]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/infiniband/hw/cxgb4/device.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / drivers / infiniband / hw / cxgb4 / device.c
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/math64.h>
37
38 #include <rdma/ib_verbs.h>
39
40 #include "iw_cxgb4.h"
41
42 #define DRV_VERSION "0.1"
43
44 MODULE_AUTHOR("Steve Wise");
45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
46 MODULE_LICENSE("Dual BSD/GPL");
47 MODULE_VERSION(DRV_VERSION);
48
49 static int allow_db_fc_on_t5;
50 module_param(allow_db_fc_on_t5, int, 0644);
51 MODULE_PARM_DESC(allow_db_fc_on_t5,
52 "Allow DB Flow Control on T5 (default = 0)");
53
54 static int allow_db_coalescing_on_t5;
55 module_param(allow_db_coalescing_on_t5, int, 0644);
56 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
57 "Allow DB Coalescing on T5 (default = 0)");
58
59 int c4iw_wr_log = 0;
60 module_param(c4iw_wr_log, int, 0444);
61 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data.");
62
63 static int c4iw_wr_log_size_order = 12;
64 module_param(c4iw_wr_log_size_order, int, 0444);
65 MODULE_PARM_DESC(c4iw_wr_log_size_order,
66 "Number of entries (log2) in the work request timing log.");
67
68 struct uld_ctx {
69 struct list_head entry;
70 struct cxgb4_lld_info lldi;
71 struct c4iw_dev *dev;
72 };
73
74 static LIST_HEAD(uld_ctx_list);
75 static DEFINE_MUTEX(dev_mutex);
76
77 #define DB_FC_RESUME_SIZE 64
78 #define DB_FC_RESUME_DELAY 1
79 #define DB_FC_DRAIN_THRESH 0
80
81 static struct dentry *c4iw_debugfs_root;
82
83 struct c4iw_debugfs_data {
84 struct c4iw_dev *devp;
85 char *buf;
86 int bufsize;
87 int pos;
88 };
89
90 static int count_idrs(int id, void *p, void *data)
91 {
92 int *countp = data;
93
94 *countp = *countp + 1;
95 return 0;
96 }
97
98 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
99 loff_t *ppos)
100 {
101 struct c4iw_debugfs_data *d = file->private_data;
102
103 return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
104 }
105
106 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe)
107 {
108 struct wr_log_entry le;
109 int idx;
110
111 if (!wq->rdev->wr_log)
112 return;
113
114 idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) &
115 (wq->rdev->wr_log_size - 1);
116 le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]);
117 getnstimeofday(&le.poll_host_ts);
118 le.valid = 1;
119 le.cqe_sge_ts = CQE_TS(cqe);
120 if (SQ_TYPE(cqe)) {
121 le.qid = wq->sq.qid;
122 le.opcode = CQE_OPCODE(cqe);
123 le.post_host_ts = wq->sq.sw_sq[wq->sq.cidx].host_ts;
124 le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts;
125 le.wr_id = CQE_WRID_SQ_IDX(cqe);
126 } else {
127 le.qid = wq->rq.qid;
128 le.opcode = FW_RI_RECEIVE;
129 le.post_host_ts = wq->rq.sw_rq[wq->rq.cidx].host_ts;
130 le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts;
131 le.wr_id = CQE_WRID_MSN(cqe);
132 }
133 wq->rdev->wr_log[idx] = le;
134 }
135
136 static int wr_log_show(struct seq_file *seq, void *v)
137 {
138 struct c4iw_dev *dev = seq->private;
139 struct timespec prev_ts = {0, 0};
140 struct wr_log_entry *lep;
141 int prev_ts_set = 0;
142 int idx, end;
143
144 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000)
145
146 idx = atomic_read(&dev->rdev.wr_log_idx) &
147 (dev->rdev.wr_log_size - 1);
148 end = idx - 1;
149 if (end < 0)
150 end = dev->rdev.wr_log_size - 1;
151 lep = &dev->rdev.wr_log[idx];
152 while (idx != end) {
153 if (lep->valid) {
154 if (!prev_ts_set) {
155 prev_ts_set = 1;
156 prev_ts = lep->poll_host_ts;
157 }
158 seq_printf(seq, "%04u: sec %lu nsec %lu qid %u opcode "
159 "%u %s 0x%x host_wr_delta sec %lu nsec %lu "
160 "post_sge_ts 0x%llx cqe_sge_ts 0x%llx "
161 "poll_sge_ts 0x%llx post_poll_delta_ns %llu "
162 "cqe_poll_delta_ns %llu\n",
163 idx,
164 timespec_sub(lep->poll_host_ts,
165 prev_ts).tv_sec,
166 timespec_sub(lep->poll_host_ts,
167 prev_ts).tv_nsec,
168 lep->qid, lep->opcode,
169 lep->opcode == FW_RI_RECEIVE ?
170 "msn" : "wrid",
171 lep->wr_id,
172 timespec_sub(lep->poll_host_ts,
173 lep->post_host_ts).tv_sec,
174 timespec_sub(lep->poll_host_ts,
175 lep->post_host_ts).tv_nsec,
176 lep->post_sge_ts, lep->cqe_sge_ts,
177 lep->poll_sge_ts,
178 ts2ns(lep->poll_sge_ts - lep->post_sge_ts),
179 ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts));
180 prev_ts = lep->poll_host_ts;
181 }
182 idx++;
183 if (idx > (dev->rdev.wr_log_size - 1))
184 idx = 0;
185 lep = &dev->rdev.wr_log[idx];
186 }
187 #undef ts2ns
188 return 0;
189 }
190
191 static int wr_log_open(struct inode *inode, struct file *file)
192 {
193 return single_open(file, wr_log_show, inode->i_private);
194 }
195
196 static ssize_t wr_log_clear(struct file *file, const char __user *buf,
197 size_t count, loff_t *pos)
198 {
199 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
200 int i;
201
202 if (dev->rdev.wr_log)
203 for (i = 0; i < dev->rdev.wr_log_size; i++)
204 dev->rdev.wr_log[i].valid = 0;
205 return count;
206 }
207
208 static const struct file_operations wr_log_debugfs_fops = {
209 .owner = THIS_MODULE,
210 .open = wr_log_open,
211 .release = single_release,
212 .read = seq_read,
213 .llseek = seq_lseek,
214 .write = wr_log_clear,
215 };
216
217 static int dump_qp(int id, void *p, void *data)
218 {
219 struct c4iw_qp *qp = p;
220 struct c4iw_debugfs_data *qpd = data;
221 int space;
222 int cc;
223
224 if (id != qp->wq.sq.qid)
225 return 0;
226
227 space = qpd->bufsize - qpd->pos - 1;
228 if (space == 0)
229 return 1;
230
231 if (qp->ep) {
232 if (qp->ep->com.local_addr.ss_family == AF_INET) {
233 struct sockaddr_in *lsin = (struct sockaddr_in *)
234 &qp->ep->com.cm_id->local_addr;
235 struct sockaddr_in *rsin = (struct sockaddr_in *)
236 &qp->ep->com.cm_id->remote_addr;
237 struct sockaddr_in *mapped_lsin = (struct sockaddr_in *)
238 &qp->ep->com.cm_id->m_local_addr;
239 struct sockaddr_in *mapped_rsin = (struct sockaddr_in *)
240 &qp->ep->com.cm_id->m_remote_addr;
241
242 cc = snprintf(qpd->buf + qpd->pos, space,
243 "rc qp sq id %u rq id %u state %u "
244 "onchip %u ep tid %u state %u "
245 "%pI4:%u/%u->%pI4:%u/%u\n",
246 qp->wq.sq.qid, qp->wq.rq.qid,
247 (int)qp->attr.state,
248 qp->wq.sq.flags & T4_SQ_ONCHIP,
249 qp->ep->hwtid, (int)qp->ep->com.state,
250 &lsin->sin_addr, ntohs(lsin->sin_port),
251 ntohs(mapped_lsin->sin_port),
252 &rsin->sin_addr, ntohs(rsin->sin_port),
253 ntohs(mapped_rsin->sin_port));
254 } else {
255 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
256 &qp->ep->com.cm_id->local_addr;
257 struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *)
258 &qp->ep->com.cm_id->remote_addr;
259 struct sockaddr_in6 *mapped_lsin6 =
260 (struct sockaddr_in6 *)
261 &qp->ep->com.cm_id->m_local_addr;
262 struct sockaddr_in6 *mapped_rsin6 =
263 (struct sockaddr_in6 *)
264 &qp->ep->com.cm_id->m_remote_addr;
265
266 cc = snprintf(qpd->buf + qpd->pos, space,
267 "rc qp sq id %u rq id %u state %u "
268 "onchip %u ep tid %u state %u "
269 "%pI6:%u/%u->%pI6:%u/%u\n",
270 qp->wq.sq.qid, qp->wq.rq.qid,
271 (int)qp->attr.state,
272 qp->wq.sq.flags & T4_SQ_ONCHIP,
273 qp->ep->hwtid, (int)qp->ep->com.state,
274 &lsin6->sin6_addr,
275 ntohs(lsin6->sin6_port),
276 ntohs(mapped_lsin6->sin6_port),
277 &rsin6->sin6_addr,
278 ntohs(rsin6->sin6_port),
279 ntohs(mapped_rsin6->sin6_port));
280 }
281 } else
282 cc = snprintf(qpd->buf + qpd->pos, space,
283 "qp sq id %u rq id %u state %u onchip %u\n",
284 qp->wq.sq.qid, qp->wq.rq.qid,
285 (int)qp->attr.state,
286 qp->wq.sq.flags & T4_SQ_ONCHIP);
287 if (cc < space)
288 qpd->pos += cc;
289 return 0;
290 }
291
292 static int qp_release(struct inode *inode, struct file *file)
293 {
294 struct c4iw_debugfs_data *qpd = file->private_data;
295 if (!qpd) {
296 printk(KERN_INFO "%s null qpd?\n", __func__);
297 return 0;
298 }
299 vfree(qpd->buf);
300 kfree(qpd);
301 return 0;
302 }
303
304 static int qp_open(struct inode *inode, struct file *file)
305 {
306 struct c4iw_debugfs_data *qpd;
307 int count = 1;
308
309 qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
310 if (!qpd)
311 return -ENOMEM;
312
313 qpd->devp = inode->i_private;
314 qpd->pos = 0;
315
316 spin_lock_irq(&qpd->devp->lock);
317 idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
318 spin_unlock_irq(&qpd->devp->lock);
319
320 qpd->bufsize = count * 180;
321 qpd->buf = vmalloc(qpd->bufsize);
322 if (!qpd->buf) {
323 kfree(qpd);
324 return -ENOMEM;
325 }
326
327 spin_lock_irq(&qpd->devp->lock);
328 idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
329 spin_unlock_irq(&qpd->devp->lock);
330
331 qpd->buf[qpd->pos++] = 0;
332 file->private_data = qpd;
333 return 0;
334 }
335
336 static const struct file_operations qp_debugfs_fops = {
337 .owner = THIS_MODULE,
338 .open = qp_open,
339 .release = qp_release,
340 .read = debugfs_read,
341 .llseek = default_llseek,
342 };
343
344 static int dump_stag(int id, void *p, void *data)
345 {
346 struct c4iw_debugfs_data *stagd = data;
347 int space;
348 int cc;
349 struct fw_ri_tpte tpte;
350 int ret;
351
352 space = stagd->bufsize - stagd->pos - 1;
353 if (space == 0)
354 return 1;
355
356 ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8,
357 (__be32 *)&tpte);
358 if (ret) {
359 dev_err(&stagd->devp->rdev.lldi.pdev->dev,
360 "%s cxgb4_read_tpte err %d\n", __func__, ret);
361 return ret;
362 }
363 cc = snprintf(stagd->buf + stagd->pos, space,
364 "stag: idx 0x%x valid %d key 0x%x state %d pdid %d "
365 "perm 0x%x ps %d len 0x%llx va 0x%llx\n",
366 (u32)id<<8,
367 FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)),
368 FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)),
369 FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)),
370 FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)),
371 FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)),
372 FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)),
373 ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo),
374 ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo));
375 if (cc < space)
376 stagd->pos += cc;
377 return 0;
378 }
379
380 static int stag_release(struct inode *inode, struct file *file)
381 {
382 struct c4iw_debugfs_data *stagd = file->private_data;
383 if (!stagd) {
384 printk(KERN_INFO "%s null stagd?\n", __func__);
385 return 0;
386 }
387 vfree(stagd->buf);
388 kfree(stagd);
389 return 0;
390 }
391
392 static int stag_open(struct inode *inode, struct file *file)
393 {
394 struct c4iw_debugfs_data *stagd;
395 int ret = 0;
396 int count = 1;
397
398 stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
399 if (!stagd) {
400 ret = -ENOMEM;
401 goto out;
402 }
403 stagd->devp = inode->i_private;
404 stagd->pos = 0;
405
406 spin_lock_irq(&stagd->devp->lock);
407 idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
408 spin_unlock_irq(&stagd->devp->lock);
409
410 stagd->bufsize = count * 256;
411 stagd->buf = vmalloc(stagd->bufsize);
412 if (!stagd->buf) {
413 ret = -ENOMEM;
414 goto err1;
415 }
416
417 spin_lock_irq(&stagd->devp->lock);
418 idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
419 spin_unlock_irq(&stagd->devp->lock);
420
421 stagd->buf[stagd->pos++] = 0;
422 file->private_data = stagd;
423 goto out;
424 err1:
425 kfree(stagd);
426 out:
427 return ret;
428 }
429
430 static const struct file_operations stag_debugfs_fops = {
431 .owner = THIS_MODULE,
432 .open = stag_open,
433 .release = stag_release,
434 .read = debugfs_read,
435 .llseek = default_llseek,
436 };
437
438 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
439
440 static int stats_show(struct seq_file *seq, void *v)
441 {
442 struct c4iw_dev *dev = seq->private;
443
444 seq_printf(seq, " Object: %10s %10s %10s %10s\n", "Total", "Current",
445 "Max", "Fail");
446 seq_printf(seq, " PDID: %10llu %10llu %10llu %10llu\n",
447 dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
448 dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
449 seq_printf(seq, " QID: %10llu %10llu %10llu %10llu\n",
450 dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
451 dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
452 seq_printf(seq, " TPTMEM: %10llu %10llu %10llu %10llu\n",
453 dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
454 dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
455 seq_printf(seq, " PBLMEM: %10llu %10llu %10llu %10llu\n",
456 dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
457 dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
458 seq_printf(seq, " RQTMEM: %10llu %10llu %10llu %10llu\n",
459 dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
460 dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
461 seq_printf(seq, " OCQPMEM: %10llu %10llu %10llu %10llu\n",
462 dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
463 dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
464 seq_printf(seq, " DB FULL: %10llu\n", dev->rdev.stats.db_full);
465 seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
466 seq_printf(seq, " DB DROP: %10llu\n", dev->rdev.stats.db_drop);
467 seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
468 db_state_str[dev->db_state],
469 dev->rdev.stats.db_state_transitions,
470 dev->rdev.stats.db_fc_interruptions);
471 seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
472 seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
473 dev->rdev.stats.act_ofld_conn_fails);
474 seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
475 dev->rdev.stats.pas_ofld_conn_fails);
476 seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv);
477 seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird);
478 return 0;
479 }
480
481 static int stats_open(struct inode *inode, struct file *file)
482 {
483 return single_open(file, stats_show, inode->i_private);
484 }
485
486 static ssize_t stats_clear(struct file *file, const char __user *buf,
487 size_t count, loff_t *pos)
488 {
489 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
490
491 mutex_lock(&dev->rdev.stats.lock);
492 dev->rdev.stats.pd.max = 0;
493 dev->rdev.stats.pd.fail = 0;
494 dev->rdev.stats.qid.max = 0;
495 dev->rdev.stats.qid.fail = 0;
496 dev->rdev.stats.stag.max = 0;
497 dev->rdev.stats.stag.fail = 0;
498 dev->rdev.stats.pbl.max = 0;
499 dev->rdev.stats.pbl.fail = 0;
500 dev->rdev.stats.rqt.max = 0;
501 dev->rdev.stats.rqt.fail = 0;
502 dev->rdev.stats.ocqp.max = 0;
503 dev->rdev.stats.ocqp.fail = 0;
504 dev->rdev.stats.db_full = 0;
505 dev->rdev.stats.db_empty = 0;
506 dev->rdev.stats.db_drop = 0;
507 dev->rdev.stats.db_state_transitions = 0;
508 dev->rdev.stats.tcam_full = 0;
509 dev->rdev.stats.act_ofld_conn_fails = 0;
510 dev->rdev.stats.pas_ofld_conn_fails = 0;
511 mutex_unlock(&dev->rdev.stats.lock);
512 return count;
513 }
514
515 static const struct file_operations stats_debugfs_fops = {
516 .owner = THIS_MODULE,
517 .open = stats_open,
518 .release = single_release,
519 .read = seq_read,
520 .llseek = seq_lseek,
521 .write = stats_clear,
522 };
523
524 static int dump_ep(int id, void *p, void *data)
525 {
526 struct c4iw_ep *ep = p;
527 struct c4iw_debugfs_data *epd = data;
528 int space;
529 int cc;
530
531 space = epd->bufsize - epd->pos - 1;
532 if (space == 0)
533 return 1;
534
535 if (ep->com.local_addr.ss_family == AF_INET) {
536 struct sockaddr_in *lsin = (struct sockaddr_in *)
537 &ep->com.cm_id->local_addr;
538 struct sockaddr_in *rsin = (struct sockaddr_in *)
539 &ep->com.cm_id->remote_addr;
540 struct sockaddr_in *mapped_lsin = (struct sockaddr_in *)
541 &ep->com.cm_id->m_local_addr;
542 struct sockaddr_in *mapped_rsin = (struct sockaddr_in *)
543 &ep->com.cm_id->m_remote_addr;
544
545 cc = snprintf(epd->buf + epd->pos, space,
546 "ep %p cm_id %p qp %p state %d flags 0x%lx "
547 "history 0x%lx hwtid %d atid %d "
548 "conn_na %u abort_na %u "
549 "%pI4:%d/%d <-> %pI4:%d/%d\n",
550 ep, ep->com.cm_id, ep->com.qp,
551 (int)ep->com.state, ep->com.flags,
552 ep->com.history, ep->hwtid, ep->atid,
553 ep->stats.connect_neg_adv,
554 ep->stats.abort_neg_adv,
555 &lsin->sin_addr, ntohs(lsin->sin_port),
556 ntohs(mapped_lsin->sin_port),
557 &rsin->sin_addr, ntohs(rsin->sin_port),
558 ntohs(mapped_rsin->sin_port));
559 } else {
560 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
561 &ep->com.cm_id->local_addr;
562 struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *)
563 &ep->com.cm_id->remote_addr;
564 struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *)
565 &ep->com.cm_id->m_local_addr;
566 struct sockaddr_in6 *mapped_rsin6 = (struct sockaddr_in6 *)
567 &ep->com.cm_id->m_remote_addr;
568
569 cc = snprintf(epd->buf + epd->pos, space,
570 "ep %p cm_id %p qp %p state %d flags 0x%lx "
571 "history 0x%lx hwtid %d atid %d "
572 "conn_na %u abort_na %u "
573 "%pI6:%d/%d <-> %pI6:%d/%d\n",
574 ep, ep->com.cm_id, ep->com.qp,
575 (int)ep->com.state, ep->com.flags,
576 ep->com.history, ep->hwtid, ep->atid,
577 ep->stats.connect_neg_adv,
578 ep->stats.abort_neg_adv,
579 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
580 ntohs(mapped_lsin6->sin6_port),
581 &rsin6->sin6_addr, ntohs(rsin6->sin6_port),
582 ntohs(mapped_rsin6->sin6_port));
583 }
584 if (cc < space)
585 epd->pos += cc;
586 return 0;
587 }
588
589 static int dump_listen_ep(int id, void *p, void *data)
590 {
591 struct c4iw_listen_ep *ep = p;
592 struct c4iw_debugfs_data *epd = data;
593 int space;
594 int cc;
595
596 space = epd->bufsize - epd->pos - 1;
597 if (space == 0)
598 return 1;
599
600 if (ep->com.local_addr.ss_family == AF_INET) {
601 struct sockaddr_in *lsin = (struct sockaddr_in *)
602 &ep->com.cm_id->local_addr;
603 struct sockaddr_in *mapped_lsin = (struct sockaddr_in *)
604 &ep->com.cm_id->m_local_addr;
605
606 cc = snprintf(epd->buf + epd->pos, space,
607 "ep %p cm_id %p state %d flags 0x%lx stid %d "
608 "backlog %d %pI4:%d/%d\n",
609 ep, ep->com.cm_id, (int)ep->com.state,
610 ep->com.flags, ep->stid, ep->backlog,
611 &lsin->sin_addr, ntohs(lsin->sin_port),
612 ntohs(mapped_lsin->sin_port));
613 } else {
614 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
615 &ep->com.cm_id->local_addr;
616 struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *)
617 &ep->com.cm_id->m_local_addr;
618
619 cc = snprintf(epd->buf + epd->pos, space,
620 "ep %p cm_id %p state %d flags 0x%lx stid %d "
621 "backlog %d %pI6:%d/%d\n",
622 ep, ep->com.cm_id, (int)ep->com.state,
623 ep->com.flags, ep->stid, ep->backlog,
624 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
625 ntohs(mapped_lsin6->sin6_port));
626 }
627 if (cc < space)
628 epd->pos += cc;
629 return 0;
630 }
631
632 static int ep_release(struct inode *inode, struct file *file)
633 {
634 struct c4iw_debugfs_data *epd = file->private_data;
635 if (!epd) {
636 pr_info("%s null qpd?\n", __func__);
637 return 0;
638 }
639 vfree(epd->buf);
640 kfree(epd);
641 return 0;
642 }
643
644 static int ep_open(struct inode *inode, struct file *file)
645 {
646 struct c4iw_debugfs_data *epd;
647 int ret = 0;
648 int count = 1;
649
650 epd = kmalloc(sizeof(*epd), GFP_KERNEL);
651 if (!epd) {
652 ret = -ENOMEM;
653 goto out;
654 }
655 epd->devp = inode->i_private;
656 epd->pos = 0;
657
658 spin_lock_irq(&epd->devp->lock);
659 idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
660 idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
661 idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
662 spin_unlock_irq(&epd->devp->lock);
663
664 epd->bufsize = count * 240;
665 epd->buf = vmalloc(epd->bufsize);
666 if (!epd->buf) {
667 ret = -ENOMEM;
668 goto err1;
669 }
670
671 spin_lock_irq(&epd->devp->lock);
672 idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
673 idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
674 idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
675 spin_unlock_irq(&epd->devp->lock);
676
677 file->private_data = epd;
678 goto out;
679 err1:
680 kfree(epd);
681 out:
682 return ret;
683 }
684
685 static const struct file_operations ep_debugfs_fops = {
686 .owner = THIS_MODULE,
687 .open = ep_open,
688 .release = ep_release,
689 .read = debugfs_read,
690 };
691
692 static int setup_debugfs(struct c4iw_dev *devp)
693 {
694 if (!devp->debugfs_root)
695 return -1;
696
697 debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root,
698 (void *)devp, &qp_debugfs_fops, 4096);
699
700 debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root,
701 (void *)devp, &stag_debugfs_fops, 4096);
702
703 debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root,
704 (void *)devp, &stats_debugfs_fops, 4096);
705
706 debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root,
707 (void *)devp, &ep_debugfs_fops, 4096);
708
709 if (c4iw_wr_log)
710 debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root,
711 (void *)devp, &wr_log_debugfs_fops, 4096);
712 return 0;
713 }
714
715 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
716 struct c4iw_dev_ucontext *uctx)
717 {
718 struct list_head *pos, *nxt;
719 struct c4iw_qid_list *entry;
720
721 mutex_lock(&uctx->lock);
722 list_for_each_safe(pos, nxt, &uctx->qpids) {
723 entry = list_entry(pos, struct c4iw_qid_list, entry);
724 list_del_init(&entry->entry);
725 if (!(entry->qid & rdev->qpmask)) {
726 c4iw_put_resource(&rdev->resource.qid_table,
727 entry->qid);
728 mutex_lock(&rdev->stats.lock);
729 rdev->stats.qid.cur -= rdev->qpmask + 1;
730 mutex_unlock(&rdev->stats.lock);
731 }
732 kfree(entry);
733 }
734
735 list_for_each_safe(pos, nxt, &uctx->qpids) {
736 entry = list_entry(pos, struct c4iw_qid_list, entry);
737 list_del_init(&entry->entry);
738 kfree(entry);
739 }
740 mutex_unlock(&uctx->lock);
741 }
742
743 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
744 struct c4iw_dev_ucontext *uctx)
745 {
746 INIT_LIST_HEAD(&uctx->qpids);
747 INIT_LIST_HEAD(&uctx->cqids);
748 mutex_init(&uctx->lock);
749 }
750
751 /* Caller takes care of locking if needed */
752 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
753 {
754 int err;
755
756 c4iw_init_dev_ucontext(rdev, &rdev->uctx);
757
758 /*
759 * This implementation assumes udb_density == ucq_density! Eventually
760 * we might need to support this but for now fail the open. Also the
761 * cqid and qpid range must match for now.
762 */
763 if (rdev->lldi.udb_density != rdev->lldi.ucq_density) {
764 pr_err(MOD "%s: unsupported udb/ucq densities %u/%u\n",
765 pci_name(rdev->lldi.pdev), rdev->lldi.udb_density,
766 rdev->lldi.ucq_density);
767 return -EINVAL;
768 }
769 if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start ||
770 rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) {
771 pr_err(MOD "%s: unsupported qp and cq id ranges "
772 "qp start %u size %u cq start %u size %u\n",
773 pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start,
774 rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size,
775 rdev->lldi.vr->cq.size);
776 return -EINVAL;
777 }
778
779 rdev->qpmask = rdev->lldi.udb_density - 1;
780 rdev->cqmask = rdev->lldi.ucq_density - 1;
781 PDBG("%s dev %s stag start 0x%0x size 0x%0x num stags %d "
782 "pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x "
783 "qp qid start %u size %u cq qid start %u size %u\n",
784 __func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
785 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
786 rdev->lldi.vr->pbl.start,
787 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
788 rdev->lldi.vr->rq.size,
789 rdev->lldi.vr->qp.start,
790 rdev->lldi.vr->qp.size,
791 rdev->lldi.vr->cq.start,
792 rdev->lldi.vr->cq.size);
793 PDBG("udb %pR db_reg %p gts_reg %p "
794 "qpmask 0x%x cqmask 0x%x\n",
795 &rdev->lldi.pdev->resource[2],
796 rdev->lldi.db_reg, rdev->lldi.gts_reg,
797 rdev->qpmask, rdev->cqmask);
798
799 if (c4iw_num_stags(rdev) == 0)
800 return -EINVAL;
801
802 rdev->stats.pd.total = T4_MAX_NUM_PD;
803 rdev->stats.stag.total = rdev->lldi.vr->stag.size;
804 rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
805 rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
806 rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
807 rdev->stats.qid.total = rdev->lldi.vr->qp.size;
808
809 err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD);
810 if (err) {
811 printk(KERN_ERR MOD "error %d initializing resources\n", err);
812 return err;
813 }
814 err = c4iw_pblpool_create(rdev);
815 if (err) {
816 printk(KERN_ERR MOD "error %d initializing pbl pool\n", err);
817 goto destroy_resource;
818 }
819 err = c4iw_rqtpool_create(rdev);
820 if (err) {
821 printk(KERN_ERR MOD "error %d initializing rqt pool\n", err);
822 goto destroy_pblpool;
823 }
824 err = c4iw_ocqp_pool_create(rdev);
825 if (err) {
826 printk(KERN_ERR MOD "error %d initializing ocqp pool\n", err);
827 goto destroy_rqtpool;
828 }
829 rdev->status_page = (struct t4_dev_status_page *)
830 __get_free_page(GFP_KERNEL);
831 if (!rdev->status_page)
832 goto destroy_ocqp_pool;
833 rdev->status_page->qp_start = rdev->lldi.vr->qp.start;
834 rdev->status_page->qp_size = rdev->lldi.vr->qp.size;
835 rdev->status_page->cq_start = rdev->lldi.vr->cq.start;
836 rdev->status_page->cq_size = rdev->lldi.vr->cq.size;
837
838 if (c4iw_wr_log) {
839 rdev->wr_log = kzalloc((1 << c4iw_wr_log_size_order) *
840 sizeof(*rdev->wr_log), GFP_KERNEL);
841 if (rdev->wr_log) {
842 rdev->wr_log_size = 1 << c4iw_wr_log_size_order;
843 atomic_set(&rdev->wr_log_idx, 0);
844 } else {
845 pr_err(MOD "error allocating wr_log. Logging disabled\n");
846 }
847 }
848
849 rdev->status_page->db_off = 0;
850
851 return 0;
852 destroy_ocqp_pool:
853 c4iw_ocqp_pool_destroy(rdev);
854 destroy_rqtpool:
855 c4iw_rqtpool_destroy(rdev);
856 destroy_pblpool:
857 c4iw_pblpool_destroy(rdev);
858 destroy_resource:
859 c4iw_destroy_resource(&rdev->resource);
860 return err;
861 }
862
863 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
864 {
865 kfree(rdev->wr_log);
866 free_page((unsigned long)rdev->status_page);
867 c4iw_pblpool_destroy(rdev);
868 c4iw_rqtpool_destroy(rdev);
869 c4iw_destroy_resource(&rdev->resource);
870 }
871
872 static void c4iw_dealloc(struct uld_ctx *ctx)
873 {
874 c4iw_rdev_close(&ctx->dev->rdev);
875 idr_destroy(&ctx->dev->cqidr);
876 idr_destroy(&ctx->dev->qpidr);
877 idr_destroy(&ctx->dev->mmidr);
878 idr_destroy(&ctx->dev->hwtid_idr);
879 idr_destroy(&ctx->dev->stid_idr);
880 idr_destroy(&ctx->dev->atid_idr);
881 if (ctx->dev->rdev.bar2_kva)
882 iounmap(ctx->dev->rdev.bar2_kva);
883 if (ctx->dev->rdev.oc_mw_kva)
884 iounmap(ctx->dev->rdev.oc_mw_kva);
885 ib_dealloc_device(&ctx->dev->ibdev);
886 ctx->dev = NULL;
887 }
888
889 static void c4iw_remove(struct uld_ctx *ctx)
890 {
891 PDBG("%s c4iw_dev %p\n", __func__, ctx->dev);
892 c4iw_unregister_device(ctx->dev);
893 c4iw_dealloc(ctx);
894 }
895
896 static int rdma_supported(const struct cxgb4_lld_info *infop)
897 {
898 return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
899 infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
900 infop->vr->cq.size > 0;
901 }
902
903 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
904 {
905 struct c4iw_dev *devp;
906 int ret;
907
908 if (!rdma_supported(infop)) {
909 printk(KERN_INFO MOD "%s: RDMA not supported on this device.\n",
910 pci_name(infop->pdev));
911 return ERR_PTR(-ENOSYS);
912 }
913 if (!ocqp_supported(infop))
914 pr_info("%s: On-Chip Queues not supported on this device.\n",
915 pci_name(infop->pdev));
916
917 devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp));
918 if (!devp) {
919 printk(KERN_ERR MOD "Cannot allocate ib device\n");
920 return ERR_PTR(-ENOMEM);
921 }
922 devp->rdev.lldi = *infop;
923
924 /* init various hw-queue params based on lld info */
925 PDBG("%s: Ing. padding boundary is %d, egrsstatuspagesize = %d\n",
926 __func__, devp->rdev.lldi.sge_ingpadboundary,
927 devp->rdev.lldi.sge_egrstatuspagesize);
928
929 devp->rdev.hw_queue.t4_eq_status_entries =
930 devp->rdev.lldi.sge_ingpadboundary > 64 ? 2 : 1;
931 devp->rdev.hw_queue.t4_max_eq_size = 65520;
932 devp->rdev.hw_queue.t4_max_iq_size = 65520;
933 devp->rdev.hw_queue.t4_max_rq_size = 8192 -
934 devp->rdev.hw_queue.t4_eq_status_entries - 1;
935 devp->rdev.hw_queue.t4_max_sq_size =
936 devp->rdev.hw_queue.t4_max_eq_size -
937 devp->rdev.hw_queue.t4_eq_status_entries - 1;
938 devp->rdev.hw_queue.t4_max_qp_depth =
939 devp->rdev.hw_queue.t4_max_rq_size;
940 devp->rdev.hw_queue.t4_max_cq_depth =
941 devp->rdev.hw_queue.t4_max_iq_size - 2;
942 devp->rdev.hw_queue.t4_stat_len =
943 devp->rdev.lldi.sge_egrstatuspagesize;
944
945 /*
946 * For T5/T6 devices, we map all of BAR2 with WC.
947 * For T4 devices with onchip qp mem, we map only that part
948 * of BAR2 with WC.
949 */
950 devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
951 if (!is_t4(devp->rdev.lldi.adapter_type)) {
952 devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
953 pci_resource_len(devp->rdev.lldi.pdev, 2));
954 if (!devp->rdev.bar2_kva) {
955 pr_err(MOD "Unable to ioremap BAR2\n");
956 ib_dealloc_device(&devp->ibdev);
957 return ERR_PTR(-EINVAL);
958 }
959 } else if (ocqp_supported(infop)) {
960 devp->rdev.oc_mw_pa =
961 pci_resource_start(devp->rdev.lldi.pdev, 2) +
962 pci_resource_len(devp->rdev.lldi.pdev, 2) -
963 roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
964 devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
965 devp->rdev.lldi.vr->ocq.size);
966 if (!devp->rdev.oc_mw_kva) {
967 pr_err(MOD "Unable to ioremap onchip mem\n");
968 ib_dealloc_device(&devp->ibdev);
969 return ERR_PTR(-EINVAL);
970 }
971 }
972
973 PDBG(KERN_INFO MOD "ocq memory: "
974 "hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
975 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
976 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
977
978 ret = c4iw_rdev_open(&devp->rdev);
979 if (ret) {
980 printk(KERN_ERR MOD "Unable to open CXIO rdev err %d\n", ret);
981 ib_dealloc_device(&devp->ibdev);
982 return ERR_PTR(ret);
983 }
984
985 idr_init(&devp->cqidr);
986 idr_init(&devp->qpidr);
987 idr_init(&devp->mmidr);
988 idr_init(&devp->hwtid_idr);
989 idr_init(&devp->stid_idr);
990 idr_init(&devp->atid_idr);
991 spin_lock_init(&devp->lock);
992 mutex_init(&devp->rdev.stats.lock);
993 mutex_init(&devp->db_mutex);
994 INIT_LIST_HEAD(&devp->db_fc_list);
995 devp->avail_ird = devp->rdev.lldi.max_ird_adapter;
996
997 if (c4iw_debugfs_root) {
998 devp->debugfs_root = debugfs_create_dir(
999 pci_name(devp->rdev.lldi.pdev),
1000 c4iw_debugfs_root);
1001 setup_debugfs(devp);
1002 }
1003
1004
1005 return devp;
1006 }
1007
1008 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
1009 {
1010 struct uld_ctx *ctx;
1011 static int vers_printed;
1012 int i;
1013
1014 if (!vers_printed++)
1015 pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
1016 DRV_VERSION);
1017
1018 ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
1019 if (!ctx) {
1020 ctx = ERR_PTR(-ENOMEM);
1021 goto out;
1022 }
1023 ctx->lldi = *infop;
1024
1025 PDBG("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n",
1026 __func__, pci_name(ctx->lldi.pdev),
1027 ctx->lldi.nchan, ctx->lldi.nrxq,
1028 ctx->lldi.ntxq, ctx->lldi.nports);
1029
1030 mutex_lock(&dev_mutex);
1031 list_add_tail(&ctx->entry, &uld_ctx_list);
1032 mutex_unlock(&dev_mutex);
1033
1034 for (i = 0; i < ctx->lldi.nrxq; i++)
1035 PDBG("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
1036 out:
1037 return ctx;
1038 }
1039
1040 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
1041 const __be64 *rsp,
1042 u32 pktshift)
1043 {
1044 struct sk_buff *skb;
1045
1046 /*
1047 * Allocate space for cpl_pass_accept_req which will be synthesized by
1048 * driver. Once the driver synthesizes the request the skb will go
1049 * through the regular cpl_pass_accept_req processing.
1050 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
1051 * cpl_rx_pkt.
1052 */
1053 skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1054 sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
1055 if (unlikely(!skb))
1056 return NULL;
1057
1058 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1059 sizeof(struct rss_header) - pktshift);
1060
1061 /*
1062 * This skb will contain:
1063 * rss_header from the rspq descriptor (1 flit)
1064 * cpl_rx_pkt struct from the rspq descriptor (2 flits)
1065 * space for the difference between the size of an
1066 * rx_pkt and pass_accept_req cpl (1 flit)
1067 * the packet data from the gl
1068 */
1069 skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
1070 sizeof(struct rss_header));
1071 skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
1072 sizeof(struct cpl_pass_accept_req),
1073 gl->va + pktshift,
1074 gl->tot_len - pktshift);
1075 return skb;
1076 }
1077
1078 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
1079 const __be64 *rsp)
1080 {
1081 unsigned int opcode = *(u8 *)rsp;
1082 struct sk_buff *skb;
1083
1084 if (opcode != CPL_RX_PKT)
1085 goto out;
1086
1087 skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
1088 if (skb == NULL)
1089 goto out;
1090
1091 if (c4iw_handlers[opcode] == NULL) {
1092 pr_info("%s no handler opcode 0x%x...\n", __func__,
1093 opcode);
1094 kfree_skb(skb);
1095 goto out;
1096 }
1097 c4iw_handlers[opcode](dev, skb);
1098 return 1;
1099 out:
1100 return 0;
1101 }
1102
1103 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
1104 const struct pkt_gl *gl)
1105 {
1106 struct uld_ctx *ctx = handle;
1107 struct c4iw_dev *dev = ctx->dev;
1108 struct sk_buff *skb;
1109 u8 opcode;
1110
1111 if (gl == NULL) {
1112 /* omit RSS and rsp_ctrl at end of descriptor */
1113 unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
1114
1115 skb = alloc_skb(256, GFP_ATOMIC);
1116 if (!skb)
1117 goto nomem;
1118 __skb_put(skb, len);
1119 skb_copy_to_linear_data(skb, &rsp[1], len);
1120 } else if (gl == CXGB4_MSG_AN) {
1121 const struct rsp_ctrl *rc = (void *)rsp;
1122
1123 u32 qid = be32_to_cpu(rc->pldbuflen_qid);
1124 c4iw_ev_handler(dev, qid);
1125 return 0;
1126 } else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
1127 if (recv_rx_pkt(dev, gl, rsp))
1128 return 0;
1129
1130 pr_info("%s: unexpected FL contents at %p, " \
1131 "RSS %#llx, FL %#llx, len %u\n",
1132 pci_name(ctx->lldi.pdev), gl->va,
1133 (unsigned long long)be64_to_cpu(*rsp),
1134 (unsigned long long)be64_to_cpu(
1135 *(__force __be64 *)gl->va),
1136 gl->tot_len);
1137
1138 return 0;
1139 } else {
1140 skb = cxgb4_pktgl_to_skb(gl, 128, 128);
1141 if (unlikely(!skb))
1142 goto nomem;
1143 }
1144
1145 opcode = *(u8 *)rsp;
1146 if (c4iw_handlers[opcode]) {
1147 c4iw_handlers[opcode](dev, skb);
1148 } else {
1149 pr_info("%s no handler opcode 0x%x...\n", __func__,
1150 opcode);
1151 kfree_skb(skb);
1152 }
1153
1154 return 0;
1155 nomem:
1156 return -1;
1157 }
1158
1159 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
1160 {
1161 struct uld_ctx *ctx = handle;
1162
1163 PDBG("%s new_state %u\n", __func__, new_state);
1164 switch (new_state) {
1165 case CXGB4_STATE_UP:
1166 printk(KERN_INFO MOD "%s: Up\n", pci_name(ctx->lldi.pdev));
1167 if (!ctx->dev) {
1168 int ret;
1169
1170 ctx->dev = c4iw_alloc(&ctx->lldi);
1171 if (IS_ERR(ctx->dev)) {
1172 printk(KERN_ERR MOD
1173 "%s: initialization failed: %ld\n",
1174 pci_name(ctx->lldi.pdev),
1175 PTR_ERR(ctx->dev));
1176 ctx->dev = NULL;
1177 break;
1178 }
1179 ret = c4iw_register_device(ctx->dev);
1180 if (ret) {
1181 printk(KERN_ERR MOD
1182 "%s: RDMA registration failed: %d\n",
1183 pci_name(ctx->lldi.pdev), ret);
1184 c4iw_dealloc(ctx);
1185 }
1186 }
1187 break;
1188 case CXGB4_STATE_DOWN:
1189 printk(KERN_INFO MOD "%s: Down\n",
1190 pci_name(ctx->lldi.pdev));
1191 if (ctx->dev)
1192 c4iw_remove(ctx);
1193 break;
1194 case CXGB4_STATE_START_RECOVERY:
1195 printk(KERN_INFO MOD "%s: Fatal Error\n",
1196 pci_name(ctx->lldi.pdev));
1197 if (ctx->dev) {
1198 struct ib_event event;
1199
1200 ctx->dev->rdev.flags |= T4_FATAL_ERROR;
1201 memset(&event, 0, sizeof event);
1202 event.event = IB_EVENT_DEVICE_FATAL;
1203 event.device = &ctx->dev->ibdev;
1204 ib_dispatch_event(&event);
1205 c4iw_remove(ctx);
1206 }
1207 break;
1208 case CXGB4_STATE_DETACH:
1209 printk(KERN_INFO MOD "%s: Detach\n",
1210 pci_name(ctx->lldi.pdev));
1211 if (ctx->dev)
1212 c4iw_remove(ctx);
1213 break;
1214 }
1215 return 0;
1216 }
1217
1218 static int disable_qp_db(int id, void *p, void *data)
1219 {
1220 struct c4iw_qp *qp = p;
1221
1222 t4_disable_wq_db(&qp->wq);
1223 return 0;
1224 }
1225
1226 static void stop_queues(struct uld_ctx *ctx)
1227 {
1228 unsigned long flags;
1229
1230 spin_lock_irqsave(&ctx->dev->lock, flags);
1231 ctx->dev->rdev.stats.db_state_transitions++;
1232 ctx->dev->db_state = STOPPED;
1233 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
1234 idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
1235 else
1236 ctx->dev->rdev.status_page->db_off = 1;
1237 spin_unlock_irqrestore(&ctx->dev->lock, flags);
1238 }
1239
1240 static int enable_qp_db(int id, void *p, void *data)
1241 {
1242 struct c4iw_qp *qp = p;
1243
1244 t4_enable_wq_db(&qp->wq);
1245 return 0;
1246 }
1247
1248 static void resume_rc_qp(struct c4iw_qp *qp)
1249 {
1250 spin_lock(&qp->lock);
1251 t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL);
1252 qp->wq.sq.wq_pidx_inc = 0;
1253 t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL);
1254 qp->wq.rq.wq_pidx_inc = 0;
1255 spin_unlock(&qp->lock);
1256 }
1257
1258 static void resume_a_chunk(struct uld_ctx *ctx)
1259 {
1260 int i;
1261 struct c4iw_qp *qp;
1262
1263 for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1264 qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1265 db_fc_entry);
1266 list_del_init(&qp->db_fc_entry);
1267 resume_rc_qp(qp);
1268 if (list_empty(&ctx->dev->db_fc_list))
1269 break;
1270 }
1271 }
1272
1273 static void resume_queues(struct uld_ctx *ctx)
1274 {
1275 spin_lock_irq(&ctx->dev->lock);
1276 if (ctx->dev->db_state != STOPPED)
1277 goto out;
1278 ctx->dev->db_state = FLOW_CONTROL;
1279 while (1) {
1280 if (list_empty(&ctx->dev->db_fc_list)) {
1281 WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1282 ctx->dev->db_state = NORMAL;
1283 ctx->dev->rdev.stats.db_state_transitions++;
1284 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1285 idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1286 NULL);
1287 } else {
1288 ctx->dev->rdev.status_page->db_off = 0;
1289 }
1290 break;
1291 } else {
1292 if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1293 < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1294 DB_FC_DRAIN_THRESH)) {
1295 resume_a_chunk(ctx);
1296 }
1297 if (!list_empty(&ctx->dev->db_fc_list)) {
1298 spin_unlock_irq(&ctx->dev->lock);
1299 if (DB_FC_RESUME_DELAY) {
1300 set_current_state(TASK_UNINTERRUPTIBLE);
1301 schedule_timeout(DB_FC_RESUME_DELAY);
1302 }
1303 spin_lock_irq(&ctx->dev->lock);
1304 if (ctx->dev->db_state != FLOW_CONTROL)
1305 break;
1306 }
1307 }
1308 }
1309 out:
1310 if (ctx->dev->db_state != NORMAL)
1311 ctx->dev->rdev.stats.db_fc_interruptions++;
1312 spin_unlock_irq(&ctx->dev->lock);
1313 }
1314
1315 struct qp_list {
1316 unsigned idx;
1317 struct c4iw_qp **qps;
1318 };
1319
1320 static int add_and_ref_qp(int id, void *p, void *data)
1321 {
1322 struct qp_list *qp_listp = data;
1323 struct c4iw_qp *qp = p;
1324
1325 c4iw_qp_add_ref(&qp->ibqp);
1326 qp_listp->qps[qp_listp->idx++] = qp;
1327 return 0;
1328 }
1329
1330 static int count_qps(int id, void *p, void *data)
1331 {
1332 unsigned *countp = data;
1333 (*countp)++;
1334 return 0;
1335 }
1336
1337 static void deref_qps(struct qp_list *qp_list)
1338 {
1339 int idx;
1340
1341 for (idx = 0; idx < qp_list->idx; idx++)
1342 c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1343 }
1344
1345 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1346 {
1347 int idx;
1348 int ret;
1349
1350 for (idx = 0; idx < qp_list->idx; idx++) {
1351 struct c4iw_qp *qp = qp_list->qps[idx];
1352
1353 spin_lock_irq(&qp->rhp->lock);
1354 spin_lock(&qp->lock);
1355 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1356 qp->wq.sq.qid,
1357 t4_sq_host_wq_pidx(&qp->wq),
1358 t4_sq_wq_size(&qp->wq));
1359 if (ret) {
1360 pr_err(MOD "%s: Fatal error - "
1361 "DB overflow recovery failed - "
1362 "error syncing SQ qid %u\n",
1363 pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1364 spin_unlock(&qp->lock);
1365 spin_unlock_irq(&qp->rhp->lock);
1366 return;
1367 }
1368 qp->wq.sq.wq_pidx_inc = 0;
1369
1370 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1371 qp->wq.rq.qid,
1372 t4_rq_host_wq_pidx(&qp->wq),
1373 t4_rq_wq_size(&qp->wq));
1374
1375 if (ret) {
1376 pr_err(MOD "%s: Fatal error - "
1377 "DB overflow recovery failed - "
1378 "error syncing RQ qid %u\n",
1379 pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1380 spin_unlock(&qp->lock);
1381 spin_unlock_irq(&qp->rhp->lock);
1382 return;
1383 }
1384 qp->wq.rq.wq_pidx_inc = 0;
1385 spin_unlock(&qp->lock);
1386 spin_unlock_irq(&qp->rhp->lock);
1387
1388 /* Wait for the dbfifo to drain */
1389 while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1390 set_current_state(TASK_UNINTERRUPTIBLE);
1391 schedule_timeout(usecs_to_jiffies(10));
1392 }
1393 }
1394 }
1395
1396 static void recover_queues(struct uld_ctx *ctx)
1397 {
1398 int count = 0;
1399 struct qp_list qp_list;
1400 int ret;
1401
1402 /* slow everybody down */
1403 set_current_state(TASK_UNINTERRUPTIBLE);
1404 schedule_timeout(usecs_to_jiffies(1000));
1405
1406 /* flush the SGE contexts */
1407 ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1408 if (ret) {
1409 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1410 pci_name(ctx->lldi.pdev));
1411 return;
1412 }
1413
1414 /* Count active queues so we can build a list of queues to recover */
1415 spin_lock_irq(&ctx->dev->lock);
1416 WARN_ON(ctx->dev->db_state != STOPPED);
1417 ctx->dev->db_state = RECOVERY;
1418 idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1419
1420 qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC);
1421 if (!qp_list.qps) {
1422 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1423 pci_name(ctx->lldi.pdev));
1424 spin_unlock_irq(&ctx->dev->lock);
1425 return;
1426 }
1427 qp_list.idx = 0;
1428
1429 /* add and ref each qp so it doesn't get freed */
1430 idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1431
1432 spin_unlock_irq(&ctx->dev->lock);
1433
1434 /* now traverse the list in a safe context to recover the db state*/
1435 recover_lost_dbs(ctx, &qp_list);
1436
1437 /* we're almost done! deref the qps and clean up */
1438 deref_qps(&qp_list);
1439 kfree(qp_list.qps);
1440
1441 spin_lock_irq(&ctx->dev->lock);
1442 WARN_ON(ctx->dev->db_state != RECOVERY);
1443 ctx->dev->db_state = STOPPED;
1444 spin_unlock_irq(&ctx->dev->lock);
1445 }
1446
1447 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1448 {
1449 struct uld_ctx *ctx = handle;
1450
1451 switch (control) {
1452 case CXGB4_CONTROL_DB_FULL:
1453 stop_queues(ctx);
1454 ctx->dev->rdev.stats.db_full++;
1455 break;
1456 case CXGB4_CONTROL_DB_EMPTY:
1457 resume_queues(ctx);
1458 mutex_lock(&ctx->dev->rdev.stats.lock);
1459 ctx->dev->rdev.stats.db_empty++;
1460 mutex_unlock(&ctx->dev->rdev.stats.lock);
1461 break;
1462 case CXGB4_CONTROL_DB_DROP:
1463 recover_queues(ctx);
1464 mutex_lock(&ctx->dev->rdev.stats.lock);
1465 ctx->dev->rdev.stats.db_drop++;
1466 mutex_unlock(&ctx->dev->rdev.stats.lock);
1467 break;
1468 default:
1469 printk(KERN_WARNING MOD "%s: unknown control cmd %u\n",
1470 pci_name(ctx->lldi.pdev), control);
1471 break;
1472 }
1473 return 0;
1474 }
1475
1476 static struct cxgb4_uld_info c4iw_uld_info = {
1477 .name = DRV_NAME,
1478 .add = c4iw_uld_add,
1479 .rx_handler = c4iw_uld_rx_handler,
1480 .state_change = c4iw_uld_state_change,
1481 .control = c4iw_uld_control,
1482 };
1483
1484 static int __init c4iw_init_module(void)
1485 {
1486 int err;
1487
1488 err = c4iw_cm_init();
1489 if (err)
1490 return err;
1491
1492 c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1493 if (!c4iw_debugfs_root)
1494 printk(KERN_WARNING MOD
1495 "could not create debugfs entry, continuing\n");
1496
1497 cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1498
1499 return 0;
1500 }
1501
1502 static void __exit c4iw_exit_module(void)
1503 {
1504 struct uld_ctx *ctx, *tmp;
1505
1506 mutex_lock(&dev_mutex);
1507 list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1508 if (ctx->dev)
1509 c4iw_remove(ctx);
1510 kfree(ctx);
1511 }
1512 mutex_unlock(&dev_mutex);
1513 cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1514 c4iw_cm_term();
1515 debugfs_remove_recursive(c4iw_debugfs_root);
1516 }
1517
1518 module_init(c4iw_init_module);
1519 module_exit(c4iw_exit_module);