]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/hw/cxgb4/t4.h
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / hw / cxgb4 / t4.h
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31 #ifndef __T4_H__
32 #define __T4_H__
33
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4fw_ri_api.h"
39
40 #define T4_MAX_NUM_PD 65536
41 #define T4_MAX_MR_SIZE (~0ULL)
42 #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
43 #define T4_STAG_UNSET 0xffffffff
44 #define T4_FW_MAJ 0
45 #define PCIE_MA_SYNC_A 0x30b4
46
47 struct t4_status_page {
48 __be32 rsvd1; /* flit 0 - hw owns */
49 __be16 rsvd2;
50 __be16 qid;
51 __be16 cidx;
52 __be16 pidx;
53 u8 qp_err; /* flit 1 - sw owns */
54 u8 db_off;
55 u8 pad;
56 u16 host_wq_pidx;
57 u16 host_cidx;
58 u16 host_pidx;
59 };
60
61 #define T4_EQ_ENTRY_SIZE 64
62
63 #define T4_SQ_NUM_SLOTS 5
64 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
65 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
66 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
67 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
68 sizeof(struct fw_ri_immd)))
69 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
70 sizeof(struct fw_ri_rdma_write_wr) - \
71 sizeof(struct fw_ri_immd)))
72 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
73 sizeof(struct fw_ri_rdma_write_wr) - \
74 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
75 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
76 sizeof(struct fw_ri_immd)) & ~31UL)
77 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
78 #define T4_MAX_FR_DSGL 1024
79 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
80
81 static inline int t4_max_fr_depth(int use_dsgl)
82 {
83 return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
84 }
85
86 #define T4_RQ_NUM_SLOTS 2
87 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
88 #define T4_MAX_RECV_SGE 4
89
90 union t4_wr {
91 struct fw_ri_res_wr res;
92 struct fw_ri_wr ri;
93 struct fw_ri_rdma_write_wr write;
94 struct fw_ri_send_wr send;
95 struct fw_ri_rdma_read_wr read;
96 struct fw_ri_bind_mw_wr bind;
97 struct fw_ri_fr_nsmr_wr fr;
98 struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
99 struct fw_ri_inv_lstag_wr inv;
100 struct t4_status_page status;
101 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
102 };
103
104 union t4_recv_wr {
105 struct fw_ri_recv_wr recv;
106 struct t4_status_page status;
107 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
108 };
109
110 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
111 enum fw_wr_opcodes opcode, u8 flags, u8 len16)
112 {
113 wqe->send.opcode = (u8)opcode;
114 wqe->send.flags = flags;
115 wqe->send.wrid = wrid;
116 wqe->send.r1[0] = 0;
117 wqe->send.r1[1] = 0;
118 wqe->send.r1[2] = 0;
119 wqe->send.len16 = len16;
120 }
121
122 /* CQE/AE status codes */
123 #define T4_ERR_SUCCESS 0x0
124 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
125 /* STAG is offlimt, being 0, */
126 /* or STAG_key mismatch */
127 #define T4_ERR_PDID 0x2 /* PDID mismatch */
128 #define T4_ERR_QPID 0x3 /* QPID mismatch */
129 #define T4_ERR_ACCESS 0x4 /* Invalid access right */
130 #define T4_ERR_WRAP 0x5 /* Wrap error */
131 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
132 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
133 /* shared memory region */
134 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
135 /* shared memory region */
136 #define T4_ERR_ECC 0x9 /* ECC error detected */
137 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
138 /* reading PSTAG for a MW */
139 /* Invalidate */
140 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
141 /* software error */
142 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
143 #define T4_ERR_CRC 0x10 /* CRC error */
144 #define T4_ERR_MARKER 0x11 /* Marker error */
145 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
146 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
147 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
148 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
149 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
150 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
151 #define T4_ERR_MSN 0x18 /* MSN error */
152 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
153 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
154 /* or READ_REQ */
155 #define T4_ERR_MSN_GAP 0x1B
156 #define T4_ERR_MSN_RANGE 0x1C
157 #define T4_ERR_IRD_OVERFLOW 0x1D
158 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
159 /* software error */
160 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
161 /* mismatch) */
162 /*
163 * CQE defs
164 */
165 struct t4_cqe {
166 __be32 header;
167 __be32 len;
168 union {
169 struct {
170 __be32 stag;
171 __be32 msn;
172 } rcqe;
173 struct {
174 u32 stag;
175 u16 nada2;
176 u16 cidx;
177 } scqe;
178 struct {
179 __be32 wrid_hi;
180 __be32 wrid_low;
181 } gen;
182 } u;
183 __be64 reserved;
184 __be64 bits_type_ts;
185 };
186
187 /* macros for flit 0 of the cqe */
188
189 #define CQE_QPID_S 12
190 #define CQE_QPID_M 0xFFFFF
191 #define CQE_QPID_G(x) ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
192 #define CQE_QPID_V(x) ((x)<<CQE_QPID_S)
193
194 #define CQE_SWCQE_S 11
195 #define CQE_SWCQE_M 0x1
196 #define CQE_SWCQE_G(x) ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
197 #define CQE_SWCQE_V(x) ((x)<<CQE_SWCQE_S)
198
199 #define CQE_STATUS_S 5
200 #define CQE_STATUS_M 0x1F
201 #define CQE_STATUS_G(x) ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
202 #define CQE_STATUS_V(x) ((x)<<CQE_STATUS_S)
203
204 #define CQE_TYPE_S 4
205 #define CQE_TYPE_M 0x1
206 #define CQE_TYPE_G(x) ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
207 #define CQE_TYPE_V(x) ((x)<<CQE_TYPE_S)
208
209 #define CQE_OPCODE_S 0
210 #define CQE_OPCODE_M 0xF
211 #define CQE_OPCODE_G(x) ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
212 #define CQE_OPCODE_V(x) ((x)<<CQE_OPCODE_S)
213
214 #define SW_CQE(x) (CQE_SWCQE_G(be32_to_cpu((x)->header)))
215 #define CQE_QPID(x) (CQE_QPID_G(be32_to_cpu((x)->header)))
216 #define CQE_TYPE(x) (CQE_TYPE_G(be32_to_cpu((x)->header)))
217 #define SQ_TYPE(x) (CQE_TYPE((x)))
218 #define RQ_TYPE(x) (!CQE_TYPE((x)))
219 #define CQE_STATUS(x) (CQE_STATUS_G(be32_to_cpu((x)->header)))
220 #define CQE_OPCODE(x) (CQE_OPCODE_G(be32_to_cpu((x)->header)))
221
222 #define CQE_SEND_OPCODE(x)( \
223 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
224 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
225 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
226 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
227
228 #define CQE_LEN(x) (be32_to_cpu((x)->len))
229
230 /* used for RQ completion processing */
231 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
232 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
233
234 /* used for SQ completion processing */
235 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
236 #define CQE_WRID_FR_STAG(x) (be32_to_cpu((x)->u.scqe.stag))
237
238 /* generic accessor macros */
239 #define CQE_WRID_HI(x) (be32_to_cpu((x)->u.gen.wrid_hi))
240 #define CQE_WRID_LOW(x) (be32_to_cpu((x)->u.gen.wrid_low))
241
242 /* macros for flit 3 of the cqe */
243 #define CQE_GENBIT_S 63
244 #define CQE_GENBIT_M 0x1
245 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
246 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
247
248 #define CQE_OVFBIT_S 62
249 #define CQE_OVFBIT_M 0x1
250 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
251
252 #define CQE_IQTYPE_S 60
253 #define CQE_IQTYPE_M 0x3
254 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
255
256 #define CQE_TS_M 0x0fffffffffffffffULL
257 #define CQE_TS_G(x) ((x) & CQE_TS_M)
258
259 #define CQE_OVFBIT(x) ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
260 #define CQE_GENBIT(x) ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
261 #define CQE_TS(x) (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
262
263 struct t4_swsqe {
264 u64 wr_id;
265 struct t4_cqe cqe;
266 int read_len;
267 int opcode;
268 int complete;
269 int signaled;
270 u16 idx;
271 int flushed;
272 struct timespec host_ts;
273 u64 sge_ts;
274 };
275
276 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
277 {
278 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
279 return pgprot_writecombine(prot);
280 #else
281 return pgprot_noncached(prot);
282 #endif
283 }
284
285 enum {
286 T4_SQ_ONCHIP = (1<<0),
287 };
288
289 struct t4_sq {
290 union t4_wr *queue;
291 dma_addr_t dma_addr;
292 DEFINE_DMA_UNMAP_ADDR(mapping);
293 unsigned long phys_addr;
294 struct t4_swsqe *sw_sq;
295 struct t4_swsqe *oldest_read;
296 void __iomem *bar2_va;
297 u64 bar2_pa;
298 size_t memsize;
299 u32 bar2_qid;
300 u32 qid;
301 u16 in_use;
302 u16 size;
303 u16 cidx;
304 u16 pidx;
305 u16 wq_pidx;
306 u16 wq_pidx_inc;
307 u16 flags;
308 short flush_cidx;
309 };
310
311 struct t4_swrqe {
312 u64 wr_id;
313 struct timespec host_ts;
314 u64 sge_ts;
315 };
316
317 struct t4_rq {
318 union t4_recv_wr *queue;
319 dma_addr_t dma_addr;
320 DEFINE_DMA_UNMAP_ADDR(mapping);
321 struct t4_swrqe *sw_rq;
322 void __iomem *bar2_va;
323 u64 bar2_pa;
324 size_t memsize;
325 u32 bar2_qid;
326 u32 qid;
327 u32 msn;
328 u32 rqt_hwaddr;
329 u16 rqt_size;
330 u16 in_use;
331 u16 size;
332 u16 cidx;
333 u16 pidx;
334 u16 wq_pidx;
335 u16 wq_pidx_inc;
336 };
337
338 struct t4_wq {
339 struct t4_sq sq;
340 struct t4_rq rq;
341 void __iomem *db;
342 struct c4iw_rdev *rdev;
343 int flushed;
344 };
345
346 static inline int t4_rqes_posted(struct t4_wq *wq)
347 {
348 return wq->rq.in_use;
349 }
350
351 static inline int t4_rq_empty(struct t4_wq *wq)
352 {
353 return wq->rq.in_use == 0;
354 }
355
356 static inline int t4_rq_full(struct t4_wq *wq)
357 {
358 return wq->rq.in_use == (wq->rq.size - 1);
359 }
360
361 static inline u32 t4_rq_avail(struct t4_wq *wq)
362 {
363 return wq->rq.size - 1 - wq->rq.in_use;
364 }
365
366 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
367 {
368 wq->rq.in_use++;
369 if (++wq->rq.pidx == wq->rq.size)
370 wq->rq.pidx = 0;
371 wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
372 if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
373 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
374 }
375
376 static inline void t4_rq_consume(struct t4_wq *wq)
377 {
378 wq->rq.in_use--;
379 wq->rq.msn++;
380 if (++wq->rq.cidx == wq->rq.size)
381 wq->rq.cidx = 0;
382 }
383
384 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
385 {
386 return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
387 }
388
389 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
390 {
391 return wq->rq.size * T4_RQ_NUM_SLOTS;
392 }
393
394 static inline int t4_sq_onchip(struct t4_sq *sq)
395 {
396 return sq->flags & T4_SQ_ONCHIP;
397 }
398
399 static inline int t4_sq_empty(struct t4_wq *wq)
400 {
401 return wq->sq.in_use == 0;
402 }
403
404 static inline int t4_sq_full(struct t4_wq *wq)
405 {
406 return wq->sq.in_use == (wq->sq.size - 1);
407 }
408
409 static inline u32 t4_sq_avail(struct t4_wq *wq)
410 {
411 return wq->sq.size - 1 - wq->sq.in_use;
412 }
413
414 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
415 {
416 wq->sq.in_use++;
417 if (++wq->sq.pidx == wq->sq.size)
418 wq->sq.pidx = 0;
419 wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
420 if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
421 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
422 }
423
424 static inline void t4_sq_consume(struct t4_wq *wq)
425 {
426 BUG_ON(wq->sq.in_use < 1);
427 if (wq->sq.cidx == wq->sq.flush_cidx)
428 wq->sq.flush_cidx = -1;
429 wq->sq.in_use--;
430 if (++wq->sq.cidx == wq->sq.size)
431 wq->sq.cidx = 0;
432 }
433
434 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
435 {
436 return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
437 }
438
439 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
440 {
441 return wq->sq.size * T4_SQ_NUM_SLOTS;
442 }
443
444 /* This function copies 64 byte coalesced work request to memory
445 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
446 * from the FIFO instead of from Host.
447 */
448 static inline void pio_copy(u64 __iomem *dst, u64 *src)
449 {
450 int count = 8;
451
452 while (count) {
453 writeq(*src, dst);
454 src++;
455 dst++;
456 count--;
457 }
458 }
459
460 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
461 {
462
463 /* Flush host queue memory writes. */
464 wmb();
465 if (wq->sq.bar2_va) {
466 if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
467 PDBG("%s: WC wq->sq.pidx = %d\n",
468 __func__, wq->sq.pidx);
469 pio_copy((u64 __iomem *)
470 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
471 (u64 *)wqe);
472 } else {
473 PDBG("%s: DB wq->sq.pidx = %d\n",
474 __func__, wq->sq.pidx);
475 writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
476 wq->sq.bar2_va + SGE_UDB_KDOORBELL);
477 }
478
479 /* Flush user doorbell area writes. */
480 wmb();
481 return;
482 }
483 writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
484 }
485
486 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
487 union t4_recv_wr *wqe)
488 {
489
490 /* Flush host queue memory writes. */
491 wmb();
492 if (wq->rq.bar2_va) {
493 if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
494 PDBG("%s: WC wq->rq.pidx = %d\n",
495 __func__, wq->rq.pidx);
496 pio_copy((u64 __iomem *)
497 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
498 (void *)wqe);
499 } else {
500 PDBG("%s: DB wq->rq.pidx = %d\n",
501 __func__, wq->rq.pidx);
502 writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
503 wq->rq.bar2_va + SGE_UDB_KDOORBELL);
504 }
505
506 /* Flush user doorbell area writes. */
507 wmb();
508 return;
509 }
510 writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
511 }
512
513 static inline int t4_wq_in_error(struct t4_wq *wq)
514 {
515 return wq->rq.queue[wq->rq.size].status.qp_err;
516 }
517
518 static inline void t4_set_wq_in_error(struct t4_wq *wq)
519 {
520 wq->rq.queue[wq->rq.size].status.qp_err = 1;
521 }
522
523 static inline void t4_disable_wq_db(struct t4_wq *wq)
524 {
525 wq->rq.queue[wq->rq.size].status.db_off = 1;
526 }
527
528 static inline void t4_enable_wq_db(struct t4_wq *wq)
529 {
530 wq->rq.queue[wq->rq.size].status.db_off = 0;
531 }
532
533 static inline int t4_wq_db_enabled(struct t4_wq *wq)
534 {
535 return !wq->rq.queue[wq->rq.size].status.db_off;
536 }
537
538 enum t4_cq_flags {
539 CQ_ARMED = 1,
540 };
541
542 struct t4_cq {
543 struct t4_cqe *queue;
544 dma_addr_t dma_addr;
545 DEFINE_DMA_UNMAP_ADDR(mapping);
546 struct t4_cqe *sw_queue;
547 void __iomem *gts;
548 void __iomem *bar2_va;
549 u64 bar2_pa;
550 u32 bar2_qid;
551 struct c4iw_rdev *rdev;
552 size_t memsize;
553 __be64 bits_type_ts;
554 u32 cqid;
555 u32 qid_mask;
556 int vector;
557 u16 size; /* including status page */
558 u16 cidx;
559 u16 sw_pidx;
560 u16 sw_cidx;
561 u16 sw_in_use;
562 u16 cidx_inc;
563 u8 gen;
564 u8 error;
565 unsigned long flags;
566 };
567
568 static inline void write_gts(struct t4_cq *cq, u32 val)
569 {
570 if (cq->bar2_va)
571 writel(val | INGRESSQID_V(cq->bar2_qid),
572 cq->bar2_va + SGE_UDB_GTS);
573 else
574 writel(val | INGRESSQID_V(cq->cqid), cq->gts);
575 }
576
577 static inline int t4_clear_cq_armed(struct t4_cq *cq)
578 {
579 return test_and_clear_bit(CQ_ARMED, &cq->flags);
580 }
581
582 static inline int t4_arm_cq(struct t4_cq *cq, int se)
583 {
584 u32 val;
585
586 set_bit(CQ_ARMED, &cq->flags);
587 while (cq->cidx_inc > CIDXINC_M) {
588 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
589 write_gts(cq, val);
590 cq->cidx_inc -= CIDXINC_M;
591 }
592 val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
593 write_gts(cq, val);
594 cq->cidx_inc = 0;
595 return 0;
596 }
597
598 static inline void t4_swcq_produce(struct t4_cq *cq)
599 {
600 cq->sw_in_use++;
601 if (cq->sw_in_use == cq->size) {
602 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
603 cq->error = 1;
604 BUG_ON(1);
605 }
606 if (++cq->sw_pidx == cq->size)
607 cq->sw_pidx = 0;
608 }
609
610 static inline void t4_swcq_consume(struct t4_cq *cq)
611 {
612 BUG_ON(cq->sw_in_use < 1);
613 cq->sw_in_use--;
614 if (++cq->sw_cidx == cq->size)
615 cq->sw_cidx = 0;
616 }
617
618 static inline void t4_hwcq_consume(struct t4_cq *cq)
619 {
620 cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
621 if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
622 u32 val;
623
624 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
625 write_gts(cq, val);
626 cq->cidx_inc = 0;
627 }
628 if (++cq->cidx == cq->size) {
629 cq->cidx = 0;
630 cq->gen ^= 1;
631 }
632 }
633
634 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
635 {
636 return (CQE_GENBIT(cqe) == cq->gen);
637 }
638
639 static inline int t4_cq_notempty(struct t4_cq *cq)
640 {
641 return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
642 }
643
644 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
645 {
646 int ret;
647 u16 prev_cidx;
648
649 if (cq->cidx == 0)
650 prev_cidx = cq->size - 1;
651 else
652 prev_cidx = cq->cidx - 1;
653
654 if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
655 ret = -EOVERFLOW;
656 cq->error = 1;
657 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
658 BUG_ON(1);
659 } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
660
661 /* Ensure CQE is flushed to memory */
662 rmb();
663 *cqe = &cq->queue[cq->cidx];
664 ret = 0;
665 } else
666 ret = -ENODATA;
667 return ret;
668 }
669
670 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
671 {
672 if (cq->sw_in_use == cq->size) {
673 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
674 cq->error = 1;
675 BUG_ON(1);
676 return NULL;
677 }
678 if (cq->sw_in_use)
679 return &cq->sw_queue[cq->sw_cidx];
680 return NULL;
681 }
682
683 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
684 {
685 int ret = 0;
686
687 if (cq->error)
688 ret = -ENODATA;
689 else if (cq->sw_in_use)
690 *cqe = &cq->sw_queue[cq->sw_cidx];
691 else
692 ret = t4_next_hw_cqe(cq, cqe);
693 return ret;
694 }
695
696 static inline int t4_cq_in_error(struct t4_cq *cq)
697 {
698 return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
699 }
700
701 static inline void t4_set_cq_in_error(struct t4_cq *cq)
702 {
703 ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
704 }
705 #endif
706
707 struct t4_dev_status_page {
708 u8 db_off;
709 u8 pad1;
710 u16 pad2;
711 u32 pad3;
712 u64 qp_start;
713 u64 qp_size;
714 u64 cq_start;
715 u64 cq_size;
716 };