]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/infiniband/hw/cxgb4/device.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / infiniband / hw / cxgb4 / device.c
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/math64.h>
37
38 #include <rdma/ib_verbs.h>
39
40 #include "iw_cxgb4.h"
41
42 #define DRV_VERSION "0.1"
43
44 MODULE_AUTHOR("Steve Wise");
45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
46 MODULE_LICENSE("Dual BSD/GPL");
47
48 static int allow_db_fc_on_t5;
49 module_param(allow_db_fc_on_t5, int, 0644);
50 MODULE_PARM_DESC(allow_db_fc_on_t5,
51 "Allow DB Flow Control on T5 (default = 0)");
52
53 static int allow_db_coalescing_on_t5;
54 module_param(allow_db_coalescing_on_t5, int, 0644);
55 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
56 "Allow DB Coalescing on T5 (default = 0)");
57
58 int c4iw_wr_log = 0;
59 module_param(c4iw_wr_log, int, 0444);
60 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data.");
61
62 static int c4iw_wr_log_size_order = 12;
63 module_param(c4iw_wr_log_size_order, int, 0444);
64 MODULE_PARM_DESC(c4iw_wr_log_size_order,
65 "Number of entries (log2) in the work request timing log.");
66
67 static LIST_HEAD(uld_ctx_list);
68 static DEFINE_MUTEX(dev_mutex);
69 static struct workqueue_struct *reg_workq;
70
71 #define DB_FC_RESUME_SIZE 64
72 #define DB_FC_RESUME_DELAY 1
73 #define DB_FC_DRAIN_THRESH 0
74
75 static struct dentry *c4iw_debugfs_root;
76
77 struct c4iw_debugfs_data {
78 struct c4iw_dev *devp;
79 char *buf;
80 int bufsize;
81 int pos;
82 };
83
84 static int count_idrs(int id, void *p, void *data)
85 {
86 int *countp = data;
87
88 *countp = *countp + 1;
89 return 0;
90 }
91
92 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
93 loff_t *ppos)
94 {
95 struct c4iw_debugfs_data *d = file->private_data;
96
97 return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
98 }
99
100 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe)
101 {
102 struct wr_log_entry le;
103 int idx;
104
105 if (!wq->rdev->wr_log)
106 return;
107
108 idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) &
109 (wq->rdev->wr_log_size - 1);
110 le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]);
111 le.poll_host_time = ktime_get();
112 le.valid = 1;
113 le.cqe_sge_ts = CQE_TS(cqe);
114 if (SQ_TYPE(cqe)) {
115 le.qid = wq->sq.qid;
116 le.opcode = CQE_OPCODE(cqe);
117 le.post_host_time = wq->sq.sw_sq[wq->sq.cidx].host_time;
118 le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts;
119 le.wr_id = CQE_WRID_SQ_IDX(cqe);
120 } else {
121 le.qid = wq->rq.qid;
122 le.opcode = FW_RI_RECEIVE;
123 le.post_host_time = wq->rq.sw_rq[wq->rq.cidx].host_time;
124 le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts;
125 le.wr_id = CQE_WRID_MSN(cqe);
126 }
127 wq->rdev->wr_log[idx] = le;
128 }
129
130 static int wr_log_show(struct seq_file *seq, void *v)
131 {
132 struct c4iw_dev *dev = seq->private;
133 ktime_t prev_time;
134 struct wr_log_entry *lep;
135 int prev_time_set = 0;
136 int idx, end;
137
138 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000)
139
140 idx = atomic_read(&dev->rdev.wr_log_idx) &
141 (dev->rdev.wr_log_size - 1);
142 end = idx - 1;
143 if (end < 0)
144 end = dev->rdev.wr_log_size - 1;
145 lep = &dev->rdev.wr_log[idx];
146 while (idx != end) {
147 if (lep->valid) {
148 if (!prev_time_set) {
149 prev_time_set = 1;
150 prev_time = lep->poll_host_time;
151 }
152 seq_printf(seq, "%04u: nsec %llu qid %u opcode "
153 "%u %s 0x%x host_wr_delta nsec %llu "
154 "post_sge_ts 0x%llx cqe_sge_ts 0x%llx "
155 "poll_sge_ts 0x%llx post_poll_delta_ns %llu "
156 "cqe_poll_delta_ns %llu\n",
157 idx,
158 ktime_to_ns(ktime_sub(lep->poll_host_time,
159 prev_time)),
160 lep->qid, lep->opcode,
161 lep->opcode == FW_RI_RECEIVE ?
162 "msn" : "wrid",
163 lep->wr_id,
164 ktime_to_ns(ktime_sub(lep->poll_host_time,
165 lep->post_host_time)),
166 lep->post_sge_ts, lep->cqe_sge_ts,
167 lep->poll_sge_ts,
168 ts2ns(lep->poll_sge_ts - lep->post_sge_ts),
169 ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts));
170 prev_time = lep->poll_host_time;
171 }
172 idx++;
173 if (idx > (dev->rdev.wr_log_size - 1))
174 idx = 0;
175 lep = &dev->rdev.wr_log[idx];
176 }
177 #undef ts2ns
178 return 0;
179 }
180
181 static int wr_log_open(struct inode *inode, struct file *file)
182 {
183 return single_open(file, wr_log_show, inode->i_private);
184 }
185
186 static ssize_t wr_log_clear(struct file *file, const char __user *buf,
187 size_t count, loff_t *pos)
188 {
189 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
190 int i;
191
192 if (dev->rdev.wr_log)
193 for (i = 0; i < dev->rdev.wr_log_size; i++)
194 dev->rdev.wr_log[i].valid = 0;
195 return count;
196 }
197
198 static const struct file_operations wr_log_debugfs_fops = {
199 .owner = THIS_MODULE,
200 .open = wr_log_open,
201 .release = single_release,
202 .read = seq_read,
203 .llseek = seq_lseek,
204 .write = wr_log_clear,
205 };
206
207 static struct sockaddr_in zero_sin = {
208 .sin_family = AF_INET,
209 };
210
211 static struct sockaddr_in6 zero_sin6 = {
212 .sin6_family = AF_INET6,
213 };
214
215 static void set_ep_sin_addrs(struct c4iw_ep *ep,
216 struct sockaddr_in **lsin,
217 struct sockaddr_in **rsin,
218 struct sockaddr_in **m_lsin,
219 struct sockaddr_in **m_rsin)
220 {
221 struct iw_cm_id *id = ep->com.cm_id;
222
223 *m_lsin = (struct sockaddr_in *)&ep->com.local_addr;
224 *m_rsin = (struct sockaddr_in *)&ep->com.remote_addr;
225 if (id) {
226 *lsin = (struct sockaddr_in *)&id->local_addr;
227 *rsin = (struct sockaddr_in *)&id->remote_addr;
228 } else {
229 *lsin = &zero_sin;
230 *rsin = &zero_sin;
231 }
232 }
233
234 static void set_ep_sin6_addrs(struct c4iw_ep *ep,
235 struct sockaddr_in6 **lsin6,
236 struct sockaddr_in6 **rsin6,
237 struct sockaddr_in6 **m_lsin6,
238 struct sockaddr_in6 **m_rsin6)
239 {
240 struct iw_cm_id *id = ep->com.cm_id;
241
242 *m_lsin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
243 *m_rsin6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
244 if (id) {
245 *lsin6 = (struct sockaddr_in6 *)&id->local_addr;
246 *rsin6 = (struct sockaddr_in6 *)&id->remote_addr;
247 } else {
248 *lsin6 = &zero_sin6;
249 *rsin6 = &zero_sin6;
250 }
251 }
252
253 static int dump_qp(int id, void *p, void *data)
254 {
255 struct c4iw_qp *qp = p;
256 struct c4iw_debugfs_data *qpd = data;
257 int space;
258 int cc;
259
260 if (id != qp->wq.sq.qid)
261 return 0;
262
263 space = qpd->bufsize - qpd->pos - 1;
264 if (space == 0)
265 return 1;
266
267 if (qp->ep) {
268 struct c4iw_ep *ep = qp->ep;
269
270 if (ep->com.local_addr.ss_family == AF_INET) {
271 struct sockaddr_in *lsin;
272 struct sockaddr_in *rsin;
273 struct sockaddr_in *m_lsin;
274 struct sockaddr_in *m_rsin;
275
276 set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
277 cc = snprintf(qpd->buf + qpd->pos, space,
278 "rc qp sq id %u %s id %u state %u "
279 "onchip %u ep tid %u state %u "
280 "%pI4:%u/%u->%pI4:%u/%u\n",
281 qp->wq.sq.qid, qp->srq ? "srq" : "rq",
282 qp->srq ? qp->srq->idx : qp->wq.rq.qid,
283 (int)qp->attr.state,
284 qp->wq.sq.flags & T4_SQ_ONCHIP,
285 ep->hwtid, (int)ep->com.state,
286 &lsin->sin_addr, ntohs(lsin->sin_port),
287 ntohs(m_lsin->sin_port),
288 &rsin->sin_addr, ntohs(rsin->sin_port),
289 ntohs(m_rsin->sin_port));
290 } else {
291 struct sockaddr_in6 *lsin6;
292 struct sockaddr_in6 *rsin6;
293 struct sockaddr_in6 *m_lsin6;
294 struct sockaddr_in6 *m_rsin6;
295
296 set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6,
297 &m_rsin6);
298 cc = snprintf(qpd->buf + qpd->pos, space,
299 "rc qp sq id %u rq id %u state %u "
300 "onchip %u ep tid %u state %u "
301 "%pI6:%u/%u->%pI6:%u/%u\n",
302 qp->wq.sq.qid, qp->wq.rq.qid,
303 (int)qp->attr.state,
304 qp->wq.sq.flags & T4_SQ_ONCHIP,
305 ep->hwtid, (int)ep->com.state,
306 &lsin6->sin6_addr,
307 ntohs(lsin6->sin6_port),
308 ntohs(m_lsin6->sin6_port),
309 &rsin6->sin6_addr,
310 ntohs(rsin6->sin6_port),
311 ntohs(m_rsin6->sin6_port));
312 }
313 } else
314 cc = snprintf(qpd->buf + qpd->pos, space,
315 "qp sq id %u rq id %u state %u onchip %u\n",
316 qp->wq.sq.qid, qp->wq.rq.qid,
317 (int)qp->attr.state,
318 qp->wq.sq.flags & T4_SQ_ONCHIP);
319 if (cc < space)
320 qpd->pos += cc;
321 return 0;
322 }
323
324 static int qp_release(struct inode *inode, struct file *file)
325 {
326 struct c4iw_debugfs_data *qpd = file->private_data;
327 if (!qpd) {
328 pr_info("%s null qpd?\n", __func__);
329 return 0;
330 }
331 vfree(qpd->buf);
332 kfree(qpd);
333 return 0;
334 }
335
336 static int qp_open(struct inode *inode, struct file *file)
337 {
338 struct c4iw_debugfs_data *qpd;
339 int count = 1;
340
341 qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
342 if (!qpd)
343 return -ENOMEM;
344
345 qpd->devp = inode->i_private;
346 qpd->pos = 0;
347
348 spin_lock_irq(&qpd->devp->lock);
349 idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
350 spin_unlock_irq(&qpd->devp->lock);
351
352 qpd->bufsize = count * 180;
353 qpd->buf = vmalloc(qpd->bufsize);
354 if (!qpd->buf) {
355 kfree(qpd);
356 return -ENOMEM;
357 }
358
359 spin_lock_irq(&qpd->devp->lock);
360 idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
361 spin_unlock_irq(&qpd->devp->lock);
362
363 qpd->buf[qpd->pos++] = 0;
364 file->private_data = qpd;
365 return 0;
366 }
367
368 static const struct file_operations qp_debugfs_fops = {
369 .owner = THIS_MODULE,
370 .open = qp_open,
371 .release = qp_release,
372 .read = debugfs_read,
373 .llseek = default_llseek,
374 };
375
376 static int dump_stag(int id, void *p, void *data)
377 {
378 struct c4iw_debugfs_data *stagd = data;
379 int space;
380 int cc;
381 struct fw_ri_tpte tpte;
382 int ret;
383
384 space = stagd->bufsize - stagd->pos - 1;
385 if (space == 0)
386 return 1;
387
388 ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8,
389 (__be32 *)&tpte);
390 if (ret) {
391 dev_err(&stagd->devp->rdev.lldi.pdev->dev,
392 "%s cxgb4_read_tpte err %d\n", __func__, ret);
393 return ret;
394 }
395 cc = snprintf(stagd->buf + stagd->pos, space,
396 "stag: idx 0x%x valid %d key 0x%x state %d pdid %d "
397 "perm 0x%x ps %d len 0x%llx va 0x%llx\n",
398 (u32)id<<8,
399 FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)),
400 FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)),
401 FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)),
402 FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)),
403 FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)),
404 FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)),
405 ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo),
406 ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo));
407 if (cc < space)
408 stagd->pos += cc;
409 return 0;
410 }
411
412 static int stag_release(struct inode *inode, struct file *file)
413 {
414 struct c4iw_debugfs_data *stagd = file->private_data;
415 if (!stagd) {
416 pr_info("%s null stagd?\n", __func__);
417 return 0;
418 }
419 vfree(stagd->buf);
420 kfree(stagd);
421 return 0;
422 }
423
424 static int stag_open(struct inode *inode, struct file *file)
425 {
426 struct c4iw_debugfs_data *stagd;
427 int ret = 0;
428 int count = 1;
429
430 stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
431 if (!stagd) {
432 ret = -ENOMEM;
433 goto out;
434 }
435 stagd->devp = inode->i_private;
436 stagd->pos = 0;
437
438 spin_lock_irq(&stagd->devp->lock);
439 idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
440 spin_unlock_irq(&stagd->devp->lock);
441
442 stagd->bufsize = count * 256;
443 stagd->buf = vmalloc(stagd->bufsize);
444 if (!stagd->buf) {
445 ret = -ENOMEM;
446 goto err1;
447 }
448
449 spin_lock_irq(&stagd->devp->lock);
450 idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
451 spin_unlock_irq(&stagd->devp->lock);
452
453 stagd->buf[stagd->pos++] = 0;
454 file->private_data = stagd;
455 goto out;
456 err1:
457 kfree(stagd);
458 out:
459 return ret;
460 }
461
462 static const struct file_operations stag_debugfs_fops = {
463 .owner = THIS_MODULE,
464 .open = stag_open,
465 .release = stag_release,
466 .read = debugfs_read,
467 .llseek = default_llseek,
468 };
469
470 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
471
472 static int stats_show(struct seq_file *seq, void *v)
473 {
474 struct c4iw_dev *dev = seq->private;
475
476 seq_printf(seq, " Object: %10s %10s %10s %10s\n", "Total", "Current",
477 "Max", "Fail");
478 seq_printf(seq, " PDID: %10llu %10llu %10llu %10llu\n",
479 dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
480 dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
481 seq_printf(seq, " QID: %10llu %10llu %10llu %10llu\n",
482 dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
483 dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
484 seq_printf(seq, " SRQS: %10llu %10llu %10llu %10llu\n",
485 dev->rdev.stats.srqt.total, dev->rdev.stats.srqt.cur,
486 dev->rdev.stats.srqt.max, dev->rdev.stats.srqt.fail);
487 seq_printf(seq, " TPTMEM: %10llu %10llu %10llu %10llu\n",
488 dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
489 dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
490 seq_printf(seq, " PBLMEM: %10llu %10llu %10llu %10llu\n",
491 dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
492 dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
493 seq_printf(seq, " RQTMEM: %10llu %10llu %10llu %10llu\n",
494 dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
495 dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
496 seq_printf(seq, " OCQPMEM: %10llu %10llu %10llu %10llu\n",
497 dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
498 dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
499 seq_printf(seq, " DB FULL: %10llu\n", dev->rdev.stats.db_full);
500 seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
501 seq_printf(seq, " DB DROP: %10llu\n", dev->rdev.stats.db_drop);
502 seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
503 db_state_str[dev->db_state],
504 dev->rdev.stats.db_state_transitions,
505 dev->rdev.stats.db_fc_interruptions);
506 seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
507 seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
508 dev->rdev.stats.act_ofld_conn_fails);
509 seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
510 dev->rdev.stats.pas_ofld_conn_fails);
511 seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv);
512 seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird);
513 return 0;
514 }
515
516 static int stats_open(struct inode *inode, struct file *file)
517 {
518 return single_open(file, stats_show, inode->i_private);
519 }
520
521 static ssize_t stats_clear(struct file *file, const char __user *buf,
522 size_t count, loff_t *pos)
523 {
524 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
525
526 mutex_lock(&dev->rdev.stats.lock);
527 dev->rdev.stats.pd.max = 0;
528 dev->rdev.stats.pd.fail = 0;
529 dev->rdev.stats.qid.max = 0;
530 dev->rdev.stats.qid.fail = 0;
531 dev->rdev.stats.stag.max = 0;
532 dev->rdev.stats.stag.fail = 0;
533 dev->rdev.stats.pbl.max = 0;
534 dev->rdev.stats.pbl.fail = 0;
535 dev->rdev.stats.rqt.max = 0;
536 dev->rdev.stats.rqt.fail = 0;
537 dev->rdev.stats.rqt.max = 0;
538 dev->rdev.stats.rqt.fail = 0;
539 dev->rdev.stats.ocqp.max = 0;
540 dev->rdev.stats.ocqp.fail = 0;
541 dev->rdev.stats.db_full = 0;
542 dev->rdev.stats.db_empty = 0;
543 dev->rdev.stats.db_drop = 0;
544 dev->rdev.stats.db_state_transitions = 0;
545 dev->rdev.stats.tcam_full = 0;
546 dev->rdev.stats.act_ofld_conn_fails = 0;
547 dev->rdev.stats.pas_ofld_conn_fails = 0;
548 mutex_unlock(&dev->rdev.stats.lock);
549 return count;
550 }
551
552 static const struct file_operations stats_debugfs_fops = {
553 .owner = THIS_MODULE,
554 .open = stats_open,
555 .release = single_release,
556 .read = seq_read,
557 .llseek = seq_lseek,
558 .write = stats_clear,
559 };
560
561 static int dump_ep(int id, void *p, void *data)
562 {
563 struct c4iw_ep *ep = p;
564 struct c4iw_debugfs_data *epd = data;
565 int space;
566 int cc;
567
568 space = epd->bufsize - epd->pos - 1;
569 if (space == 0)
570 return 1;
571
572 if (ep->com.local_addr.ss_family == AF_INET) {
573 struct sockaddr_in *lsin;
574 struct sockaddr_in *rsin;
575 struct sockaddr_in *m_lsin;
576 struct sockaddr_in *m_rsin;
577
578 set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
579 cc = snprintf(epd->buf + epd->pos, space,
580 "ep %p cm_id %p qp %p state %d flags 0x%lx "
581 "history 0x%lx hwtid %d atid %d "
582 "conn_na %u abort_na %u "
583 "%pI4:%d/%d <-> %pI4:%d/%d\n",
584 ep, ep->com.cm_id, ep->com.qp,
585 (int)ep->com.state, ep->com.flags,
586 ep->com.history, ep->hwtid, ep->atid,
587 ep->stats.connect_neg_adv,
588 ep->stats.abort_neg_adv,
589 &lsin->sin_addr, ntohs(lsin->sin_port),
590 ntohs(m_lsin->sin_port),
591 &rsin->sin_addr, ntohs(rsin->sin_port),
592 ntohs(m_rsin->sin_port));
593 } else {
594 struct sockaddr_in6 *lsin6;
595 struct sockaddr_in6 *rsin6;
596 struct sockaddr_in6 *m_lsin6;
597 struct sockaddr_in6 *m_rsin6;
598
599 set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6, &m_rsin6);
600 cc = snprintf(epd->buf + epd->pos, space,
601 "ep %p cm_id %p qp %p state %d flags 0x%lx "
602 "history 0x%lx hwtid %d atid %d "
603 "conn_na %u abort_na %u "
604 "%pI6:%d/%d <-> %pI6:%d/%d\n",
605 ep, ep->com.cm_id, ep->com.qp,
606 (int)ep->com.state, ep->com.flags,
607 ep->com.history, ep->hwtid, ep->atid,
608 ep->stats.connect_neg_adv,
609 ep->stats.abort_neg_adv,
610 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
611 ntohs(m_lsin6->sin6_port),
612 &rsin6->sin6_addr, ntohs(rsin6->sin6_port),
613 ntohs(m_rsin6->sin6_port));
614 }
615 if (cc < space)
616 epd->pos += cc;
617 return 0;
618 }
619
620 static int dump_listen_ep(int id, void *p, void *data)
621 {
622 struct c4iw_listen_ep *ep = p;
623 struct c4iw_debugfs_data *epd = data;
624 int space;
625 int cc;
626
627 space = epd->bufsize - epd->pos - 1;
628 if (space == 0)
629 return 1;
630
631 if (ep->com.local_addr.ss_family == AF_INET) {
632 struct sockaddr_in *lsin = (struct sockaddr_in *)
633 &ep->com.cm_id->local_addr;
634 struct sockaddr_in *m_lsin = (struct sockaddr_in *)
635 &ep->com.cm_id->m_local_addr;
636
637 cc = snprintf(epd->buf + epd->pos, space,
638 "ep %p cm_id %p state %d flags 0x%lx stid %d "
639 "backlog %d %pI4:%d/%d\n",
640 ep, ep->com.cm_id, (int)ep->com.state,
641 ep->com.flags, ep->stid, ep->backlog,
642 &lsin->sin_addr, ntohs(lsin->sin_port),
643 ntohs(m_lsin->sin_port));
644 } else {
645 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
646 &ep->com.cm_id->local_addr;
647 struct sockaddr_in6 *m_lsin6 = (struct sockaddr_in6 *)
648 &ep->com.cm_id->m_local_addr;
649
650 cc = snprintf(epd->buf + epd->pos, space,
651 "ep %p cm_id %p state %d flags 0x%lx stid %d "
652 "backlog %d %pI6:%d/%d\n",
653 ep, ep->com.cm_id, (int)ep->com.state,
654 ep->com.flags, ep->stid, ep->backlog,
655 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
656 ntohs(m_lsin6->sin6_port));
657 }
658 if (cc < space)
659 epd->pos += cc;
660 return 0;
661 }
662
663 static int ep_release(struct inode *inode, struct file *file)
664 {
665 struct c4iw_debugfs_data *epd = file->private_data;
666 if (!epd) {
667 pr_info("%s null qpd?\n", __func__);
668 return 0;
669 }
670 vfree(epd->buf);
671 kfree(epd);
672 return 0;
673 }
674
675 static int ep_open(struct inode *inode, struct file *file)
676 {
677 struct c4iw_debugfs_data *epd;
678 int ret = 0;
679 int count = 1;
680
681 epd = kmalloc(sizeof(*epd), GFP_KERNEL);
682 if (!epd) {
683 ret = -ENOMEM;
684 goto out;
685 }
686 epd->devp = inode->i_private;
687 epd->pos = 0;
688
689 spin_lock_irq(&epd->devp->lock);
690 idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
691 idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
692 idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
693 spin_unlock_irq(&epd->devp->lock);
694
695 epd->bufsize = count * 240;
696 epd->buf = vmalloc(epd->bufsize);
697 if (!epd->buf) {
698 ret = -ENOMEM;
699 goto err1;
700 }
701
702 spin_lock_irq(&epd->devp->lock);
703 idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
704 idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
705 idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
706 spin_unlock_irq(&epd->devp->lock);
707
708 file->private_data = epd;
709 goto out;
710 err1:
711 kfree(epd);
712 out:
713 return ret;
714 }
715
716 static const struct file_operations ep_debugfs_fops = {
717 .owner = THIS_MODULE,
718 .open = ep_open,
719 .release = ep_release,
720 .read = debugfs_read,
721 };
722
723 static void setup_debugfs(struct c4iw_dev *devp)
724 {
725 debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root,
726 (void *)devp, &qp_debugfs_fops, 4096);
727
728 debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root,
729 (void *)devp, &stag_debugfs_fops, 4096);
730
731 debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root,
732 (void *)devp, &stats_debugfs_fops, 4096);
733
734 debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root,
735 (void *)devp, &ep_debugfs_fops, 4096);
736
737 if (c4iw_wr_log)
738 debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root,
739 (void *)devp, &wr_log_debugfs_fops, 4096);
740 }
741
742 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
743 struct c4iw_dev_ucontext *uctx)
744 {
745 struct list_head *pos, *nxt;
746 struct c4iw_qid_list *entry;
747
748 mutex_lock(&uctx->lock);
749 list_for_each_safe(pos, nxt, &uctx->qpids) {
750 entry = list_entry(pos, struct c4iw_qid_list, entry);
751 list_del_init(&entry->entry);
752 if (!(entry->qid & rdev->qpmask)) {
753 c4iw_put_resource(&rdev->resource.qid_table,
754 entry->qid);
755 mutex_lock(&rdev->stats.lock);
756 rdev->stats.qid.cur -= rdev->qpmask + 1;
757 mutex_unlock(&rdev->stats.lock);
758 }
759 kfree(entry);
760 }
761
762 list_for_each_safe(pos, nxt, &uctx->cqids) {
763 entry = list_entry(pos, struct c4iw_qid_list, entry);
764 list_del_init(&entry->entry);
765 kfree(entry);
766 }
767 mutex_unlock(&uctx->lock);
768 }
769
770 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
771 struct c4iw_dev_ucontext *uctx)
772 {
773 INIT_LIST_HEAD(&uctx->qpids);
774 INIT_LIST_HEAD(&uctx->cqids);
775 mutex_init(&uctx->lock);
776 }
777
778 /* Caller takes care of locking if needed */
779 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
780 {
781 int err;
782 unsigned int factor;
783
784 c4iw_init_dev_ucontext(rdev, &rdev->uctx);
785
786 /*
787 * This implementation assumes udb_density == ucq_density! Eventually
788 * we might need to support this but for now fail the open. Also the
789 * cqid and qpid range must match for now.
790 */
791 if (rdev->lldi.udb_density != rdev->lldi.ucq_density) {
792 pr_err("%s: unsupported udb/ucq densities %u/%u\n",
793 pci_name(rdev->lldi.pdev), rdev->lldi.udb_density,
794 rdev->lldi.ucq_density);
795 return -EINVAL;
796 }
797 if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start ||
798 rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) {
799 pr_err("%s: unsupported qp and cq id ranges qp start %u size %u cq start %u size %u\n",
800 pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start,
801 rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size,
802 rdev->lldi.vr->cq.size);
803 return -EINVAL;
804 }
805
806 /* This implementation requires a sge_host_page_size <= PAGE_SIZE. */
807 if (rdev->lldi.sge_host_page_size > PAGE_SIZE) {
808 pr_err("%s: unsupported sge host page size %u\n",
809 pci_name(rdev->lldi.pdev),
810 rdev->lldi.sge_host_page_size);
811 return -EINVAL;
812 }
813
814 factor = PAGE_SIZE / rdev->lldi.sge_host_page_size;
815 rdev->qpmask = (rdev->lldi.udb_density * factor) - 1;
816 rdev->cqmask = (rdev->lldi.ucq_density * factor) - 1;
817
818 pr_debug("dev %s stag start 0x%0x size 0x%0x num stags %d pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x qp qid start %u size %u cq qid start %u size %u srq size %u\n",
819 pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
820 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
821 rdev->lldi.vr->pbl.start,
822 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
823 rdev->lldi.vr->rq.size,
824 rdev->lldi.vr->qp.start,
825 rdev->lldi.vr->qp.size,
826 rdev->lldi.vr->cq.start,
827 rdev->lldi.vr->cq.size,
828 rdev->lldi.vr->srq.size);
829 pr_debug("udb %pR db_reg %p gts_reg %p qpmask 0x%x cqmask 0x%x\n",
830 &rdev->lldi.pdev->resource[2],
831 rdev->lldi.db_reg, rdev->lldi.gts_reg,
832 rdev->qpmask, rdev->cqmask);
833
834 if (c4iw_num_stags(rdev) == 0)
835 return -EINVAL;
836
837 rdev->stats.pd.total = T4_MAX_NUM_PD;
838 rdev->stats.stag.total = rdev->lldi.vr->stag.size;
839 rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
840 rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
841 rdev->stats.srqt.total = rdev->lldi.vr->srq.size;
842 rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
843 rdev->stats.qid.total = rdev->lldi.vr->qp.size;
844
845 err = c4iw_init_resource(rdev, c4iw_num_stags(rdev),
846 T4_MAX_NUM_PD, rdev->lldi.vr->srq.size);
847 if (err) {
848 pr_err("error %d initializing resources\n", err);
849 return err;
850 }
851 err = c4iw_pblpool_create(rdev);
852 if (err) {
853 pr_err("error %d initializing pbl pool\n", err);
854 goto destroy_resource;
855 }
856 err = c4iw_rqtpool_create(rdev);
857 if (err) {
858 pr_err("error %d initializing rqt pool\n", err);
859 goto destroy_pblpool;
860 }
861 err = c4iw_ocqp_pool_create(rdev);
862 if (err) {
863 pr_err("error %d initializing ocqp pool\n", err);
864 goto destroy_rqtpool;
865 }
866 rdev->status_page = (struct t4_dev_status_page *)
867 __get_free_page(GFP_KERNEL);
868 if (!rdev->status_page) {
869 err = -ENOMEM;
870 goto destroy_ocqp_pool;
871 }
872 rdev->status_page->qp_start = rdev->lldi.vr->qp.start;
873 rdev->status_page->qp_size = rdev->lldi.vr->qp.size;
874 rdev->status_page->cq_start = rdev->lldi.vr->cq.start;
875 rdev->status_page->cq_size = rdev->lldi.vr->cq.size;
876 rdev->status_page->write_cmpl_supported = rdev->lldi.write_cmpl_support;
877
878 if (c4iw_wr_log) {
879 rdev->wr_log = kcalloc(1 << c4iw_wr_log_size_order,
880 sizeof(*rdev->wr_log),
881 GFP_KERNEL);
882 if (rdev->wr_log) {
883 rdev->wr_log_size = 1 << c4iw_wr_log_size_order;
884 atomic_set(&rdev->wr_log_idx, 0);
885 }
886 }
887
888 rdev->free_workq = create_singlethread_workqueue("iw_cxgb4_free");
889 if (!rdev->free_workq) {
890 err = -ENOMEM;
891 goto err_free_status_page_and_wr_log;
892 }
893
894 rdev->status_page->db_off = 0;
895
896 init_completion(&rdev->rqt_compl);
897 init_completion(&rdev->pbl_compl);
898 kref_init(&rdev->rqt_kref);
899 kref_init(&rdev->pbl_kref);
900
901 return 0;
902 err_free_status_page_and_wr_log:
903 if (c4iw_wr_log && rdev->wr_log)
904 kfree(rdev->wr_log);
905 free_page((unsigned long)rdev->status_page);
906 destroy_ocqp_pool:
907 c4iw_ocqp_pool_destroy(rdev);
908 destroy_rqtpool:
909 c4iw_rqtpool_destroy(rdev);
910 destroy_pblpool:
911 c4iw_pblpool_destroy(rdev);
912 destroy_resource:
913 c4iw_destroy_resource(&rdev->resource);
914 return err;
915 }
916
917 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
918 {
919 kfree(rdev->wr_log);
920 c4iw_release_dev_ucontext(rdev, &rdev->uctx);
921 free_page((unsigned long)rdev->status_page);
922 c4iw_pblpool_destroy(rdev);
923 c4iw_rqtpool_destroy(rdev);
924 wait_for_completion(&rdev->pbl_compl);
925 wait_for_completion(&rdev->rqt_compl);
926 c4iw_ocqp_pool_destroy(rdev);
927 destroy_workqueue(rdev->free_workq);
928 c4iw_destroy_resource(&rdev->resource);
929 }
930
931 void c4iw_dealloc(struct uld_ctx *ctx)
932 {
933 c4iw_rdev_close(&ctx->dev->rdev);
934 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->cqidr));
935 idr_destroy(&ctx->dev->cqidr);
936 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->qpidr));
937 idr_destroy(&ctx->dev->qpidr);
938 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->mmidr));
939 idr_destroy(&ctx->dev->mmidr);
940 wait_event(ctx->dev->wait, idr_is_empty(&ctx->dev->hwtid_idr));
941 idr_destroy(&ctx->dev->hwtid_idr);
942 idr_destroy(&ctx->dev->stid_idr);
943 idr_destroy(&ctx->dev->atid_idr);
944 if (ctx->dev->rdev.bar2_kva)
945 iounmap(ctx->dev->rdev.bar2_kva);
946 if (ctx->dev->rdev.oc_mw_kva)
947 iounmap(ctx->dev->rdev.oc_mw_kva);
948 ib_dealloc_device(&ctx->dev->ibdev);
949 ctx->dev = NULL;
950 }
951
952 static void c4iw_remove(struct uld_ctx *ctx)
953 {
954 pr_debug("c4iw_dev %p\n", ctx->dev);
955 c4iw_unregister_device(ctx->dev);
956 c4iw_dealloc(ctx);
957 }
958
959 static int rdma_supported(const struct cxgb4_lld_info *infop)
960 {
961 return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
962 infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
963 infop->vr->cq.size > 0;
964 }
965
966 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
967 {
968 struct c4iw_dev *devp;
969 int ret;
970
971 if (!rdma_supported(infop)) {
972 pr_info("%s: RDMA not supported on this device\n",
973 pci_name(infop->pdev));
974 return ERR_PTR(-ENOSYS);
975 }
976 if (!ocqp_supported(infop))
977 pr_info("%s: On-Chip Queues not supported on this device\n",
978 pci_name(infop->pdev));
979
980 devp = ib_alloc_device(c4iw_dev, ibdev);
981 if (!devp) {
982 pr_err("Cannot allocate ib device\n");
983 return ERR_PTR(-ENOMEM);
984 }
985 devp->rdev.lldi = *infop;
986
987 /* init various hw-queue params based on lld info */
988 pr_debug("Ing. padding boundary is %d, egrsstatuspagesize = %d\n",
989 devp->rdev.lldi.sge_ingpadboundary,
990 devp->rdev.lldi.sge_egrstatuspagesize);
991
992 devp->rdev.hw_queue.t4_eq_status_entries =
993 devp->rdev.lldi.sge_egrstatuspagesize / 64;
994 devp->rdev.hw_queue.t4_max_eq_size = 65520;
995 devp->rdev.hw_queue.t4_max_iq_size = 65520;
996 devp->rdev.hw_queue.t4_max_rq_size = 8192 -
997 devp->rdev.hw_queue.t4_eq_status_entries - 1;
998 devp->rdev.hw_queue.t4_max_sq_size =
999 devp->rdev.hw_queue.t4_max_eq_size -
1000 devp->rdev.hw_queue.t4_eq_status_entries - 1;
1001 devp->rdev.hw_queue.t4_max_qp_depth =
1002 devp->rdev.hw_queue.t4_max_rq_size;
1003 devp->rdev.hw_queue.t4_max_cq_depth =
1004 devp->rdev.hw_queue.t4_max_iq_size - 2;
1005 devp->rdev.hw_queue.t4_stat_len =
1006 devp->rdev.lldi.sge_egrstatuspagesize;
1007
1008 /*
1009 * For T5/T6 devices, we map all of BAR2 with WC.
1010 * For T4 devices with onchip qp mem, we map only that part
1011 * of BAR2 with WC.
1012 */
1013 devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
1014 if (!is_t4(devp->rdev.lldi.adapter_type)) {
1015 devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
1016 pci_resource_len(devp->rdev.lldi.pdev, 2));
1017 if (!devp->rdev.bar2_kva) {
1018 pr_err("Unable to ioremap BAR2\n");
1019 ib_dealloc_device(&devp->ibdev);
1020 return ERR_PTR(-EINVAL);
1021 }
1022 } else if (ocqp_supported(infop)) {
1023 devp->rdev.oc_mw_pa =
1024 pci_resource_start(devp->rdev.lldi.pdev, 2) +
1025 pci_resource_len(devp->rdev.lldi.pdev, 2) -
1026 roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
1027 devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
1028 devp->rdev.lldi.vr->ocq.size);
1029 if (!devp->rdev.oc_mw_kva) {
1030 pr_err("Unable to ioremap onchip mem\n");
1031 ib_dealloc_device(&devp->ibdev);
1032 return ERR_PTR(-EINVAL);
1033 }
1034 }
1035
1036 pr_debug("ocq memory: hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
1037 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
1038 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
1039
1040 ret = c4iw_rdev_open(&devp->rdev);
1041 if (ret) {
1042 pr_err("Unable to open CXIO rdev err %d\n", ret);
1043 ib_dealloc_device(&devp->ibdev);
1044 return ERR_PTR(ret);
1045 }
1046
1047 idr_init(&devp->cqidr);
1048 idr_init(&devp->qpidr);
1049 idr_init(&devp->mmidr);
1050 idr_init(&devp->hwtid_idr);
1051 idr_init(&devp->stid_idr);
1052 idr_init(&devp->atid_idr);
1053 spin_lock_init(&devp->lock);
1054 mutex_init(&devp->rdev.stats.lock);
1055 mutex_init(&devp->db_mutex);
1056 INIT_LIST_HEAD(&devp->db_fc_list);
1057 init_waitqueue_head(&devp->wait);
1058 devp->avail_ird = devp->rdev.lldi.max_ird_adapter;
1059
1060 if (c4iw_debugfs_root) {
1061 devp->debugfs_root = debugfs_create_dir(
1062 pci_name(devp->rdev.lldi.pdev),
1063 c4iw_debugfs_root);
1064 setup_debugfs(devp);
1065 }
1066
1067
1068 return devp;
1069 }
1070
1071 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
1072 {
1073 struct uld_ctx *ctx;
1074 static int vers_printed;
1075 int i;
1076
1077 if (!vers_printed++)
1078 pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
1079 DRV_VERSION);
1080
1081 ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
1082 if (!ctx) {
1083 ctx = ERR_PTR(-ENOMEM);
1084 goto out;
1085 }
1086 ctx->lldi = *infop;
1087
1088 pr_debug("found device %s nchan %u nrxq %u ntxq %u nports %u\n",
1089 pci_name(ctx->lldi.pdev),
1090 ctx->lldi.nchan, ctx->lldi.nrxq,
1091 ctx->lldi.ntxq, ctx->lldi.nports);
1092
1093 mutex_lock(&dev_mutex);
1094 list_add_tail(&ctx->entry, &uld_ctx_list);
1095 mutex_unlock(&dev_mutex);
1096
1097 for (i = 0; i < ctx->lldi.nrxq; i++)
1098 pr_debug("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
1099 out:
1100 return ctx;
1101 }
1102
1103 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
1104 const __be64 *rsp,
1105 u32 pktshift)
1106 {
1107 struct sk_buff *skb;
1108
1109 /*
1110 * Allocate space for cpl_pass_accept_req which will be synthesized by
1111 * driver. Once the driver synthesizes the request the skb will go
1112 * through the regular cpl_pass_accept_req processing.
1113 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
1114 * cpl_rx_pkt.
1115 */
1116 skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1117 sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
1118 if (unlikely(!skb))
1119 return NULL;
1120
1121 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1122 sizeof(struct rss_header) - pktshift);
1123
1124 /*
1125 * This skb will contain:
1126 * rss_header from the rspq descriptor (1 flit)
1127 * cpl_rx_pkt struct from the rspq descriptor (2 flits)
1128 * space for the difference between the size of an
1129 * rx_pkt and pass_accept_req cpl (1 flit)
1130 * the packet data from the gl
1131 */
1132 skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
1133 sizeof(struct rss_header));
1134 skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
1135 sizeof(struct cpl_pass_accept_req),
1136 gl->va + pktshift,
1137 gl->tot_len - pktshift);
1138 return skb;
1139 }
1140
1141 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
1142 const __be64 *rsp)
1143 {
1144 unsigned int opcode = *(u8 *)rsp;
1145 struct sk_buff *skb;
1146
1147 if (opcode != CPL_RX_PKT)
1148 goto out;
1149
1150 skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
1151 if (skb == NULL)
1152 goto out;
1153
1154 if (c4iw_handlers[opcode] == NULL) {
1155 pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1156 kfree_skb(skb);
1157 goto out;
1158 }
1159 c4iw_handlers[opcode](dev, skb);
1160 return 1;
1161 out:
1162 return 0;
1163 }
1164
1165 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
1166 const struct pkt_gl *gl)
1167 {
1168 struct uld_ctx *ctx = handle;
1169 struct c4iw_dev *dev = ctx->dev;
1170 struct sk_buff *skb;
1171 u8 opcode;
1172
1173 if (gl == NULL) {
1174 /* omit RSS and rsp_ctrl at end of descriptor */
1175 unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
1176
1177 skb = alloc_skb(256, GFP_ATOMIC);
1178 if (!skb)
1179 goto nomem;
1180 __skb_put(skb, len);
1181 skb_copy_to_linear_data(skb, &rsp[1], len);
1182 } else if (gl == CXGB4_MSG_AN) {
1183 const struct rsp_ctrl *rc = (void *)rsp;
1184
1185 u32 qid = be32_to_cpu(rc->pldbuflen_qid);
1186 c4iw_ev_handler(dev, qid);
1187 return 0;
1188 } else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
1189 if (recv_rx_pkt(dev, gl, rsp))
1190 return 0;
1191
1192 pr_info("%s: unexpected FL contents at %p, RSS %#llx, FL %#llx, len %u\n",
1193 pci_name(ctx->lldi.pdev), gl->va,
1194 be64_to_cpu(*rsp),
1195 be64_to_cpu(*(__force __be64 *)gl->va),
1196 gl->tot_len);
1197
1198 return 0;
1199 } else {
1200 skb = cxgb4_pktgl_to_skb(gl, 128, 128);
1201 if (unlikely(!skb))
1202 goto nomem;
1203 }
1204
1205 opcode = *(u8 *)rsp;
1206 if (c4iw_handlers[opcode]) {
1207 c4iw_handlers[opcode](dev, skb);
1208 } else {
1209 pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1210 kfree_skb(skb);
1211 }
1212
1213 return 0;
1214 nomem:
1215 return -1;
1216 }
1217
1218 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
1219 {
1220 struct uld_ctx *ctx = handle;
1221
1222 pr_debug("new_state %u\n", new_state);
1223 switch (new_state) {
1224 case CXGB4_STATE_UP:
1225 pr_info("%s: Up\n", pci_name(ctx->lldi.pdev));
1226 if (!ctx->dev) {
1227 ctx->dev = c4iw_alloc(&ctx->lldi);
1228 if (IS_ERR(ctx->dev)) {
1229 pr_err("%s: initialization failed: %ld\n",
1230 pci_name(ctx->lldi.pdev),
1231 PTR_ERR(ctx->dev));
1232 ctx->dev = NULL;
1233 break;
1234 }
1235
1236 INIT_WORK(&ctx->reg_work, c4iw_register_device);
1237 queue_work(reg_workq, &ctx->reg_work);
1238 }
1239 break;
1240 case CXGB4_STATE_DOWN:
1241 pr_info("%s: Down\n", pci_name(ctx->lldi.pdev));
1242 if (ctx->dev)
1243 c4iw_remove(ctx);
1244 break;
1245 case CXGB4_STATE_FATAL_ERROR:
1246 case CXGB4_STATE_START_RECOVERY:
1247 pr_info("%s: Fatal Error\n", pci_name(ctx->lldi.pdev));
1248 if (ctx->dev) {
1249 struct ib_event event;
1250
1251 ctx->dev->rdev.flags |= T4_FATAL_ERROR;
1252 memset(&event, 0, sizeof event);
1253 event.event = IB_EVENT_DEVICE_FATAL;
1254 event.device = &ctx->dev->ibdev;
1255 ib_dispatch_event(&event);
1256 c4iw_remove(ctx);
1257 }
1258 break;
1259 case CXGB4_STATE_DETACH:
1260 pr_info("%s: Detach\n", pci_name(ctx->lldi.pdev));
1261 if (ctx->dev)
1262 c4iw_remove(ctx);
1263 break;
1264 }
1265 return 0;
1266 }
1267
1268 static int disable_qp_db(int id, void *p, void *data)
1269 {
1270 struct c4iw_qp *qp = p;
1271
1272 t4_disable_wq_db(&qp->wq);
1273 return 0;
1274 }
1275
1276 static void stop_queues(struct uld_ctx *ctx)
1277 {
1278 unsigned long flags;
1279
1280 spin_lock_irqsave(&ctx->dev->lock, flags);
1281 ctx->dev->rdev.stats.db_state_transitions++;
1282 ctx->dev->db_state = STOPPED;
1283 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
1284 idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
1285 else
1286 ctx->dev->rdev.status_page->db_off = 1;
1287 spin_unlock_irqrestore(&ctx->dev->lock, flags);
1288 }
1289
1290 static int enable_qp_db(int id, void *p, void *data)
1291 {
1292 struct c4iw_qp *qp = p;
1293
1294 t4_enable_wq_db(&qp->wq);
1295 return 0;
1296 }
1297
1298 static void resume_rc_qp(struct c4iw_qp *qp)
1299 {
1300 spin_lock(&qp->lock);
1301 t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL);
1302 qp->wq.sq.wq_pidx_inc = 0;
1303 t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL);
1304 qp->wq.rq.wq_pidx_inc = 0;
1305 spin_unlock(&qp->lock);
1306 }
1307
1308 static void resume_a_chunk(struct uld_ctx *ctx)
1309 {
1310 int i;
1311 struct c4iw_qp *qp;
1312
1313 for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1314 qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1315 db_fc_entry);
1316 list_del_init(&qp->db_fc_entry);
1317 resume_rc_qp(qp);
1318 if (list_empty(&ctx->dev->db_fc_list))
1319 break;
1320 }
1321 }
1322
1323 static void resume_queues(struct uld_ctx *ctx)
1324 {
1325 spin_lock_irq(&ctx->dev->lock);
1326 if (ctx->dev->db_state != STOPPED)
1327 goto out;
1328 ctx->dev->db_state = FLOW_CONTROL;
1329 while (1) {
1330 if (list_empty(&ctx->dev->db_fc_list)) {
1331 WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1332 ctx->dev->db_state = NORMAL;
1333 ctx->dev->rdev.stats.db_state_transitions++;
1334 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1335 idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1336 NULL);
1337 } else {
1338 ctx->dev->rdev.status_page->db_off = 0;
1339 }
1340 break;
1341 } else {
1342 if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1343 < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1344 DB_FC_DRAIN_THRESH)) {
1345 resume_a_chunk(ctx);
1346 }
1347 if (!list_empty(&ctx->dev->db_fc_list)) {
1348 spin_unlock_irq(&ctx->dev->lock);
1349 if (DB_FC_RESUME_DELAY) {
1350 set_current_state(TASK_UNINTERRUPTIBLE);
1351 schedule_timeout(DB_FC_RESUME_DELAY);
1352 }
1353 spin_lock_irq(&ctx->dev->lock);
1354 if (ctx->dev->db_state != FLOW_CONTROL)
1355 break;
1356 }
1357 }
1358 }
1359 out:
1360 if (ctx->dev->db_state != NORMAL)
1361 ctx->dev->rdev.stats.db_fc_interruptions++;
1362 spin_unlock_irq(&ctx->dev->lock);
1363 }
1364
1365 struct qp_list {
1366 unsigned idx;
1367 struct c4iw_qp **qps;
1368 };
1369
1370 static int add_and_ref_qp(int id, void *p, void *data)
1371 {
1372 struct qp_list *qp_listp = data;
1373 struct c4iw_qp *qp = p;
1374
1375 c4iw_qp_add_ref(&qp->ibqp);
1376 qp_listp->qps[qp_listp->idx++] = qp;
1377 return 0;
1378 }
1379
1380 static int count_qps(int id, void *p, void *data)
1381 {
1382 unsigned *countp = data;
1383 (*countp)++;
1384 return 0;
1385 }
1386
1387 static void deref_qps(struct qp_list *qp_list)
1388 {
1389 int idx;
1390
1391 for (idx = 0; idx < qp_list->idx; idx++)
1392 c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1393 }
1394
1395 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1396 {
1397 int idx;
1398 int ret;
1399
1400 for (idx = 0; idx < qp_list->idx; idx++) {
1401 struct c4iw_qp *qp = qp_list->qps[idx];
1402
1403 spin_lock_irq(&qp->rhp->lock);
1404 spin_lock(&qp->lock);
1405 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1406 qp->wq.sq.qid,
1407 t4_sq_host_wq_pidx(&qp->wq),
1408 t4_sq_wq_size(&qp->wq));
1409 if (ret) {
1410 pr_err("%s: Fatal error - DB overflow recovery failed - error syncing SQ qid %u\n",
1411 pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1412 spin_unlock(&qp->lock);
1413 spin_unlock_irq(&qp->rhp->lock);
1414 return;
1415 }
1416 qp->wq.sq.wq_pidx_inc = 0;
1417
1418 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1419 qp->wq.rq.qid,
1420 t4_rq_host_wq_pidx(&qp->wq),
1421 t4_rq_wq_size(&qp->wq));
1422
1423 if (ret) {
1424 pr_err("%s: Fatal error - DB overflow recovery failed - error syncing RQ qid %u\n",
1425 pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1426 spin_unlock(&qp->lock);
1427 spin_unlock_irq(&qp->rhp->lock);
1428 return;
1429 }
1430 qp->wq.rq.wq_pidx_inc = 0;
1431 spin_unlock(&qp->lock);
1432 spin_unlock_irq(&qp->rhp->lock);
1433
1434 /* Wait for the dbfifo to drain */
1435 while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1436 set_current_state(TASK_UNINTERRUPTIBLE);
1437 schedule_timeout(usecs_to_jiffies(10));
1438 }
1439 }
1440 }
1441
1442 static void recover_queues(struct uld_ctx *ctx)
1443 {
1444 int count = 0;
1445 struct qp_list qp_list;
1446 int ret;
1447
1448 /* slow everybody down */
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 schedule_timeout(usecs_to_jiffies(1000));
1451
1452 /* flush the SGE contexts */
1453 ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1454 if (ret) {
1455 pr_err("%s: Fatal error - DB overflow recovery failed\n",
1456 pci_name(ctx->lldi.pdev));
1457 return;
1458 }
1459
1460 /* Count active queues so we can build a list of queues to recover */
1461 spin_lock_irq(&ctx->dev->lock);
1462 WARN_ON(ctx->dev->db_state != STOPPED);
1463 ctx->dev->db_state = RECOVERY;
1464 idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1465
1466 qp_list.qps = kcalloc(count, sizeof(*qp_list.qps), GFP_ATOMIC);
1467 if (!qp_list.qps) {
1468 spin_unlock_irq(&ctx->dev->lock);
1469 return;
1470 }
1471 qp_list.idx = 0;
1472
1473 /* add and ref each qp so it doesn't get freed */
1474 idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1475
1476 spin_unlock_irq(&ctx->dev->lock);
1477
1478 /* now traverse the list in a safe context to recover the db state*/
1479 recover_lost_dbs(ctx, &qp_list);
1480
1481 /* we're almost done! deref the qps and clean up */
1482 deref_qps(&qp_list);
1483 kfree(qp_list.qps);
1484
1485 spin_lock_irq(&ctx->dev->lock);
1486 WARN_ON(ctx->dev->db_state != RECOVERY);
1487 ctx->dev->db_state = STOPPED;
1488 spin_unlock_irq(&ctx->dev->lock);
1489 }
1490
1491 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1492 {
1493 struct uld_ctx *ctx = handle;
1494
1495 switch (control) {
1496 case CXGB4_CONTROL_DB_FULL:
1497 stop_queues(ctx);
1498 ctx->dev->rdev.stats.db_full++;
1499 break;
1500 case CXGB4_CONTROL_DB_EMPTY:
1501 resume_queues(ctx);
1502 mutex_lock(&ctx->dev->rdev.stats.lock);
1503 ctx->dev->rdev.stats.db_empty++;
1504 mutex_unlock(&ctx->dev->rdev.stats.lock);
1505 break;
1506 case CXGB4_CONTROL_DB_DROP:
1507 recover_queues(ctx);
1508 mutex_lock(&ctx->dev->rdev.stats.lock);
1509 ctx->dev->rdev.stats.db_drop++;
1510 mutex_unlock(&ctx->dev->rdev.stats.lock);
1511 break;
1512 default:
1513 pr_warn("%s: unknown control cmd %u\n",
1514 pci_name(ctx->lldi.pdev), control);
1515 break;
1516 }
1517 return 0;
1518 }
1519
1520 static struct cxgb4_uld_info c4iw_uld_info = {
1521 .name = DRV_NAME,
1522 .nrxq = MAX_ULD_QSETS,
1523 .ntxq = MAX_ULD_QSETS,
1524 .rxq_size = 511,
1525 .ciq = true,
1526 .lro = false,
1527 .add = c4iw_uld_add,
1528 .rx_handler = c4iw_uld_rx_handler,
1529 .state_change = c4iw_uld_state_change,
1530 .control = c4iw_uld_control,
1531 };
1532
1533 void _c4iw_free_wr_wait(struct kref *kref)
1534 {
1535 struct c4iw_wr_wait *wr_waitp;
1536
1537 wr_waitp = container_of(kref, struct c4iw_wr_wait, kref);
1538 pr_debug("Free wr_wait %p\n", wr_waitp);
1539 kfree(wr_waitp);
1540 }
1541
1542 struct c4iw_wr_wait *c4iw_alloc_wr_wait(gfp_t gfp)
1543 {
1544 struct c4iw_wr_wait *wr_waitp;
1545
1546 wr_waitp = kzalloc(sizeof(*wr_waitp), gfp);
1547 if (wr_waitp) {
1548 kref_init(&wr_waitp->kref);
1549 pr_debug("wr_wait %p\n", wr_waitp);
1550 }
1551 return wr_waitp;
1552 }
1553
1554 static int __init c4iw_init_module(void)
1555 {
1556 int err;
1557
1558 err = c4iw_cm_init();
1559 if (err)
1560 return err;
1561
1562 c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1563
1564 reg_workq = create_singlethread_workqueue("Register_iWARP_device");
1565 if (!reg_workq) {
1566 pr_err("Failed creating workqueue to register iwarp device\n");
1567 return -ENOMEM;
1568 }
1569
1570 cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1571
1572 return 0;
1573 }
1574
1575 static void __exit c4iw_exit_module(void)
1576 {
1577 struct uld_ctx *ctx, *tmp;
1578
1579 mutex_lock(&dev_mutex);
1580 list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1581 if (ctx->dev)
1582 c4iw_remove(ctx);
1583 kfree(ctx);
1584 }
1585 mutex_unlock(&dev_mutex);
1586 flush_workqueue(reg_workq);
1587 destroy_workqueue(reg_workq);
1588 cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1589 c4iw_cm_term();
1590 debugfs_remove_recursive(c4iw_debugfs_root);
1591 }
1592
1593 module_init(c4iw_init_module);
1594 module_exit(c4iw_exit_module);