]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/infiniband/hw/cxgb4/device.c
4e4f1a732b019d6ea6bbf67bf637d94cc2d8f197
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / hw / cxgb4 / device.c
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/math64.h>
37
38 #include <rdma/ib_verbs.h>
39
40 #include "iw_cxgb4.h"
41
42 #define DRV_VERSION "0.1"
43
44 MODULE_AUTHOR("Steve Wise");
45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
46 MODULE_LICENSE("Dual BSD/GPL");
47 MODULE_VERSION(DRV_VERSION);
48
49 static int allow_db_fc_on_t5;
50 module_param(allow_db_fc_on_t5, int, 0644);
51 MODULE_PARM_DESC(allow_db_fc_on_t5,
52 "Allow DB Flow Control on T5 (default = 0)");
53
54 static int allow_db_coalescing_on_t5;
55 module_param(allow_db_coalescing_on_t5, int, 0644);
56 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
57 "Allow DB Coalescing on T5 (default = 0)");
58
59 int c4iw_wr_log = 0;
60 module_param(c4iw_wr_log, int, 0444);
61 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data.");
62
63 static int c4iw_wr_log_size_order = 12;
64 module_param(c4iw_wr_log_size_order, int, 0444);
65 MODULE_PARM_DESC(c4iw_wr_log_size_order,
66 "Number of entries (log2) in the work request timing log.");
67
68 struct uld_ctx {
69 struct list_head entry;
70 struct cxgb4_lld_info lldi;
71 struct c4iw_dev *dev;
72 };
73
74 static LIST_HEAD(uld_ctx_list);
75 static DEFINE_MUTEX(dev_mutex);
76
77 #define DB_FC_RESUME_SIZE 64
78 #define DB_FC_RESUME_DELAY 1
79 #define DB_FC_DRAIN_THRESH 0
80
81 static struct dentry *c4iw_debugfs_root;
82
83 struct c4iw_debugfs_data {
84 struct c4iw_dev *devp;
85 char *buf;
86 int bufsize;
87 int pos;
88 };
89
90 static int count_idrs(int id, void *p, void *data)
91 {
92 int *countp = data;
93
94 *countp = *countp + 1;
95 return 0;
96 }
97
98 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
99 loff_t *ppos)
100 {
101 struct c4iw_debugfs_data *d = file->private_data;
102
103 return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
104 }
105
106 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe)
107 {
108 struct wr_log_entry le;
109 int idx;
110
111 if (!wq->rdev->wr_log)
112 return;
113
114 idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) &
115 (wq->rdev->wr_log_size - 1);
116 le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]);
117 getnstimeofday(&le.poll_host_ts);
118 le.valid = 1;
119 le.cqe_sge_ts = CQE_TS(cqe);
120 if (SQ_TYPE(cqe)) {
121 le.qid = wq->sq.qid;
122 le.opcode = CQE_OPCODE(cqe);
123 le.post_host_ts = wq->sq.sw_sq[wq->sq.cidx].host_ts;
124 le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts;
125 le.wr_id = CQE_WRID_SQ_IDX(cqe);
126 } else {
127 le.qid = wq->rq.qid;
128 le.opcode = FW_RI_RECEIVE;
129 le.post_host_ts = wq->rq.sw_rq[wq->rq.cidx].host_ts;
130 le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts;
131 le.wr_id = CQE_WRID_MSN(cqe);
132 }
133 wq->rdev->wr_log[idx] = le;
134 }
135
136 static int wr_log_show(struct seq_file *seq, void *v)
137 {
138 struct c4iw_dev *dev = seq->private;
139 struct timespec prev_ts = {0, 0};
140 struct wr_log_entry *lep;
141 int prev_ts_set = 0;
142 int idx, end;
143
144 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000)
145
146 idx = atomic_read(&dev->rdev.wr_log_idx) &
147 (dev->rdev.wr_log_size - 1);
148 end = idx - 1;
149 if (end < 0)
150 end = dev->rdev.wr_log_size - 1;
151 lep = &dev->rdev.wr_log[idx];
152 while (idx != end) {
153 if (lep->valid) {
154 if (!prev_ts_set) {
155 prev_ts_set = 1;
156 prev_ts = lep->poll_host_ts;
157 }
158 seq_printf(seq, "%04u: sec %lu nsec %lu qid %u opcode "
159 "%u %s 0x%x host_wr_delta sec %lu nsec %lu "
160 "post_sge_ts 0x%llx cqe_sge_ts 0x%llx "
161 "poll_sge_ts 0x%llx post_poll_delta_ns %llu "
162 "cqe_poll_delta_ns %llu\n",
163 idx,
164 timespec_sub(lep->poll_host_ts,
165 prev_ts).tv_sec,
166 timespec_sub(lep->poll_host_ts,
167 prev_ts).tv_nsec,
168 lep->qid, lep->opcode,
169 lep->opcode == FW_RI_RECEIVE ?
170 "msn" : "wrid",
171 lep->wr_id,
172 timespec_sub(lep->poll_host_ts,
173 lep->post_host_ts).tv_sec,
174 timespec_sub(lep->poll_host_ts,
175 lep->post_host_ts).tv_nsec,
176 lep->post_sge_ts, lep->cqe_sge_ts,
177 lep->poll_sge_ts,
178 ts2ns(lep->poll_sge_ts - lep->post_sge_ts),
179 ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts));
180 prev_ts = lep->poll_host_ts;
181 }
182 idx++;
183 if (idx > (dev->rdev.wr_log_size - 1))
184 idx = 0;
185 lep = &dev->rdev.wr_log[idx];
186 }
187 #undef ts2ns
188 return 0;
189 }
190
191 static int wr_log_open(struct inode *inode, struct file *file)
192 {
193 return single_open(file, wr_log_show, inode->i_private);
194 }
195
196 static ssize_t wr_log_clear(struct file *file, const char __user *buf,
197 size_t count, loff_t *pos)
198 {
199 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
200 int i;
201
202 if (dev->rdev.wr_log)
203 for (i = 0; i < dev->rdev.wr_log_size; i++)
204 dev->rdev.wr_log[i].valid = 0;
205 return count;
206 }
207
208 static const struct file_operations wr_log_debugfs_fops = {
209 .owner = THIS_MODULE,
210 .open = wr_log_open,
211 .release = single_release,
212 .read = seq_read,
213 .llseek = seq_lseek,
214 .write = wr_log_clear,
215 };
216
217 static struct sockaddr_in zero_sin = {
218 .sin_family = AF_INET,
219 };
220
221 static struct sockaddr_in6 zero_sin6 = {
222 .sin6_family = AF_INET6,
223 };
224
225 static void set_ep_sin_addrs(struct c4iw_ep *ep,
226 struct sockaddr_in **lsin,
227 struct sockaddr_in **rsin,
228 struct sockaddr_in **m_lsin,
229 struct sockaddr_in **m_rsin)
230 {
231 struct iw_cm_id *id = ep->com.cm_id;
232
233 *lsin = (struct sockaddr_in *)&ep->com.local_addr;
234 *rsin = (struct sockaddr_in *)&ep->com.remote_addr;
235 if (id) {
236 *m_lsin = (struct sockaddr_in *)&id->m_local_addr;
237 *m_rsin = (struct sockaddr_in *)&id->m_remote_addr;
238 } else {
239 *m_lsin = &zero_sin;
240 *m_rsin = &zero_sin;
241 }
242 }
243
244 static void set_ep_sin6_addrs(struct c4iw_ep *ep,
245 struct sockaddr_in6 **lsin6,
246 struct sockaddr_in6 **rsin6,
247 struct sockaddr_in6 **m_lsin6,
248 struct sockaddr_in6 **m_rsin6)
249 {
250 struct iw_cm_id *id = ep->com.cm_id;
251
252 *lsin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
253 *rsin6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
254 if (id) {
255 *m_lsin6 = (struct sockaddr_in6 *)&id->m_local_addr;
256 *m_rsin6 = (struct sockaddr_in6 *)&id->m_remote_addr;
257 } else {
258 *m_lsin6 = &zero_sin6;
259 *m_rsin6 = &zero_sin6;
260 }
261 }
262
263 static int dump_qp(int id, void *p, void *data)
264 {
265 struct c4iw_qp *qp = p;
266 struct c4iw_debugfs_data *qpd = data;
267 int space;
268 int cc;
269
270 if (id != qp->wq.sq.qid)
271 return 0;
272
273 space = qpd->bufsize - qpd->pos - 1;
274 if (space == 0)
275 return 1;
276
277 if (qp->ep) {
278 struct c4iw_ep *ep = qp->ep;
279
280 if (ep->com.local_addr.ss_family == AF_INET) {
281 struct sockaddr_in *lsin;
282 struct sockaddr_in *rsin;
283 struct sockaddr_in *m_lsin;
284 struct sockaddr_in *m_rsin;
285
286 set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
287 cc = snprintf(qpd->buf + qpd->pos, space,
288 "rc qp sq id %u rq id %u state %u "
289 "onchip %u ep tid %u state %u "
290 "%pI4:%u/%u->%pI4:%u/%u\n",
291 qp->wq.sq.qid, qp->wq.rq.qid,
292 (int)qp->attr.state,
293 qp->wq.sq.flags & T4_SQ_ONCHIP,
294 ep->hwtid, (int)ep->com.state,
295 &lsin->sin_addr, ntohs(lsin->sin_port),
296 ntohs(m_lsin->sin_port),
297 &rsin->sin_addr, ntohs(rsin->sin_port),
298 ntohs(m_rsin->sin_port));
299 } else {
300 struct sockaddr_in6 *lsin6;
301 struct sockaddr_in6 *rsin6;
302 struct sockaddr_in6 *m_lsin6;
303 struct sockaddr_in6 *m_rsin6;
304
305 set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6,
306 &m_rsin6);
307 cc = snprintf(qpd->buf + qpd->pos, space,
308 "rc qp sq id %u rq id %u state %u "
309 "onchip %u ep tid %u state %u "
310 "%pI6:%u/%u->%pI6:%u/%u\n",
311 qp->wq.sq.qid, qp->wq.rq.qid,
312 (int)qp->attr.state,
313 qp->wq.sq.flags & T4_SQ_ONCHIP,
314 ep->hwtid, (int)ep->com.state,
315 &lsin6->sin6_addr,
316 ntohs(lsin6->sin6_port),
317 ntohs(m_lsin6->sin6_port),
318 &rsin6->sin6_addr,
319 ntohs(rsin6->sin6_port),
320 ntohs(m_rsin6->sin6_port));
321 }
322 } else
323 cc = snprintf(qpd->buf + qpd->pos, space,
324 "qp sq id %u rq id %u state %u onchip %u\n",
325 qp->wq.sq.qid, qp->wq.rq.qid,
326 (int)qp->attr.state,
327 qp->wq.sq.flags & T4_SQ_ONCHIP);
328 if (cc < space)
329 qpd->pos += cc;
330 return 0;
331 }
332
333 static int qp_release(struct inode *inode, struct file *file)
334 {
335 struct c4iw_debugfs_data *qpd = file->private_data;
336 if (!qpd) {
337 printk(KERN_INFO "%s null qpd?\n", __func__);
338 return 0;
339 }
340 vfree(qpd->buf);
341 kfree(qpd);
342 return 0;
343 }
344
345 static int qp_open(struct inode *inode, struct file *file)
346 {
347 struct c4iw_debugfs_data *qpd;
348 int count = 1;
349
350 qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
351 if (!qpd)
352 return -ENOMEM;
353
354 qpd->devp = inode->i_private;
355 qpd->pos = 0;
356
357 spin_lock_irq(&qpd->devp->lock);
358 idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
359 spin_unlock_irq(&qpd->devp->lock);
360
361 qpd->bufsize = count * 180;
362 qpd->buf = vmalloc(qpd->bufsize);
363 if (!qpd->buf) {
364 kfree(qpd);
365 return -ENOMEM;
366 }
367
368 spin_lock_irq(&qpd->devp->lock);
369 idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
370 spin_unlock_irq(&qpd->devp->lock);
371
372 qpd->buf[qpd->pos++] = 0;
373 file->private_data = qpd;
374 return 0;
375 }
376
377 static const struct file_operations qp_debugfs_fops = {
378 .owner = THIS_MODULE,
379 .open = qp_open,
380 .release = qp_release,
381 .read = debugfs_read,
382 .llseek = default_llseek,
383 };
384
385 static int dump_stag(int id, void *p, void *data)
386 {
387 struct c4iw_debugfs_data *stagd = data;
388 int space;
389 int cc;
390 struct fw_ri_tpte tpte;
391 int ret;
392
393 space = stagd->bufsize - stagd->pos - 1;
394 if (space == 0)
395 return 1;
396
397 ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8,
398 (__be32 *)&tpte);
399 if (ret) {
400 dev_err(&stagd->devp->rdev.lldi.pdev->dev,
401 "%s cxgb4_read_tpte err %d\n", __func__, ret);
402 return ret;
403 }
404 cc = snprintf(stagd->buf + stagd->pos, space,
405 "stag: idx 0x%x valid %d key 0x%x state %d pdid %d "
406 "perm 0x%x ps %d len 0x%llx va 0x%llx\n",
407 (u32)id<<8,
408 FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)),
409 FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)),
410 FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)),
411 FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)),
412 FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)),
413 FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)),
414 ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo),
415 ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo));
416 if (cc < space)
417 stagd->pos += cc;
418 return 0;
419 }
420
421 static int stag_release(struct inode *inode, struct file *file)
422 {
423 struct c4iw_debugfs_data *stagd = file->private_data;
424 if (!stagd) {
425 printk(KERN_INFO "%s null stagd?\n", __func__);
426 return 0;
427 }
428 vfree(stagd->buf);
429 kfree(stagd);
430 return 0;
431 }
432
433 static int stag_open(struct inode *inode, struct file *file)
434 {
435 struct c4iw_debugfs_data *stagd;
436 int ret = 0;
437 int count = 1;
438
439 stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
440 if (!stagd) {
441 ret = -ENOMEM;
442 goto out;
443 }
444 stagd->devp = inode->i_private;
445 stagd->pos = 0;
446
447 spin_lock_irq(&stagd->devp->lock);
448 idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
449 spin_unlock_irq(&stagd->devp->lock);
450
451 stagd->bufsize = count * 256;
452 stagd->buf = vmalloc(stagd->bufsize);
453 if (!stagd->buf) {
454 ret = -ENOMEM;
455 goto err1;
456 }
457
458 spin_lock_irq(&stagd->devp->lock);
459 idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
460 spin_unlock_irq(&stagd->devp->lock);
461
462 stagd->buf[stagd->pos++] = 0;
463 file->private_data = stagd;
464 goto out;
465 err1:
466 kfree(stagd);
467 out:
468 return ret;
469 }
470
471 static const struct file_operations stag_debugfs_fops = {
472 .owner = THIS_MODULE,
473 .open = stag_open,
474 .release = stag_release,
475 .read = debugfs_read,
476 .llseek = default_llseek,
477 };
478
479 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
480
481 static int stats_show(struct seq_file *seq, void *v)
482 {
483 struct c4iw_dev *dev = seq->private;
484
485 seq_printf(seq, " Object: %10s %10s %10s %10s\n", "Total", "Current",
486 "Max", "Fail");
487 seq_printf(seq, " PDID: %10llu %10llu %10llu %10llu\n",
488 dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
489 dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
490 seq_printf(seq, " QID: %10llu %10llu %10llu %10llu\n",
491 dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
492 dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
493 seq_printf(seq, " TPTMEM: %10llu %10llu %10llu %10llu\n",
494 dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
495 dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
496 seq_printf(seq, " PBLMEM: %10llu %10llu %10llu %10llu\n",
497 dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
498 dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
499 seq_printf(seq, " RQTMEM: %10llu %10llu %10llu %10llu\n",
500 dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
501 dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
502 seq_printf(seq, " OCQPMEM: %10llu %10llu %10llu %10llu\n",
503 dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
504 dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
505 seq_printf(seq, " DB FULL: %10llu\n", dev->rdev.stats.db_full);
506 seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
507 seq_printf(seq, " DB DROP: %10llu\n", dev->rdev.stats.db_drop);
508 seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
509 db_state_str[dev->db_state],
510 dev->rdev.stats.db_state_transitions,
511 dev->rdev.stats.db_fc_interruptions);
512 seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
513 seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
514 dev->rdev.stats.act_ofld_conn_fails);
515 seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
516 dev->rdev.stats.pas_ofld_conn_fails);
517 seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv);
518 seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird);
519 return 0;
520 }
521
522 static int stats_open(struct inode *inode, struct file *file)
523 {
524 return single_open(file, stats_show, inode->i_private);
525 }
526
527 static ssize_t stats_clear(struct file *file, const char __user *buf,
528 size_t count, loff_t *pos)
529 {
530 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
531
532 mutex_lock(&dev->rdev.stats.lock);
533 dev->rdev.stats.pd.max = 0;
534 dev->rdev.stats.pd.fail = 0;
535 dev->rdev.stats.qid.max = 0;
536 dev->rdev.stats.qid.fail = 0;
537 dev->rdev.stats.stag.max = 0;
538 dev->rdev.stats.stag.fail = 0;
539 dev->rdev.stats.pbl.max = 0;
540 dev->rdev.stats.pbl.fail = 0;
541 dev->rdev.stats.rqt.max = 0;
542 dev->rdev.stats.rqt.fail = 0;
543 dev->rdev.stats.ocqp.max = 0;
544 dev->rdev.stats.ocqp.fail = 0;
545 dev->rdev.stats.db_full = 0;
546 dev->rdev.stats.db_empty = 0;
547 dev->rdev.stats.db_drop = 0;
548 dev->rdev.stats.db_state_transitions = 0;
549 dev->rdev.stats.tcam_full = 0;
550 dev->rdev.stats.act_ofld_conn_fails = 0;
551 dev->rdev.stats.pas_ofld_conn_fails = 0;
552 mutex_unlock(&dev->rdev.stats.lock);
553 return count;
554 }
555
556 static const struct file_operations stats_debugfs_fops = {
557 .owner = THIS_MODULE,
558 .open = stats_open,
559 .release = single_release,
560 .read = seq_read,
561 .llseek = seq_lseek,
562 .write = stats_clear,
563 };
564
565 static int dump_ep(int id, void *p, void *data)
566 {
567 struct c4iw_ep *ep = p;
568 struct c4iw_debugfs_data *epd = data;
569 int space;
570 int cc;
571
572 space = epd->bufsize - epd->pos - 1;
573 if (space == 0)
574 return 1;
575
576 if (ep->com.local_addr.ss_family == AF_INET) {
577 struct sockaddr_in *lsin;
578 struct sockaddr_in *rsin;
579 struct sockaddr_in *m_lsin;
580 struct sockaddr_in *m_rsin;
581
582 set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
583 cc = snprintf(epd->buf + epd->pos, space,
584 "ep %p cm_id %p qp %p state %d flags 0x%lx "
585 "history 0x%lx hwtid %d atid %d "
586 "conn_na %u abort_na %u "
587 "%pI4:%d/%d <-> %pI4:%d/%d\n",
588 ep, ep->com.cm_id, ep->com.qp,
589 (int)ep->com.state, ep->com.flags,
590 ep->com.history, ep->hwtid, ep->atid,
591 ep->stats.connect_neg_adv,
592 ep->stats.abort_neg_adv,
593 &lsin->sin_addr, ntohs(lsin->sin_port),
594 ntohs(m_lsin->sin_port),
595 &rsin->sin_addr, ntohs(rsin->sin_port),
596 ntohs(m_rsin->sin_port));
597 } else {
598 struct sockaddr_in6 *lsin6;
599 struct sockaddr_in6 *rsin6;
600 struct sockaddr_in6 *m_lsin6;
601 struct sockaddr_in6 *m_rsin6;
602
603 set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6, &m_rsin6);
604 cc = snprintf(epd->buf + epd->pos, space,
605 "ep %p cm_id %p qp %p state %d flags 0x%lx "
606 "history 0x%lx hwtid %d atid %d "
607 "conn_na %u abort_na %u "
608 "%pI6:%d/%d <-> %pI6:%d/%d\n",
609 ep, ep->com.cm_id, ep->com.qp,
610 (int)ep->com.state, ep->com.flags,
611 ep->com.history, ep->hwtid, ep->atid,
612 ep->stats.connect_neg_adv,
613 ep->stats.abort_neg_adv,
614 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
615 ntohs(m_lsin6->sin6_port),
616 &rsin6->sin6_addr, ntohs(rsin6->sin6_port),
617 ntohs(m_rsin6->sin6_port));
618 }
619 if (cc < space)
620 epd->pos += cc;
621 return 0;
622 }
623
624 static int dump_listen_ep(int id, void *p, void *data)
625 {
626 struct c4iw_listen_ep *ep = p;
627 struct c4iw_debugfs_data *epd = data;
628 int space;
629 int cc;
630
631 space = epd->bufsize - epd->pos - 1;
632 if (space == 0)
633 return 1;
634
635 if (ep->com.local_addr.ss_family == AF_INET) {
636 struct sockaddr_in *lsin = (struct sockaddr_in *)
637 &ep->com.cm_id->local_addr;
638 struct sockaddr_in *m_lsin = (struct sockaddr_in *)
639 &ep->com.cm_id->m_local_addr;
640
641 cc = snprintf(epd->buf + epd->pos, space,
642 "ep %p cm_id %p state %d flags 0x%lx stid %d "
643 "backlog %d %pI4:%d/%d\n",
644 ep, ep->com.cm_id, (int)ep->com.state,
645 ep->com.flags, ep->stid, ep->backlog,
646 &lsin->sin_addr, ntohs(lsin->sin_port),
647 ntohs(m_lsin->sin_port));
648 } else {
649 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
650 &ep->com.cm_id->local_addr;
651 struct sockaddr_in6 *m_lsin6 = (struct sockaddr_in6 *)
652 &ep->com.cm_id->m_local_addr;
653
654 cc = snprintf(epd->buf + epd->pos, space,
655 "ep %p cm_id %p state %d flags 0x%lx stid %d "
656 "backlog %d %pI6:%d/%d\n",
657 ep, ep->com.cm_id, (int)ep->com.state,
658 ep->com.flags, ep->stid, ep->backlog,
659 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
660 ntohs(m_lsin6->sin6_port));
661 }
662 if (cc < space)
663 epd->pos += cc;
664 return 0;
665 }
666
667 static int ep_release(struct inode *inode, struct file *file)
668 {
669 struct c4iw_debugfs_data *epd = file->private_data;
670 if (!epd) {
671 pr_info("%s null qpd?\n", __func__);
672 return 0;
673 }
674 vfree(epd->buf);
675 kfree(epd);
676 return 0;
677 }
678
679 static int ep_open(struct inode *inode, struct file *file)
680 {
681 struct c4iw_debugfs_data *epd;
682 int ret = 0;
683 int count = 1;
684
685 epd = kmalloc(sizeof(*epd), GFP_KERNEL);
686 if (!epd) {
687 ret = -ENOMEM;
688 goto out;
689 }
690 epd->devp = inode->i_private;
691 epd->pos = 0;
692
693 spin_lock_irq(&epd->devp->lock);
694 idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
695 idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
696 idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
697 spin_unlock_irq(&epd->devp->lock);
698
699 epd->bufsize = count * 240;
700 epd->buf = vmalloc(epd->bufsize);
701 if (!epd->buf) {
702 ret = -ENOMEM;
703 goto err1;
704 }
705
706 spin_lock_irq(&epd->devp->lock);
707 idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
708 idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
709 idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
710 spin_unlock_irq(&epd->devp->lock);
711
712 file->private_data = epd;
713 goto out;
714 err1:
715 kfree(epd);
716 out:
717 return ret;
718 }
719
720 static const struct file_operations ep_debugfs_fops = {
721 .owner = THIS_MODULE,
722 .open = ep_open,
723 .release = ep_release,
724 .read = debugfs_read,
725 };
726
727 static int setup_debugfs(struct c4iw_dev *devp)
728 {
729 if (!devp->debugfs_root)
730 return -1;
731
732 debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root,
733 (void *)devp, &qp_debugfs_fops, 4096);
734
735 debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root,
736 (void *)devp, &stag_debugfs_fops, 4096);
737
738 debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root,
739 (void *)devp, &stats_debugfs_fops, 4096);
740
741 debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root,
742 (void *)devp, &ep_debugfs_fops, 4096);
743
744 if (c4iw_wr_log)
745 debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root,
746 (void *)devp, &wr_log_debugfs_fops, 4096);
747 return 0;
748 }
749
750 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
751 struct c4iw_dev_ucontext *uctx)
752 {
753 struct list_head *pos, *nxt;
754 struct c4iw_qid_list *entry;
755
756 mutex_lock(&uctx->lock);
757 list_for_each_safe(pos, nxt, &uctx->qpids) {
758 entry = list_entry(pos, struct c4iw_qid_list, entry);
759 list_del_init(&entry->entry);
760 if (!(entry->qid & rdev->qpmask)) {
761 c4iw_put_resource(&rdev->resource.qid_table,
762 entry->qid);
763 mutex_lock(&rdev->stats.lock);
764 rdev->stats.qid.cur -= rdev->qpmask + 1;
765 mutex_unlock(&rdev->stats.lock);
766 }
767 kfree(entry);
768 }
769
770 list_for_each_safe(pos, nxt, &uctx->qpids) {
771 entry = list_entry(pos, struct c4iw_qid_list, entry);
772 list_del_init(&entry->entry);
773 kfree(entry);
774 }
775 mutex_unlock(&uctx->lock);
776 }
777
778 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
779 struct c4iw_dev_ucontext *uctx)
780 {
781 INIT_LIST_HEAD(&uctx->qpids);
782 INIT_LIST_HEAD(&uctx->cqids);
783 mutex_init(&uctx->lock);
784 }
785
786 /* Caller takes care of locking if needed */
787 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
788 {
789 int err;
790
791 c4iw_init_dev_ucontext(rdev, &rdev->uctx);
792
793 /*
794 * This implementation assumes udb_density == ucq_density! Eventually
795 * we might need to support this but for now fail the open. Also the
796 * cqid and qpid range must match for now.
797 */
798 if (rdev->lldi.udb_density != rdev->lldi.ucq_density) {
799 pr_err(MOD "%s: unsupported udb/ucq densities %u/%u\n",
800 pci_name(rdev->lldi.pdev), rdev->lldi.udb_density,
801 rdev->lldi.ucq_density);
802 return -EINVAL;
803 }
804 if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start ||
805 rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) {
806 pr_err(MOD "%s: unsupported qp and cq id ranges "
807 "qp start %u size %u cq start %u size %u\n",
808 pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start,
809 rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size,
810 rdev->lldi.vr->cq.size);
811 return -EINVAL;
812 }
813
814 rdev->qpmask = rdev->lldi.udb_density - 1;
815 rdev->cqmask = rdev->lldi.ucq_density - 1;
816 PDBG("%s dev %s stag start 0x%0x size 0x%0x num stags %d "
817 "pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x "
818 "qp qid start %u size %u cq qid start %u size %u\n",
819 __func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
820 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
821 rdev->lldi.vr->pbl.start,
822 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
823 rdev->lldi.vr->rq.size,
824 rdev->lldi.vr->qp.start,
825 rdev->lldi.vr->qp.size,
826 rdev->lldi.vr->cq.start,
827 rdev->lldi.vr->cq.size);
828 PDBG("udb %pR db_reg %p gts_reg %p "
829 "qpmask 0x%x cqmask 0x%x\n",
830 &rdev->lldi.pdev->resource[2],
831 rdev->lldi.db_reg, rdev->lldi.gts_reg,
832 rdev->qpmask, rdev->cqmask);
833
834 if (c4iw_num_stags(rdev) == 0)
835 return -EINVAL;
836
837 rdev->stats.pd.total = T4_MAX_NUM_PD;
838 rdev->stats.stag.total = rdev->lldi.vr->stag.size;
839 rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
840 rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
841 rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
842 rdev->stats.qid.total = rdev->lldi.vr->qp.size;
843
844 err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD);
845 if (err) {
846 printk(KERN_ERR MOD "error %d initializing resources\n", err);
847 return err;
848 }
849 err = c4iw_pblpool_create(rdev);
850 if (err) {
851 printk(KERN_ERR MOD "error %d initializing pbl pool\n", err);
852 goto destroy_resource;
853 }
854 err = c4iw_rqtpool_create(rdev);
855 if (err) {
856 printk(KERN_ERR MOD "error %d initializing rqt pool\n", err);
857 goto destroy_pblpool;
858 }
859 err = c4iw_ocqp_pool_create(rdev);
860 if (err) {
861 printk(KERN_ERR MOD "error %d initializing ocqp pool\n", err);
862 goto destroy_rqtpool;
863 }
864 rdev->status_page = (struct t4_dev_status_page *)
865 __get_free_page(GFP_KERNEL);
866 if (!rdev->status_page) {
867 err = -ENOMEM;
868 goto destroy_ocqp_pool;
869 }
870 rdev->status_page->qp_start = rdev->lldi.vr->qp.start;
871 rdev->status_page->qp_size = rdev->lldi.vr->qp.size;
872 rdev->status_page->cq_start = rdev->lldi.vr->cq.start;
873 rdev->status_page->cq_size = rdev->lldi.vr->cq.size;
874
875 if (c4iw_wr_log) {
876 rdev->wr_log = kzalloc((1 << c4iw_wr_log_size_order) *
877 sizeof(*rdev->wr_log), GFP_KERNEL);
878 if (rdev->wr_log) {
879 rdev->wr_log_size = 1 << c4iw_wr_log_size_order;
880 atomic_set(&rdev->wr_log_idx, 0);
881 }
882 }
883
884 rdev->free_workq = create_singlethread_workqueue("iw_cxgb4_free");
885 if (!rdev->free_workq) {
886 err = -ENOMEM;
887 goto err_free_status_page;
888 }
889
890 rdev->status_page->db_off = 0;
891
892 return 0;
893 err_free_status_page:
894 free_page((unsigned long)rdev->status_page);
895 destroy_ocqp_pool:
896 c4iw_ocqp_pool_destroy(rdev);
897 destroy_rqtpool:
898 c4iw_rqtpool_destroy(rdev);
899 destroy_pblpool:
900 c4iw_pblpool_destroy(rdev);
901 destroy_resource:
902 c4iw_destroy_resource(&rdev->resource);
903 return err;
904 }
905
906 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
907 {
908 destroy_workqueue(rdev->free_workq);
909 kfree(rdev->wr_log);
910 free_page((unsigned long)rdev->status_page);
911 c4iw_pblpool_destroy(rdev);
912 c4iw_rqtpool_destroy(rdev);
913 c4iw_destroy_resource(&rdev->resource);
914 }
915
916 static void c4iw_dealloc(struct uld_ctx *ctx)
917 {
918 c4iw_rdev_close(&ctx->dev->rdev);
919 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->cqidr));
920 idr_destroy(&ctx->dev->cqidr);
921 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->qpidr));
922 idr_destroy(&ctx->dev->qpidr);
923 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->mmidr));
924 idr_destroy(&ctx->dev->mmidr);
925 wait_event(ctx->dev->wait, idr_is_empty(&ctx->dev->hwtid_idr));
926 idr_destroy(&ctx->dev->hwtid_idr);
927 idr_destroy(&ctx->dev->stid_idr);
928 idr_destroy(&ctx->dev->atid_idr);
929 if (ctx->dev->rdev.bar2_kva)
930 iounmap(ctx->dev->rdev.bar2_kva);
931 if (ctx->dev->rdev.oc_mw_kva)
932 iounmap(ctx->dev->rdev.oc_mw_kva);
933 ib_dealloc_device(&ctx->dev->ibdev);
934 ctx->dev = NULL;
935 }
936
937 static void c4iw_remove(struct uld_ctx *ctx)
938 {
939 PDBG("%s c4iw_dev %p\n", __func__, ctx->dev);
940 c4iw_unregister_device(ctx->dev);
941 c4iw_dealloc(ctx);
942 }
943
944 static int rdma_supported(const struct cxgb4_lld_info *infop)
945 {
946 return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
947 infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
948 infop->vr->cq.size > 0;
949 }
950
951 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
952 {
953 struct c4iw_dev *devp;
954 int ret;
955
956 if (!rdma_supported(infop)) {
957 printk(KERN_INFO MOD "%s: RDMA not supported on this device.\n",
958 pci_name(infop->pdev));
959 return ERR_PTR(-ENOSYS);
960 }
961 if (!ocqp_supported(infop))
962 pr_info("%s: On-Chip Queues not supported on this device.\n",
963 pci_name(infop->pdev));
964
965 devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp));
966 if (!devp) {
967 printk(KERN_ERR MOD "Cannot allocate ib device\n");
968 return ERR_PTR(-ENOMEM);
969 }
970 devp->rdev.lldi = *infop;
971
972 /* init various hw-queue params based on lld info */
973 PDBG("%s: Ing. padding boundary is %d, egrsstatuspagesize = %d\n",
974 __func__, devp->rdev.lldi.sge_ingpadboundary,
975 devp->rdev.lldi.sge_egrstatuspagesize);
976
977 devp->rdev.hw_queue.t4_eq_status_entries =
978 devp->rdev.lldi.sge_ingpadboundary > 64 ? 2 : 1;
979 devp->rdev.hw_queue.t4_max_eq_size = 65520;
980 devp->rdev.hw_queue.t4_max_iq_size = 65520;
981 devp->rdev.hw_queue.t4_max_rq_size = 8192 -
982 devp->rdev.hw_queue.t4_eq_status_entries - 1;
983 devp->rdev.hw_queue.t4_max_sq_size =
984 devp->rdev.hw_queue.t4_max_eq_size -
985 devp->rdev.hw_queue.t4_eq_status_entries - 1;
986 devp->rdev.hw_queue.t4_max_qp_depth =
987 devp->rdev.hw_queue.t4_max_rq_size;
988 devp->rdev.hw_queue.t4_max_cq_depth =
989 devp->rdev.hw_queue.t4_max_iq_size - 2;
990 devp->rdev.hw_queue.t4_stat_len =
991 devp->rdev.lldi.sge_egrstatuspagesize;
992
993 /*
994 * For T5/T6 devices, we map all of BAR2 with WC.
995 * For T4 devices with onchip qp mem, we map only that part
996 * of BAR2 with WC.
997 */
998 devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
999 if (!is_t4(devp->rdev.lldi.adapter_type)) {
1000 devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
1001 pci_resource_len(devp->rdev.lldi.pdev, 2));
1002 if (!devp->rdev.bar2_kva) {
1003 pr_err(MOD "Unable to ioremap BAR2\n");
1004 ib_dealloc_device(&devp->ibdev);
1005 return ERR_PTR(-EINVAL);
1006 }
1007 } else if (ocqp_supported(infop)) {
1008 devp->rdev.oc_mw_pa =
1009 pci_resource_start(devp->rdev.lldi.pdev, 2) +
1010 pci_resource_len(devp->rdev.lldi.pdev, 2) -
1011 roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
1012 devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
1013 devp->rdev.lldi.vr->ocq.size);
1014 if (!devp->rdev.oc_mw_kva) {
1015 pr_err(MOD "Unable to ioremap onchip mem\n");
1016 ib_dealloc_device(&devp->ibdev);
1017 return ERR_PTR(-EINVAL);
1018 }
1019 }
1020
1021 PDBG(KERN_INFO MOD "ocq memory: "
1022 "hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
1023 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
1024 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
1025
1026 ret = c4iw_rdev_open(&devp->rdev);
1027 if (ret) {
1028 printk(KERN_ERR MOD "Unable to open CXIO rdev err %d\n", ret);
1029 ib_dealloc_device(&devp->ibdev);
1030 return ERR_PTR(ret);
1031 }
1032
1033 idr_init(&devp->cqidr);
1034 idr_init(&devp->qpidr);
1035 idr_init(&devp->mmidr);
1036 idr_init(&devp->hwtid_idr);
1037 idr_init(&devp->stid_idr);
1038 idr_init(&devp->atid_idr);
1039 spin_lock_init(&devp->lock);
1040 mutex_init(&devp->rdev.stats.lock);
1041 mutex_init(&devp->db_mutex);
1042 INIT_LIST_HEAD(&devp->db_fc_list);
1043 init_waitqueue_head(&devp->wait);
1044 devp->avail_ird = devp->rdev.lldi.max_ird_adapter;
1045
1046 if (c4iw_debugfs_root) {
1047 devp->debugfs_root = debugfs_create_dir(
1048 pci_name(devp->rdev.lldi.pdev),
1049 c4iw_debugfs_root);
1050 setup_debugfs(devp);
1051 }
1052
1053
1054 return devp;
1055 }
1056
1057 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
1058 {
1059 struct uld_ctx *ctx;
1060 static int vers_printed;
1061 int i;
1062
1063 if (!vers_printed++)
1064 pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
1065 DRV_VERSION);
1066
1067 ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
1068 if (!ctx) {
1069 ctx = ERR_PTR(-ENOMEM);
1070 goto out;
1071 }
1072 ctx->lldi = *infop;
1073
1074 PDBG("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n",
1075 __func__, pci_name(ctx->lldi.pdev),
1076 ctx->lldi.nchan, ctx->lldi.nrxq,
1077 ctx->lldi.ntxq, ctx->lldi.nports);
1078
1079 mutex_lock(&dev_mutex);
1080 list_add_tail(&ctx->entry, &uld_ctx_list);
1081 mutex_unlock(&dev_mutex);
1082
1083 for (i = 0; i < ctx->lldi.nrxq; i++)
1084 PDBG("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
1085 out:
1086 return ctx;
1087 }
1088
1089 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
1090 const __be64 *rsp,
1091 u32 pktshift)
1092 {
1093 struct sk_buff *skb;
1094
1095 /*
1096 * Allocate space for cpl_pass_accept_req which will be synthesized by
1097 * driver. Once the driver synthesizes the request the skb will go
1098 * through the regular cpl_pass_accept_req processing.
1099 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
1100 * cpl_rx_pkt.
1101 */
1102 skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1103 sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
1104 if (unlikely(!skb))
1105 return NULL;
1106
1107 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1108 sizeof(struct rss_header) - pktshift);
1109
1110 /*
1111 * This skb will contain:
1112 * rss_header from the rspq descriptor (1 flit)
1113 * cpl_rx_pkt struct from the rspq descriptor (2 flits)
1114 * space for the difference between the size of an
1115 * rx_pkt and pass_accept_req cpl (1 flit)
1116 * the packet data from the gl
1117 */
1118 skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
1119 sizeof(struct rss_header));
1120 skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
1121 sizeof(struct cpl_pass_accept_req),
1122 gl->va + pktshift,
1123 gl->tot_len - pktshift);
1124 return skb;
1125 }
1126
1127 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
1128 const __be64 *rsp)
1129 {
1130 unsigned int opcode = *(u8 *)rsp;
1131 struct sk_buff *skb;
1132
1133 if (opcode != CPL_RX_PKT)
1134 goto out;
1135
1136 skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
1137 if (skb == NULL)
1138 goto out;
1139
1140 if (c4iw_handlers[opcode] == NULL) {
1141 pr_info("%s no handler opcode 0x%x...\n", __func__,
1142 opcode);
1143 kfree_skb(skb);
1144 goto out;
1145 }
1146 c4iw_handlers[opcode](dev, skb);
1147 return 1;
1148 out:
1149 return 0;
1150 }
1151
1152 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
1153 const struct pkt_gl *gl)
1154 {
1155 struct uld_ctx *ctx = handle;
1156 struct c4iw_dev *dev = ctx->dev;
1157 struct sk_buff *skb;
1158 u8 opcode;
1159
1160 if (gl == NULL) {
1161 /* omit RSS and rsp_ctrl at end of descriptor */
1162 unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
1163
1164 skb = alloc_skb(256, GFP_ATOMIC);
1165 if (!skb)
1166 goto nomem;
1167 __skb_put(skb, len);
1168 skb_copy_to_linear_data(skb, &rsp[1], len);
1169 } else if (gl == CXGB4_MSG_AN) {
1170 const struct rsp_ctrl *rc = (void *)rsp;
1171
1172 u32 qid = be32_to_cpu(rc->pldbuflen_qid);
1173 c4iw_ev_handler(dev, qid);
1174 return 0;
1175 } else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
1176 if (recv_rx_pkt(dev, gl, rsp))
1177 return 0;
1178
1179 pr_info("%s: unexpected FL contents at %p, " \
1180 "RSS %#llx, FL %#llx, len %u\n",
1181 pci_name(ctx->lldi.pdev), gl->va,
1182 (unsigned long long)be64_to_cpu(*rsp),
1183 (unsigned long long)be64_to_cpu(
1184 *(__force __be64 *)gl->va),
1185 gl->tot_len);
1186
1187 return 0;
1188 } else {
1189 skb = cxgb4_pktgl_to_skb(gl, 128, 128);
1190 if (unlikely(!skb))
1191 goto nomem;
1192 }
1193
1194 opcode = *(u8 *)rsp;
1195 if (c4iw_handlers[opcode]) {
1196 c4iw_handlers[opcode](dev, skb);
1197 } else {
1198 pr_info("%s no handler opcode 0x%x...\n", __func__,
1199 opcode);
1200 kfree_skb(skb);
1201 }
1202
1203 return 0;
1204 nomem:
1205 return -1;
1206 }
1207
1208 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
1209 {
1210 struct uld_ctx *ctx = handle;
1211
1212 PDBG("%s new_state %u\n", __func__, new_state);
1213 switch (new_state) {
1214 case CXGB4_STATE_UP:
1215 printk(KERN_INFO MOD "%s: Up\n", pci_name(ctx->lldi.pdev));
1216 if (!ctx->dev) {
1217 int ret;
1218
1219 ctx->dev = c4iw_alloc(&ctx->lldi);
1220 if (IS_ERR(ctx->dev)) {
1221 printk(KERN_ERR MOD
1222 "%s: initialization failed: %ld\n",
1223 pci_name(ctx->lldi.pdev),
1224 PTR_ERR(ctx->dev));
1225 ctx->dev = NULL;
1226 break;
1227 }
1228 ret = c4iw_register_device(ctx->dev);
1229 if (ret) {
1230 printk(KERN_ERR MOD
1231 "%s: RDMA registration failed: %d\n",
1232 pci_name(ctx->lldi.pdev), ret);
1233 c4iw_dealloc(ctx);
1234 }
1235 }
1236 break;
1237 case CXGB4_STATE_DOWN:
1238 printk(KERN_INFO MOD "%s: Down\n",
1239 pci_name(ctx->lldi.pdev));
1240 if (ctx->dev)
1241 c4iw_remove(ctx);
1242 break;
1243 case CXGB4_STATE_START_RECOVERY:
1244 printk(KERN_INFO MOD "%s: Fatal Error\n",
1245 pci_name(ctx->lldi.pdev));
1246 if (ctx->dev) {
1247 struct ib_event event;
1248
1249 ctx->dev->rdev.flags |= T4_FATAL_ERROR;
1250 memset(&event, 0, sizeof event);
1251 event.event = IB_EVENT_DEVICE_FATAL;
1252 event.device = &ctx->dev->ibdev;
1253 ib_dispatch_event(&event);
1254 c4iw_remove(ctx);
1255 }
1256 break;
1257 case CXGB4_STATE_DETACH:
1258 printk(KERN_INFO MOD "%s: Detach\n",
1259 pci_name(ctx->lldi.pdev));
1260 if (ctx->dev)
1261 c4iw_remove(ctx);
1262 break;
1263 }
1264 return 0;
1265 }
1266
1267 static int disable_qp_db(int id, void *p, void *data)
1268 {
1269 struct c4iw_qp *qp = p;
1270
1271 t4_disable_wq_db(&qp->wq);
1272 return 0;
1273 }
1274
1275 static void stop_queues(struct uld_ctx *ctx)
1276 {
1277 unsigned long flags;
1278
1279 spin_lock_irqsave(&ctx->dev->lock, flags);
1280 ctx->dev->rdev.stats.db_state_transitions++;
1281 ctx->dev->db_state = STOPPED;
1282 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
1283 idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
1284 else
1285 ctx->dev->rdev.status_page->db_off = 1;
1286 spin_unlock_irqrestore(&ctx->dev->lock, flags);
1287 }
1288
1289 static int enable_qp_db(int id, void *p, void *data)
1290 {
1291 struct c4iw_qp *qp = p;
1292
1293 t4_enable_wq_db(&qp->wq);
1294 return 0;
1295 }
1296
1297 static void resume_rc_qp(struct c4iw_qp *qp)
1298 {
1299 spin_lock(&qp->lock);
1300 t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL);
1301 qp->wq.sq.wq_pidx_inc = 0;
1302 t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL);
1303 qp->wq.rq.wq_pidx_inc = 0;
1304 spin_unlock(&qp->lock);
1305 }
1306
1307 static void resume_a_chunk(struct uld_ctx *ctx)
1308 {
1309 int i;
1310 struct c4iw_qp *qp;
1311
1312 for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1313 qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1314 db_fc_entry);
1315 list_del_init(&qp->db_fc_entry);
1316 resume_rc_qp(qp);
1317 if (list_empty(&ctx->dev->db_fc_list))
1318 break;
1319 }
1320 }
1321
1322 static void resume_queues(struct uld_ctx *ctx)
1323 {
1324 spin_lock_irq(&ctx->dev->lock);
1325 if (ctx->dev->db_state != STOPPED)
1326 goto out;
1327 ctx->dev->db_state = FLOW_CONTROL;
1328 while (1) {
1329 if (list_empty(&ctx->dev->db_fc_list)) {
1330 WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1331 ctx->dev->db_state = NORMAL;
1332 ctx->dev->rdev.stats.db_state_transitions++;
1333 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1334 idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1335 NULL);
1336 } else {
1337 ctx->dev->rdev.status_page->db_off = 0;
1338 }
1339 break;
1340 } else {
1341 if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1342 < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1343 DB_FC_DRAIN_THRESH)) {
1344 resume_a_chunk(ctx);
1345 }
1346 if (!list_empty(&ctx->dev->db_fc_list)) {
1347 spin_unlock_irq(&ctx->dev->lock);
1348 if (DB_FC_RESUME_DELAY) {
1349 set_current_state(TASK_UNINTERRUPTIBLE);
1350 schedule_timeout(DB_FC_RESUME_DELAY);
1351 }
1352 spin_lock_irq(&ctx->dev->lock);
1353 if (ctx->dev->db_state != FLOW_CONTROL)
1354 break;
1355 }
1356 }
1357 }
1358 out:
1359 if (ctx->dev->db_state != NORMAL)
1360 ctx->dev->rdev.stats.db_fc_interruptions++;
1361 spin_unlock_irq(&ctx->dev->lock);
1362 }
1363
1364 struct qp_list {
1365 unsigned idx;
1366 struct c4iw_qp **qps;
1367 };
1368
1369 static int add_and_ref_qp(int id, void *p, void *data)
1370 {
1371 struct qp_list *qp_listp = data;
1372 struct c4iw_qp *qp = p;
1373
1374 c4iw_qp_add_ref(&qp->ibqp);
1375 qp_listp->qps[qp_listp->idx++] = qp;
1376 return 0;
1377 }
1378
1379 static int count_qps(int id, void *p, void *data)
1380 {
1381 unsigned *countp = data;
1382 (*countp)++;
1383 return 0;
1384 }
1385
1386 static void deref_qps(struct qp_list *qp_list)
1387 {
1388 int idx;
1389
1390 for (idx = 0; idx < qp_list->idx; idx++)
1391 c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1392 }
1393
1394 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1395 {
1396 int idx;
1397 int ret;
1398
1399 for (idx = 0; idx < qp_list->idx; idx++) {
1400 struct c4iw_qp *qp = qp_list->qps[idx];
1401
1402 spin_lock_irq(&qp->rhp->lock);
1403 spin_lock(&qp->lock);
1404 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1405 qp->wq.sq.qid,
1406 t4_sq_host_wq_pidx(&qp->wq),
1407 t4_sq_wq_size(&qp->wq));
1408 if (ret) {
1409 pr_err(MOD "%s: Fatal error - "
1410 "DB overflow recovery failed - "
1411 "error syncing SQ qid %u\n",
1412 pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1413 spin_unlock(&qp->lock);
1414 spin_unlock_irq(&qp->rhp->lock);
1415 return;
1416 }
1417 qp->wq.sq.wq_pidx_inc = 0;
1418
1419 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1420 qp->wq.rq.qid,
1421 t4_rq_host_wq_pidx(&qp->wq),
1422 t4_rq_wq_size(&qp->wq));
1423
1424 if (ret) {
1425 pr_err(MOD "%s: Fatal error - "
1426 "DB overflow recovery failed - "
1427 "error syncing RQ qid %u\n",
1428 pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1429 spin_unlock(&qp->lock);
1430 spin_unlock_irq(&qp->rhp->lock);
1431 return;
1432 }
1433 qp->wq.rq.wq_pidx_inc = 0;
1434 spin_unlock(&qp->lock);
1435 spin_unlock_irq(&qp->rhp->lock);
1436
1437 /* Wait for the dbfifo to drain */
1438 while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1439 set_current_state(TASK_UNINTERRUPTIBLE);
1440 schedule_timeout(usecs_to_jiffies(10));
1441 }
1442 }
1443 }
1444
1445 static void recover_queues(struct uld_ctx *ctx)
1446 {
1447 int count = 0;
1448 struct qp_list qp_list;
1449 int ret;
1450
1451 /* slow everybody down */
1452 set_current_state(TASK_UNINTERRUPTIBLE);
1453 schedule_timeout(usecs_to_jiffies(1000));
1454
1455 /* flush the SGE contexts */
1456 ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1457 if (ret) {
1458 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1459 pci_name(ctx->lldi.pdev));
1460 return;
1461 }
1462
1463 /* Count active queues so we can build a list of queues to recover */
1464 spin_lock_irq(&ctx->dev->lock);
1465 WARN_ON(ctx->dev->db_state != STOPPED);
1466 ctx->dev->db_state = RECOVERY;
1467 idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1468
1469 qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC);
1470 if (!qp_list.qps) {
1471 spin_unlock_irq(&ctx->dev->lock);
1472 return;
1473 }
1474 qp_list.idx = 0;
1475
1476 /* add and ref each qp so it doesn't get freed */
1477 idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1478
1479 spin_unlock_irq(&ctx->dev->lock);
1480
1481 /* now traverse the list in a safe context to recover the db state*/
1482 recover_lost_dbs(ctx, &qp_list);
1483
1484 /* we're almost done! deref the qps and clean up */
1485 deref_qps(&qp_list);
1486 kfree(qp_list.qps);
1487
1488 spin_lock_irq(&ctx->dev->lock);
1489 WARN_ON(ctx->dev->db_state != RECOVERY);
1490 ctx->dev->db_state = STOPPED;
1491 spin_unlock_irq(&ctx->dev->lock);
1492 }
1493
1494 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1495 {
1496 struct uld_ctx *ctx = handle;
1497
1498 switch (control) {
1499 case CXGB4_CONTROL_DB_FULL:
1500 stop_queues(ctx);
1501 ctx->dev->rdev.stats.db_full++;
1502 break;
1503 case CXGB4_CONTROL_DB_EMPTY:
1504 resume_queues(ctx);
1505 mutex_lock(&ctx->dev->rdev.stats.lock);
1506 ctx->dev->rdev.stats.db_empty++;
1507 mutex_unlock(&ctx->dev->rdev.stats.lock);
1508 break;
1509 case CXGB4_CONTROL_DB_DROP:
1510 recover_queues(ctx);
1511 mutex_lock(&ctx->dev->rdev.stats.lock);
1512 ctx->dev->rdev.stats.db_drop++;
1513 mutex_unlock(&ctx->dev->rdev.stats.lock);
1514 break;
1515 default:
1516 printk(KERN_WARNING MOD "%s: unknown control cmd %u\n",
1517 pci_name(ctx->lldi.pdev), control);
1518 break;
1519 }
1520 return 0;
1521 }
1522
1523 static struct cxgb4_uld_info c4iw_uld_info = {
1524 .name = DRV_NAME,
1525 .nrxq = MAX_ULD_QSETS,
1526 .ntxq = MAX_ULD_QSETS,
1527 .rxq_size = 511,
1528 .ciq = true,
1529 .lro = false,
1530 .add = c4iw_uld_add,
1531 .rx_handler = c4iw_uld_rx_handler,
1532 .state_change = c4iw_uld_state_change,
1533 .control = c4iw_uld_control,
1534 };
1535
1536 static int __init c4iw_init_module(void)
1537 {
1538 int err;
1539
1540 err = c4iw_cm_init();
1541 if (err)
1542 return err;
1543
1544 c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1545 if (!c4iw_debugfs_root)
1546 printk(KERN_WARNING MOD
1547 "could not create debugfs entry, continuing\n");
1548
1549 cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1550
1551 return 0;
1552 }
1553
1554 static void __exit c4iw_exit_module(void)
1555 {
1556 struct uld_ctx *ctx, *tmp;
1557
1558 mutex_lock(&dev_mutex);
1559 list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1560 if (ctx->dev)
1561 c4iw_remove(ctx);
1562 kfree(ctx);
1563 }
1564 mutex_unlock(&dev_mutex);
1565 cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1566 c4iw_cm_term();
1567 debugfs_remove_recursive(c4iw_debugfs_root);
1568 }
1569
1570 module_init(c4iw_init_module);
1571 module_exit(c4iw_exit_module);