]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/infiniband/hw/cxgb4/cq.c
Merge tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-eoan-kernel.git] / drivers / infiniband / hw / cxgb4 / cq.c
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include "iw_cxgb4.h"
34
35 static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
36 struct c4iw_dev_ucontext *uctx, struct sk_buff *skb,
37 struct c4iw_wr_wait *wr_waitp)
38 {
39 struct fw_ri_res_wr *res_wr;
40 struct fw_ri_res *res;
41 int wr_len;
42 int ret;
43
44 wr_len = sizeof *res_wr + sizeof *res;
45 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
46
47 res_wr = __skb_put_zero(skb, wr_len);
48 res_wr->op_nres = cpu_to_be32(
49 FW_WR_OP_V(FW_RI_RES_WR) |
50 FW_RI_RES_WR_NRES_V(1) |
51 FW_WR_COMPL_F);
52 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
53 res_wr->cookie = (uintptr_t)wr_waitp;
54 res = res_wr->res;
55 res->u.cq.restype = FW_RI_RES_TYPE_CQ;
56 res->u.cq.op = FW_RI_RES_OP_RESET;
57 res->u.cq.iqid = cpu_to_be32(cq->cqid);
58
59 c4iw_init_wr_wait(wr_waitp);
60 ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
61
62 kfree(cq->sw_queue);
63 dma_free_coherent(&(rdev->lldi.pdev->dev),
64 cq->memsize, cq->queue,
65 dma_unmap_addr(cq, mapping));
66 c4iw_put_cqid(rdev, cq->cqid, uctx);
67 return ret;
68 }
69
70 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
71 struct c4iw_dev_ucontext *uctx,
72 struct c4iw_wr_wait *wr_waitp)
73 {
74 struct fw_ri_res_wr *res_wr;
75 struct fw_ri_res *res;
76 int wr_len;
77 int user = (uctx != &rdev->uctx);
78 int ret;
79 struct sk_buff *skb;
80
81 cq->cqid = c4iw_get_cqid(rdev, uctx);
82 if (!cq->cqid) {
83 ret = -ENOMEM;
84 goto err1;
85 }
86
87 if (!user) {
88 cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
89 if (!cq->sw_queue) {
90 ret = -ENOMEM;
91 goto err2;
92 }
93 }
94 cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
95 &cq->dma_addr, GFP_KERNEL);
96 if (!cq->queue) {
97 ret = -ENOMEM;
98 goto err3;
99 }
100 dma_unmap_addr_set(cq, mapping, cq->dma_addr);
101 memset(cq->queue, 0, cq->memsize);
102
103 /* build fw_ri_res_wr */
104 wr_len = sizeof *res_wr + sizeof *res;
105
106 skb = alloc_skb(wr_len, GFP_KERNEL);
107 if (!skb) {
108 ret = -ENOMEM;
109 goto err4;
110 }
111 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
112
113 res_wr = __skb_put_zero(skb, wr_len);
114 res_wr->op_nres = cpu_to_be32(
115 FW_WR_OP_V(FW_RI_RES_WR) |
116 FW_RI_RES_WR_NRES_V(1) |
117 FW_WR_COMPL_F);
118 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
119 res_wr->cookie = (uintptr_t)wr_waitp;
120 res = res_wr->res;
121 res->u.cq.restype = FW_RI_RES_TYPE_CQ;
122 res->u.cq.op = FW_RI_RES_OP_WRITE;
123 res->u.cq.iqid = cpu_to_be32(cq->cqid);
124 res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
125 FW_RI_RES_WR_IQANUS_V(0) |
126 FW_RI_RES_WR_IQANUD_V(1) |
127 FW_RI_RES_WR_IQANDST_F |
128 FW_RI_RES_WR_IQANDSTINDEX_V(
129 rdev->lldi.ciq_ids[cq->vector]));
130 res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
131 FW_RI_RES_WR_IQDROPRSS_F |
132 FW_RI_RES_WR_IQPCIECH_V(2) |
133 FW_RI_RES_WR_IQINTCNTTHRESH_V(0) |
134 FW_RI_RES_WR_IQO_F |
135 FW_RI_RES_WR_IQESIZE_V(1));
136 res->u.cq.iqsize = cpu_to_be16(cq->size);
137 res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
138
139 c4iw_init_wr_wait(wr_waitp);
140 ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
141 if (ret)
142 goto err4;
143
144 cq->gen = 1;
145 cq->gts = rdev->lldi.gts_reg;
146 cq->rdev = rdev;
147
148 cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, T4_BAR2_QTYPE_INGRESS,
149 &cq->bar2_qid,
150 user ? &cq->bar2_pa : NULL);
151 if (user && !cq->bar2_pa) {
152 pr_warn("%s: cqid %u not in BAR2 range\n",
153 pci_name(rdev->lldi.pdev), cq->cqid);
154 ret = -EINVAL;
155 goto err4;
156 }
157 return 0;
158 err4:
159 dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
160 dma_unmap_addr(cq, mapping));
161 err3:
162 kfree(cq->sw_queue);
163 err2:
164 c4iw_put_cqid(rdev, cq->cqid, uctx);
165 err1:
166 return ret;
167 }
168
169 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq)
170 {
171 struct t4_cqe cqe;
172
173 pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
174 wq, cq, cq->sw_cidx, cq->sw_pidx);
175 memset(&cqe, 0, sizeof(cqe));
176 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
177 CQE_OPCODE_V(FW_RI_SEND) |
178 CQE_TYPE_V(0) |
179 CQE_SWCQE_V(1) |
180 CQE_QPID_V(wq->sq.qid));
181 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
182 cq->sw_queue[cq->sw_pidx] = cqe;
183 t4_swcq_produce(cq);
184 }
185
186 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
187 {
188 int flushed = 0;
189 int in_use = wq->rq.in_use - count;
190
191 pr_debug("wq %p cq %p rq.in_use %u skip count %u\n",
192 wq, cq, wq->rq.in_use, count);
193 while (in_use--) {
194 insert_recv_cqe(wq, cq);
195 flushed++;
196 }
197 return flushed;
198 }
199
200 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
201 struct t4_swsqe *swcqe)
202 {
203 struct t4_cqe cqe;
204
205 pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
206 wq, cq, cq->sw_cidx, cq->sw_pidx);
207 memset(&cqe, 0, sizeof(cqe));
208 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
209 CQE_OPCODE_V(swcqe->opcode) |
210 CQE_TYPE_V(1) |
211 CQE_SWCQE_V(1) |
212 CQE_QPID_V(wq->sq.qid));
213 CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
214 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
215 cq->sw_queue[cq->sw_pidx] = cqe;
216 t4_swcq_produce(cq);
217 }
218
219 static void advance_oldest_read(struct t4_wq *wq);
220
221 int c4iw_flush_sq(struct c4iw_qp *qhp)
222 {
223 int flushed = 0;
224 struct t4_wq *wq = &qhp->wq;
225 struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq);
226 struct t4_cq *cq = &chp->cq;
227 int idx;
228 struct t4_swsqe *swsqe;
229
230 if (wq->sq.flush_cidx == -1)
231 wq->sq.flush_cidx = wq->sq.cidx;
232 idx = wq->sq.flush_cidx;
233 while (idx != wq->sq.pidx) {
234 swsqe = &wq->sq.sw_sq[idx];
235 swsqe->flushed = 1;
236 insert_sq_cqe(wq, cq, swsqe);
237 if (wq->sq.oldest_read == swsqe) {
238 advance_oldest_read(wq);
239 }
240 flushed++;
241 if (++idx == wq->sq.size)
242 idx = 0;
243 }
244 wq->sq.flush_cidx += flushed;
245 if (wq->sq.flush_cidx >= wq->sq.size)
246 wq->sq.flush_cidx -= wq->sq.size;
247 return flushed;
248 }
249
250 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
251 {
252 struct t4_swsqe *swsqe;
253 int cidx;
254
255 if (wq->sq.flush_cidx == -1)
256 wq->sq.flush_cidx = wq->sq.cidx;
257 cidx = wq->sq.flush_cidx;
258
259 while (cidx != wq->sq.pidx) {
260 swsqe = &wq->sq.sw_sq[cidx];
261 if (!swsqe->signaled) {
262 if (++cidx == wq->sq.size)
263 cidx = 0;
264 } else if (swsqe->complete) {
265
266 /*
267 * Insert this completed cqe into the swcq.
268 */
269 pr_debug("moving cqe into swcq sq idx %u cq idx %u\n",
270 cidx, cq->sw_pidx);
271 swsqe->cqe.header |= htonl(CQE_SWCQE_V(1));
272 cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
273 t4_swcq_produce(cq);
274 swsqe->flushed = 1;
275 if (++cidx == wq->sq.size)
276 cidx = 0;
277 wq->sq.flush_cidx = cidx;
278 } else
279 break;
280 }
281 }
282
283 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
284 struct t4_cqe *read_cqe)
285 {
286 read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
287 read_cqe->len = htonl(wq->sq.oldest_read->read_len);
288 read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) |
289 CQE_SWCQE_V(SW_CQE(hw_cqe)) |
290 CQE_OPCODE_V(FW_RI_READ_REQ) |
291 CQE_TYPE_V(1));
292 read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
293 }
294
295 static void advance_oldest_read(struct t4_wq *wq)
296 {
297
298 u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
299
300 if (rptr == wq->sq.size)
301 rptr = 0;
302 while (rptr != wq->sq.pidx) {
303 wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
304
305 if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
306 return;
307 if (++rptr == wq->sq.size)
308 rptr = 0;
309 }
310 wq->sq.oldest_read = NULL;
311 }
312
313 /*
314 * Move all CQEs from the HWCQ into the SWCQ.
315 * Deal with out-of-order and/or completions that complete
316 * prior unsignalled WRs.
317 */
318 void c4iw_flush_hw_cq(struct c4iw_cq *chp)
319 {
320 struct t4_cqe *hw_cqe, *swcqe, read_cqe;
321 struct c4iw_qp *qhp;
322 struct t4_swsqe *swsqe;
323 int ret;
324
325 pr_debug("cqid 0x%x\n", chp->cq.cqid);
326 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
327
328 /*
329 * This logic is similar to poll_cq(), but not quite the same
330 * unfortunately. Need to move pertinent HW CQEs to the SW CQ but
331 * also do any translation magic that poll_cq() normally does.
332 */
333 while (!ret) {
334 qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe));
335
336 /*
337 * drop CQEs with no associated QP
338 */
339 if (qhp == NULL)
340 goto next_cqe;
341
342 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE)
343 goto next_cqe;
344
345 if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) {
346
347 /* If we have reached here because of async
348 * event or other error, and have egress error
349 * then drop
350 */
351 if (CQE_TYPE(hw_cqe) == 1)
352 goto next_cqe;
353
354 /* drop peer2peer RTR reads.
355 */
356 if (CQE_WRID_STAG(hw_cqe) == 1)
357 goto next_cqe;
358
359 /*
360 * Eat completions for unsignaled read WRs.
361 */
362 if (!qhp->wq.sq.oldest_read->signaled) {
363 advance_oldest_read(&qhp->wq);
364 goto next_cqe;
365 }
366
367 /*
368 * Don't write to the HWCQ, create a new read req CQE
369 * in local memory and move it into the swcq.
370 */
371 create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe);
372 hw_cqe = &read_cqe;
373 advance_oldest_read(&qhp->wq);
374 }
375
376 /* if its a SQ completion, then do the magic to move all the
377 * unsignaled and now in-order completions into the swcq.
378 */
379 if (SQ_TYPE(hw_cqe)) {
380 swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
381 swsqe->cqe = *hw_cqe;
382 swsqe->complete = 1;
383 flush_completed_wrs(&qhp->wq, &chp->cq);
384 } else {
385 swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx];
386 *swcqe = *hw_cqe;
387 swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1));
388 t4_swcq_produce(&chp->cq);
389 }
390 next_cqe:
391 t4_hwcq_consume(&chp->cq);
392 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
393 }
394 }
395
396 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
397 {
398 if (DRAIN_CQE(cqe)) {
399 WARN_ONCE(1, "Unexpected DRAIN CQE qp id %u!\n", wq->sq.qid);
400 return 0;
401 }
402
403 if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
404 return 0;
405
406 if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
407 return 0;
408
409 if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
410 return 0;
411
412 if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
413 return 0;
414 return 1;
415 }
416
417 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
418 {
419 struct t4_cqe *cqe;
420 u32 ptr;
421
422 *count = 0;
423 pr_debug("count zero %d\n", *count);
424 ptr = cq->sw_cidx;
425 while (ptr != cq->sw_pidx) {
426 cqe = &cq->sw_queue[ptr];
427 if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
428 (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq))
429 (*count)++;
430 if (++ptr == cq->size)
431 ptr = 0;
432 }
433 pr_debug("cq %p count %d\n", cq, *count);
434 }
435
436 /*
437 * poll_cq
438 *
439 * Caller must:
440 * check the validity of the first CQE,
441 * supply the wq assicated with the qpid.
442 *
443 * credit: cq credit to return to sge.
444 * cqe_flushed: 1 iff the CQE is flushed.
445 * cqe: copy of the polled CQE.
446 *
447 * return value:
448 * 0 CQE returned ok.
449 * -EAGAIN CQE skipped, try again.
450 * -EOVERFLOW CQ overflow detected.
451 */
452 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
453 u8 *cqe_flushed, u64 *cookie, u32 *credit)
454 {
455 int ret = 0;
456 struct t4_cqe *hw_cqe, read_cqe;
457
458 *cqe_flushed = 0;
459 *credit = 0;
460 ret = t4_next_cqe(cq, &hw_cqe);
461 if (ret)
462 return ret;
463
464 pr_debug("CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
465 CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
466 CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
467 CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
468 CQE_WRID_LOW(hw_cqe));
469
470 /*
471 * skip cqe's not affiliated with a QP.
472 */
473 if (wq == NULL) {
474 ret = -EAGAIN;
475 goto skip_cqe;
476 }
477
478 /*
479 * skip hw cqe's if the wq is flushed.
480 */
481 if (wq->flushed && !SW_CQE(hw_cqe)) {
482 ret = -EAGAIN;
483 goto skip_cqe;
484 }
485
486 /*
487 * skip TERMINATE cqes...
488 */
489 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) {
490 ret = -EAGAIN;
491 goto skip_cqe;
492 }
493
494 /*
495 * Special cqe for drain WR completions...
496 */
497 if (DRAIN_CQE(hw_cqe)) {
498 *cookie = CQE_DRAIN_COOKIE(hw_cqe);
499 *cqe = *hw_cqe;
500 goto skip_cqe;
501 }
502
503 /*
504 * Gotta tweak READ completions:
505 * 1) the cqe doesn't contain the sq_wptr from the wr.
506 * 2) opcode not reflected from the wr.
507 * 3) read_len not reflected from the wr.
508 * 4) cq_type is RQ_TYPE not SQ_TYPE.
509 */
510 if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
511
512 /* If we have reached here because of async
513 * event or other error, and have egress error
514 * then drop
515 */
516 if (CQE_TYPE(hw_cqe) == 1) {
517 if (CQE_STATUS(hw_cqe))
518 t4_set_wq_in_error(wq);
519 ret = -EAGAIN;
520 goto skip_cqe;
521 }
522
523 /* If this is an unsolicited read response, then the read
524 * was generated by the kernel driver as part of peer-2-peer
525 * connection setup. So ignore the completion.
526 */
527 if (CQE_WRID_STAG(hw_cqe) == 1) {
528 if (CQE_STATUS(hw_cqe))
529 t4_set_wq_in_error(wq);
530 ret = -EAGAIN;
531 goto skip_cqe;
532 }
533
534 /*
535 * Eat completions for unsignaled read WRs.
536 */
537 if (!wq->sq.oldest_read->signaled) {
538 advance_oldest_read(wq);
539 ret = -EAGAIN;
540 goto skip_cqe;
541 }
542
543 /*
544 * Don't write to the HWCQ, so create a new read req CQE
545 * in local memory.
546 */
547 create_read_req_cqe(wq, hw_cqe, &read_cqe);
548 hw_cqe = &read_cqe;
549 advance_oldest_read(wq);
550 }
551
552 if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
553 *cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH);
554 t4_set_wq_in_error(wq);
555 }
556
557 /*
558 * RECV completion.
559 */
560 if (RQ_TYPE(hw_cqe)) {
561
562 /*
563 * HW only validates 4 bits of MSN. So we must validate that
564 * the MSN in the SEND is the next expected MSN. If its not,
565 * then we complete this with T4_ERR_MSN and mark the wq in
566 * error.
567 */
568
569 if (t4_rq_empty(wq)) {
570 t4_set_wq_in_error(wq);
571 ret = -EAGAIN;
572 goto skip_cqe;
573 }
574 if (unlikely(!CQE_STATUS(hw_cqe) &&
575 CQE_WRID_MSN(hw_cqe) != wq->rq.msn)) {
576 t4_set_wq_in_error(wq);
577 hw_cqe->header |= cpu_to_be32(CQE_STATUS_V(T4_ERR_MSN));
578 }
579 goto proc_cqe;
580 }
581
582 /*
583 * If we get here its a send completion.
584 *
585 * Handle out of order completion. These get stuffed
586 * in the SW SQ. Then the SW SQ is walked to move any
587 * now in-order completions into the SW CQ. This handles
588 * 2 cases:
589 * 1) reaping unsignaled WRs when the first subsequent
590 * signaled WR is completed.
591 * 2) out of order read completions.
592 */
593 if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
594 struct t4_swsqe *swsqe;
595
596 pr_debug("out of order completion going in sw_sq at idx %u\n",
597 CQE_WRID_SQ_IDX(hw_cqe));
598 swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
599 swsqe->cqe = *hw_cqe;
600 swsqe->complete = 1;
601 ret = -EAGAIN;
602 goto flush_wq;
603 }
604
605 proc_cqe:
606 *cqe = *hw_cqe;
607
608 /*
609 * Reap the associated WR(s) that are freed up with this
610 * completion.
611 */
612 if (SQ_TYPE(hw_cqe)) {
613 int idx = CQE_WRID_SQ_IDX(hw_cqe);
614
615 /*
616 * Account for any unsignaled completions completed by
617 * this signaled completion. In this case, cidx points
618 * to the first unsignaled one, and idx points to the
619 * signaled one. So adjust in_use based on this delta.
620 * if this is not completing any unsigned wrs, then the
621 * delta will be 0. Handle wrapping also!
622 */
623 if (idx < wq->sq.cidx)
624 wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx;
625 else
626 wq->sq.in_use -= idx - wq->sq.cidx;
627
628 wq->sq.cidx = (uint16_t)idx;
629 pr_debug("completing sq idx %u\n", wq->sq.cidx);
630 *cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
631 if (c4iw_wr_log)
632 c4iw_log_wr_stats(wq, hw_cqe);
633 t4_sq_consume(wq);
634 } else {
635 pr_debug("completing rq idx %u\n", wq->rq.cidx);
636 *cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
637 if (c4iw_wr_log)
638 c4iw_log_wr_stats(wq, hw_cqe);
639 t4_rq_consume(wq);
640 goto skip_cqe;
641 }
642
643 flush_wq:
644 /*
645 * Flush any completed cqes that are now in-order.
646 */
647 flush_completed_wrs(wq, cq);
648
649 skip_cqe:
650 if (SW_CQE(hw_cqe)) {
651 pr_debug("cq %p cqid 0x%x skip sw cqe cidx %u\n",
652 cq, cq->cqid, cq->sw_cidx);
653 t4_swcq_consume(cq);
654 } else {
655 pr_debug("cq %p cqid 0x%x skip hw cqe cidx %u\n",
656 cq, cq->cqid, cq->cidx);
657 t4_hwcq_consume(cq);
658 }
659 return ret;
660 }
661
662 /*
663 * Get one cq entry from c4iw and map it to openib.
664 *
665 * Returns:
666 * 0 cqe returned
667 * -ENODATA EMPTY;
668 * -EAGAIN caller must try again
669 * any other -errno fatal error
670 */
671 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
672 {
673 struct c4iw_qp *qhp = NULL;
674 struct t4_cqe uninitialized_var(cqe), *rd_cqe;
675 struct t4_wq *wq;
676 u32 credit = 0;
677 u8 cqe_flushed;
678 u64 cookie = 0;
679 int ret;
680
681 ret = t4_next_cqe(&chp->cq, &rd_cqe);
682
683 if (ret)
684 return ret;
685
686 qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
687 if (!qhp)
688 wq = NULL;
689 else {
690 spin_lock(&qhp->lock);
691 wq = &(qhp->wq);
692 }
693 ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit);
694 if (ret)
695 goto out;
696
697 wc->wr_id = cookie;
698 wc->qp = &qhp->ibqp;
699 wc->vendor_err = CQE_STATUS(&cqe);
700 wc->wc_flags = 0;
701
702 pr_debug("qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n",
703 CQE_QPID(&cqe),
704 CQE_TYPE(&cqe), CQE_OPCODE(&cqe),
705 CQE_STATUS(&cqe), CQE_LEN(&cqe),
706 CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe),
707 (unsigned long long)cookie);
708
709 if (CQE_TYPE(&cqe) == 0) {
710 if (!CQE_STATUS(&cqe))
711 wc->byte_len = CQE_LEN(&cqe);
712 else
713 wc->byte_len = 0;
714 wc->opcode = IB_WC_RECV;
715 if (CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_INV ||
716 CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_SE_INV) {
717 wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
718 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
719 c4iw_invalidate_mr(qhp->rhp, wc->ex.invalidate_rkey);
720 }
721 } else {
722 switch (CQE_OPCODE(&cqe)) {
723 case FW_RI_RDMA_WRITE:
724 wc->opcode = IB_WC_RDMA_WRITE;
725 break;
726 case FW_RI_READ_REQ:
727 wc->opcode = IB_WC_RDMA_READ;
728 wc->byte_len = CQE_LEN(&cqe);
729 break;
730 case FW_RI_SEND_WITH_INV:
731 case FW_RI_SEND_WITH_SE_INV:
732 wc->opcode = IB_WC_SEND;
733 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
734 break;
735 case FW_RI_SEND:
736 case FW_RI_SEND_WITH_SE:
737 wc->opcode = IB_WC_SEND;
738 break;
739
740 case FW_RI_LOCAL_INV:
741 wc->opcode = IB_WC_LOCAL_INV;
742 break;
743 case FW_RI_FAST_REGISTER:
744 wc->opcode = IB_WC_REG_MR;
745
746 /* Invalidate the MR if the fastreg failed */
747 if (CQE_STATUS(&cqe) != T4_ERR_SUCCESS)
748 c4iw_invalidate_mr(qhp->rhp,
749 CQE_WRID_FR_STAG(&cqe));
750 break;
751 default:
752 pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
753 CQE_OPCODE(&cqe), CQE_QPID(&cqe));
754 ret = -EINVAL;
755 goto out;
756 }
757 }
758
759 if (cqe_flushed)
760 wc->status = IB_WC_WR_FLUSH_ERR;
761 else {
762
763 switch (CQE_STATUS(&cqe)) {
764 case T4_ERR_SUCCESS:
765 wc->status = IB_WC_SUCCESS;
766 break;
767 case T4_ERR_STAG:
768 wc->status = IB_WC_LOC_ACCESS_ERR;
769 break;
770 case T4_ERR_PDID:
771 wc->status = IB_WC_LOC_PROT_ERR;
772 break;
773 case T4_ERR_QPID:
774 case T4_ERR_ACCESS:
775 wc->status = IB_WC_LOC_ACCESS_ERR;
776 break;
777 case T4_ERR_WRAP:
778 wc->status = IB_WC_GENERAL_ERR;
779 break;
780 case T4_ERR_BOUND:
781 wc->status = IB_WC_LOC_LEN_ERR;
782 break;
783 case T4_ERR_INVALIDATE_SHARED_MR:
784 case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
785 wc->status = IB_WC_MW_BIND_ERR;
786 break;
787 case T4_ERR_CRC:
788 case T4_ERR_MARKER:
789 case T4_ERR_PDU_LEN_ERR:
790 case T4_ERR_OUT_OF_RQE:
791 case T4_ERR_DDP_VERSION:
792 case T4_ERR_RDMA_VERSION:
793 case T4_ERR_DDP_QUEUE_NUM:
794 case T4_ERR_MSN:
795 case T4_ERR_TBIT:
796 case T4_ERR_MO:
797 case T4_ERR_MSN_RANGE:
798 case T4_ERR_IRD_OVERFLOW:
799 case T4_ERR_OPCODE:
800 case T4_ERR_INTERNAL_ERR:
801 wc->status = IB_WC_FATAL_ERR;
802 break;
803 case T4_ERR_SWFLUSH:
804 wc->status = IB_WC_WR_FLUSH_ERR;
805 break;
806 default:
807 pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n",
808 CQE_STATUS(&cqe), CQE_QPID(&cqe));
809 wc->status = IB_WC_FATAL_ERR;
810 }
811 }
812 out:
813 if (wq)
814 spin_unlock(&qhp->lock);
815 return ret;
816 }
817
818 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
819 {
820 struct c4iw_cq *chp;
821 unsigned long flags;
822 int npolled;
823 int err = 0;
824
825 chp = to_c4iw_cq(ibcq);
826
827 spin_lock_irqsave(&chp->lock, flags);
828 for (npolled = 0; npolled < num_entries; ++npolled) {
829 do {
830 err = c4iw_poll_cq_one(chp, wc + npolled);
831 } while (err == -EAGAIN);
832 if (err)
833 break;
834 }
835 spin_unlock_irqrestore(&chp->lock, flags);
836 return !err || err == -ENODATA ? npolled : err;
837 }
838
839 int c4iw_destroy_cq(struct ib_cq *ib_cq)
840 {
841 struct c4iw_cq *chp;
842 struct c4iw_ucontext *ucontext;
843
844 pr_debug("ib_cq %p\n", ib_cq);
845 chp = to_c4iw_cq(ib_cq);
846
847 remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid);
848 atomic_dec(&chp->refcnt);
849 wait_event(chp->wait, !atomic_read(&chp->refcnt));
850
851 ucontext = ib_cq->uobject ? to_c4iw_ucontext(ib_cq->uobject->context)
852 : NULL;
853 destroy_cq(&chp->rhp->rdev, &chp->cq,
854 ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx,
855 chp->destroy_skb, chp->wr_waitp);
856 c4iw_put_wr_wait(chp->wr_waitp);
857 kfree(chp);
858 return 0;
859 }
860
861 struct ib_cq *c4iw_create_cq(struct ib_device *ibdev,
862 const struct ib_cq_init_attr *attr,
863 struct ib_ucontext *ib_context,
864 struct ib_udata *udata)
865 {
866 int entries = attr->cqe;
867 int vector = attr->comp_vector;
868 struct c4iw_dev *rhp;
869 struct c4iw_cq *chp;
870 struct c4iw_create_cq_resp uresp;
871 struct c4iw_ucontext *ucontext = NULL;
872 int ret, wr_len;
873 size_t memsize, hwentries;
874 struct c4iw_mm_entry *mm, *mm2;
875
876 pr_debug("ib_dev %p entries %d\n", ibdev, entries);
877 if (attr->flags)
878 return ERR_PTR(-EINVAL);
879
880 rhp = to_c4iw_dev(ibdev);
881
882 if (vector >= rhp->rdev.lldi.nciq)
883 return ERR_PTR(-EINVAL);
884
885 chp = kzalloc(sizeof(*chp), GFP_KERNEL);
886 if (!chp)
887 return ERR_PTR(-ENOMEM);
888 chp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL);
889 if (!chp->wr_waitp) {
890 ret = -ENOMEM;
891 goto err_free_chp;
892 }
893 c4iw_init_wr_wait(chp->wr_waitp);
894
895 wr_len = sizeof(struct fw_ri_res_wr) + sizeof(struct fw_ri_res);
896 chp->destroy_skb = alloc_skb(wr_len, GFP_KERNEL);
897 if (!chp->destroy_skb) {
898 ret = -ENOMEM;
899 goto err_free_wr_wait;
900 }
901
902 if (ib_context)
903 ucontext = to_c4iw_ucontext(ib_context);
904
905 /* account for the status page. */
906 entries++;
907
908 /* IQ needs one extra entry to differentiate full vs empty. */
909 entries++;
910
911 /*
912 * entries must be multiple of 16 for HW.
913 */
914 entries = roundup(entries, 16);
915
916 /*
917 * Make actual HW queue 2x to avoid cdix_inc overflows.
918 */
919 hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size);
920
921 /*
922 * Make HW queue at least 64 entries so GTS updates aren't too
923 * frequent.
924 */
925 if (hwentries < 64)
926 hwentries = 64;
927
928 memsize = hwentries * sizeof *chp->cq.queue;
929
930 /*
931 * memsize must be a multiple of the page size if its a user cq.
932 */
933 if (ucontext)
934 memsize = roundup(memsize, PAGE_SIZE);
935 chp->cq.size = hwentries;
936 chp->cq.memsize = memsize;
937 chp->cq.vector = vector;
938
939 ret = create_cq(&rhp->rdev, &chp->cq,
940 ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
941 chp->wr_waitp);
942 if (ret)
943 goto err_free_skb;
944
945 chp->rhp = rhp;
946 chp->cq.size--; /* status page */
947 chp->ibcq.cqe = entries - 2;
948 spin_lock_init(&chp->lock);
949 spin_lock_init(&chp->comp_handler_lock);
950 atomic_set(&chp->refcnt, 1);
951 init_waitqueue_head(&chp->wait);
952 ret = insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid);
953 if (ret)
954 goto err_destroy_cq;
955
956 if (ucontext) {
957 ret = -ENOMEM;
958 mm = kmalloc(sizeof *mm, GFP_KERNEL);
959 if (!mm)
960 goto err_remove_handle;
961 mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
962 if (!mm2)
963 goto err_free_mm;
964
965 uresp.qid_mask = rhp->rdev.cqmask;
966 uresp.cqid = chp->cq.cqid;
967 uresp.size = chp->cq.size;
968 uresp.memsize = chp->cq.memsize;
969 spin_lock(&ucontext->mmap_lock);
970 uresp.key = ucontext->key;
971 ucontext->key += PAGE_SIZE;
972 uresp.gts_key = ucontext->key;
973 ucontext->key += PAGE_SIZE;
974 spin_unlock(&ucontext->mmap_lock);
975 ret = ib_copy_to_udata(udata, &uresp,
976 sizeof(uresp) - sizeof(uresp.reserved));
977 if (ret)
978 goto err_free_mm2;
979
980 mm->key = uresp.key;
981 mm->addr = virt_to_phys(chp->cq.queue);
982 mm->len = chp->cq.memsize;
983 insert_mmap(ucontext, mm);
984
985 mm2->key = uresp.gts_key;
986 mm2->addr = chp->cq.bar2_pa;
987 mm2->len = PAGE_SIZE;
988 insert_mmap(ucontext, mm2);
989 }
990 pr_debug("cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
991 chp->cq.cqid, chp, chp->cq.size,
992 chp->cq.memsize, (unsigned long long)chp->cq.dma_addr);
993 return &chp->ibcq;
994 err_free_mm2:
995 kfree(mm2);
996 err_free_mm:
997 kfree(mm);
998 err_remove_handle:
999 remove_handle(rhp, &rhp->cqidr, chp->cq.cqid);
1000 err_destroy_cq:
1001 destroy_cq(&chp->rhp->rdev, &chp->cq,
1002 ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
1003 chp->destroy_skb, chp->wr_waitp);
1004 err_free_skb:
1005 kfree_skb(chp->destroy_skb);
1006 err_free_wr_wait:
1007 c4iw_put_wr_wait(chp->wr_waitp);
1008 err_free_chp:
1009 kfree(chp);
1010 return ERR_PTR(ret);
1011 }
1012
1013 int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata)
1014 {
1015 return -ENOSYS;
1016 }
1017
1018 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
1019 {
1020 struct c4iw_cq *chp;
1021 int ret = 0;
1022 unsigned long flag;
1023
1024 chp = to_c4iw_cq(ibcq);
1025 spin_lock_irqsave(&chp->lock, flag);
1026 t4_arm_cq(&chp->cq,
1027 (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
1028 if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1029 ret = t4_cq_notempty(&chp->cq);
1030 spin_unlock_irqrestore(&chp->lock, flag);
1031 return ret;
1032 }