907 active_ofld_conn_reply(dev, skb, req);
3908 break;
3909 case TCP_SYN_RECV:
3910 passive_ofld_conn_reply(dev, skb, req);
3911 break;
3912 default:
3913 pr_err("%s unexpected ofld conn wr state %d\n",
3914 __func__, req->t_state);
3915 break;
3916 }
3917 break;
3918 }
3919 return 0;
3920 }
3921
3922 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3923 {
3924 __be32 l2info;
3925 __be16 hdr_len, vlantag, len;
3926 u16 eth_hdr_len;
3927 int tcp_hdr_len, ip_hdr_len;
3928 u8 intf;
3929 struct cpl_rx_pkt *cpl = cplhdr(skb);
3930 struct cpl_pass_accept_req *req;
3931 struct tcp_options_received tmp_opt;
3932 struct c4iw_dev *dev;
3933 enum chip_type type;
3934
3935 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3936 /* Store values from cpl_rx_pkt in temporary location. */
3937 vlantag = cpl->vlan;
3938 len = cpl->len;
3939 l2info = cpl->l2info;
3940 hdr_len = cpl->hdr_len;
3941 intf = cpl->iff;
3942
3943 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3944
3945 /*
3946 * We need to parse the TCP options from SYN packet.
3947 * to generate cpl_pass_accept_req.
3948 */
3949 memset(&tmp_opt, 0, sizeof(tmp_opt));
3950 tcp_clear_options(&tmp_opt);
3951 tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL);
3952
3953 req = __skb_push(skb, sizeof(*req));
3954 memset(req, 0, sizeof(*req));
3955 req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3956 SYN_MAC_IDX_V(RX_MACIDX_G(
3957 be32_to_cpu(l2info))) |
3958 SYN_XACT_MATCH_F);
3959 type = dev->rdev.lldi.adapter_type;
3960 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3961 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3962 req->hdr_len =
3963 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3964 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3965 eth_hdr_len = is_t4(type) ?
3966 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3967 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3968 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3969 IP_HDR_LEN_V(ip_hdr_len) |
3970 ETH_HDR_LEN_V(eth_hdr_len));
3971 } else { /* T6 and later */
3972 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3973 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3974 T6_IP_HDR_LEN_V(ip_hdr_len) |
3975 T6_ETH_HDR_LEN_V(eth_hdr_len));
3976 }
3977 req->vlan = vlantag;
3978 req->len = len;
3979 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3980 PASS_OPEN_TOS_V(tos));
3981 req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3982 if (tmp_opt.wscale_ok)
3983 req->tcpopt.wsf = tmp_opt.snd_wscale;
3984 req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3985 if (tmp_opt.sack_ok)
3986 req->tcpopt.sack = 1;
3987 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3988 return;
3989 }
3990
3991 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3992 __be32 laddr, __be16 lport,
3993 __be32 raddr, __be16 rport,
3994 u32 rcv_isn, u32 filter, u16 window,
3995 u32 rss_qid, u8 port_id)
3996 {
3997 struct sk_buff *req_skb;
3998 struct fw_ofld_connection_wr *req;
3999 struct cpl_pass_accept_req *cpl = cplhdr(skb);
4000 int ret;
4001
4002 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
4003 if (!req_skb)
4004 return;
4005 req = __skb_put_zero(req_skb, sizeof(*req));
4006 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
4007 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
4008 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
4009 req->le.filter = (__force __be32) filter;
4010 req->le.lport = lport;
4011 req->le.pport = rport;
4012 req->le.u.ipv4.lip = laddr;
4013 req->le.u.ipv4.pip = raddr;
4014 req->tcb.rcv_nxt = htonl(rcv_isn + 1);
4015 req->tcb.rcv_adv = htons(window);
4016 req->tcb.t_state_to_astid =
4017 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
4018 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
4019 FW_OFLD_CONNECTION_WR_ASTID_V(
4020 PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
4021
4022 /*
4023 * We store the qid in opt2 which will be used by the firmware
4024 * to send us the wr response.
4025 */
4026 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
4027
4028 /*
4029 * We initialize the MSS index in TCB to 0xF.
4030 * So that when driver sends cpl_pass_accept_rpl
4031 * TCB picks up the correct value. If this was 0
4032 * TP will ignore any value > 0 for MSS index.
4033 */
4034 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
4035 req->cookie = (uintptr_t)skb;
4036
4037 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
4038 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
4039 if (ret < 0) {
4040 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
4041 ret);
4042 kfree_skb(skb);
4043 kfree_skb(req_skb);
4044 }
4045 }
4046
4047 /*
4048 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
4049 * messages when a filter is being used instead of server to
4050 * redirect a syn packet. When packets hit filter they are redirected
4051 * to the offload queue and driver tries to establish the connection
4052 * using firmware work request.
4053 */
4054 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
4055 {
4056 int stid;
4057 unsigned int filter;
4058 struct ethhdr *eh = NULL;
4059 struct vlan_ethhdr *vlan_eh = NULL;
4060 struct iphdr *iph;
4061 struct tcphdr *tcph;
4062 struct rss_header *rss = (void *)skb->data;
4063 struct cpl_rx_pkt *cpl = (void *)skb->data;
4064 struct cpl_pass_accept_req *req = (void *)(rss + 1);
4065 struct l2t_entry *e;
4066 struct dst_entry *dst;
4067 struct c4iw_ep *lep = NULL;
4068 u16 window;
4069 struct port_info *pi;
4070 struct net_device *pdev;
4071 u16 rss_qid, eth_hdr_len;
4072 int step;
4073 struct neighbour *neigh;
4074
4075 /* Drop all non-SYN packets */
4076 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
4077 goto reject;
4078
4079 /*
4080 * Drop all packets which did not hit the filter.
4081 * Unlikely to happen.
4082 */
4083 if (!(rss->filter_hit && rss->filter_tid))
4084 goto reject;
4085
4086 /*
4087 * Calculate the server tid from filter hit index from cpl_rx_pkt.
4088 */
4089 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
4090
4091 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
4092 if (!lep) {
4093 pr_warn("%s connect request on invalid stid %d\n",
4094 __func__, stid);
4095 goto reject;
4096 }
4097
4098 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4099 case CHELSIO_T4:
4100 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4101 break;
4102 case CHELSIO_T5:
4103 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4104 break;
4105 case CHELSIO_T6:
4106 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4107 break;
4108 default:
4109 pr_err("T%d Chip is not supported\n",
4110 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4111 goto reject;
4112 }
4113
4114 if (eth_hdr_len == ETH_HLEN) {
4115 eh = (struct ethhdr *)(req + 1);
4116 iph = (struct iphdr *)(eh + 1);
4117 } else {
4118 vlan_eh = (struct vlan_ethhdr *)(req + 1);
4119 iph = (struct iphdr *)(vlan_eh + 1);
4120 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
4121 }
4122
4123 if (iph->version != 0x4)
4124 goto reject;
4125
4126 tcph = (struct tcphdr *)(iph + 1);
4127 skb_set_network_header(skb, (void *)iph - (void *)rss);
4128 skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4129 skb_get(skb);
4130
4131 pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n",
4132 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4133 ntohs(tcph->source), iph->tos);
4134
4135 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
4136 iph->daddr, iph->saddr, tcph->dest,
4137 tcph->source, iph->tos);
4138 if (!dst) {
4139 pr_err("%s - failed to find dst entry!\n", __func__);
4140 goto reject;
4141 }
4142 neigh = dst_neigh_lookup_skb(dst, skb);
4143
4144 if (!neigh) {
4145 pr_err("%s - failed to allocate neigh!\n", __func__);
4146 goto free_dst;
4147 }
4148
4149 if (neigh->dev->flags & IFF_LOOPBACK) {
4150 pdev = ip_dev_find(&init_net, iph->daddr);
4151 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4152 pdev, 0);
4153 pi = (struct port_info *)netdev_priv(pdev);
4154 dev_put(pdev);
4155 } else {
4156 pdev = get_real_dev(neigh->dev);
4157 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4158 pdev, 0);
4159 pi = (struct port_info *)netdev_priv(pdev);
4160 }
4161 neigh_release(neigh);
4162 if (!e) {
4163 pr_err("%s - failed to allocate l2t entry!\n",
4164 __func__);
4165 goto free_dst;
4166 }
4167
4168 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4169 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4170 window = (__force u16) htons((__force u16)tcph->window);
4171
4172 /* Calcuate filter portion for LE region. */
4173 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4174 dev->rdev.lldi.ports[0],
4175 e));
4176
4177 /*
4178 * Synthesize the cpl_pass_accept_req. We have everything except the
4179 * TID. Once firmware sends a reply with TID we update the TID field
4180 * in cpl and pass it through the regular cpl_pass_accept_req path.
4181 */
4182 build_cpl_pass_accept_req(skb, stid, iph->tos);
4183 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4184 tcph->source, ntohl(tcph->seq), filter, window,
4185 rss_qid, pi->port_id);
4186 cxgb4_l2t_release(e);
4187 free_dst:
4188 dst_release(dst);
4189 reject:
4190 if (lep)
4191 c4iw_put_ep(&lep->com);
4192 return 0;
4193 }
4194
4195 /*
4196 * These are the real handlers that are called from a
4197 * work queue.
4198 */
4199 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4200 [CPL_ACT_ESTABLISH] = act_establish,
4201 [CPL_ACT_OPEN_RPL] = act_open_rpl,
4202 [CPL_RX_DATA] = rx_data,
4203 [CPL_ABORT_RPL_RSS] = abort_rpl,
4204 [CPL_ABORT_RPL] = abort_rpl,
4205 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
4206 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4207 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4208 [CPL_PASS_ESTABLISH] = pass_establish,
4209 [CPL_PEER_CLOSE] = peer_close,
4210 [CPL_ABORT_REQ_RSS] = peer_abort,
4211 [CPL_CLOSE_CON_RPL] = close_con_rpl,
4212 [CPL_RDMA_TERMINATE] = terminate,
4213 [CPL_FW4_ACK] = fw4_ack,
4214 [CPL_GET_TCB_RPL] = read_tcb_rpl,
4215 [CPL_FW6_MSG] = deferred_fw6_msg,
4216 [CPL_RX_PKT] = rx_pkt,
4217 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4218 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4219 };
4220
4221 static void process_timeout(struct c4iw_ep *ep)
4222 {
4223 struct c4iw_qp_attributes attrs;
4224 int abort = 1;
4225
4226 mutex_lock(&ep->com.mutex);
4227 pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state);
4228 set_bit(TIMEDOUT, &ep->com.history);
4229 switch (ep->com.state) {
4230 case MPA_REQ_SENT:
4231 connect_reply_upcall(ep, -ETIMEDOUT);
4232 break;
4233 case MPA_REQ_WAIT:
4234 case MPA_REQ_RCVD:
4235 case MPA_REP_SENT:
4236 case FPDU_MODE:
4237 break;
4238 case CLOSING:
4239 case MORIBUND:
4240 if (ep->com.cm_id && ep->com.qp) {
4241 attrs.next_state = C4IW_QP_STATE_ERROR;
4242 c4iw_modify_qp(ep->com.qp->rhp,
4243 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4244 &attrs, 1);
4245 }
4246 close_complete_upcall(ep, -ETIMEDOUT);
4247 break;
4248 case ABORTING:
4249 case DEAD:
4250
4251 /*
4252 * These states are expected if the ep timed out at the same
4253 * time as another thread was calling stop_ep_timer().
4254 * So we silently do nothing for these states.
4255 */
4256 abort = 0;
4257 break;
4258 default:
4259 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4260 __func__, ep, ep->hwtid, ep->com.state);
4261 abort = 0;
4262 }
4263 mutex_unlock(&ep->com.mutex);
4264 if (abort)
4265 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4266 c4iw_put_ep(&ep->com);
4267 }
4268
4269 static void process_timedout_eps(void)
4270 {
4271 struct c4iw_ep *ep;
4272
4273 spin_lock_irq(&timeout_lock);
4274 while (!list_empty(&timeout_list)) {
4275 struct list_head *tmp;
4276
4277 tmp = timeout_list.next;
4278 list_del(tmp);
4279 tmp->next = NULL;
4280 tmp->prev = NULL;
4281 spin_unlock_irq(&timeout_lock);
4282 ep = list_entry(tmp, struct c4iw_ep, entry);
4283 process_timeout(ep);
4284 spin_lock_irq(&timeout_lock);
4285 }
4286 spin_unlock_irq(&timeout_lock);
4287 }
4288
4289 static void process_work(struct work_struct *work)
4290 {
4291 struct sk_buff *skb = NULL;
4292 struct c4iw_dev *dev;
4293 struct cpl_act_establish *rpl;
4294 unsigned int opcode;
4295 int ret;
4296
4297 process_timedout_eps();
4298 while ((skb = skb_dequeue(&rxq))) {
4299 rpl = cplhdr(skb);
4300 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4301 opcode = rpl->ot.opcode;
4302
4303 if (opcode >= ARRAY_SIZE(work_handlers) ||
4304 !work_handlers[opcode]) {
4305 pr_err("No handler for opcode 0x%x.\n", opcode);
4306 kfree_skb(skb);
4307 } else {
4308 ret = work_handlers[opcode](dev, skb);
4309 if (!ret)
4310 kfree_skb(skb);
4311 }
4312 process_timedout_eps();
4313 }
4314 }
4315
4316 static DECLARE_WORK(skb_work, process_work);
4317
4318 static void ep_timeout(struct timer_list *t)
4319 {
4320 struct c4iw_ep *ep = from_timer(ep, t, timer);
4321 int kickit = 0;
4322
4323 spin_lock(&timeout_lock);
4324 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4325 /*
4326 * Only insert if it is not already on the list.
4327 */
4328 if (!ep->entry.next) {
4329 list_add_tail(&ep->entry, &timeout_list);
4330 kickit = 1;
4331 }
4332 }
4333 spin_unlock(&timeout_lock);
4334 if (kickit)
4335 queue_work(workq, &skb_work);
4336 }
4337
4338 /*
4339 * All the CM events are handled on a work queue to have a safe context.
4340 */
4341 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4342 {
4343
4344 /*
4345 * Save dev in the skb->cb area.
4346 */
4347 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4348
4349 /*
4350 * Queue the skb and schedule the worker thread.
4351 */
4352 skb_queue_tail(&rxq, skb);
4353 queue_work(workq, &skb_work);
4354 return 0;
4355 }
4356
4357 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4358 {
4359 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4360
4361 if (rpl->status != CPL_ERR_NONE) {
4362 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n",
4363 rpl->status, GET_TID(rpl));
4364 }
4365 kfree_skb(skb);
4366 return 0;
4367 }
4368
4369 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4370 {
4371 struct cpl_fw6_msg *rpl = cplhdr(skb);
4372 struct c4iw_wr_wait *wr_waitp;
4373 int ret;
4374
4375 pr_debug("type %u\n", rpl->type);
4376
4377 switch (rpl->type) {
4378 case FW6_TYPE_WR_RPL:
4379 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4380 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4381 pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret);
4382 if (wr_waitp)
4383 c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0);
4384 kfree_skb(skb);
4385 break;
4386 case FW6_TYPE_CQE:
4387 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4388 sched(dev, skb);
4389 break;
4390 default:
4391 pr_err("%s unexpected fw6 msg type %u\n",
4392 __func__, rpl->type);
4393 kfree_skb(skb);
4394 break;
4395 }
4396 return 0;
4397 }
4398
4399 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4400 {
4401 struct cpl_abort_req_rss *req = cplhdr(skb);
4402 struct c4iw_ep *ep;
4403 unsigned int tid = GET_TID(req);
4404
4405 ep = get_ep_from_tid(dev, tid);
4406 /* This EP will be dereferenced in peer_abort() */
4407 if (!ep) {
4408 pr_warn("Abort on non-existent endpoint, tid %d\n", tid);
4409 kfree_skb(skb);
4410 return 0;
4411 }
4412 if (cxgb_is_neg_adv(req->status)) {
4413 pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
4414 ep->hwtid, req->status,
4415 neg_adv_str(req->status));
4416 goto out;
4417 }
4418 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state);
4419
4420 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
4421 out:
4422 sched(dev, skb);
4423 return 0;
4424 }
4425
4426 /*
4427 * Most upcalls from the T4 Core go to sched() to
4428 * schedule the processing on a work queue.
4429 */
4430 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4431 [CPL_ACT_ESTABLISH] = sched,
4432 [CPL_ACT_OPEN_RPL] = sched,
4433 [CPL_RX_DATA] = sched,
4434 [CPL_ABORT_RPL_RSS] = sched,
4435 [CPL_ABORT_RPL] = sched,
4436 [CPL_PASS_OPEN_RPL] = sched,
4437 [CPL_CLOSE_LISTSRV_RPL] = sched,
4438 [CPL_PASS_ACCEPT_REQ] = sched,
4439 [CPL_PASS_ESTABLISH] = sched,
4440 [CPL_PEER_CLOSE] = sched,
4441 [CPL_CLOSE_CON_RPL] = sched,
4442 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
4443 [CPL_RDMA_TERMINATE] = sched,
4444 [CPL_FW4_ACK] = sched,
4445 [CPL_SET_TCB_RPL] = set_tcb_rpl,
4446 [CPL_GET_TCB_RPL] = sched,
4447 [CPL_FW6_MSG] = fw6_msg,
4448 [CPL_RX_PKT] = sched
4449 };
4450
4451 int __init c4iw_cm_init(void)
4452 {
4453 spin_lock_init(&timeout_lock);
4454 skb_queue_head_init(&rxq);
4455
4456 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM);
4457 if (!workq)
4458 return -ENOMEM;
4459
4460 return 0;
4461 }
4462
4463 void c4iw_cm_term(void)
4464 {
4465 WARN_ON(!list_empty(&timeout_list));
4466 flush_workqueue(workq);
4467 destroy_workqueue(workq);
4468 }