]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/hw/cxgb4/cq.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / hw / cxgb4 / cq.c
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include "iw_cxgb4.h"
34
35 static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
36 struct c4iw_dev_ucontext *uctx, struct sk_buff *skb)
37 {
38 struct fw_ri_res_wr *res_wr;
39 struct fw_ri_res *res;
40 int wr_len;
41 struct c4iw_wr_wait wr_wait;
42 int ret;
43
44 wr_len = sizeof *res_wr + sizeof *res;
45 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
46
47 res_wr = __skb_put_zero(skb, wr_len);
48 res_wr->op_nres = cpu_to_be32(
49 FW_WR_OP_V(FW_RI_RES_WR) |
50 FW_RI_RES_WR_NRES_V(1) |
51 FW_WR_COMPL_F);
52 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
53 res_wr->cookie = (uintptr_t)&wr_wait;
54 res = res_wr->res;
55 res->u.cq.restype = FW_RI_RES_TYPE_CQ;
56 res->u.cq.op = FW_RI_RES_OP_RESET;
57 res->u.cq.iqid = cpu_to_be32(cq->cqid);
58
59 c4iw_init_wr_wait(&wr_wait);
60 ret = c4iw_ofld_send(rdev, skb);
61 if (!ret) {
62 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
63 }
64
65 kfree(cq->sw_queue);
66 dma_free_coherent(&(rdev->lldi.pdev->dev),
67 cq->memsize, cq->queue,
68 dma_unmap_addr(cq, mapping));
69 c4iw_put_cqid(rdev, cq->cqid, uctx);
70 return ret;
71 }
72
73 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
74 struct c4iw_dev_ucontext *uctx)
75 {
76 struct fw_ri_res_wr *res_wr;
77 struct fw_ri_res *res;
78 int wr_len;
79 int user = (uctx != &rdev->uctx);
80 struct c4iw_wr_wait wr_wait;
81 int ret;
82 struct sk_buff *skb;
83
84 cq->cqid = c4iw_get_cqid(rdev, uctx);
85 if (!cq->cqid) {
86 ret = -ENOMEM;
87 goto err1;
88 }
89
90 if (!user) {
91 cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
92 if (!cq->sw_queue) {
93 ret = -ENOMEM;
94 goto err2;
95 }
96 }
97 cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
98 &cq->dma_addr, GFP_KERNEL);
99 if (!cq->queue) {
100 ret = -ENOMEM;
101 goto err3;
102 }
103 dma_unmap_addr_set(cq, mapping, cq->dma_addr);
104 memset(cq->queue, 0, cq->memsize);
105
106 /* build fw_ri_res_wr */
107 wr_len = sizeof *res_wr + sizeof *res;
108
109 skb = alloc_skb(wr_len, GFP_KERNEL);
110 if (!skb) {
111 ret = -ENOMEM;
112 goto err4;
113 }
114 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
115
116 res_wr = __skb_put_zero(skb, wr_len);
117 res_wr->op_nres = cpu_to_be32(
118 FW_WR_OP_V(FW_RI_RES_WR) |
119 FW_RI_RES_WR_NRES_V(1) |
120 FW_WR_COMPL_F);
121 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
122 res_wr->cookie = (uintptr_t)&wr_wait;
123 res = res_wr->res;
124 res->u.cq.restype = FW_RI_RES_TYPE_CQ;
125 res->u.cq.op = FW_RI_RES_OP_WRITE;
126 res->u.cq.iqid = cpu_to_be32(cq->cqid);
127 res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
128 FW_RI_RES_WR_IQANUS_V(0) |
129 FW_RI_RES_WR_IQANUD_V(1) |
130 FW_RI_RES_WR_IQANDST_F |
131 FW_RI_RES_WR_IQANDSTINDEX_V(
132 rdev->lldi.ciq_ids[cq->vector]));
133 res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
134 FW_RI_RES_WR_IQDROPRSS_F |
135 FW_RI_RES_WR_IQPCIECH_V(2) |
136 FW_RI_RES_WR_IQINTCNTTHRESH_V(0) |
137 FW_RI_RES_WR_IQO_F |
138 FW_RI_RES_WR_IQESIZE_V(1));
139 res->u.cq.iqsize = cpu_to_be16(cq->size);
140 res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
141
142 c4iw_init_wr_wait(&wr_wait);
143
144 ret = c4iw_ofld_send(rdev, skb);
145 if (ret)
146 goto err4;
147 pr_debug("%s wait_event wr_wait %p\n", __func__, &wr_wait);
148 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
149 if (ret)
150 goto err4;
151
152 cq->gen = 1;
153 cq->gts = rdev->lldi.gts_reg;
154 cq->rdev = rdev;
155
156 cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, T4_BAR2_QTYPE_INGRESS,
157 &cq->bar2_qid,
158 user ? &cq->bar2_pa : NULL);
159 if (user && !cq->bar2_pa) {
160 pr_warn("%s: cqid %u not in BAR2 range\n",
161 pci_name(rdev->lldi.pdev), cq->cqid);
162 ret = -EINVAL;
163 goto err4;
164 }
165 return 0;
166 err4:
167 dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
168 dma_unmap_addr(cq, mapping));
169 err3:
170 kfree(cq->sw_queue);
171 err2:
172 c4iw_put_cqid(rdev, cq->cqid, uctx);
173 err1:
174 return ret;
175 }
176
177 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq)
178 {
179 struct t4_cqe cqe;
180
181 pr_debug("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
182 wq, cq, cq->sw_cidx, cq->sw_pidx);
183 memset(&cqe, 0, sizeof(cqe));
184 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
185 CQE_OPCODE_V(FW_RI_SEND) |
186 CQE_TYPE_V(0) |
187 CQE_SWCQE_V(1) |
188 CQE_QPID_V(wq->sq.qid));
189 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
190 cq->sw_queue[cq->sw_pidx] = cqe;
191 t4_swcq_produce(cq);
192 }
193
194 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
195 {
196 int flushed = 0;
197 int in_use = wq->rq.in_use - count;
198
199 BUG_ON(in_use < 0);
200 pr_debug("%s wq %p cq %p rq.in_use %u skip count %u\n", __func__,
201 wq, cq, wq->rq.in_use, count);
202 while (in_use--) {
203 insert_recv_cqe(wq, cq);
204 flushed++;
205 }
206 return flushed;
207 }
208
209 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
210 struct t4_swsqe *swcqe)
211 {
212 struct t4_cqe cqe;
213
214 pr_debug("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
215 wq, cq, cq->sw_cidx, cq->sw_pidx);
216 memset(&cqe, 0, sizeof(cqe));
217 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
218 CQE_OPCODE_V(swcqe->opcode) |
219 CQE_TYPE_V(1) |
220 CQE_SWCQE_V(1) |
221 CQE_QPID_V(wq->sq.qid));
222 CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
223 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
224 cq->sw_queue[cq->sw_pidx] = cqe;
225 t4_swcq_produce(cq);
226 }
227
228 static void advance_oldest_read(struct t4_wq *wq);
229
230 int c4iw_flush_sq(struct c4iw_qp *qhp)
231 {
232 int flushed = 0;
233 struct t4_wq *wq = &qhp->wq;
234 struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq);
235 struct t4_cq *cq = &chp->cq;
236 int idx;
237 struct t4_swsqe *swsqe;
238
239 if (wq->sq.flush_cidx == -1)
240 wq->sq.flush_cidx = wq->sq.cidx;
241 idx = wq->sq.flush_cidx;
242 BUG_ON(idx >= wq->sq.size);
243 while (idx != wq->sq.pidx) {
244 swsqe = &wq->sq.sw_sq[idx];
245 BUG_ON(swsqe->flushed);
246 swsqe->flushed = 1;
247 insert_sq_cqe(wq, cq, swsqe);
248 if (wq->sq.oldest_read == swsqe) {
249 BUG_ON(swsqe->opcode != FW_RI_READ_REQ);
250 advance_oldest_read(wq);
251 }
252 flushed++;
253 if (++idx == wq->sq.size)
254 idx = 0;
255 }
256 wq->sq.flush_cidx += flushed;
257 if (wq->sq.flush_cidx >= wq->sq.size)
258 wq->sq.flush_cidx -= wq->sq.size;
259 return flushed;
260 }
261
262 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
263 {
264 struct t4_swsqe *swsqe;
265 int cidx;
266
267 if (wq->sq.flush_cidx == -1)
268 wq->sq.flush_cidx = wq->sq.cidx;
269 cidx = wq->sq.flush_cidx;
270 BUG_ON(cidx > wq->sq.size);
271
272 while (cidx != wq->sq.pidx) {
273 swsqe = &wq->sq.sw_sq[cidx];
274 if (!swsqe->signaled) {
275 if (++cidx == wq->sq.size)
276 cidx = 0;
277 } else if (swsqe->complete) {
278
279 BUG_ON(swsqe->flushed);
280
281 /*
282 * Insert this completed cqe into the swcq.
283 */
284 pr_debug("%s moving cqe into swcq sq idx %u cq idx %u\n",
285 __func__, cidx, cq->sw_pidx);
286 swsqe->cqe.header |= htonl(CQE_SWCQE_V(1));
287 cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
288 t4_swcq_produce(cq);
289 swsqe->flushed = 1;
290 if (++cidx == wq->sq.size)
291 cidx = 0;
292 wq->sq.flush_cidx = cidx;
293 } else
294 break;
295 }
296 }
297
298 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
299 struct t4_cqe *read_cqe)
300 {
301 read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
302 read_cqe->len = htonl(wq->sq.oldest_read->read_len);
303 read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) |
304 CQE_SWCQE_V(SW_CQE(hw_cqe)) |
305 CQE_OPCODE_V(FW_RI_READ_REQ) |
306 CQE_TYPE_V(1));
307 read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
308 }
309
310 static void advance_oldest_read(struct t4_wq *wq)
311 {
312
313 u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
314
315 if (rptr == wq->sq.size)
316 rptr = 0;
317 while (rptr != wq->sq.pidx) {
318 wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
319
320 if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
321 return;
322 if (++rptr == wq->sq.size)
323 rptr = 0;
324 }
325 wq->sq.oldest_read = NULL;
326 }
327
328 /*
329 * Move all CQEs from the HWCQ into the SWCQ.
330 * Deal with out-of-order and/or completions that complete
331 * prior unsignalled WRs.
332 */
333 void c4iw_flush_hw_cq(struct c4iw_cq *chp)
334 {
335 struct t4_cqe *hw_cqe, *swcqe, read_cqe;
336 struct c4iw_qp *qhp;
337 struct t4_swsqe *swsqe;
338 int ret;
339
340 pr_debug("%s cqid 0x%x\n", __func__, chp->cq.cqid);
341 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
342
343 /*
344 * This logic is similar to poll_cq(), but not quite the same
345 * unfortunately. Need to move pertinent HW CQEs to the SW CQ but
346 * also do any translation magic that poll_cq() normally does.
347 */
348 while (!ret) {
349 qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe));
350
351 /*
352 * drop CQEs with no associated QP
353 */
354 if (qhp == NULL)
355 goto next_cqe;
356
357 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE)
358 goto next_cqe;
359
360 if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) {
361
362 /* If we have reached here because of async
363 * event or other error, and have egress error
364 * then drop
365 */
366 if (CQE_TYPE(hw_cqe) == 1)
367 goto next_cqe;
368
369 /* drop peer2peer RTR reads.
370 */
371 if (CQE_WRID_STAG(hw_cqe) == 1)
372 goto next_cqe;
373
374 /*
375 * Eat completions for unsignaled read WRs.
376 */
377 if (!qhp->wq.sq.oldest_read->signaled) {
378 advance_oldest_read(&qhp->wq);
379 goto next_cqe;
380 }
381
382 /*
383 * Don't write to the HWCQ, create a new read req CQE
384 * in local memory and move it into the swcq.
385 */
386 create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe);
387 hw_cqe = &read_cqe;
388 advance_oldest_read(&qhp->wq);
389 }
390
391 /* if its a SQ completion, then do the magic to move all the
392 * unsignaled and now in-order completions into the swcq.
393 */
394 if (SQ_TYPE(hw_cqe)) {
395 swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
396 swsqe->cqe = *hw_cqe;
397 swsqe->complete = 1;
398 flush_completed_wrs(&qhp->wq, &chp->cq);
399 } else {
400 swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx];
401 *swcqe = *hw_cqe;
402 swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1));
403 t4_swcq_produce(&chp->cq);
404 }
405 next_cqe:
406 t4_hwcq_consume(&chp->cq);
407 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
408 }
409 }
410
411 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
412 {
413 if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
414 return 0;
415
416 if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
417 return 0;
418
419 if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
420 return 0;
421
422 if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
423 return 0;
424 return 1;
425 }
426
427 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
428 {
429 struct t4_cqe *cqe;
430 u32 ptr;
431
432 *count = 0;
433 pr_debug("%s count zero %d\n", __func__, *count);
434 ptr = cq->sw_cidx;
435 while (ptr != cq->sw_pidx) {
436 cqe = &cq->sw_queue[ptr];
437 if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
438 (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq))
439 (*count)++;
440 if (++ptr == cq->size)
441 ptr = 0;
442 }
443 pr_debug("%s cq %p count %d\n", __func__, cq, *count);
444 }
445
446 /*
447 * poll_cq
448 *
449 * Caller must:
450 * check the validity of the first CQE,
451 * supply the wq assicated with the qpid.
452 *
453 * credit: cq credit to return to sge.
454 * cqe_flushed: 1 iff the CQE is flushed.
455 * cqe: copy of the polled CQE.
456 *
457 * return value:
458 * 0 CQE returned ok.
459 * -EAGAIN CQE skipped, try again.
460 * -EOVERFLOW CQ overflow detected.
461 */
462 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
463 u8 *cqe_flushed, u64 *cookie, u32 *credit)
464 {
465 int ret = 0;
466 struct t4_cqe *hw_cqe, read_cqe;
467
468 *cqe_flushed = 0;
469 *credit = 0;
470 ret = t4_next_cqe(cq, &hw_cqe);
471 if (ret)
472 return ret;
473
474 pr_debug("%s CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
475 __func__, CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
476 CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
477 CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
478 CQE_WRID_LOW(hw_cqe));
479
480 /*
481 * skip cqe's not affiliated with a QP.
482 */
483 if (wq == NULL) {
484 ret = -EAGAIN;
485 goto skip_cqe;
486 }
487
488 /*
489 * skip hw cqe's if the wq is flushed.
490 */
491 if (wq->flushed && !SW_CQE(hw_cqe)) {
492 ret = -EAGAIN;
493 goto skip_cqe;
494 }
495
496 /*
497 * skip TERMINATE cqes...
498 */
499 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) {
500 ret = -EAGAIN;
501 goto skip_cqe;
502 }
503
504 /*
505 * Special cqe for drain WR completions...
506 */
507 if (CQE_OPCODE(hw_cqe) == C4IW_DRAIN_OPCODE) {
508 *cookie = CQE_DRAIN_COOKIE(hw_cqe);
509 *cqe = *hw_cqe;
510 goto skip_cqe;
511 }
512
513 /*
514 * Gotta tweak READ completions:
515 * 1) the cqe doesn't contain the sq_wptr from the wr.
516 * 2) opcode not reflected from the wr.
517 * 3) read_len not reflected from the wr.
518 * 4) cq_type is RQ_TYPE not SQ_TYPE.
519 */
520 if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
521
522 /* If we have reached here because of async
523 * event or other error, and have egress error
524 * then drop
525 */
526 if (CQE_TYPE(hw_cqe) == 1) {
527 if (CQE_STATUS(hw_cqe))
528 t4_set_wq_in_error(wq);
529 ret = -EAGAIN;
530 goto skip_cqe;
531 }
532
533 /* If this is an unsolicited read response, then the read
534 * was generated by the kernel driver as part of peer-2-peer
535 * connection setup. So ignore the completion.
536 */
537 if (CQE_WRID_STAG(hw_cqe) == 1) {
538 if (CQE_STATUS(hw_cqe))
539 t4_set_wq_in_error(wq);
540 ret = -EAGAIN;
541 goto skip_cqe;
542 }
543
544 /*
545 * Eat completions for unsignaled read WRs.
546 */
547 if (!wq->sq.oldest_read->signaled) {
548 advance_oldest_read(wq);
549 ret = -EAGAIN;
550 goto skip_cqe;
551 }
552
553 /*
554 * Don't write to the HWCQ, so create a new read req CQE
555 * in local memory.
556 */
557 create_read_req_cqe(wq, hw_cqe, &read_cqe);
558 hw_cqe = &read_cqe;
559 advance_oldest_read(wq);
560 }
561
562 if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
563 *cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH);
564 t4_set_wq_in_error(wq);
565 }
566
567 /*
568 * RECV completion.
569 */
570 if (RQ_TYPE(hw_cqe)) {
571
572 /*
573 * HW only validates 4 bits of MSN. So we must validate that
574 * the MSN in the SEND is the next expected MSN. If its not,
575 * then we complete this with T4_ERR_MSN and mark the wq in
576 * error.
577 */
578
579 if (t4_rq_empty(wq)) {
580 t4_set_wq_in_error(wq);
581 ret = -EAGAIN;
582 goto skip_cqe;
583 }
584 if (unlikely((CQE_WRID_MSN(hw_cqe) != (wq->rq.msn)))) {
585 t4_set_wq_in_error(wq);
586 hw_cqe->header |= htonl(CQE_STATUS_V(T4_ERR_MSN));
587 goto proc_cqe;
588 }
589 goto proc_cqe;
590 }
591
592 /*
593 * If we get here its a send completion.
594 *
595 * Handle out of order completion. These get stuffed
596 * in the SW SQ. Then the SW SQ is walked to move any
597 * now in-order completions into the SW CQ. This handles
598 * 2 cases:
599 * 1) reaping unsignaled WRs when the first subsequent
600 * signaled WR is completed.
601 * 2) out of order read completions.
602 */
603 if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
604 struct t4_swsqe *swsqe;
605
606 pr_debug("%s out of order completion going in sw_sq at idx %u\n",
607 __func__, CQE_WRID_SQ_IDX(hw_cqe));
608 swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
609 swsqe->cqe = *hw_cqe;
610 swsqe->complete = 1;
611 ret = -EAGAIN;
612 goto flush_wq;
613 }
614
615 proc_cqe:
616 *cqe = *hw_cqe;
617
618 /*
619 * Reap the associated WR(s) that are freed up with this
620 * completion.
621 */
622 if (SQ_TYPE(hw_cqe)) {
623 int idx = CQE_WRID_SQ_IDX(hw_cqe);
624 BUG_ON(idx >= wq->sq.size);
625
626 /*
627 * Account for any unsignaled completions completed by
628 * this signaled completion. In this case, cidx points
629 * to the first unsignaled one, and idx points to the
630 * signaled one. So adjust in_use based on this delta.
631 * if this is not completing any unsigned wrs, then the
632 * delta will be 0. Handle wrapping also!
633 */
634 if (idx < wq->sq.cidx)
635 wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx;
636 else
637 wq->sq.in_use -= idx - wq->sq.cidx;
638 BUG_ON(wq->sq.in_use <= 0 && wq->sq.in_use >= wq->sq.size);
639
640 wq->sq.cidx = (uint16_t)idx;
641 pr_debug("%s completing sq idx %u\n", __func__, wq->sq.cidx);
642 *cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
643 if (c4iw_wr_log)
644 c4iw_log_wr_stats(wq, hw_cqe);
645 t4_sq_consume(wq);
646 } else {
647 pr_debug("%s completing rq idx %u\n", __func__, wq->rq.cidx);
648 *cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
649 BUG_ON(t4_rq_empty(wq));
650 if (c4iw_wr_log)
651 c4iw_log_wr_stats(wq, hw_cqe);
652 t4_rq_consume(wq);
653 goto skip_cqe;
654 }
655
656 flush_wq:
657 /*
658 * Flush any completed cqes that are now in-order.
659 */
660 flush_completed_wrs(wq, cq);
661
662 skip_cqe:
663 if (SW_CQE(hw_cqe)) {
664 pr_debug("%s cq %p cqid 0x%x skip sw cqe cidx %u\n",
665 __func__, cq, cq->cqid, cq->sw_cidx);
666 t4_swcq_consume(cq);
667 } else {
668 pr_debug("%s cq %p cqid 0x%x skip hw cqe cidx %u\n",
669 __func__, cq, cq->cqid, cq->cidx);
670 t4_hwcq_consume(cq);
671 }
672 return ret;
673 }
674
675 /*
676 * Get one cq entry from c4iw and map it to openib.
677 *
678 * Returns:
679 * 0 cqe returned
680 * -ENODATA EMPTY;
681 * -EAGAIN caller must try again
682 * any other -errno fatal error
683 */
684 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
685 {
686 struct c4iw_qp *qhp = NULL;
687 struct t4_cqe uninitialized_var(cqe), *rd_cqe;
688 struct t4_wq *wq;
689 u32 credit = 0;
690 u8 cqe_flushed;
691 u64 cookie = 0;
692 int ret;
693
694 ret = t4_next_cqe(&chp->cq, &rd_cqe);
695
696 if (ret)
697 return ret;
698
699 qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
700 if (!qhp)
701 wq = NULL;
702 else {
703 spin_lock(&qhp->lock);
704 wq = &(qhp->wq);
705 }
706 ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit);
707 if (ret)
708 goto out;
709
710 wc->wr_id = cookie;
711 wc->qp = &qhp->ibqp;
712 wc->vendor_err = CQE_STATUS(&cqe);
713 wc->wc_flags = 0;
714
715 pr_debug("%s qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n",
716 __func__, CQE_QPID(&cqe),
717 CQE_TYPE(&cqe), CQE_OPCODE(&cqe),
718 CQE_STATUS(&cqe), CQE_LEN(&cqe),
719 CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe),
720 (unsigned long long)cookie);
721
722 if (CQE_TYPE(&cqe) == 0) {
723 if (!CQE_STATUS(&cqe))
724 wc->byte_len = CQE_LEN(&cqe);
725 else
726 wc->byte_len = 0;
727 wc->opcode = IB_WC_RECV;
728 if (CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_INV ||
729 CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_SE_INV) {
730 wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
731 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
732 c4iw_invalidate_mr(qhp->rhp, wc->ex.invalidate_rkey);
733 }
734 } else {
735 switch (CQE_OPCODE(&cqe)) {
736 case FW_RI_RDMA_WRITE:
737 wc->opcode = IB_WC_RDMA_WRITE;
738 break;
739 case FW_RI_READ_REQ:
740 wc->opcode = IB_WC_RDMA_READ;
741 wc->byte_len = CQE_LEN(&cqe);
742 break;
743 case FW_RI_SEND_WITH_INV:
744 case FW_RI_SEND_WITH_SE_INV:
745 wc->opcode = IB_WC_SEND;
746 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
747 break;
748 case FW_RI_SEND:
749 case FW_RI_SEND_WITH_SE:
750 wc->opcode = IB_WC_SEND;
751 break;
752
753 case FW_RI_LOCAL_INV:
754 wc->opcode = IB_WC_LOCAL_INV;
755 break;
756 case FW_RI_FAST_REGISTER:
757 wc->opcode = IB_WC_REG_MR;
758
759 /* Invalidate the MR if the fastreg failed */
760 if (CQE_STATUS(&cqe) != T4_ERR_SUCCESS)
761 c4iw_invalidate_mr(qhp->rhp,
762 CQE_WRID_FR_STAG(&cqe));
763 break;
764 case C4IW_DRAIN_OPCODE:
765 wc->opcode = IB_WC_SEND;
766 break;
767 default:
768 pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
769 CQE_OPCODE(&cqe), CQE_QPID(&cqe));
770 ret = -EINVAL;
771 goto out;
772 }
773 }
774
775 if (cqe_flushed)
776 wc->status = IB_WC_WR_FLUSH_ERR;
777 else {
778
779 switch (CQE_STATUS(&cqe)) {
780 case T4_ERR_SUCCESS:
781 wc->status = IB_WC_SUCCESS;
782 break;
783 case T4_ERR_STAG:
784 wc->status = IB_WC_LOC_ACCESS_ERR;
785 break;
786 case T4_ERR_PDID:
787 wc->status = IB_WC_LOC_PROT_ERR;
788 break;
789 case T4_ERR_QPID:
790 case T4_ERR_ACCESS:
791 wc->status = IB_WC_LOC_ACCESS_ERR;
792 break;
793 case T4_ERR_WRAP:
794 wc->status = IB_WC_GENERAL_ERR;
795 break;
796 case T4_ERR_BOUND:
797 wc->status = IB_WC_LOC_LEN_ERR;
798 break;
799 case T4_ERR_INVALIDATE_SHARED_MR:
800 case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
801 wc->status = IB_WC_MW_BIND_ERR;
802 break;
803 case T4_ERR_CRC:
804 case T4_ERR_MARKER:
805 case T4_ERR_PDU_LEN_ERR:
806 case T4_ERR_OUT_OF_RQE:
807 case T4_ERR_DDP_VERSION:
808 case T4_ERR_RDMA_VERSION:
809 case T4_ERR_DDP_QUEUE_NUM:
810 case T4_ERR_MSN:
811 case T4_ERR_TBIT:
812 case T4_ERR_MO:
813 case T4_ERR_MSN_RANGE:
814 case T4_ERR_IRD_OVERFLOW:
815 case T4_ERR_OPCODE:
816 case T4_ERR_INTERNAL_ERR:
817 wc->status = IB_WC_FATAL_ERR;
818 break;
819 case T4_ERR_SWFLUSH:
820 wc->status = IB_WC_WR_FLUSH_ERR;
821 break;
822 default:
823 pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n",
824 CQE_STATUS(&cqe), CQE_QPID(&cqe));
825 wc->status = IB_WC_FATAL_ERR;
826 }
827 }
828 out:
829 if (wq)
830 spin_unlock(&qhp->lock);
831 return ret;
832 }
833
834 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
835 {
836 struct c4iw_cq *chp;
837 unsigned long flags;
838 int npolled;
839 int err = 0;
840
841 chp = to_c4iw_cq(ibcq);
842
843 spin_lock_irqsave(&chp->lock, flags);
844 for (npolled = 0; npolled < num_entries; ++npolled) {
845 do {
846 err = c4iw_poll_cq_one(chp, wc + npolled);
847 } while (err == -EAGAIN);
848 if (err)
849 break;
850 }
851 spin_unlock_irqrestore(&chp->lock, flags);
852 return !err || err == -ENODATA ? npolled : err;
853 }
854
855 int c4iw_destroy_cq(struct ib_cq *ib_cq)
856 {
857 struct c4iw_cq *chp;
858 struct c4iw_ucontext *ucontext;
859
860 pr_debug("%s ib_cq %p\n", __func__, ib_cq);
861 chp = to_c4iw_cq(ib_cq);
862
863 remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid);
864 atomic_dec(&chp->refcnt);
865 wait_event(chp->wait, !atomic_read(&chp->refcnt));
866
867 ucontext = ib_cq->uobject ? to_c4iw_ucontext(ib_cq->uobject->context)
868 : NULL;
869 destroy_cq(&chp->rhp->rdev, &chp->cq,
870 ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx,
871 chp->destroy_skb);
872 chp->destroy_skb = NULL;
873 kfree(chp);
874 return 0;
875 }
876
877 struct ib_cq *c4iw_create_cq(struct ib_device *ibdev,
878 const struct ib_cq_init_attr *attr,
879 struct ib_ucontext *ib_context,
880 struct ib_udata *udata)
881 {
882 int entries = attr->cqe;
883 int vector = attr->comp_vector;
884 struct c4iw_dev *rhp;
885 struct c4iw_cq *chp;
886 struct c4iw_create_cq_resp uresp;
887 struct c4iw_ucontext *ucontext = NULL;
888 int ret, wr_len;
889 size_t memsize, hwentries;
890 struct c4iw_mm_entry *mm, *mm2;
891
892 pr_debug("%s ib_dev %p entries %d\n", __func__, ibdev, entries);
893 if (attr->flags)
894 return ERR_PTR(-EINVAL);
895
896 rhp = to_c4iw_dev(ibdev);
897
898 if (vector >= rhp->rdev.lldi.nciq)
899 return ERR_PTR(-EINVAL);
900
901 chp = kzalloc(sizeof(*chp), GFP_KERNEL);
902 if (!chp)
903 return ERR_PTR(-ENOMEM);
904
905 wr_len = sizeof(struct fw_ri_res_wr) + sizeof(struct fw_ri_res);
906 chp->destroy_skb = alloc_skb(wr_len, GFP_KERNEL);
907 if (!chp->destroy_skb) {
908 ret = -ENOMEM;
909 goto err1;
910 }
911
912 if (ib_context)
913 ucontext = to_c4iw_ucontext(ib_context);
914
915 /* account for the status page. */
916 entries++;
917
918 /* IQ needs one extra entry to differentiate full vs empty. */
919 entries++;
920
921 /*
922 * entries must be multiple of 16 for HW.
923 */
924 entries = roundup(entries, 16);
925
926 /*
927 * Make actual HW queue 2x to avoid cdix_inc overflows.
928 */
929 hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size);
930
931 /*
932 * Make HW queue at least 64 entries so GTS updates aren't too
933 * frequent.
934 */
935 if (hwentries < 64)
936 hwentries = 64;
937
938 memsize = hwentries * sizeof *chp->cq.queue;
939
940 /*
941 * memsize must be a multiple of the page size if its a user cq.
942 */
943 if (ucontext)
944 memsize = roundup(memsize, PAGE_SIZE);
945 chp->cq.size = hwentries;
946 chp->cq.memsize = memsize;
947 chp->cq.vector = vector;
948
949 ret = create_cq(&rhp->rdev, &chp->cq,
950 ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
951 if (ret)
952 goto err2;
953
954 chp->rhp = rhp;
955 chp->cq.size--; /* status page */
956 chp->ibcq.cqe = entries - 2;
957 spin_lock_init(&chp->lock);
958 spin_lock_init(&chp->comp_handler_lock);
959 atomic_set(&chp->refcnt, 1);
960 init_waitqueue_head(&chp->wait);
961 ret = insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid);
962 if (ret)
963 goto err3;
964
965 if (ucontext) {
966 mm = kmalloc(sizeof *mm, GFP_KERNEL);
967 if (!mm)
968 goto err4;
969 mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
970 if (!mm2)
971 goto err5;
972
973 uresp.qid_mask = rhp->rdev.cqmask;
974 uresp.cqid = chp->cq.cqid;
975 uresp.size = chp->cq.size;
976 uresp.memsize = chp->cq.memsize;
977 spin_lock(&ucontext->mmap_lock);
978 uresp.key = ucontext->key;
979 ucontext->key += PAGE_SIZE;
980 uresp.gts_key = ucontext->key;
981 ucontext->key += PAGE_SIZE;
982 spin_unlock(&ucontext->mmap_lock);
983 ret = ib_copy_to_udata(udata, &uresp,
984 sizeof(uresp) - sizeof(uresp.reserved));
985 if (ret)
986 goto err6;
987
988 mm->key = uresp.key;
989 mm->addr = virt_to_phys(chp->cq.queue);
990 mm->len = chp->cq.memsize;
991 insert_mmap(ucontext, mm);
992
993 mm2->key = uresp.gts_key;
994 mm2->addr = chp->cq.bar2_pa;
995 mm2->len = PAGE_SIZE;
996 insert_mmap(ucontext, mm2);
997 }
998 pr_debug("%s cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
999 __func__, chp->cq.cqid, chp, chp->cq.size,
1000 chp->cq.memsize, (unsigned long long)chp->cq.dma_addr);
1001 return &chp->ibcq;
1002 err6:
1003 kfree(mm2);
1004 err5:
1005 kfree(mm);
1006 err4:
1007 remove_handle(rhp, &rhp->cqidr, chp->cq.cqid);
1008 err3:
1009 destroy_cq(&chp->rhp->rdev, &chp->cq,
1010 ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
1011 chp->destroy_skb);
1012 err2:
1013 kfree_skb(chp->destroy_skb);
1014 err1:
1015 kfree(chp);
1016 return ERR_PTR(ret);
1017 }
1018
1019 int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata)
1020 {
1021 return -ENOSYS;
1022 }
1023
1024 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
1025 {
1026 struct c4iw_cq *chp;
1027 int ret = 0;
1028 unsigned long flag;
1029
1030 chp = to_c4iw_cq(ibcq);
1031 spin_lock_irqsave(&chp->lock, flag);
1032 t4_arm_cq(&chp->cq,
1033 (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
1034 if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1035 ret = t4_cq_notempty(&chp->cq);
1036 spin_unlock_irqrestore(&chp->lock, flag);
1037 return ret;
1038 }