]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/hw/hfi1/chip.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2 * Copyright(c) 2015 - 2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 /*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68
69 #define NUM_IB_PORTS 1
70
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79 /*
80 * Default time to aggregate two 10K packets from the idle state
81 * (timer not running). The timer starts at the end of the first packet,
82 * so only the time for one 10K packet and header plus a bit extra is needed.
83 * 10 * 1024 + 64 header byte = 10304 byte
84 * 10304 byte / 12.5 GB/s = 824.32ns
85 */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107
108 struct flag_table {
109 u64 flag; /* the flag */
110 char *str; /* description string */
111 u16 extra; /* extra information */
112 u16 unused0;
113 u32 unused1;
114 };
115
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED 0x1
122 #define SEC_PACKET_DROPPED 0x2
123 #define SEC_SC_HALTED 0x4 /* per-context only */
124 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */
125
126 #define DEFAULT_KRCVQS 2
127 #define MIN_KERNEL_KCTXTS 2
128 #define FIRST_KERNEL_KCTXT 1
129
130 /*
131 * RSM instance allocation
132 * 0 - Verbs
133 * 1 - User Fecn Handling
134 * 2 - Vnic
135 */
136 #define RSM_INS_VERBS 0
137 #define RSM_INS_FECN 1
138 #define RSM_INS_VNIC 2
139
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT 39
142
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE 2ull
152 #define QW_SHIFT 6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH 7ull
155
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW 0ull
158 #define LRH_BTH_BIT_OFFSET 48ull
159 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK 3ull
163 #define LRH_BTH_VALUE 2ull
164
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW 0ull
167 #define LRH_SC_BIT_OFFSET 56ull
168 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK 128ull
171 #define LRH_SC_VALUE 0ull
172
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
178
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW 0ull
182 #define L2_TYPE_BIT_OFFSET 61ull
183 #define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK 3ull
186 #define L2_16B_VALUE 2ull
187
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW 1ull
190 #define L4_TYPE_BIT_OFFSET 0ull
191 #define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK 0xFFull
194 #define L4_16B_ETH_VALUE 0x78ull
195
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull))
200
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 num, \
204 sc0, sc0val, \
205 sc1, sc1val, \
206 sc2, sc2val, \
207 sc3, sc3val, \
208 sc4, sc4val, \
209 sc5, sc5val, \
210 sc6, sc6val, \
211 sc7, sc7val) \
212 ( \
213 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
221 )
222
223 #define DC_SC_VL_VAL( \
224 range, \
225 e0, e0val, \
226 e1, e1val, \
227 e2, e2val, \
228 e3, e3val, \
229 e4, e4val, \
230 e5, e5val, \
231 e6, e6val, \
232 e7, e7val, \
233 e8, e8val, \
234 e9, e9val, \
235 e10, e10val, \
236 e11, e11val, \
237 e12, e12val, \
238 e13, e13val, \
239 e14, e14val, \
240 e15, e15val) \
241 ( \
242 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 | CCE_STATUS_RXE_FROZE_SMASK \
263 | CCE_STATUS_TXE_FROZE_SMASK \
264 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 | CCE_STATUS_TXE_PAUSED_SMASK \
268 | CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
275 /*
276 * CCE Error flags.
277 */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/ FLAG_ENTRY0("CceCsrParityErr",
280 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
288 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
290 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
306 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
308 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
310 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
312 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
314 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
316 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
318 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
320 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
322 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
326 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
328 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
330 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
332 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
336 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
338 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/ FLAG_ENTRY0("LATriggered",
342 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
344 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
352 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
354 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/ FLAG_ENTRY0("CceIntMapCorErr",
356 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/ FLAG_ENTRY0("CceIntMapUncErr",
358 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
360 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363
364 /*
365 * Misc Error flags
366 */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383
384 /*
385 * TXE PIO Error flags and consequences
386 */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
389 SEC_WRITE_DROPPED,
390 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/ FLAG_ENTRY("PioWriteAddrParity",
392 SEC_SPC_FREEZE,
393 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/ FLAG_ENTRY("PioCsrParity",
395 SEC_SPC_FREEZE,
396 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/ FLAG_ENTRY("PioSbMemFifo0",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/ FLAG_ENTRY("PioSbMemFifo1",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/ FLAG_ENTRY("PioPccFifoParity",
404 SEC_SPC_FREEZE,
405 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/ FLAG_ENTRY("PioPecFifoParity",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 SEC_SPC_FREEZE,
414 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/ FLAG_ENTRY("PioSmPktResetParity",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
422 SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
425 SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
428 0,
429 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
431 0,
432 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/ FLAG_ENTRY("PioPpmcPblFifo",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/ FLAG_ENTRY("PioInitSmIn",
440 0,
441 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 SEC_SPC_FREEZE,
444 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
446 SEC_SPC_FREEZE,
447 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/ FLAG_ENTRY("PioHostAddrMemCor",
449 0,
450 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/ FLAG_ENTRY("PioWriteDataParity",
452 SEC_SPC_FREEZE,
453 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/ FLAG_ENTRY("PioStateMachine",
455 SEC_SPC_FREEZE,
456 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/ FLAG_ENTRY("PioWriteQwValidParity",
458 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/ FLAG_ENTRY("PioBlockQwCountParity",
461 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/ FLAG_ENTRY("PioVlfVlLenParity",
464 SEC_SPC_FREEZE,
465 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/ FLAG_ENTRY("PioVlfSopParity",
467 SEC_SPC_FREEZE,
468 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/ FLAG_ENTRY("PioVlFifoParity",
470 SEC_SPC_FREEZE,
471 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
473 SEC_SPC_FREEZE,
474 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/ FLAG_ENTRY("PioPpmcSopLen",
476 SEC_SPC_FREEZE,
477 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
480 SEC_SPC_FREEZE,
481 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
483 SEC_SPC_FREEZE,
484 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/ FLAG_ENTRY("PioPccSopHeadParity",
486 SEC_SPC_FREEZE,
487 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
489 SEC_SPC_FREEZE,
490 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526 /*
527 * TXE SDMA Error flags
528 */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
531 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
533 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR \
543 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
553 /*
554 * TXE Egress Error flags
555 */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653
654 /*
655 * TXE Egress Error Info flags
656 */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/ FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 | SEES(TX_LAUNCH_CSR_PARITY) \
690 | SEES(TX_SBRD_CTL_CSR_PARITY) \
691 | SEES(TX_CONFIG_PARITY) \
692 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 | SEES(TX_CREDIT_RETURN_PARITY))
702
703 /*
704 * TXE Send error flags
705 */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712
713 /*
714 * TXE Send Context Error flags and consequences
715 */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/ FLAG_ENTRY("InconsistentSop",
718 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/ FLAG_ENTRY("DisallowedPacket",
721 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
724 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/ FLAG_ENTRY("WriteOverflow",
727 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/ FLAG_ENTRY("WriteOutOfBounds",
730 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734
735 /*
736 * RXE Receive Error flags
737 */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR \
820 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865 #define RXE_FREEZE_ABORT_MASK \
866 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870 /*
871 * DCC Error Flags
872 */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922
923 /*
924 * LCB error flags
925 */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965
966 /*
967 * DC8051 Error Flags
968 */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983
984 /*
985 * DC8051 Information Error flags
986 *
987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988 */
989 static struct flag_table dc8051_info_err_flags[] = {
990 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
991 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
992 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
993 FLAG_ENTRY0("Serdes internal loopback failure",
994 FAILED_SERDES_INTERNAL_LOOPBACK),
995 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
996 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
997 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
998 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
999 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
1000 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
1003 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
1004 FLAG_ENTRY0("External Device Request Timeout",
1005 EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007
1008 /*
1009 * DC8051 Information Host Information flags
1010 *
1011 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012 */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 FLAG_ENTRY0("Host request done", 0x0001),
1015 FLAG_ENTRY0("BC SMA message", 0x0002),
1016 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
1017 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 FLAG_ENTRY0("External device config request", 0x0020),
1020 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 FLAG_ENTRY0("Link going down", 0x0100),
1023 };
1024
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1035 u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 u8 *device_rev);
1038 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041 u8 *tx_polarity_inversion,
1042 u8 *rx_polarity_inversion, u8 *max_rate);
1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044 unsigned int context, u64 err_status);
1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 static void handle_dcc_err(struct hfi1_devdata *dd,
1047 unsigned int context, u64 err_status);
1048 static void handle_lcb_err(struct hfi1_devdata *dd,
1049 unsigned int context, u64 err_status);
1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void set_partition_keys(struct hfi1_pportdata *ppd);
1059 static const char *link_state_name(u32 state);
1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061 u32 state);
1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063 u64 *out_data);
1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065 static int thermal_init(struct hfi1_devdata *dd);
1066
1067 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1068 int msecs);
1069 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1070 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1071 static void handle_temp_err(struct hfi1_devdata *dd);
1072 static void dc_shutdown(struct hfi1_devdata *dd);
1073 static void dc_start(struct hfi1_devdata *dd);
1074 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1075 unsigned int *np);
1076 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1077 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1078 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1079
1080 /*
1081 * Error interrupt table entry. This is used as input to the interrupt
1082 * "clear down" routine used for all second tier error interrupt register.
1083 * Second tier interrupt registers have a single bit representing them
1084 * in the top-level CceIntStatus.
1085 */
1086 struct err_reg_info {
1087 u32 status; /* status CSR offset */
1088 u32 clear; /* clear CSR offset */
1089 u32 mask; /* mask CSR offset */
1090 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1091 const char *desc;
1092 };
1093
1094 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1095 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1096 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1097
1098 /*
1099 * Helpers for building HFI and DC error interrupt table entries. Different
1100 * helpers are needed because of inconsistent register names.
1101 */
1102 #define EE(reg, handler, desc) \
1103 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1104 handler, desc }
1105 #define DC_EE1(reg, handler, desc) \
1106 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1107 #define DC_EE2(reg, handler, desc) \
1108 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1109
1110 /*
1111 * Table of the "misc" grouping of error interrupts. Each entry refers to
1112 * another register containing more information.
1113 */
1114 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1115 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1116 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1117 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1118 /* 3*/ { 0, 0, 0, NULL }, /* reserved */
1119 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1120 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1121 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1122 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1123 /* the rest are reserved */
1124 };
1125
1126 /*
1127 * Index into the Various section of the interrupt sources
1128 * corresponding to the Critical Temperature interrupt.
1129 */
1130 #define TCRIT_INT_SOURCE 4
1131
1132 /*
1133 * SDMA error interrupt entry - refers to another register containing more
1134 * information.
1135 */
1136 static const struct err_reg_info sdma_eng_err =
1137 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1138
1139 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1140 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1141 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1142 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1143 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1144 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1145 /* rest are reserved */
1146 };
1147
1148 /*
1149 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1150 * register can not be derived from the MTU value because 10K is not
1151 * a power of 2. Therefore, we need a constant. Everything else can
1152 * be calculated.
1153 */
1154 #define DCC_CFG_PORT_MTU_CAP_10240 7
1155
1156 /*
1157 * Table of the DC grouping of error interrupts. Each entry refers to
1158 * another register containing more information.
1159 */
1160 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1161 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1162 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1163 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1164 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1165 /* the rest are reserved */
1166 };
1167
1168 struct cntr_entry {
1169 /*
1170 * counter name
1171 */
1172 char *name;
1173
1174 /*
1175 * csr to read for name (if applicable)
1176 */
1177 u64 csr;
1178
1179 /*
1180 * offset into dd or ppd to store the counter's value
1181 */
1182 int offset;
1183
1184 /*
1185 * flags
1186 */
1187 u8 flags;
1188
1189 /*
1190 * accessor for stat element, context either dd or ppd
1191 */
1192 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1193 int mode, u64 data);
1194 };
1195
1196 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1197 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1198
1199 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1200 { \
1201 name, \
1202 csr, \
1203 offset, \
1204 flags, \
1205 accessor \
1206 }
1207
1208 /* 32bit RXE */
1209 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1210 CNTR_ELEM(#name, \
1211 (counter * 8 + RCV_COUNTER_ARRAY32), \
1212 0, flags | CNTR_32BIT, \
1213 port_access_u32_csr)
1214
1215 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217 (counter * 8 + RCV_COUNTER_ARRAY32), \
1218 0, flags | CNTR_32BIT, \
1219 dev_access_u32_csr)
1220
1221 /* 64bit RXE */
1222 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1223 CNTR_ELEM(#name, \
1224 (counter * 8 + RCV_COUNTER_ARRAY64), \
1225 0, flags, \
1226 port_access_u64_csr)
1227
1228 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1229 CNTR_ELEM(#name, \
1230 (counter * 8 + RCV_COUNTER_ARRAY64), \
1231 0, flags, \
1232 dev_access_u64_csr)
1233
1234 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1235 #define OVR_ELM(ctx) \
1236 CNTR_ELEM("RcvHdrOvr" #ctx, \
1237 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1238 0, CNTR_NORMAL, port_access_u64_csr)
1239
1240 /* 32bit TXE */
1241 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1242 CNTR_ELEM(#name, \
1243 (counter * 8 + SEND_COUNTER_ARRAY32), \
1244 0, flags | CNTR_32BIT, \
1245 port_access_u32_csr)
1246
1247 /* 64bit TXE */
1248 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250 (counter * 8 + SEND_COUNTER_ARRAY64), \
1251 0, flags, \
1252 port_access_u64_csr)
1253
1254 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name,\
1256 counter * 8 + SEND_COUNTER_ARRAY64, \
1257 0, \
1258 flags, \
1259 dev_access_u64_csr)
1260
1261 /* CCE */
1262 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1263 CNTR_ELEM(#name, \
1264 (counter * 8 + CCE_COUNTER_ARRAY32), \
1265 0, flags | CNTR_32BIT, \
1266 dev_access_u32_csr)
1267
1268 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1271 0, flags | CNTR_32BIT, \
1272 dev_access_u32_csr)
1273
1274 /* DC */
1275 #define DC_PERF_CNTR(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277 counter, \
1278 0, \
1279 flags, \
1280 dev_access_u64_csr)
1281
1282 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1283 CNTR_ELEM(#name, \
1284 counter, \
1285 0, \
1286 flags, \
1287 dc_access_lcb_cntr)
1288
1289 /* ibp counters */
1290 #define SW_IBP_CNTR(name, cntr) \
1291 CNTR_ELEM(#name, \
1292 0, \
1293 0, \
1294 CNTR_SYNTH, \
1295 access_ibp_##cntr)
1296
1297 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1298 {
1299 if (dd->flags & HFI1_PRESENT) {
1300 return readq((void __iomem *)dd->kregbase + offset);
1301 }
1302 return -1;
1303 }
1304
1305 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1306 {
1307 if (dd->flags & HFI1_PRESENT)
1308 writeq(value, (void __iomem *)dd->kregbase + offset);
1309 }
1310
1311 void __iomem *get_csr_addr(
1312 struct hfi1_devdata *dd,
1313 u32 offset)
1314 {
1315 return (void __iomem *)dd->kregbase + offset;
1316 }
1317
1318 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1319 int mode, u64 value)
1320 {
1321 u64 ret;
1322
1323 if (mode == CNTR_MODE_R) {
1324 ret = read_csr(dd, csr);
1325 } else if (mode == CNTR_MODE_W) {
1326 write_csr(dd, csr, value);
1327 ret = value;
1328 } else {
1329 dd_dev_err(dd, "Invalid cntr register access mode");
1330 return 0;
1331 }
1332
1333 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1334 return ret;
1335 }
1336
1337 /* Dev Access */
1338 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1339 void *context, int vl, int mode, u64 data)
1340 {
1341 struct hfi1_devdata *dd = context;
1342 u64 csr = entry->csr;
1343
1344 if (entry->flags & CNTR_SDMA) {
1345 if (vl == CNTR_INVALID_VL)
1346 return 0;
1347 csr += 0x100 * vl;
1348 } else {
1349 if (vl != CNTR_INVALID_VL)
1350 return 0;
1351 }
1352 return read_write_csr(dd, csr, mode, data);
1353 }
1354
1355 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1356 void *context, int idx, int mode, u64 data)
1357 {
1358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1359
1360 if (dd->per_sdma && idx < dd->num_sdma)
1361 return dd->per_sdma[idx].err_cnt;
1362 return 0;
1363 }
1364
1365 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1366 void *context, int idx, int mode, u64 data)
1367 {
1368 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1369
1370 if (dd->per_sdma && idx < dd->num_sdma)
1371 return dd->per_sdma[idx].sdma_int_cnt;
1372 return 0;
1373 }
1374
1375 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1376 void *context, int idx, int mode, u64 data)
1377 {
1378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1379
1380 if (dd->per_sdma && idx < dd->num_sdma)
1381 return dd->per_sdma[idx].idle_int_cnt;
1382 return 0;
1383 }
1384
1385 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1386 void *context, int idx, int mode,
1387 u64 data)
1388 {
1389 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1390
1391 if (dd->per_sdma && idx < dd->num_sdma)
1392 return dd->per_sdma[idx].progress_int_cnt;
1393 return 0;
1394 }
1395
1396 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1397 int vl, int mode, u64 data)
1398 {
1399 struct hfi1_devdata *dd = context;
1400
1401 u64 val = 0;
1402 u64 csr = entry->csr;
1403
1404 if (entry->flags & CNTR_VL) {
1405 if (vl == CNTR_INVALID_VL)
1406 return 0;
1407 csr += 8 * vl;
1408 } else {
1409 if (vl != CNTR_INVALID_VL)
1410 return 0;
1411 }
1412
1413 val = read_write_csr(dd, csr, mode, data);
1414 return val;
1415 }
1416
1417 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1418 int vl, int mode, u64 data)
1419 {
1420 struct hfi1_devdata *dd = context;
1421 u32 csr = entry->csr;
1422 int ret = 0;
1423
1424 if (vl != CNTR_INVALID_VL)
1425 return 0;
1426 if (mode == CNTR_MODE_R)
1427 ret = read_lcb_csr(dd, csr, &data);
1428 else if (mode == CNTR_MODE_W)
1429 ret = write_lcb_csr(dd, csr, data);
1430
1431 if (ret) {
1432 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1433 return 0;
1434 }
1435
1436 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1437 return data;
1438 }
1439
1440 /* Port Access */
1441 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1442 int vl, int mode, u64 data)
1443 {
1444 struct hfi1_pportdata *ppd = context;
1445
1446 if (vl != CNTR_INVALID_VL)
1447 return 0;
1448 return read_write_csr(ppd->dd, entry->csr, mode, data);
1449 }
1450
1451 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1452 void *context, int vl, int mode, u64 data)
1453 {
1454 struct hfi1_pportdata *ppd = context;
1455 u64 val;
1456 u64 csr = entry->csr;
1457
1458 if (entry->flags & CNTR_VL) {
1459 if (vl == CNTR_INVALID_VL)
1460 return 0;
1461 csr += 8 * vl;
1462 } else {
1463 if (vl != CNTR_INVALID_VL)
1464 return 0;
1465 }
1466 val = read_write_csr(ppd->dd, csr, mode, data);
1467 return val;
1468 }
1469
1470 /* Software defined */
1471 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1472 u64 data)
1473 {
1474 u64 ret;
1475
1476 if (mode == CNTR_MODE_R) {
1477 ret = *cntr;
1478 } else if (mode == CNTR_MODE_W) {
1479 *cntr = data;
1480 ret = data;
1481 } else {
1482 dd_dev_err(dd, "Invalid cntr sw access mode");
1483 return 0;
1484 }
1485
1486 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1487
1488 return ret;
1489 }
1490
1491 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1492 int vl, int mode, u64 data)
1493 {
1494 struct hfi1_pportdata *ppd = context;
1495
1496 if (vl != CNTR_INVALID_VL)
1497 return 0;
1498 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1499 }
1500
1501 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1502 int vl, int mode, u64 data)
1503 {
1504 struct hfi1_pportdata *ppd = context;
1505
1506 if (vl != CNTR_INVALID_VL)
1507 return 0;
1508 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1509 }
1510
1511 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1512 void *context, int vl, int mode,
1513 u64 data)
1514 {
1515 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1516
1517 if (vl != CNTR_INVALID_VL)
1518 return 0;
1519 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1520 }
1521
1522 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1523 void *context, int vl, int mode, u64 data)
1524 {
1525 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1526 u64 zero = 0;
1527 u64 *counter;
1528
1529 if (vl == CNTR_INVALID_VL)
1530 counter = &ppd->port_xmit_discards;
1531 else if (vl >= 0 && vl < C_VL_COUNT)
1532 counter = &ppd->port_xmit_discards_vl[vl];
1533 else
1534 counter = &zero;
1535
1536 return read_write_sw(ppd->dd, counter, mode, data);
1537 }
1538
1539 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1540 void *context, int vl, int mode,
1541 u64 data)
1542 {
1543 struct hfi1_pportdata *ppd = context;
1544
1545 if (vl != CNTR_INVALID_VL)
1546 return 0;
1547
1548 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1549 mode, data);
1550 }
1551
1552 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1553 void *context, int vl, int mode, u64 data)
1554 {
1555 struct hfi1_pportdata *ppd = context;
1556
1557 if (vl != CNTR_INVALID_VL)
1558 return 0;
1559
1560 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1561 mode, data);
1562 }
1563
1564 u64 get_all_cpu_total(u64 __percpu *cntr)
1565 {
1566 int cpu;
1567 u64 counter = 0;
1568
1569 for_each_possible_cpu(cpu)
1570 counter += *per_cpu_ptr(cntr, cpu);
1571 return counter;
1572 }
1573
1574 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1575 u64 __percpu *cntr,
1576 int vl, int mode, u64 data)
1577 {
1578 u64 ret = 0;
1579
1580 if (vl != CNTR_INVALID_VL)
1581 return 0;
1582
1583 if (mode == CNTR_MODE_R) {
1584 ret = get_all_cpu_total(cntr) - *z_val;
1585 } else if (mode == CNTR_MODE_W) {
1586 /* A write can only zero the counter */
1587 if (data == 0)
1588 *z_val = get_all_cpu_total(cntr);
1589 else
1590 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1591 } else {
1592 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1593 return 0;
1594 }
1595
1596 return ret;
1597 }
1598
1599 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1600 void *context, int vl, int mode, u64 data)
1601 {
1602 struct hfi1_devdata *dd = context;
1603
1604 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1605 mode, data);
1606 }
1607
1608 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1609 void *context, int vl, int mode, u64 data)
1610 {
1611 struct hfi1_devdata *dd = context;
1612
1613 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1614 mode, data);
1615 }
1616
1617 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1618 void *context, int vl, int mode, u64 data)
1619 {
1620 struct hfi1_devdata *dd = context;
1621
1622 return dd->verbs_dev.n_piowait;
1623 }
1624
1625 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1626 void *context, int vl, int mode, u64 data)
1627 {
1628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1629
1630 return dd->verbs_dev.n_piodrain;
1631 }
1632
1633 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1634 void *context, int vl, int mode, u64 data)
1635 {
1636 struct hfi1_devdata *dd = context;
1637
1638 return dd->verbs_dev.n_txwait;
1639 }
1640
1641 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1642 void *context, int vl, int mode, u64 data)
1643 {
1644 struct hfi1_devdata *dd = context;
1645
1646 return dd->verbs_dev.n_kmem_wait;
1647 }
1648
1649 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1650 void *context, int vl, int mode, u64 data)
1651 {
1652 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1653
1654 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1655 mode, data);
1656 }
1657
1658 /* Software counters for the error status bits within MISC_ERR_STATUS */
1659 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1660 void *context, int vl, int mode,
1661 u64 data)
1662 {
1663 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1664
1665 return dd->misc_err_status_cnt[12];
1666 }
1667
1668 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1669 void *context, int vl, int mode,
1670 u64 data)
1671 {
1672 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1673
1674 return dd->misc_err_status_cnt[11];
1675 }
1676
1677 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1678 void *context, int vl, int mode,
1679 u64 data)
1680 {
1681 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1682
1683 return dd->misc_err_status_cnt[10];
1684 }
1685
1686 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1687 void *context, int vl,
1688 int mode, u64 data)
1689 {
1690 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1691
1692 return dd->misc_err_status_cnt[9];
1693 }
1694
1695 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1696 void *context, int vl, int mode,
1697 u64 data)
1698 {
1699 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1700
1701 return dd->misc_err_status_cnt[8];
1702 }
1703
1704 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1705 const struct cntr_entry *entry,
1706 void *context, int vl, int mode, u64 data)
1707 {
1708 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1709
1710 return dd->misc_err_status_cnt[7];
1711 }
1712
1713 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1714 void *context, int vl,
1715 int mode, u64 data)
1716 {
1717 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718
1719 return dd->misc_err_status_cnt[6];
1720 }
1721
1722 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1723 void *context, int vl, int mode,
1724 u64 data)
1725 {
1726 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727
1728 return dd->misc_err_status_cnt[5];
1729 }
1730
1731 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1732 void *context, int vl, int mode,
1733 u64 data)
1734 {
1735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736
1737 return dd->misc_err_status_cnt[4];
1738 }
1739
1740 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1741 void *context, int vl,
1742 int mode, u64 data)
1743 {
1744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746 return dd->misc_err_status_cnt[3];
1747 }
1748
1749 static u64 access_misc_csr_write_bad_addr_err_cnt(
1750 const struct cntr_entry *entry,
1751 void *context, int vl, int mode, u64 data)
1752 {
1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755 return dd->misc_err_status_cnt[2];
1756 }
1757
1758 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1759 void *context, int vl,
1760 int mode, u64 data)
1761 {
1762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764 return dd->misc_err_status_cnt[1];
1765 }
1766
1767 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1768 void *context, int vl, int mode,
1769 u64 data)
1770 {
1771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773 return dd->misc_err_status_cnt[0];
1774 }
1775
1776 /*
1777 * Software counter for the aggregate of
1778 * individual CceErrStatus counters
1779 */
1780 static u64 access_sw_cce_err_status_aggregated_cnt(
1781 const struct cntr_entry *entry,
1782 void *context, int vl, int mode, u64 data)
1783 {
1784 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785
1786 return dd->sw_cce_err_status_aggregate;
1787 }
1788
1789 /*
1790 * Software counters corresponding to each of the
1791 * error status bits within CceErrStatus
1792 */
1793 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1794 void *context, int vl, int mode,
1795 u64 data)
1796 {
1797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1798
1799 return dd->cce_err_status_cnt[40];
1800 }
1801
1802 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1803 void *context, int vl, int mode,
1804 u64 data)
1805 {
1806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1807
1808 return dd->cce_err_status_cnt[39];
1809 }
1810
1811 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1812 void *context, int vl, int mode,
1813 u64 data)
1814 {
1815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1816
1817 return dd->cce_err_status_cnt[38];
1818 }
1819
1820 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1821 void *context, int vl, int mode,
1822 u64 data)
1823 {
1824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825
1826 return dd->cce_err_status_cnt[37];
1827 }
1828
1829 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1830 void *context, int vl, int mode,
1831 u64 data)
1832 {
1833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1834
1835 return dd->cce_err_status_cnt[36];
1836 }
1837
1838 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1839 const struct cntr_entry *entry,
1840 void *context, int vl, int mode, u64 data)
1841 {
1842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1843
1844 return dd->cce_err_status_cnt[35];
1845 }
1846
1847 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1848 const struct cntr_entry *entry,
1849 void *context, int vl, int mode, u64 data)
1850 {
1851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852
1853 return dd->cce_err_status_cnt[34];
1854 }
1855
1856 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1857 void *context, int vl,
1858 int mode, u64 data)
1859 {
1860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861
1862 return dd->cce_err_status_cnt[33];
1863 }
1864
1865 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1866 void *context, int vl, int mode,
1867 u64 data)
1868 {
1869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870
1871 return dd->cce_err_status_cnt[32];
1872 }
1873
1874 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1875 void *context, int vl, int mode, u64 data)
1876 {
1877 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1878
1879 return dd->cce_err_status_cnt[31];
1880 }
1881
1882 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1883 void *context, int vl, int mode,
1884 u64 data)
1885 {
1886 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1887
1888 return dd->cce_err_status_cnt[30];
1889 }
1890
1891 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1892 void *context, int vl, int mode,
1893 u64 data)
1894 {
1895 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1896
1897 return dd->cce_err_status_cnt[29];
1898 }
1899
1900 static u64 access_pcic_transmit_back_parity_err_cnt(
1901 const struct cntr_entry *entry,
1902 void *context, int vl, int mode, u64 data)
1903 {
1904 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1905
1906 return dd->cce_err_status_cnt[28];
1907 }
1908
1909 static u64 access_pcic_transmit_front_parity_err_cnt(
1910 const struct cntr_entry *entry,
1911 void *context, int vl, int mode, u64 data)
1912 {
1913 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1914
1915 return dd->cce_err_status_cnt[27];
1916 }
1917
1918 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1919 void *context, int vl, int mode,
1920 u64 data)
1921 {
1922 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1923
1924 return dd->cce_err_status_cnt[26];
1925 }
1926
1927 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1928 void *context, int vl, int mode,
1929 u64 data)
1930 {
1931 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932
1933 return dd->cce_err_status_cnt[25];
1934 }
1935
1936 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1937 void *context, int vl, int mode,
1938 u64 data)
1939 {
1940 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941
1942 return dd->cce_err_status_cnt[24];
1943 }
1944
1945 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1946 void *context, int vl, int mode,
1947 u64 data)
1948 {
1949 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950
1951 return dd->cce_err_status_cnt[23];
1952 }
1953
1954 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1955 void *context, int vl,
1956 int mode, u64 data)
1957 {
1958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960 return dd->cce_err_status_cnt[22];
1961 }
1962
1963 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1964 void *context, int vl, int mode,
1965 u64 data)
1966 {
1967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969 return dd->cce_err_status_cnt[21];
1970 }
1971
1972 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1973 const struct cntr_entry *entry,
1974 void *context, int vl, int mode, u64 data)
1975 {
1976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978 return dd->cce_err_status_cnt[20];
1979 }
1980
1981 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1982 void *context, int vl,
1983 int mode, u64 data)
1984 {
1985 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987 return dd->cce_err_status_cnt[19];
1988 }
1989
1990 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1991 void *context, int vl, int mode,
1992 u64 data)
1993 {
1994 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996 return dd->cce_err_status_cnt[18];
1997 }
1998
1999 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2000 void *context, int vl, int mode,
2001 u64 data)
2002 {
2003 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005 return dd->cce_err_status_cnt[17];
2006 }
2007
2008 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2009 void *context, int vl, int mode,
2010 u64 data)
2011 {
2012 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014 return dd->cce_err_status_cnt[16];
2015 }
2016
2017 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2018 void *context, int vl, int mode,
2019 u64 data)
2020 {
2021 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023 return dd->cce_err_status_cnt[15];
2024 }
2025
2026 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2027 void *context, int vl,
2028 int mode, u64 data)
2029 {
2030 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032 return dd->cce_err_status_cnt[14];
2033 }
2034
2035 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2036 void *context, int vl, int mode,
2037 u64 data)
2038 {
2039 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041 return dd->cce_err_status_cnt[13];
2042 }
2043
2044 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2045 const struct cntr_entry *entry,
2046 void *context, int vl, int mode, u64 data)
2047 {
2048 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050 return dd->cce_err_status_cnt[12];
2051 }
2052
2053 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2054 const struct cntr_entry *entry,
2055 void *context, int vl, int mode, u64 data)
2056 {
2057 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059 return dd->cce_err_status_cnt[11];
2060 }
2061
2062 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2063 const struct cntr_entry *entry,
2064 void *context, int vl, int mode, u64 data)
2065 {
2066 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068 return dd->cce_err_status_cnt[10];
2069 }
2070
2071 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2072 const struct cntr_entry *entry,
2073 void *context, int vl, int mode, u64 data)
2074 {
2075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077 return dd->cce_err_status_cnt[9];
2078 }
2079
2080 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2081 const struct cntr_entry *entry,
2082 void *context, int vl, int mode, u64 data)
2083 {
2084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086 return dd->cce_err_status_cnt[8];
2087 }
2088
2089 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2090 void *context, int vl,
2091 int mode, u64 data)
2092 {
2093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095 return dd->cce_err_status_cnt[7];
2096 }
2097
2098 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2099 const struct cntr_entry *entry,
2100 void *context, int vl, int mode, u64 data)
2101 {
2102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104 return dd->cce_err_status_cnt[6];
2105 }
2106
2107 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2108 void *context, int vl, int mode,
2109 u64 data)
2110 {
2111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113 return dd->cce_err_status_cnt[5];
2114 }
2115
2116 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2117 void *context, int vl, int mode,
2118 u64 data)
2119 {
2120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122 return dd->cce_err_status_cnt[4];
2123 }
2124
2125 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2126 const struct cntr_entry *entry,
2127 void *context, int vl, int mode, u64 data)
2128 {
2129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131 return dd->cce_err_status_cnt[3];
2132 }
2133
2134 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2135 void *context, int vl,
2136 int mode, u64 data)
2137 {
2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140 return dd->cce_err_status_cnt[2];
2141 }
2142
2143 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2144 void *context, int vl,
2145 int mode, u64 data)
2146 {
2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149 return dd->cce_err_status_cnt[1];
2150 }
2151
2152 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2153 void *context, int vl, int mode,
2154 u64 data)
2155 {
2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158 return dd->cce_err_status_cnt[0];
2159 }
2160
2161 /*
2162 * Software counters corresponding to each of the
2163 * error status bits within RcvErrStatus
2164 */
2165 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2166 void *context, int vl, int mode,
2167 u64 data)
2168 {
2169 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2170
2171 return dd->rcv_err_status_cnt[63];
2172 }
2173
2174 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2175 void *context, int vl,
2176 int mode, u64 data)
2177 {
2178 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2179
2180 return dd->rcv_err_status_cnt[62];
2181 }
2182
2183 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2184 void *context, int vl, int mode,
2185 u64 data)
2186 {
2187 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2188
2189 return dd->rcv_err_status_cnt[61];
2190 }
2191
2192 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2193 void *context, int vl, int mode,
2194 u64 data)
2195 {
2196 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2197
2198 return dd->rcv_err_status_cnt[60];
2199 }
2200
2201 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2202 void *context, int vl,
2203 int mode, u64 data)
2204 {
2205 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2206
2207 return dd->rcv_err_status_cnt[59];
2208 }
2209
2210 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2211 void *context, int vl,
2212 int mode, u64 data)
2213 {
2214 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2215
2216 return dd->rcv_err_status_cnt[58];
2217 }
2218
2219 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2220 void *context, int vl, int mode,
2221 u64 data)
2222 {
2223 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224
2225 return dd->rcv_err_status_cnt[57];
2226 }
2227
2228 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2229 void *context, int vl, int mode,
2230 u64 data)
2231 {
2232 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233
2234 return dd->rcv_err_status_cnt[56];
2235 }
2236
2237 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2238 void *context, int vl, int mode,
2239 u64 data)
2240 {
2241 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242
2243 return dd->rcv_err_status_cnt[55];
2244 }
2245
2246 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2247 const struct cntr_entry *entry,
2248 void *context, int vl, int mode, u64 data)
2249 {
2250 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252 return dd->rcv_err_status_cnt[54];
2253 }
2254
2255 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2256 const struct cntr_entry *entry,
2257 void *context, int vl, int mode, u64 data)
2258 {
2259 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261 return dd->rcv_err_status_cnt[53];
2262 }
2263
2264 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2265 void *context, int vl,
2266 int mode, u64 data)
2267 {
2268 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270 return dd->rcv_err_status_cnt[52];
2271 }
2272
2273 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2274 void *context, int vl,
2275 int mode, u64 data)
2276 {
2277 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279 return dd->rcv_err_status_cnt[51];
2280 }
2281
2282 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2283 void *context, int vl,
2284 int mode, u64 data)
2285 {
2286 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288 return dd->rcv_err_status_cnt[50];
2289 }
2290
2291 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2292 void *context, int vl,
2293 int mode, u64 data)
2294 {
2295 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297 return dd->rcv_err_status_cnt[49];
2298 }
2299
2300 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2301 void *context, int vl,
2302 int mode, u64 data)
2303 {
2304 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306 return dd->rcv_err_status_cnt[48];
2307 }
2308
2309 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2310 void *context, int vl,
2311 int mode, u64 data)
2312 {
2313 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315 return dd->rcv_err_status_cnt[47];
2316 }
2317
2318 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2319 void *context, int vl, int mode,
2320 u64 data)
2321 {
2322 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324 return dd->rcv_err_status_cnt[46];
2325 }
2326
2327 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2328 const struct cntr_entry *entry,
2329 void *context, int vl, int mode, u64 data)
2330 {
2331 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333 return dd->rcv_err_status_cnt[45];
2334 }
2335
2336 static u64 access_rx_lookup_csr_parity_err_cnt(
2337 const struct cntr_entry *entry,
2338 void *context, int vl, int mode, u64 data)
2339 {
2340 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342 return dd->rcv_err_status_cnt[44];
2343 }
2344
2345 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2346 const struct cntr_entry *entry,
2347 void *context, int vl, int mode, u64 data)
2348 {
2349 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351 return dd->rcv_err_status_cnt[43];
2352 }
2353
2354 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2355 const struct cntr_entry *entry,
2356 void *context, int vl, int mode, u64 data)
2357 {
2358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360 return dd->rcv_err_status_cnt[42];
2361 }
2362
2363 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2364 const struct cntr_entry *entry,
2365 void *context, int vl, int mode, u64 data)
2366 {
2367 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369 return dd->rcv_err_status_cnt[41];
2370 }
2371
2372 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2373 const struct cntr_entry *entry,
2374 void *context, int vl, int mode, u64 data)
2375 {
2376 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378 return dd->rcv_err_status_cnt[40];
2379 }
2380
2381 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2382 const struct cntr_entry *entry,
2383 void *context, int vl, int mode, u64 data)
2384 {
2385 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387 return dd->rcv_err_status_cnt[39];
2388 }
2389
2390 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2391 const struct cntr_entry *entry,
2392 void *context, int vl, int mode, u64 data)
2393 {
2394 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396 return dd->rcv_err_status_cnt[38];
2397 }
2398
2399 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2400 const struct cntr_entry *entry,
2401 void *context, int vl, int mode, u64 data)
2402 {
2403 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405 return dd->rcv_err_status_cnt[37];
2406 }
2407
2408 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2409 const struct cntr_entry *entry,
2410 void *context, int vl, int mode, u64 data)
2411 {
2412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414 return dd->rcv_err_status_cnt[36];
2415 }
2416
2417 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2418 const struct cntr_entry *entry,
2419 void *context, int vl, int mode, u64 data)
2420 {
2421 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423 return dd->rcv_err_status_cnt[35];
2424 }
2425
2426 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2427 const struct cntr_entry *entry,
2428 void *context, int vl, int mode, u64 data)
2429 {
2430 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432 return dd->rcv_err_status_cnt[34];
2433 }
2434
2435 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2436 const struct cntr_entry *entry,
2437 void *context, int vl, int mode, u64 data)
2438 {
2439 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441 return dd->rcv_err_status_cnt[33];
2442 }
2443
2444 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2445 void *context, int vl, int mode,
2446 u64 data)
2447 {
2448 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450 return dd->rcv_err_status_cnt[32];
2451 }
2452
2453 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2454 void *context, int vl, int mode,
2455 u64 data)
2456 {
2457 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459 return dd->rcv_err_status_cnt[31];
2460 }
2461
2462 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2463 void *context, int vl, int mode,
2464 u64 data)
2465 {
2466 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468 return dd->rcv_err_status_cnt[30];
2469 }
2470
2471 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2472 void *context, int vl, int mode,
2473 u64 data)
2474 {
2475 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477 return dd->rcv_err_status_cnt[29];
2478 }
2479
2480 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2481 void *context, int vl,
2482 int mode, u64 data)
2483 {
2484 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486 return dd->rcv_err_status_cnt[28];
2487 }
2488
2489 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2490 const struct cntr_entry *entry,
2491 void *context, int vl, int mode, u64 data)
2492 {
2493 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495 return dd->rcv_err_status_cnt[27];
2496 }
2497
2498 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2499 const struct cntr_entry *entry,
2500 void *context, int vl, int mode, u64 data)
2501 {
2502 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504 return dd->rcv_err_status_cnt[26];
2505 }
2506
2507 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2508 const struct cntr_entry *entry,
2509 void *context, int vl, int mode, u64 data)
2510 {
2511 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513 return dd->rcv_err_status_cnt[25];
2514 }
2515
2516 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2517 const struct cntr_entry *entry,
2518 void *context, int vl, int mode, u64 data)
2519 {
2520 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522 return dd->rcv_err_status_cnt[24];
2523 }
2524
2525 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2526 const struct cntr_entry *entry,
2527 void *context, int vl, int mode, u64 data)
2528 {
2529 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531 return dd->rcv_err_status_cnt[23];
2532 }
2533
2534 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2535 const struct cntr_entry *entry,
2536 void *context, int vl, int mode, u64 data)
2537 {
2538 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540 return dd->rcv_err_status_cnt[22];
2541 }
2542
2543 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2544 const struct cntr_entry *entry,
2545 void *context, int vl, int mode, u64 data)
2546 {
2547 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549 return dd->rcv_err_status_cnt[21];
2550 }
2551
2552 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2553 const struct cntr_entry *entry,
2554 void *context, int vl, int mode, u64 data)
2555 {
2556 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558 return dd->rcv_err_status_cnt[20];
2559 }
2560
2561 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2562 const struct cntr_entry *entry,
2563 void *context, int vl, int mode, u64 data)
2564 {
2565 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567 return dd->rcv_err_status_cnt[19];
2568 }
2569
2570 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2571 void *context, int vl,
2572 int mode, u64 data)
2573 {
2574 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576 return dd->rcv_err_status_cnt[18];
2577 }
2578
2579 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2580 void *context, int vl,
2581 int mode, u64 data)
2582 {
2583 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585 return dd->rcv_err_status_cnt[17];
2586 }
2587
2588 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2589 const struct cntr_entry *entry,
2590 void *context, int vl, int mode, u64 data)
2591 {
2592 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594 return dd->rcv_err_status_cnt[16];
2595 }
2596
2597 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2598 const struct cntr_entry *entry,
2599 void *context, int vl, int mode, u64 data)
2600 {
2601 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603 return dd->rcv_err_status_cnt[15];
2604 }
2605
2606 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2607 void *context, int vl,
2608 int mode, u64 data)
2609 {
2610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612 return dd->rcv_err_status_cnt[14];
2613 }
2614
2615 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2616 void *context, int vl,
2617 int mode, u64 data)
2618 {
2619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621 return dd->rcv_err_status_cnt[13];
2622 }
2623
2624 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2625 void *context, int vl, int mode,
2626 u64 data)
2627 {
2628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630 return dd->rcv_err_status_cnt[12];
2631 }
2632
2633 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2634 void *context, int vl, int mode,
2635 u64 data)
2636 {
2637 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639 return dd->rcv_err_status_cnt[11];
2640 }
2641
2642 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2643 void *context, int vl, int mode,
2644 u64 data)
2645 {
2646 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648 return dd->rcv_err_status_cnt[10];
2649 }
2650
2651 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2652 void *context, int vl, int mode,
2653 u64 data)
2654 {
2655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657 return dd->rcv_err_status_cnt[9];
2658 }
2659
2660 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2661 void *context, int vl, int mode,
2662 u64 data)
2663 {
2664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666 return dd->rcv_err_status_cnt[8];
2667 }
2668
2669 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2670 const struct cntr_entry *entry,
2671 void *context, int vl, int mode, u64 data)
2672 {
2673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675 return dd->rcv_err_status_cnt[7];
2676 }
2677
2678 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2679 const struct cntr_entry *entry,
2680 void *context, int vl, int mode, u64 data)
2681 {
2682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684 return dd->rcv_err_status_cnt[6];
2685 }
2686
2687 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2688 void *context, int vl, int mode,
2689 u64 data)
2690 {
2691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693 return dd->rcv_err_status_cnt[5];
2694 }
2695
2696 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2697 void *context, int vl, int mode,
2698 u64 data)
2699 {
2700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702 return dd->rcv_err_status_cnt[4];
2703 }
2704
2705 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2706 void *context, int vl, int mode,
2707 u64 data)
2708 {
2709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711 return dd->rcv_err_status_cnt[3];
2712 }
2713
2714 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2715 void *context, int vl, int mode,
2716 u64 data)
2717 {
2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720 return dd->rcv_err_status_cnt[2];
2721 }
2722
2723 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2724 void *context, int vl, int mode,
2725 u64 data)
2726 {
2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729 return dd->rcv_err_status_cnt[1];
2730 }
2731
2732 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2733 void *context, int vl, int mode,
2734 u64 data)
2735 {
2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738 return dd->rcv_err_status_cnt[0];
2739 }
2740
2741 /*
2742 * Software counters corresponding to each of the
2743 * error status bits within SendPioErrStatus
2744 */
2745 static u64 access_pio_pec_sop_head_parity_err_cnt(
2746 const struct cntr_entry *entry,
2747 void *context, int vl, int mode, u64 data)
2748 {
2749 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2750
2751 return dd->send_pio_err_status_cnt[35];
2752 }
2753
2754 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2755 const struct cntr_entry *entry,
2756 void *context, int vl, int mode, u64 data)
2757 {
2758 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2759
2760 return dd->send_pio_err_status_cnt[34];
2761 }
2762
2763 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2764 const struct cntr_entry *entry,
2765 void *context, int vl, int mode, u64 data)
2766 {
2767 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2768
2769 return dd->send_pio_err_status_cnt[33];
2770 }
2771
2772 static u64 access_pio_current_free_cnt_parity_err_cnt(
2773 const struct cntr_entry *entry,
2774 void *context, int vl, int mode, u64 data)
2775 {
2776 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2777
2778 return dd->send_pio_err_status_cnt[32];
2779 }
2780
2781 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2782 void *context, int vl, int mode,
2783 u64 data)
2784 {
2785 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2786
2787 return dd->send_pio_err_status_cnt[31];
2788 }
2789
2790 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2791 void *context, int vl, int mode,
2792 u64 data)
2793 {
2794 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2795
2796 return dd->send_pio_err_status_cnt[30];
2797 }
2798
2799 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2800 void *context, int vl, int mode,
2801 u64 data)
2802 {
2803 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804
2805 return dd->send_pio_err_status_cnt[29];
2806 }
2807
2808 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2809 const struct cntr_entry *entry,
2810 void *context, int vl, int mode, u64 data)
2811 {
2812 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813
2814 return dd->send_pio_err_status_cnt[28];
2815 }
2816
2817 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2818 void *context, int vl, int mode,
2819 u64 data)
2820 {
2821 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822
2823 return dd->send_pio_err_status_cnt[27];
2824 }
2825
2826 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2827 void *context, int vl, int mode,
2828 u64 data)
2829 {
2830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832 return dd->send_pio_err_status_cnt[26];
2833 }
2834
2835 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2836 void *context, int vl,
2837 int mode, u64 data)
2838 {
2839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841 return dd->send_pio_err_status_cnt[25];
2842 }
2843
2844 static u64 access_pio_block_qw_count_parity_err_cnt(
2845 const struct cntr_entry *entry,
2846 void *context, int vl, int mode, u64 data)
2847 {
2848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850 return dd->send_pio_err_status_cnt[24];
2851 }
2852
2853 static u64 access_pio_write_qw_valid_parity_err_cnt(
2854 const struct cntr_entry *entry,
2855 void *context, int vl, int mode, u64 data)
2856 {
2857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859 return dd->send_pio_err_status_cnt[23];
2860 }
2861
2862 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2863 void *context, int vl, int mode,
2864 u64 data)
2865 {
2866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868 return dd->send_pio_err_status_cnt[22];
2869 }
2870
2871 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2872 void *context, int vl,
2873 int mode, u64 data)
2874 {
2875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877 return dd->send_pio_err_status_cnt[21];
2878 }
2879
2880 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2881 void *context, int vl,
2882 int mode, u64 data)
2883 {
2884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886 return dd->send_pio_err_status_cnt[20];
2887 }
2888
2889 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2890 void *context, int vl,
2891 int mode, u64 data)
2892 {
2893 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895 return dd->send_pio_err_status_cnt[19];
2896 }
2897
2898 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2899 const struct cntr_entry *entry,
2900 void *context, int vl, int mode, u64 data)
2901 {
2902 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904 return dd->send_pio_err_status_cnt[18];
2905 }
2906
2907 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2908 void *context, int vl, int mode,
2909 u64 data)
2910 {
2911 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913 return dd->send_pio_err_status_cnt[17];
2914 }
2915
2916 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2917 void *context, int vl, int mode,
2918 u64 data)
2919 {
2920 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922 return dd->send_pio_err_status_cnt[16];
2923 }
2924
2925 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2926 const struct cntr_entry *entry,
2927 void *context, int vl, int mode, u64 data)
2928 {
2929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931 return dd->send_pio_err_status_cnt[15];
2932 }
2933
2934 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2935 const struct cntr_entry *entry,
2936 void *context, int vl, int mode, u64 data)
2937 {
2938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940 return dd->send_pio_err_status_cnt[14];
2941 }
2942
2943 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2944 const struct cntr_entry *entry,
2945 void *context, int vl, int mode, u64 data)
2946 {
2947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949 return dd->send_pio_err_status_cnt[13];
2950 }
2951
2952 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2953 const struct cntr_entry *entry,
2954 void *context, int vl, int mode, u64 data)
2955 {
2956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958 return dd->send_pio_err_status_cnt[12];
2959 }
2960
2961 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2962 const struct cntr_entry *entry,
2963 void *context, int vl, int mode, u64 data)
2964 {
2965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967 return dd->send_pio_err_status_cnt[11];
2968 }
2969
2970 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2971 const struct cntr_entry *entry,
2972 void *context, int vl, int mode, u64 data)
2973 {
2974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976 return dd->send_pio_err_status_cnt[10];
2977 }
2978
2979 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2980 const struct cntr_entry *entry,
2981 void *context, int vl, int mode, u64 data)
2982 {
2983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985 return dd->send_pio_err_status_cnt[9];
2986 }
2987
2988 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2989 const struct cntr_entry *entry,
2990 void *context, int vl, int mode, u64 data)
2991 {
2992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994 return dd->send_pio_err_status_cnt[8];
2995 }
2996
2997 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2998 const struct cntr_entry *entry,
2999 void *context, int vl, int mode, u64 data)
3000 {
3001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003 return dd->send_pio_err_status_cnt[7];
3004 }
3005
3006 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3007 void *context, int vl, int mode,
3008 u64 data)
3009 {
3010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012 return dd->send_pio_err_status_cnt[6];
3013 }
3014
3015 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3016 void *context, int vl, int mode,
3017 u64 data)
3018 {
3019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021 return dd->send_pio_err_status_cnt[5];
3022 }
3023
3024 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3025 void *context, int vl, int mode,
3026 u64 data)
3027 {
3028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030 return dd->send_pio_err_status_cnt[4];
3031 }
3032
3033 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3034 void *context, int vl, int mode,
3035 u64 data)
3036 {
3037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039 return dd->send_pio_err_status_cnt[3];
3040 }
3041
3042 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3043 void *context, int vl, int mode,
3044 u64 data)
3045 {
3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048 return dd->send_pio_err_status_cnt[2];
3049 }
3050
3051 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3052 void *context, int vl,
3053 int mode, u64 data)
3054 {
3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057 return dd->send_pio_err_status_cnt[1];
3058 }
3059
3060 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3061 void *context, int vl, int mode,
3062 u64 data)
3063 {
3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066 return dd->send_pio_err_status_cnt[0];
3067 }
3068
3069 /*
3070 * Software counters corresponding to each of the
3071 * error status bits within SendDmaErrStatus
3072 */
3073 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3074 const struct cntr_entry *entry,
3075 void *context, int vl, int mode, u64 data)
3076 {
3077 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3078
3079 return dd->send_dma_err_status_cnt[3];
3080 }
3081
3082 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3083 const struct cntr_entry *entry,
3084 void *context, int vl, int mode, u64 data)
3085 {
3086 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087
3088 return dd->send_dma_err_status_cnt[2];
3089 }
3090
3091 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3092 void *context, int vl, int mode,
3093 u64 data)
3094 {
3095 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096
3097 return dd->send_dma_err_status_cnt[1];
3098 }
3099
3100 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3101 void *context, int vl, int mode,
3102 u64 data)
3103 {
3104 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105
3106 return dd->send_dma_err_status_cnt[0];
3107 }
3108
3109 /*
3110 * Software counters corresponding to each of the
3111 * error status bits within SendEgressErrStatus
3112 */
3113 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3114 const struct cntr_entry *entry,
3115 void *context, int vl, int mode, u64 data)
3116 {
3117 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118
3119 return dd->send_egress_err_status_cnt[63];
3120 }
3121
3122 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3123 const struct cntr_entry *entry,
3124 void *context, int vl, int mode, u64 data)
3125 {
3126 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3127
3128 return dd->send_egress_err_status_cnt[62];
3129 }
3130
3131 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3132 void *context, int vl, int mode,
3133 u64 data)
3134 {
3135 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3136
3137 return dd->send_egress_err_status_cnt[61];
3138 }
3139
3140 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3141 void *context, int vl,
3142 int mode, u64 data)
3143 {
3144 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3145
3146 return dd->send_egress_err_status_cnt[60];
3147 }
3148
3149 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3150 const struct cntr_entry *entry,
3151 void *context, int vl, int mode, u64 data)
3152 {
3153 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3154
3155 return dd->send_egress_err_status_cnt[59];
3156 }
3157
3158 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3159 void *context, int vl, int mode,
3160 u64 data)
3161 {
3162 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3163
3164 return dd->send_egress_err_status_cnt[58];
3165 }
3166
3167 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3168 void *context, int vl, int mode,
3169 u64 data)
3170 {
3171 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172
3173 return dd->send_egress_err_status_cnt[57];
3174 }
3175
3176 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3177 void *context, int vl, int mode,
3178 u64 data)
3179 {
3180 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181
3182 return dd->send_egress_err_status_cnt[56];
3183 }
3184
3185 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3186 void *context, int vl, int mode,
3187 u64 data)
3188 {
3189 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190
3191 return dd->send_egress_err_status_cnt[55];
3192 }
3193
3194 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3195 void *context, int vl, int mode,
3196 u64 data)
3197 {
3198 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200 return dd->send_egress_err_status_cnt[54];
3201 }
3202
3203 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3204 void *context, int vl, int mode,
3205 u64 data)
3206 {
3207 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209 return dd->send_egress_err_status_cnt[53];
3210 }
3211
3212 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3213 void *context, int vl, int mode,
3214 u64 data)
3215 {
3216 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218 return dd->send_egress_err_status_cnt[52];
3219 }
3220
3221 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3222 void *context, int vl, int mode,
3223 u64 data)
3224 {
3225 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227 return dd->send_egress_err_status_cnt[51];
3228 }
3229
3230 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3231 void *context, int vl, int mode,
3232 u64 data)
3233 {
3234 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236 return dd->send_egress_err_status_cnt[50];
3237 }
3238
3239 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3240 void *context, int vl, int mode,
3241 u64 data)
3242 {
3243 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245 return dd->send_egress_err_status_cnt[49];
3246 }
3247
3248 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3249 void *context, int vl, int mode,
3250 u64 data)
3251 {
3252 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254 return dd->send_egress_err_status_cnt[48];
3255 }
3256
3257 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3258 void *context, int vl, int mode,
3259 u64 data)
3260 {
3261 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263 return dd->send_egress_err_status_cnt[47];
3264 }
3265
3266 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3267 void *context, int vl, int mode,
3268 u64 data)
3269 {
3270 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272 return dd->send_egress_err_status_cnt[46];
3273 }
3274
3275 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3276 void *context, int vl, int mode,
3277 u64 data)
3278 {
3279 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281 return dd->send_egress_err_status_cnt[45];
3282 }
3283
3284 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3285 void *context, int vl,
3286 int mode, u64 data)
3287 {
3288 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290 return dd->send_egress_err_status_cnt[44];
3291 }
3292
3293 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3294 const struct cntr_entry *entry,
3295 void *context, int vl, int mode, u64 data)
3296 {
3297 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299 return dd->send_egress_err_status_cnt[43];
3300 }
3301
3302 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3303 void *context, int vl, int mode,
3304 u64 data)
3305 {
3306 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308 return dd->send_egress_err_status_cnt[42];
3309 }
3310
3311 static u64 access_tx_credit_return_partiy_err_cnt(
3312 const struct cntr_entry *entry,
3313 void *context, int vl, int mode, u64 data)
3314 {
3315 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317 return dd->send_egress_err_status_cnt[41];
3318 }
3319
3320 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3321 const struct cntr_entry *entry,
3322 void *context, int vl, int mode, u64 data)
3323 {
3324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326 return dd->send_egress_err_status_cnt[40];
3327 }
3328
3329 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3330 const struct cntr_entry *entry,
3331 void *context, int vl, int mode, u64 data)
3332 {
3333 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335 return dd->send_egress_err_status_cnt[39];
3336 }
3337
3338 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3339 const struct cntr_entry *entry,
3340 void *context, int vl, int mode, u64 data)
3341 {
3342 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344 return dd->send_egress_err_status_cnt[38];
3345 }
3346
3347 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3348 const struct cntr_entry *entry,
3349 void *context, int vl, int mode, u64 data)
3350 {
3351 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353 return dd->send_egress_err_status_cnt[37];
3354 }
3355
3356 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3357 const struct cntr_entry *entry,
3358 void *context, int vl, int mode, u64 data)
3359 {
3360 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362 return dd->send_egress_err_status_cnt[36];
3363 }
3364
3365 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3366 const struct cntr_entry *entry,
3367 void *context, int vl, int mode, u64 data)
3368 {
3369 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371 return dd->send_egress_err_status_cnt[35];
3372 }
3373
3374 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3375 const struct cntr_entry *entry,
3376 void *context, int vl, int mode, u64 data)
3377 {
3378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380 return dd->send_egress_err_status_cnt[34];
3381 }
3382
3383 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3384 const struct cntr_entry *entry,
3385 void *context, int vl, int mode, u64 data)
3386 {
3387 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389 return dd->send_egress_err_status_cnt[33];
3390 }
3391
3392 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3393 const struct cntr_entry *entry,
3394 void *context, int vl, int mode, u64 data)
3395 {
3396 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398 return dd->send_egress_err_status_cnt[32];
3399 }
3400
3401 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3402 const struct cntr_entry *entry,
3403 void *context, int vl, int mode, u64 data)
3404 {
3405 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407 return dd->send_egress_err_status_cnt[31];
3408 }
3409
3410 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3411 const struct cntr_entry *entry,
3412 void *context, int vl, int mode, u64 data)
3413 {
3414 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416 return dd->send_egress_err_status_cnt[30];
3417 }
3418
3419 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3420 const struct cntr_entry *entry,
3421 void *context, int vl, int mode, u64 data)
3422 {
3423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425 return dd->send_egress_err_status_cnt[29];
3426 }
3427
3428 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3429 const struct cntr_entry *entry,
3430 void *context, int vl, int mode, u64 data)
3431 {
3432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434 return dd->send_egress_err_status_cnt[28];
3435 }
3436
3437 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3438 const struct cntr_entry *entry,
3439 void *context, int vl, int mode, u64 data)
3440 {
3441 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443 return dd->send_egress_err_status_cnt[27];
3444 }
3445
3446 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3447 const struct cntr_entry *entry,
3448 void *context, int vl, int mode, u64 data)
3449 {
3450 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452 return dd->send_egress_err_status_cnt[26];
3453 }
3454
3455 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3456 const struct cntr_entry *entry,
3457 void *context, int vl, int mode, u64 data)
3458 {
3459 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461 return dd->send_egress_err_status_cnt[25];
3462 }
3463
3464 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3465 const struct cntr_entry *entry,
3466 void *context, int vl, int mode, u64 data)
3467 {
3468 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470 return dd->send_egress_err_status_cnt[24];
3471 }
3472
3473 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3474 const struct cntr_entry *entry,
3475 void *context, int vl, int mode, u64 data)
3476 {
3477 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479 return dd->send_egress_err_status_cnt[23];
3480 }
3481
3482 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3483 const struct cntr_entry *entry,
3484 void *context, int vl, int mode, u64 data)
3485 {
3486 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488 return dd->send_egress_err_status_cnt[22];
3489 }
3490
3491 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3492 const struct cntr_entry *entry,
3493 void *context, int vl, int mode, u64 data)
3494 {
3495 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497 return dd->send_egress_err_status_cnt[21];
3498 }
3499
3500 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3501 const struct cntr_entry *entry,
3502 void *context, int vl, int mode, u64 data)
3503 {
3504 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506 return dd->send_egress_err_status_cnt[20];
3507 }
3508
3509 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3510 const struct cntr_entry *entry,
3511 void *context, int vl, int mode, u64 data)
3512 {
3513 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515 return dd->send_egress_err_status_cnt[19];
3516 }
3517
3518 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3519 const struct cntr_entry *entry,
3520 void *context, int vl, int mode, u64 data)
3521 {
3522 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524 return dd->send_egress_err_status_cnt[18];
3525 }
3526
3527 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3528 const struct cntr_entry *entry,
3529 void *context, int vl, int mode, u64 data)
3530 {
3531 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533 return dd->send_egress_err_status_cnt[17];
3534 }
3535
3536 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3537 const struct cntr_entry *entry,
3538 void *context, int vl, int mode, u64 data)
3539 {
3540 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542 return dd->send_egress_err_status_cnt[16];
3543 }
3544
3545 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3546 void *context, int vl, int mode,
3547 u64 data)
3548 {
3549 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551 return dd->send_egress_err_status_cnt[15];
3552 }
3553
3554 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3555 void *context, int vl,
3556 int mode, u64 data)
3557 {
3558 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560 return dd->send_egress_err_status_cnt[14];
3561 }
3562
3563 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3564 void *context, int vl, int mode,
3565 u64 data)
3566 {
3567 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569 return dd->send_egress_err_status_cnt[13];
3570 }
3571
3572 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3573 void *context, int vl, int mode,
3574 u64 data)
3575 {
3576 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578 return dd->send_egress_err_status_cnt[12];
3579 }
3580
3581 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3582 const struct cntr_entry *entry,
3583 void *context, int vl, int mode, u64 data)
3584 {
3585 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587 return dd->send_egress_err_status_cnt[11];
3588 }
3589
3590 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3591 void *context, int vl, int mode,
3592 u64 data)
3593 {
3594 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596 return dd->send_egress_err_status_cnt[10];
3597 }
3598
3599 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3600 void *context, int vl, int mode,
3601 u64 data)
3602 {
3603 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605 return dd->send_egress_err_status_cnt[9];
3606 }
3607
3608 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3609 const struct cntr_entry *entry,
3610 void *context, int vl, int mode, u64 data)
3611 {
3612 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614 return dd->send_egress_err_status_cnt[8];
3615 }
3616
3617 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3618 const struct cntr_entry *entry,
3619 void *context, int vl, int mode, u64 data)
3620 {
3621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623 return dd->send_egress_err_status_cnt[7];
3624 }
3625
3626 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3627 void *context, int vl, int mode,
3628 u64 data)
3629 {
3630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632 return dd->send_egress_err_status_cnt[6];
3633 }
3634
3635 static u64 access_tx_incorrect_link_state_err_cnt(
3636 const struct cntr_entry *entry,
3637 void *context, int vl, int mode, u64 data)
3638 {
3639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641 return dd->send_egress_err_status_cnt[5];
3642 }
3643
3644 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3645 void *context, int vl, int mode,
3646 u64 data)
3647 {
3648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650 return dd->send_egress_err_status_cnt[4];
3651 }
3652
3653 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3654 const struct cntr_entry *entry,
3655 void *context, int vl, int mode, u64 data)
3656 {
3657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659 return dd->send_egress_err_status_cnt[3];
3660 }
3661
3662 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3663 void *context, int vl, int mode,
3664 u64 data)
3665 {
3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668 return dd->send_egress_err_status_cnt[2];
3669 }
3670
3671 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3672 const struct cntr_entry *entry,
3673 void *context, int vl, int mode, u64 data)
3674 {
3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677 return dd->send_egress_err_status_cnt[1];
3678 }
3679
3680 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3681 const struct cntr_entry *entry,
3682 void *context, int vl, int mode, u64 data)
3683 {
3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686 return dd->send_egress_err_status_cnt[0];
3687 }
3688
3689 /*
3690 * Software counters corresponding to each of the
3691 * error status bits within SendErrStatus
3692 */
3693 static u64 access_send_csr_write_bad_addr_err_cnt(
3694 const struct cntr_entry *entry,
3695 void *context, int vl, int mode, u64 data)
3696 {
3697 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698
3699 return dd->send_err_status_cnt[2];
3700 }
3701
3702 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3703 void *context, int vl,
3704 int mode, u64 data)
3705 {
3706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707
3708 return dd->send_err_status_cnt[1];
3709 }
3710
3711 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3712 void *context, int vl, int mode,
3713 u64 data)
3714 {
3715 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716
3717 return dd->send_err_status_cnt[0];
3718 }
3719
3720 /*
3721 * Software counters corresponding to each of the
3722 * error status bits within SendCtxtErrStatus
3723 */
3724 static u64 access_pio_write_out_of_bounds_err_cnt(
3725 const struct cntr_entry *entry,
3726 void *context, int vl, int mode, u64 data)
3727 {
3728 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3729
3730 return dd->sw_ctxt_err_status_cnt[4];
3731 }
3732
3733 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3734 void *context, int vl, int mode,
3735 u64 data)
3736 {
3737 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738
3739 return dd->sw_ctxt_err_status_cnt[3];
3740 }
3741
3742 static u64 access_pio_write_crosses_boundary_err_cnt(
3743 const struct cntr_entry *entry,
3744 void *context, int vl, int mode, u64 data)
3745 {
3746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747
3748 return dd->sw_ctxt_err_status_cnt[2];
3749 }
3750
3751 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3752 void *context, int vl,
3753 int mode, u64 data)
3754 {
3755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756
3757 return dd->sw_ctxt_err_status_cnt[1];
3758 }
3759
3760 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3761 void *context, int vl, int mode,
3762 u64 data)
3763 {
3764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3765
3766 return dd->sw_ctxt_err_status_cnt[0];
3767 }
3768
3769 /*
3770 * Software counters corresponding to each of the
3771 * error status bits within SendDmaEngErrStatus
3772 */
3773 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3774 const struct cntr_entry *entry,
3775 void *context, int vl, int mode, u64 data)
3776 {
3777 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3778
3779 return dd->sw_send_dma_eng_err_status_cnt[23];
3780 }
3781
3782 static u64 access_sdma_header_storage_cor_err_cnt(
3783 const struct cntr_entry *entry,
3784 void *context, int vl, int mode, u64 data)
3785 {
3786 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3787
3788 return dd->sw_send_dma_eng_err_status_cnt[22];
3789 }
3790
3791 static u64 access_sdma_packet_tracking_cor_err_cnt(
3792 const struct cntr_entry *entry,
3793 void *context, int vl, int mode, u64 data)
3794 {
3795 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3796
3797 return dd->sw_send_dma_eng_err_status_cnt[21];
3798 }
3799
3800 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3801 void *context, int vl, int mode,
3802 u64 data)
3803 {
3804 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3805
3806 return dd->sw_send_dma_eng_err_status_cnt[20];
3807 }
3808
3809 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3810 void *context, int vl, int mode,
3811 u64 data)
3812 {
3813 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3814
3815 return dd->sw_send_dma_eng_err_status_cnt[19];
3816 }
3817
3818 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3819 const struct cntr_entry *entry,
3820 void *context, int vl, int mode, u64 data)
3821 {
3822 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3823
3824 return dd->sw_send_dma_eng_err_status_cnt[18];
3825 }
3826
3827 static u64 access_sdma_header_storage_unc_err_cnt(
3828 const struct cntr_entry *entry,
3829 void *context, int vl, int mode, u64 data)
3830 {
3831 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832
3833 return dd->sw_send_dma_eng_err_status_cnt[17];
3834 }
3835
3836 static u64 access_sdma_packet_tracking_unc_err_cnt(
3837 const struct cntr_entry *entry,
3838 void *context, int vl, int mode, u64 data)
3839 {
3840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841
3842 return dd->sw_send_dma_eng_err_status_cnt[16];
3843 }
3844
3845 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3846 void *context, int vl, int mode,
3847 u64 data)
3848 {
3849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850
3851 return dd->sw_send_dma_eng_err_status_cnt[15];
3852 }
3853
3854 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3855 void *context, int vl, int mode,
3856 u64 data)
3857 {
3858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860 return dd->sw_send_dma_eng_err_status_cnt[14];
3861 }
3862
3863 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3864 void *context, int vl, int mode,
3865 u64 data)
3866 {
3867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869 return dd->sw_send_dma_eng_err_status_cnt[13];
3870 }
3871
3872 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3873 void *context, int vl, int mode,
3874 u64 data)
3875 {
3876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878 return dd->sw_send_dma_eng_err_status_cnt[12];
3879 }
3880
3881 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3882 void *context, int vl, int mode,
3883 u64 data)
3884 {
3885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887 return dd->sw_send_dma_eng_err_status_cnt[11];
3888 }
3889
3890 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3891 void *context, int vl, int mode,
3892 u64 data)
3893 {
3894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896 return dd->sw_send_dma_eng_err_status_cnt[10];
3897 }
3898
3899 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3900 void *context, int vl, int mode,
3901 u64 data)
3902 {
3903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905 return dd->sw_send_dma_eng_err_status_cnt[9];
3906 }
3907
3908 static u64 access_sdma_packet_desc_overflow_err_cnt(
3909 const struct cntr_entry *entry,
3910 void *context, int vl, int mode, u64 data)
3911 {
3912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914 return dd->sw_send_dma_eng_err_status_cnt[8];
3915 }
3916
3917 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3918 void *context, int vl,
3919 int mode, u64 data)
3920 {
3921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923 return dd->sw_send_dma_eng_err_status_cnt[7];
3924 }
3925
3926 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3927 void *context, int vl, int mode, u64 data)
3928 {
3929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3930
3931 return dd->sw_send_dma_eng_err_status_cnt[6];
3932 }
3933
3934 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3935 void *context, int vl, int mode,
3936 u64 data)
3937 {
3938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3939
3940 return dd->sw_send_dma_eng_err_status_cnt[5];
3941 }
3942
3943 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3944 void *context, int vl, int mode,
3945 u64 data)
3946 {
3947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3948
3949 return dd->sw_send_dma_eng_err_status_cnt[4];
3950 }
3951
3952 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3953 const struct cntr_entry *entry,
3954 void *context, int vl, int mode, u64 data)
3955 {
3956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3957
3958 return dd->sw_send_dma_eng_err_status_cnt[3];
3959 }
3960
3961 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3962 void *context, int vl, int mode,
3963 u64 data)
3964 {
3965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3966
3967 return dd->sw_send_dma_eng_err_status_cnt[2];
3968 }
3969
3970 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3971 void *context, int vl, int mode,
3972 u64 data)
3973 {
3974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3975
3976 return dd->sw_send_dma_eng_err_status_cnt[1];
3977 }
3978
3979 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3980 void *context, int vl, int mode,
3981 u64 data)
3982 {
3983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984
3985 return dd->sw_send_dma_eng_err_status_cnt[0];
3986 }
3987
3988 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3989 void *context, int vl, int mode,
3990 u64 data)
3991 {
3992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993
3994 u64 val = 0;
3995 u64 csr = entry->csr;
3996
3997 val = read_write_csr(dd, csr, mode, data);
3998 if (mode == CNTR_MODE_R) {
3999 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4000 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4001 } else if (mode == CNTR_MODE_W) {
4002 dd->sw_rcv_bypass_packet_errors = 0;
4003 } else {
4004 dd_dev_err(dd, "Invalid cntr register access mode");
4005 return 0;
4006 }
4007 return val;
4008 }
4009
4010 #define def_access_sw_cpu(cntr) \
4011 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
4012 void *context, int vl, int mode, u64 data) \
4013 { \
4014 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4015 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
4016 ppd->ibport_data.rvp.cntr, vl, \
4017 mode, data); \
4018 }
4019
4020 def_access_sw_cpu(rc_acks);
4021 def_access_sw_cpu(rc_qacks);
4022 def_access_sw_cpu(rc_delayed_comp);
4023
4024 #define def_access_ibp_counter(cntr) \
4025 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
4026 void *context, int vl, int mode, u64 data) \
4027 { \
4028 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4029 \
4030 if (vl != CNTR_INVALID_VL) \
4031 return 0; \
4032 \
4033 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
4034 mode, data); \
4035 }
4036
4037 def_access_ibp_counter(loop_pkts);
4038 def_access_ibp_counter(rc_resends);
4039 def_access_ibp_counter(rnr_naks);
4040 def_access_ibp_counter(other_naks);
4041 def_access_ibp_counter(rc_timeouts);
4042 def_access_ibp_counter(pkt_drops);
4043 def_access_ibp_counter(dmawait);
4044 def_access_ibp_counter(rc_seqnak);
4045 def_access_ibp_counter(rc_dupreq);
4046 def_access_ibp_counter(rdma_seq);
4047 def_access_ibp_counter(unaligned);
4048 def_access_ibp_counter(seq_naks);
4049
4050 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4051 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4052 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4053 CNTR_NORMAL),
4054 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4055 CNTR_NORMAL),
4056 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4057 RCV_TID_FLOW_GEN_MISMATCH_CNT,
4058 CNTR_NORMAL),
4059 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4060 CNTR_NORMAL),
4061 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4062 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4063 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4064 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4065 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4066 CNTR_NORMAL),
4067 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4068 CNTR_NORMAL),
4069 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4070 CNTR_NORMAL),
4071 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4072 CNTR_NORMAL),
4073 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4074 CNTR_NORMAL),
4075 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4076 CNTR_NORMAL),
4077 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4078 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4079 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4080 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4081 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4082 CNTR_SYNTH),
4083 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4084 access_dc_rcv_err_cnt),
4085 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4086 CNTR_SYNTH),
4087 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4088 CNTR_SYNTH),
4089 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4090 CNTR_SYNTH),
4091 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4092 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4093 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4094 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4095 CNTR_SYNTH),
4096 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4097 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4098 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4099 CNTR_SYNTH),
4100 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4101 CNTR_SYNTH),
4102 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4103 CNTR_SYNTH),
4104 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4105 CNTR_SYNTH),
4106 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4107 CNTR_SYNTH),
4108 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4109 CNTR_SYNTH),
4110 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4111 CNTR_SYNTH),
4112 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4113 CNTR_SYNTH | CNTR_VL),
4114 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4115 CNTR_SYNTH | CNTR_VL),
4116 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4117 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4118 CNTR_SYNTH | CNTR_VL),
4119 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4120 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4121 CNTR_SYNTH | CNTR_VL),
4122 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4123 CNTR_SYNTH),
4124 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4125 CNTR_SYNTH | CNTR_VL),
4126 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4127 CNTR_SYNTH),
4128 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4129 CNTR_SYNTH | CNTR_VL),
4130 [C_DC_TOTAL_CRC] =
4131 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4132 CNTR_SYNTH),
4133 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4134 CNTR_SYNTH),
4135 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4136 CNTR_SYNTH),
4137 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4138 CNTR_SYNTH),
4139 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4140 CNTR_SYNTH),
4141 [C_DC_CRC_MULT_LN] =
4142 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4143 CNTR_SYNTH),
4144 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4145 CNTR_SYNTH),
4146 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4147 CNTR_SYNTH),
4148 [C_DC_SEQ_CRC_CNT] =
4149 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4150 CNTR_SYNTH),
4151 [C_DC_ESC0_ONLY_CNT] =
4152 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4153 CNTR_SYNTH),
4154 [C_DC_ESC0_PLUS1_CNT] =
4155 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4156 CNTR_SYNTH),
4157 [C_DC_ESC0_PLUS2_CNT] =
4158 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4159 CNTR_SYNTH),
4160 [C_DC_REINIT_FROM_PEER_CNT] =
4161 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4162 CNTR_SYNTH),
4163 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4164 CNTR_SYNTH),
4165 [C_DC_MISC_FLG_CNT] =
4166 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4167 CNTR_SYNTH),
4168 [C_DC_PRF_GOOD_LTP_CNT] =
4169 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4170 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4171 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4172 CNTR_SYNTH),
4173 [C_DC_PRF_RX_FLIT_CNT] =
4174 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4175 [C_DC_PRF_TX_FLIT_CNT] =
4176 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4177 [C_DC_PRF_CLK_CNTR] =
4178 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4179 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4180 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4181 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4182 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4183 CNTR_SYNTH),
4184 [C_DC_PG_STS_TX_SBE_CNT] =
4185 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4186 [C_DC_PG_STS_TX_MBE_CNT] =
4187 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4188 CNTR_SYNTH),
4189 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4190 access_sw_cpu_intr),
4191 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4192 access_sw_cpu_rcv_limit),
4193 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4194 access_sw_vtx_wait),
4195 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4196 access_sw_pio_wait),
4197 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4198 access_sw_pio_drain),
4199 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4200 access_sw_kmem_wait),
4201 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4202 access_sw_send_schedule),
4203 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4204 SEND_DMA_DESC_FETCHED_CNT, 0,
4205 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4206 dev_access_u32_csr),
4207 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4208 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4209 access_sde_int_cnt),
4210 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4211 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4212 access_sde_err_cnt),
4213 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4214 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4215 access_sde_idle_int_cnt),
4216 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4217 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4218 access_sde_progress_int_cnt),
4219 /* MISC_ERR_STATUS */
4220 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4221 CNTR_NORMAL,
4222 access_misc_pll_lock_fail_err_cnt),
4223 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4224 CNTR_NORMAL,
4225 access_misc_mbist_fail_err_cnt),
4226 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4227 CNTR_NORMAL,
4228 access_misc_invalid_eep_cmd_err_cnt),
4229 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4230 CNTR_NORMAL,
4231 access_misc_efuse_done_parity_err_cnt),
4232 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4233 CNTR_NORMAL,
4234 access_misc_efuse_write_err_cnt),
4235 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4236 0, CNTR_NORMAL,
4237 access_misc_efuse_read_bad_addr_err_cnt),
4238 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4239 CNTR_NORMAL,
4240 access_misc_efuse_csr_parity_err_cnt),
4241 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4242 CNTR_NORMAL,
4243 access_misc_fw_auth_failed_err_cnt),
4244 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4245 CNTR_NORMAL,
4246 access_misc_key_mismatch_err_cnt),
4247 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4248 CNTR_NORMAL,
4249 access_misc_sbus_write_failed_err_cnt),
4250 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4251 CNTR_NORMAL,
4252 access_misc_csr_write_bad_addr_err_cnt),
4253 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4254 CNTR_NORMAL,
4255 access_misc_csr_read_bad_addr_err_cnt),
4256 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4257 CNTR_NORMAL,
4258 access_misc_csr_parity_err_cnt),
4259 /* CceErrStatus */
4260 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4261 CNTR_NORMAL,
4262 access_sw_cce_err_status_aggregated_cnt),
4263 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4264 CNTR_NORMAL,
4265 access_cce_msix_csr_parity_err_cnt),
4266 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4267 CNTR_NORMAL,
4268 access_cce_int_map_unc_err_cnt),
4269 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4270 CNTR_NORMAL,
4271 access_cce_int_map_cor_err_cnt),
4272 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4273 CNTR_NORMAL,
4274 access_cce_msix_table_unc_err_cnt),
4275 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4276 CNTR_NORMAL,
4277 access_cce_msix_table_cor_err_cnt),
4278 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4279 0, CNTR_NORMAL,
4280 access_cce_rxdma_conv_fifo_parity_err_cnt),
4281 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4282 0, CNTR_NORMAL,
4283 access_cce_rcpl_async_fifo_parity_err_cnt),
4284 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4285 CNTR_NORMAL,
4286 access_cce_seg_write_bad_addr_err_cnt),
4287 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4288 CNTR_NORMAL,
4289 access_cce_seg_read_bad_addr_err_cnt),
4290 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4291 CNTR_NORMAL,
4292 access_la_triggered_cnt),
4293 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4294 CNTR_NORMAL,
4295 access_cce_trgt_cpl_timeout_err_cnt),
4296 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4297 CNTR_NORMAL,
4298 access_pcic_receive_parity_err_cnt),
4299 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4300 CNTR_NORMAL,
4301 access_pcic_transmit_back_parity_err_cnt),
4302 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4303 0, CNTR_NORMAL,
4304 access_pcic_transmit_front_parity_err_cnt),
4305 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4306 CNTR_NORMAL,
4307 access_pcic_cpl_dat_q_unc_err_cnt),
4308 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4309 CNTR_NORMAL,
4310 access_pcic_cpl_hd_q_unc_err_cnt),
4311 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4312 CNTR_NORMAL,
4313 access_pcic_post_dat_q_unc_err_cnt),
4314 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4315 CNTR_NORMAL,
4316 access_pcic_post_hd_q_unc_err_cnt),
4317 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4318 CNTR_NORMAL,
4319 access_pcic_retry_sot_mem_unc_err_cnt),
4320 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4321 CNTR_NORMAL,
4322 access_pcic_retry_mem_unc_err),
4323 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4324 CNTR_NORMAL,
4325 access_pcic_n_post_dat_q_parity_err_cnt),
4326 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4327 CNTR_NORMAL,
4328 access_pcic_n_post_h_q_parity_err_cnt),
4329 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4330 CNTR_NORMAL,
4331 access_pcic_cpl_dat_q_cor_err_cnt),
4332 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4333 CNTR_NORMAL,
4334 access_pcic_cpl_hd_q_cor_err_cnt),
4335 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4336 CNTR_NORMAL,
4337 access_pcic_post_dat_q_cor_err_cnt),
4338 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_pcic_post_hd_q_cor_err_cnt),
4341 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_pcic_retry_sot_mem_cor_err_cnt),
4344 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4345 CNTR_NORMAL,
4346 access_pcic_retry_mem_cor_err_cnt),
4347 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4348 "CceCli1AsyncFifoDbgParityError", 0, 0,
4349 CNTR_NORMAL,
4350 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4351 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4352 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4353 CNTR_NORMAL,
4354 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4355 ),
4356 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4357 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4358 CNTR_NORMAL,
4359 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4360 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4361 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4362 CNTR_NORMAL,
4363 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4364 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4365 0, CNTR_NORMAL,
4366 access_cce_cli2_async_fifo_parity_err_cnt),
4367 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4368 CNTR_NORMAL,
4369 access_cce_csr_cfg_bus_parity_err_cnt),
4370 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4371 0, CNTR_NORMAL,
4372 access_cce_cli0_async_fifo_parity_err_cnt),
4373 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4374 CNTR_NORMAL,
4375 access_cce_rspd_data_parity_err_cnt),
4376 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4377 CNTR_NORMAL,
4378 access_cce_trgt_access_err_cnt),
4379 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4380 0, CNTR_NORMAL,
4381 access_cce_trgt_async_fifo_parity_err_cnt),
4382 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4383 CNTR_NORMAL,
4384 access_cce_csr_write_bad_addr_err_cnt),
4385 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4386 CNTR_NORMAL,
4387 access_cce_csr_read_bad_addr_err_cnt),
4388 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4389 CNTR_NORMAL,
4390 access_ccs_csr_parity_err_cnt),
4391
4392 /* RcvErrStatus */
4393 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4394 CNTR_NORMAL,
4395 access_rx_csr_parity_err_cnt),
4396 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4397 CNTR_NORMAL,
4398 access_rx_csr_write_bad_addr_err_cnt),
4399 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4400 CNTR_NORMAL,
4401 access_rx_csr_read_bad_addr_err_cnt),
4402 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4403 CNTR_NORMAL,
4404 access_rx_dma_csr_unc_err_cnt),
4405 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4406 CNTR_NORMAL,
4407 access_rx_dma_dq_fsm_encoding_err_cnt),
4408 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4409 CNTR_NORMAL,
4410 access_rx_dma_eq_fsm_encoding_err_cnt),
4411 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4412 CNTR_NORMAL,
4413 access_rx_dma_csr_parity_err_cnt),
4414 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4415 CNTR_NORMAL,
4416 access_rx_rbuf_data_cor_err_cnt),
4417 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4418 CNTR_NORMAL,
4419 access_rx_rbuf_data_unc_err_cnt),
4420 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4421 CNTR_NORMAL,
4422 access_rx_dma_data_fifo_rd_cor_err_cnt),
4423 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4424 CNTR_NORMAL,
4425 access_rx_dma_data_fifo_rd_unc_err_cnt),
4426 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4427 CNTR_NORMAL,
4428 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4429 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4430 CNTR_NORMAL,
4431 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4432 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4433 CNTR_NORMAL,
4434 access_rx_rbuf_desc_part2_cor_err_cnt),
4435 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4436 CNTR_NORMAL,
4437 access_rx_rbuf_desc_part2_unc_err_cnt),
4438 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4439 CNTR_NORMAL,
4440 access_rx_rbuf_desc_part1_cor_err_cnt),
4441 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4442 CNTR_NORMAL,
4443 access_rx_rbuf_desc_part1_unc_err_cnt),
4444 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4445 CNTR_NORMAL,
4446 access_rx_hq_intr_fsm_err_cnt),
4447 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4448 CNTR_NORMAL,
4449 access_rx_hq_intr_csr_parity_err_cnt),
4450 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4451 CNTR_NORMAL,
4452 access_rx_lookup_csr_parity_err_cnt),
4453 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4454 CNTR_NORMAL,
4455 access_rx_lookup_rcv_array_cor_err_cnt),
4456 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4457 CNTR_NORMAL,
4458 access_rx_lookup_rcv_array_unc_err_cnt),
4459 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4460 0, CNTR_NORMAL,
4461 access_rx_lookup_des_part2_parity_err_cnt),
4462 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4463 0, CNTR_NORMAL,
4464 access_rx_lookup_des_part1_unc_cor_err_cnt),
4465 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4466 CNTR_NORMAL,
4467 access_rx_lookup_des_part1_unc_err_cnt),
4468 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4469 CNTR_NORMAL,
4470 access_rx_rbuf_next_free_buf_cor_err_cnt),
4471 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4472 CNTR_NORMAL,
4473 access_rx_rbuf_next_free_buf_unc_err_cnt),
4474 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4475 "RxRbufFlInitWrAddrParityErr", 0, 0,
4476 CNTR_NORMAL,
4477 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4478 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4479 0, CNTR_NORMAL,
4480 access_rx_rbuf_fl_initdone_parity_err_cnt),
4481 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4482 0, CNTR_NORMAL,
4483 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4484 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4485 CNTR_NORMAL,
4486 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4487 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4488 CNTR_NORMAL,
4489 access_rx_rbuf_empty_err_cnt),
4490 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4491 CNTR_NORMAL,
4492 access_rx_rbuf_full_err_cnt),
4493 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4494 CNTR_NORMAL,
4495 access_rbuf_bad_lookup_err_cnt),
4496 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4497 CNTR_NORMAL,
4498 access_rbuf_ctx_id_parity_err_cnt),
4499 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4500 CNTR_NORMAL,
4501 access_rbuf_csr_qeopdw_parity_err_cnt),
4502 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4503 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4504 CNTR_NORMAL,
4505 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4506 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4507 "RxRbufCsrQTlPtrParityErr", 0, 0,
4508 CNTR_NORMAL,
4509 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4510 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4511 0, CNTR_NORMAL,
4512 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4513 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4514 0, CNTR_NORMAL,
4515 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4516 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4517 0, 0, CNTR_NORMAL,
4518 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4519 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4520 0, CNTR_NORMAL,
4521 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4522 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4523 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4524 CNTR_NORMAL,
4525 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4526 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4527 0, CNTR_NORMAL,
4528 access_rx_rbuf_block_list_read_cor_err_cnt),
4529 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4530 0, CNTR_NORMAL,
4531 access_rx_rbuf_block_list_read_unc_err_cnt),
4532 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4533 CNTR_NORMAL,
4534 access_rx_rbuf_lookup_des_cor_err_cnt),
4535 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4536 CNTR_NORMAL,
4537 access_rx_rbuf_lookup_des_unc_err_cnt),
4538 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4539 "RxRbufLookupDesRegUncCorErr", 0, 0,
4540 CNTR_NORMAL,
4541 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4542 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4543 CNTR_NORMAL,
4544 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4545 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4546 CNTR_NORMAL,
4547 access_rx_rbuf_free_list_cor_err_cnt),
4548 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4549 CNTR_NORMAL,
4550 access_rx_rbuf_free_list_unc_err_cnt),
4551 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4552 CNTR_NORMAL,
4553 access_rx_rcv_fsm_encoding_err_cnt),
4554 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4555 CNTR_NORMAL,
4556 access_rx_dma_flag_cor_err_cnt),
4557 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4558 CNTR_NORMAL,
4559 access_rx_dma_flag_unc_err_cnt),
4560 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4561 CNTR_NORMAL,
4562 access_rx_dc_sop_eop_parity_err_cnt),
4563 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4564 CNTR_NORMAL,
4565 access_rx_rcv_csr_parity_err_cnt),
4566 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4567 CNTR_NORMAL,
4568 access_rx_rcv_qp_map_table_cor_err_cnt),
4569 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4570 CNTR_NORMAL,
4571 access_rx_rcv_qp_map_table_unc_err_cnt),
4572 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4573 CNTR_NORMAL,
4574 access_rx_rcv_data_cor_err_cnt),
4575 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4576 CNTR_NORMAL,
4577 access_rx_rcv_data_unc_err_cnt),
4578 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4579 CNTR_NORMAL,
4580 access_rx_rcv_hdr_cor_err_cnt),
4581 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4582 CNTR_NORMAL,
4583 access_rx_rcv_hdr_unc_err_cnt),
4584 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4585 CNTR_NORMAL,
4586 access_rx_dc_intf_parity_err_cnt),
4587 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4588 CNTR_NORMAL,
4589 access_rx_dma_csr_cor_err_cnt),
4590 /* SendPioErrStatus */
4591 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4592 CNTR_NORMAL,
4593 access_pio_pec_sop_head_parity_err_cnt),
4594 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4595 CNTR_NORMAL,
4596 access_pio_pcc_sop_head_parity_err_cnt),
4597 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4598 0, 0, CNTR_NORMAL,
4599 access_pio_last_returned_cnt_parity_err_cnt),
4600 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4601 0, CNTR_NORMAL,
4602 access_pio_current_free_cnt_parity_err_cnt),
4603 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4604 CNTR_NORMAL,
4605 access_pio_reserved_31_err_cnt),
4606 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4607 CNTR_NORMAL,
4608 access_pio_reserved_30_err_cnt),
4609 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4610 CNTR_NORMAL,
4611 access_pio_ppmc_sop_len_err_cnt),
4612 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4613 CNTR_NORMAL,
4614 access_pio_ppmc_bqc_mem_parity_err_cnt),
4615 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4616 CNTR_NORMAL,
4617 access_pio_vl_fifo_parity_err_cnt),
4618 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4619 CNTR_NORMAL,
4620 access_pio_vlf_sop_parity_err_cnt),
4621 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4622 CNTR_NORMAL,
4623 access_pio_vlf_v1_len_parity_err_cnt),
4624 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4625 CNTR_NORMAL,
4626 access_pio_block_qw_count_parity_err_cnt),
4627 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4628 CNTR_NORMAL,
4629 access_pio_write_qw_valid_parity_err_cnt),
4630 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4631 CNTR_NORMAL,
4632 access_pio_state_machine_err_cnt),
4633 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4634 CNTR_NORMAL,
4635 access_pio_write_data_parity_err_cnt),
4636 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4637 CNTR_NORMAL,
4638 access_pio_host_addr_mem_cor_err_cnt),
4639 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4640 CNTR_NORMAL,
4641 access_pio_host_addr_mem_unc_err_cnt),
4642 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4643 CNTR_NORMAL,
4644 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4645 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4646 CNTR_NORMAL,
4647 access_pio_init_sm_in_err_cnt),
4648 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4649 CNTR_NORMAL,
4650 access_pio_ppmc_pbl_fifo_err_cnt),
4651 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4652 0, CNTR_NORMAL,
4653 access_pio_credit_ret_fifo_parity_err_cnt),
4654 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4655 CNTR_NORMAL,
4656 access_pio_v1_len_mem_bank1_cor_err_cnt),
4657 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4658 CNTR_NORMAL,
4659 access_pio_v1_len_mem_bank0_cor_err_cnt),
4660 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4661 CNTR_NORMAL,
4662 access_pio_v1_len_mem_bank1_unc_err_cnt),
4663 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4664 CNTR_NORMAL,
4665 access_pio_v1_len_mem_bank0_unc_err_cnt),
4666 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4667 CNTR_NORMAL,
4668 access_pio_sm_pkt_reset_parity_err_cnt),
4669 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4670 CNTR_NORMAL,
4671 access_pio_pkt_evict_fifo_parity_err_cnt),
4672 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4673 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4674 CNTR_NORMAL,
4675 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4676 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4677 CNTR_NORMAL,
4678 access_pio_sbrdctl_crrel_parity_err_cnt),
4679 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4680 CNTR_NORMAL,
4681 access_pio_pec_fifo_parity_err_cnt),
4682 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4683 CNTR_NORMAL,
4684 access_pio_pcc_fifo_parity_err_cnt),
4685 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4686 CNTR_NORMAL,
4687 access_pio_sb_mem_fifo1_err_cnt),
4688 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4689 CNTR_NORMAL,
4690 access_pio_sb_mem_fifo0_err_cnt),
4691 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4692 CNTR_NORMAL,
4693 access_pio_csr_parity_err_cnt),
4694 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4695 CNTR_NORMAL,
4696 access_pio_write_addr_parity_err_cnt),
4697 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4698 CNTR_NORMAL,
4699 access_pio_write_bad_ctxt_err_cnt),
4700 /* SendDmaErrStatus */
4701 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4702 0, CNTR_NORMAL,
4703 access_sdma_pcie_req_tracking_cor_err_cnt),
4704 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4705 0, CNTR_NORMAL,
4706 access_sdma_pcie_req_tracking_unc_err_cnt),
4707 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4708 CNTR_NORMAL,
4709 access_sdma_csr_parity_err_cnt),
4710 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4711 CNTR_NORMAL,
4712 access_sdma_rpy_tag_err_cnt),
4713 /* SendEgressErrStatus */
4714 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4715 CNTR_NORMAL,
4716 access_tx_read_pio_memory_csr_unc_err_cnt),
4717 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4718 0, CNTR_NORMAL,
4719 access_tx_read_sdma_memory_csr_err_cnt),
4720 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4721 CNTR_NORMAL,
4722 access_tx_egress_fifo_cor_err_cnt),
4723 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4724 CNTR_NORMAL,
4725 access_tx_read_pio_memory_cor_err_cnt),
4726 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4727 CNTR_NORMAL,
4728 access_tx_read_sdma_memory_cor_err_cnt),
4729 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4730 CNTR_NORMAL,
4731 access_tx_sb_hdr_cor_err_cnt),
4732 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4733 CNTR_NORMAL,
4734 access_tx_credit_overrun_err_cnt),
4735 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4736 CNTR_NORMAL,
4737 access_tx_launch_fifo8_cor_err_cnt),
4738 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4739 CNTR_NORMAL,
4740 access_tx_launch_fifo7_cor_err_cnt),
4741 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4742 CNTR_NORMAL,
4743 access_tx_launch_fifo6_cor_err_cnt),
4744 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4745 CNTR_NORMAL,
4746 access_tx_launch_fifo5_cor_err_cnt),
4747 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4748 CNTR_NORMAL,
4749 access_tx_launch_fifo4_cor_err_cnt),
4750 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4751 CNTR_NORMAL,
4752 access_tx_launch_fifo3_cor_err_cnt),
4753 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4754 CNTR_NORMAL,
4755 access_tx_launch_fifo2_cor_err_cnt),
4756 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4757 CNTR_NORMAL,
4758 access_tx_launch_fifo1_cor_err_cnt),
4759 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4760 CNTR_NORMAL,
4761 access_tx_launch_fifo0_cor_err_cnt),
4762 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4763 CNTR_NORMAL,
4764 access_tx_credit_return_vl_err_cnt),
4765 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4766 CNTR_NORMAL,
4767 access_tx_hcrc_insertion_err_cnt),
4768 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4769 CNTR_NORMAL,
4770 access_tx_egress_fifo_unc_err_cnt),
4771 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4772 CNTR_NORMAL,
4773 access_tx_read_pio_memory_unc_err_cnt),
4774 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4775 CNTR_NORMAL,
4776 access_tx_read_sdma_memory_unc_err_cnt),
4777 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4778 CNTR_NORMAL,
4779 access_tx_sb_hdr_unc_err_cnt),
4780 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4781 CNTR_NORMAL,
4782 access_tx_credit_return_partiy_err_cnt),
4783 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4784 0, 0, CNTR_NORMAL,
4785 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4786 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4787 0, 0, CNTR_NORMAL,
4788 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4789 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4790 0, 0, CNTR_NORMAL,
4791 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4792 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4793 0, 0, CNTR_NORMAL,
4794 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4795 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4796 0, 0, CNTR_NORMAL,
4797 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4798 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4799 0, 0, CNTR_NORMAL,
4800 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4801 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4802 0, 0, CNTR_NORMAL,
4803 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4804 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4805 0, 0, CNTR_NORMAL,
4806 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4807 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4808 0, 0, CNTR_NORMAL,
4809 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4810 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4811 0, 0, CNTR_NORMAL,
4812 access_tx_sdma15_disallowed_packet_err_cnt),
4813 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4814 0, 0, CNTR_NORMAL,
4815 access_tx_sdma14_disallowed_packet_err_cnt),
4816 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4817 0, 0, CNTR_NORMAL,
4818 access_tx_sdma13_disallowed_packet_err_cnt),
4819 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4820 0, 0, CNTR_NORMAL,
4821 access_tx_sdma12_disallowed_packet_err_cnt),
4822 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4823 0, 0, CNTR_NORMAL,
4824 access_tx_sdma11_disallowed_packet_err_cnt),
4825 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4826 0, 0, CNTR_NORMAL,
4827 access_tx_sdma10_disallowed_packet_err_cnt),
4828 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4829 0, 0, CNTR_NORMAL,
4830 access_tx_sdma9_disallowed_packet_err_cnt),
4831 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4832 0, 0, CNTR_NORMAL,
4833 access_tx_sdma8_disallowed_packet_err_cnt),
4834 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4835 0, 0, CNTR_NORMAL,
4836 access_tx_sdma7_disallowed_packet_err_cnt),
4837 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4838 0, 0, CNTR_NORMAL,
4839 access_tx_sdma6_disallowed_packet_err_cnt),
4840 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4841 0, 0, CNTR_NORMAL,
4842 access_tx_sdma5_disallowed_packet_err_cnt),
4843 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4844 0, 0, CNTR_NORMAL,
4845 access_tx_sdma4_disallowed_packet_err_cnt),
4846 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4847 0, 0, CNTR_NORMAL,
4848 access_tx_sdma3_disallowed_packet_err_cnt),
4849 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4850 0, 0, CNTR_NORMAL,
4851 access_tx_sdma2_disallowed_packet_err_cnt),
4852 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4853 0, 0, CNTR_NORMAL,
4854 access_tx_sdma1_disallowed_packet_err_cnt),
4855 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4856 0, 0, CNTR_NORMAL,
4857 access_tx_sdma0_disallowed_packet_err_cnt),
4858 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4859 CNTR_NORMAL,
4860 access_tx_config_parity_err_cnt),
4861 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4862 CNTR_NORMAL,
4863 access_tx_sbrd_ctl_csr_parity_err_cnt),
4864 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4865 CNTR_NORMAL,
4866 access_tx_launch_csr_parity_err_cnt),
4867 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4868 CNTR_NORMAL,
4869 access_tx_illegal_vl_err_cnt),
4870 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4871 "TxSbrdCtlStateMachineParityErr", 0, 0,
4872 CNTR_NORMAL,
4873 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4874 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4875 CNTR_NORMAL,
4876 access_egress_reserved_10_err_cnt),
4877 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4878 CNTR_NORMAL,
4879 access_egress_reserved_9_err_cnt),
4880 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4881 0, 0, CNTR_NORMAL,
4882 access_tx_sdma_launch_intf_parity_err_cnt),
4883 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4884 CNTR_NORMAL,
4885 access_tx_pio_launch_intf_parity_err_cnt),
4886 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4887 CNTR_NORMAL,
4888 access_egress_reserved_6_err_cnt),
4889 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4890 CNTR_NORMAL,
4891 access_tx_incorrect_link_state_err_cnt),
4892 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4893 CNTR_NORMAL,
4894 access_tx_linkdown_err_cnt),
4895 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4896 "EgressFifoUnderrunOrParityErr", 0, 0,
4897 CNTR_NORMAL,
4898 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4899 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4900 CNTR_NORMAL,
4901 access_egress_reserved_2_err_cnt),
4902 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4903 CNTR_NORMAL,
4904 access_tx_pkt_integrity_mem_unc_err_cnt),
4905 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4906 CNTR_NORMAL,
4907 access_tx_pkt_integrity_mem_cor_err_cnt),
4908 /* SendErrStatus */
4909 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4910 CNTR_NORMAL,
4911 access_send_csr_write_bad_addr_err_cnt),
4912 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4913 CNTR_NORMAL,
4914 access_send_csr_read_bad_addr_err_cnt),
4915 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4916 CNTR_NORMAL,
4917 access_send_csr_parity_cnt),
4918 /* SendCtxtErrStatus */
4919 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4920 CNTR_NORMAL,
4921 access_pio_write_out_of_bounds_err_cnt),
4922 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4923 CNTR_NORMAL,
4924 access_pio_write_overflow_err_cnt),
4925 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4926 0, 0, CNTR_NORMAL,
4927 access_pio_write_crosses_boundary_err_cnt),
4928 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4929 CNTR_NORMAL,
4930 access_pio_disallowed_packet_err_cnt),
4931 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4932 CNTR_NORMAL,
4933 access_pio_inconsistent_sop_err_cnt),
4934 /* SendDmaEngErrStatus */
4935 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4936 0, 0, CNTR_NORMAL,
4937 access_sdma_header_request_fifo_cor_err_cnt),
4938 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4939 CNTR_NORMAL,
4940 access_sdma_header_storage_cor_err_cnt),
4941 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4942 CNTR_NORMAL,
4943 access_sdma_packet_tracking_cor_err_cnt),
4944 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4945 CNTR_NORMAL,
4946 access_sdma_assembly_cor_err_cnt),
4947 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4948 CNTR_NORMAL,
4949 access_sdma_desc_table_cor_err_cnt),
4950 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4951 0, 0, CNTR_NORMAL,
4952 access_sdma_header_request_fifo_unc_err_cnt),
4953 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4954 CNTR_NORMAL,
4955 access_sdma_header_storage_unc_err_cnt),
4956 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4957 CNTR_NORMAL,
4958 access_sdma_packet_tracking_unc_err_cnt),
4959 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4960 CNTR_NORMAL,
4961 access_sdma_assembly_unc_err_cnt),
4962 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4963 CNTR_NORMAL,
4964 access_sdma_desc_table_unc_err_cnt),
4965 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4966 CNTR_NORMAL,
4967 access_sdma_timeout_err_cnt),
4968 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4969 CNTR_NORMAL,
4970 access_sdma_header_length_err_cnt),
4971 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4972 CNTR_NORMAL,
4973 access_sdma_header_address_err_cnt),
4974 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4975 CNTR_NORMAL,
4976 access_sdma_header_select_err_cnt),
4977 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4978 CNTR_NORMAL,
4979 access_sdma_reserved_9_err_cnt),
4980 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4981 CNTR_NORMAL,
4982 access_sdma_packet_desc_overflow_err_cnt),
4983 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4984 CNTR_NORMAL,
4985 access_sdma_length_mismatch_err_cnt),
4986 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4987 CNTR_NORMAL,
4988 access_sdma_halt_err_cnt),
4989 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4990 CNTR_NORMAL,
4991 access_sdma_mem_read_err_cnt),
4992 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4993 CNTR_NORMAL,
4994 access_sdma_first_desc_err_cnt),
4995 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4996 CNTR_NORMAL,
4997 access_sdma_tail_out_of_bounds_err_cnt),
4998 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4999 CNTR_NORMAL,
5000 access_sdma_too_long_err_cnt),
5001 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5002 CNTR_NORMAL,
5003 access_sdma_gen_mismatch_err_cnt),
5004 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5005 CNTR_NORMAL,
5006 access_sdma_wrong_dw_err_cnt),
5007 };
5008
5009 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5010 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5011 CNTR_NORMAL),
5012 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5013 CNTR_NORMAL),
5014 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5015 CNTR_NORMAL),
5016 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5017 CNTR_NORMAL),
5018 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5019 CNTR_NORMAL),
5020 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5021 CNTR_NORMAL),
5022 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5023 CNTR_NORMAL),
5024 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5025 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5026 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5027 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5028 CNTR_SYNTH | CNTR_VL),
5029 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5030 CNTR_SYNTH | CNTR_VL),
5031 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5032 CNTR_SYNTH | CNTR_VL),
5033 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5034 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5035 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5036 access_sw_link_dn_cnt),
5037 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5038 access_sw_link_up_cnt),
5039 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5040 access_sw_unknown_frame_cnt),
5041 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5042 access_sw_xmit_discards),
5043 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5044 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5045 access_sw_xmit_discards),
5046 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5047 access_xmit_constraint_errs),
5048 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5049 access_rcv_constraint_errs),
5050 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5051 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5052 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5053 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5054 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5055 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5056 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5057 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5058 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5059 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5060 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5061 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5062 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5063 access_sw_cpu_rc_acks),
5064 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5065 access_sw_cpu_rc_qacks),
5066 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5067 access_sw_cpu_rc_delayed_comp),
5068 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5069 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5070 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5071 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5072 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5073 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5074 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5075 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5076 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5077 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5078 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5079 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5080 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5081 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5082 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5083 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5084 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5085 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5086 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5087 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5088 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5089 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5090 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5091 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5092 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5093 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5094 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5095 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5096 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5097 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5098 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5099 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5100 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5101 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5102 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5103 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5104 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5105 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5106 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5107 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5108 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5109 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5110 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5111 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5112 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5113 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5114 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5115 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5116 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5117 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5118 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5119 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5120 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5121 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5122 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5123 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5124 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5125 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5126 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5127 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5128 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5129 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5130 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5131 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5132 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5133 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5134 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5135 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5136 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5137 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5138 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5139 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5140 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5141 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5142 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5143 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5144 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5145 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5146 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5147 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5148 };
5149
5150 /* ======================================================================== */
5151
5152 /* return true if this is chip revision revision a */
5153 int is_ax(struct hfi1_devdata *dd)
5154 {
5155 u8 chip_rev_minor =
5156 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5157 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5158 return (chip_rev_minor & 0xf0) == 0;
5159 }
5160
5161 /* return true if this is chip revision revision b */
5162 int is_bx(struct hfi1_devdata *dd)
5163 {
5164 u8 chip_rev_minor =
5165 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5166 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5167 return (chip_rev_minor & 0xF0) == 0x10;
5168 }
5169
5170 /*
5171 * Append string s to buffer buf. Arguments curp and len are the current
5172 * position and remaining length, respectively.
5173 *
5174 * return 0 on success, 1 on out of room
5175 */
5176 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5177 {
5178 char *p = *curp;
5179 int len = *lenp;
5180 int result = 0; /* success */
5181 char c;
5182
5183 /* add a comma, if first in the buffer */
5184 if (p != buf) {
5185 if (len == 0) {
5186 result = 1; /* out of room */
5187 goto done;
5188 }
5189 *p++ = ',';
5190 len--;
5191 }
5192
5193 /* copy the string */
5194 while ((c = *s++) != 0) {
5195 if (len == 0) {
5196 result = 1; /* out of room */
5197 goto done;
5198 }
5199 *p++ = c;
5200 len--;
5201 }
5202
5203 done:
5204 /* write return values */
5205 *curp = p;
5206 *lenp = len;
5207
5208 return result;
5209 }
5210
5211 /*
5212 * Using the given flag table, print a comma separated string into
5213 * the buffer. End in '*' if the buffer is too short.
5214 */
5215 static char *flag_string(char *buf, int buf_len, u64 flags,
5216 struct flag_table *table, int table_size)
5217 {
5218 char extra[32];
5219 char *p = buf;
5220 int len = buf_len;
5221 int no_room = 0;
5222 int i;
5223
5224 /* make sure there is at least 2 so we can form "*" */
5225 if (len < 2)
5226 return "";
5227
5228 len--; /* leave room for a nul */
5229 for (i = 0; i < table_size; i++) {
5230 if (flags & table[i].flag) {
5231 no_room = append_str(buf, &p, &len, table[i].str);
5232 if (no_room)
5233 break;
5234 flags &= ~table[i].flag;
5235 }
5236 }
5237
5238 /* any undocumented bits left? */
5239 if (!no_room && flags) {
5240 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5241 no_room = append_str(buf, &p, &len, extra);
5242 }
5243
5244 /* add * if ran out of room */
5245 if (no_room) {
5246 /* may need to back up to add space for a '*' */
5247 if (len == 0)
5248 --p;
5249 *p++ = '*';
5250 }
5251
5252 /* add final nul - space already allocated above */
5253 *p = 0;
5254 return buf;
5255 }
5256
5257 /* first 8 CCE error interrupt source names */
5258 static const char * const cce_misc_names[] = {
5259 "CceErrInt", /* 0 */
5260 "RxeErrInt", /* 1 */
5261 "MiscErrInt", /* 2 */
5262 "Reserved3", /* 3 */
5263 "PioErrInt", /* 4 */
5264 "SDmaErrInt", /* 5 */
5265 "EgressErrInt", /* 6 */
5266 "TxeErrInt" /* 7 */
5267 };
5268
5269 /*
5270 * Return the miscellaneous error interrupt name.
5271 */
5272 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5273 {
5274 if (source < ARRAY_SIZE(cce_misc_names))
5275 strncpy(buf, cce_misc_names[source], bsize);
5276 else
5277 snprintf(buf, bsize, "Reserved%u",
5278 source + IS_GENERAL_ERR_START);
5279
5280 return buf;
5281 }
5282
5283 /*
5284 * Return the SDMA engine error interrupt name.
5285 */
5286 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5287 {
5288 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5289 return buf;
5290 }
5291
5292 /*
5293 * Return the send context error interrupt name.
5294 */
5295 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5296 {
5297 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5298 return buf;
5299 }
5300
5301 static const char * const various_names[] = {
5302 "PbcInt",
5303 "GpioAssertInt",
5304 "Qsfp1Int",
5305 "Qsfp2Int",
5306 "TCritInt"
5307 };
5308
5309 /*
5310 * Return the various interrupt name.
5311 */
5312 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5313 {
5314 if (source < ARRAY_SIZE(various_names))
5315 strncpy(buf, various_names[source], bsize);
5316 else
5317 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5318 return buf;
5319 }
5320
5321 /*
5322 * Return the DC interrupt name.
5323 */
5324 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5325 {
5326 static const char * const dc_int_names[] = {
5327 "common",
5328 "lcb",
5329 "8051",
5330 "lbm" /* local block merge */
5331 };
5332
5333 if (source < ARRAY_SIZE(dc_int_names))
5334 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5335 else
5336 snprintf(buf, bsize, "DCInt%u", source);
5337 return buf;
5338 }
5339
5340 static const char * const sdma_int_names[] = {
5341 "SDmaInt",
5342 "SdmaIdleInt",
5343 "SdmaProgressInt",
5344 };
5345
5346 /*
5347 * Return the SDMA engine interrupt name.
5348 */
5349 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5350 {
5351 /* what interrupt */
5352 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5353 /* which engine */
5354 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5355
5356 if (likely(what < 3))
5357 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5358 else
5359 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5360 return buf;
5361 }
5362
5363 /*
5364 * Return the receive available interrupt name.
5365 */
5366 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368 snprintf(buf, bsize, "RcvAvailInt%u", source);
5369 return buf;
5370 }
5371
5372 /*
5373 * Return the receive urgent interrupt name.
5374 */
5375 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5376 {
5377 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5378 return buf;
5379 }
5380
5381 /*
5382 * Return the send credit interrupt name.
5383 */
5384 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5385 {
5386 snprintf(buf, bsize, "SendCreditInt%u", source);
5387 return buf;
5388 }
5389
5390 /*
5391 * Return the reserved interrupt name.
5392 */
5393 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5394 {
5395 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5396 return buf;
5397 }
5398
5399 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5400 {
5401 return flag_string(buf, buf_len, flags,
5402 cce_err_status_flags,
5403 ARRAY_SIZE(cce_err_status_flags));
5404 }
5405
5406 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5407 {
5408 return flag_string(buf, buf_len, flags,
5409 rxe_err_status_flags,
5410 ARRAY_SIZE(rxe_err_status_flags));
5411 }
5412
5413 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5414 {
5415 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5416 ARRAY_SIZE(misc_err_status_flags));
5417 }
5418
5419 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5420 {
5421 return flag_string(buf, buf_len, flags,
5422 pio_err_status_flags,
5423 ARRAY_SIZE(pio_err_status_flags));
5424 }
5425
5426 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5427 {
5428 return flag_string(buf, buf_len, flags,
5429 sdma_err_status_flags,
5430 ARRAY_SIZE(sdma_err_status_flags));
5431 }
5432
5433 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5434 {
5435 return flag_string(buf, buf_len, flags,
5436 egress_err_status_flags,
5437 ARRAY_SIZE(egress_err_status_flags));
5438 }
5439
5440 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5441 {
5442 return flag_string(buf, buf_len, flags,
5443 egress_err_info_flags,
5444 ARRAY_SIZE(egress_err_info_flags));
5445 }
5446
5447 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5448 {
5449 return flag_string(buf, buf_len, flags,
5450 send_err_status_flags,
5451 ARRAY_SIZE(send_err_status_flags));
5452 }
5453
5454 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5455 {
5456 char buf[96];
5457 int i = 0;
5458
5459 /*
5460 * For most these errors, there is nothing that can be done except
5461 * report or record it.
5462 */
5463 dd_dev_info(dd, "CCE Error: %s\n",
5464 cce_err_status_string(buf, sizeof(buf), reg));
5465
5466 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5467 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5468 /* this error requires a manual drop into SPC freeze mode */
5469 /* then a fix up */
5470 start_freeze_handling(dd->pport, FREEZE_SELF);
5471 }
5472
5473 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5474 if (reg & (1ull << i)) {
5475 incr_cntr64(&dd->cce_err_status_cnt[i]);
5476 /* maintain a counter over all cce_err_status errors */
5477 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5478 }
5479 }
5480 }
5481
5482 /*
5483 * Check counters for receive errors that do not have an interrupt
5484 * associated with them.
5485 */
5486 #define RCVERR_CHECK_TIME 10
5487 static void update_rcverr_timer(unsigned long opaque)
5488 {
5489 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5490 struct hfi1_pportdata *ppd = dd->pport;
5491 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5492
5493 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5494 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5495 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5496 set_link_down_reason(
5497 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5498 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5499 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5500 }
5501 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5502
5503 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5504 }
5505
5506 static int init_rcverr(struct hfi1_devdata *dd)
5507 {
5508 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5509 /* Assume the hardware counter has been reset */
5510 dd->rcv_ovfl_cnt = 0;
5511 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5512 }
5513
5514 static void free_rcverr(struct hfi1_devdata *dd)
5515 {
5516 if (dd->rcverr_timer.data)
5517 del_timer_sync(&dd->rcverr_timer);
5518 dd->rcverr_timer.data = 0;
5519 }
5520
5521 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5522 {
5523 char buf[96];
5524 int i = 0;
5525
5526 dd_dev_info(dd, "Receive Error: %s\n",
5527 rxe_err_status_string(buf, sizeof(buf), reg));
5528
5529 if (reg & ALL_RXE_FREEZE_ERR) {
5530 int flags = 0;
5531
5532 /*
5533 * Freeze mode recovery is disabled for the errors
5534 * in RXE_FREEZE_ABORT_MASK
5535 */
5536 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5537 flags = FREEZE_ABORT;
5538
5539 start_freeze_handling(dd->pport, flags);
5540 }
5541
5542 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5543 if (reg & (1ull << i))
5544 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5545 }
5546 }
5547
5548 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5549 {
5550 char buf[96];
5551 int i = 0;
5552
5553 dd_dev_info(dd, "Misc Error: %s",
5554 misc_err_status_string(buf, sizeof(buf), reg));
5555 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5556 if (reg & (1ull << i))
5557 incr_cntr64(&dd->misc_err_status_cnt[i]);
5558 }
5559 }
5560
5561 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5562 {
5563 char buf[96];
5564 int i = 0;
5565
5566 dd_dev_info(dd, "PIO Error: %s\n",
5567 pio_err_status_string(buf, sizeof(buf), reg));
5568
5569 if (reg & ALL_PIO_FREEZE_ERR)
5570 start_freeze_handling(dd->pport, 0);
5571
5572 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5573 if (reg & (1ull << i))
5574 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5575 }
5576 }
5577
5578 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5579 {
5580 char buf[96];
5581 int i = 0;
5582
5583 dd_dev_info(dd, "SDMA Error: %s\n",
5584 sdma_err_status_string(buf, sizeof(buf), reg));
5585
5586 if (reg & ALL_SDMA_FREEZE_ERR)
5587 start_freeze_handling(dd->pport, 0);
5588
5589 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5590 if (reg & (1ull << i))
5591 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5592 }
5593 }
5594
5595 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5596 {
5597 incr_cntr64(&ppd->port_xmit_discards);
5598 }
5599
5600 static void count_port_inactive(struct hfi1_devdata *dd)
5601 {
5602 __count_port_discards(dd->pport);
5603 }
5604
5605 /*
5606 * We have had a "disallowed packet" error during egress. Determine the
5607 * integrity check which failed, and update relevant error counter, etc.
5608 *
5609 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5610 * bit of state per integrity check, and so we can miss the reason for an
5611 * egress error if more than one packet fails the same integrity check
5612 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5613 */
5614 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5615 int vl)
5616 {
5617 struct hfi1_pportdata *ppd = dd->pport;
5618 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5619 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5620 char buf[96];
5621
5622 /* clear down all observed info as quickly as possible after read */
5623 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5624
5625 dd_dev_info(dd,
5626 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5627 info, egress_err_info_string(buf, sizeof(buf), info), src);
5628
5629 /* Eventually add other counters for each bit */
5630 if (info & PORT_DISCARD_EGRESS_ERRS) {
5631 int weight, i;
5632
5633 /*
5634 * Count all applicable bits as individual errors and
5635 * attribute them to the packet that triggered this handler.
5636 * This may not be completely accurate due to limitations
5637 * on the available hardware error information. There is
5638 * a single information register and any number of error
5639 * packets may have occurred and contributed to it before
5640 * this routine is called. This means that:
5641 * a) If multiple packets with the same error occur before
5642 * this routine is called, earlier packets are missed.
5643 * There is only a single bit for each error type.
5644 * b) Errors may not be attributed to the correct VL.
5645 * The driver is attributing all bits in the info register
5646 * to the packet that triggered this call, but bits
5647 * could be an accumulation of different packets with
5648 * different VLs.
5649 * c) A single error packet may have multiple counts attached
5650 * to it. There is no way for the driver to know if
5651 * multiple bits set in the info register are due to a
5652 * single packet or multiple packets. The driver assumes
5653 * multiple packets.
5654 */
5655 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5656 for (i = 0; i < weight; i++) {
5657 __count_port_discards(ppd);
5658 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5659 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5660 else if (vl == 15)
5661 incr_cntr64(&ppd->port_xmit_discards_vl
5662 [C_VL_15]);
5663 }
5664 }
5665 }
5666
5667 /*
5668 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5669 * register. Does it represent a 'port inactive' error?
5670 */
5671 static inline int port_inactive_err(u64 posn)
5672 {
5673 return (posn >= SEES(TX_LINKDOWN) &&
5674 posn <= SEES(TX_INCORRECT_LINK_STATE));
5675 }
5676
5677 /*
5678 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5679 * register. Does it represent a 'disallowed packet' error?
5680 */
5681 static inline int disallowed_pkt_err(int posn)
5682 {
5683 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5684 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5685 }
5686
5687 /*
5688 * Input value is a bit position of one of the SDMA engine disallowed
5689 * packet errors. Return which engine. Use of this must be guarded by
5690 * disallowed_pkt_err().
5691 */
5692 static inline int disallowed_pkt_engine(int posn)
5693 {
5694 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5695 }
5696
5697 /*
5698 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5699 * be done.
5700 */
5701 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5702 {
5703 struct sdma_vl_map *m;
5704 int vl;
5705
5706 /* range check */
5707 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5708 return -1;
5709
5710 rcu_read_lock();
5711 m = rcu_dereference(dd->sdma_map);
5712 vl = m->engine_to_vl[engine];
5713 rcu_read_unlock();
5714
5715 return vl;
5716 }
5717
5718 /*
5719 * Translate the send context (sofware index) into a VL. Return -1 if the
5720 * translation cannot be done.
5721 */
5722 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5723 {
5724 struct send_context_info *sci;
5725 struct send_context *sc;
5726 int i;
5727
5728 sci = &dd->send_contexts[sw_index];
5729
5730 /* there is no information for user (PSM) and ack contexts */
5731 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5732 return -1;
5733
5734 sc = sci->sc;
5735 if (!sc)
5736 return -1;
5737 if (dd->vld[15].sc == sc)
5738 return 15;
5739 for (i = 0; i < num_vls; i++)
5740 if (dd->vld[i].sc == sc)
5741 return i;
5742
5743 return -1;
5744 }
5745
5746 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5747 {
5748 u64 reg_copy = reg, handled = 0;
5749 char buf[96];
5750 int i = 0;
5751
5752 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5753 start_freeze_handling(dd->pport, 0);
5754 else if (is_ax(dd) &&
5755 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5756 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5757 start_freeze_handling(dd->pport, 0);
5758
5759 while (reg_copy) {
5760 int posn = fls64(reg_copy);
5761 /* fls64() returns a 1-based offset, we want it zero based */
5762 int shift = posn - 1;
5763 u64 mask = 1ULL << shift;
5764
5765 if (port_inactive_err(shift)) {
5766 count_port_inactive(dd);
5767 handled |= mask;
5768 } else if (disallowed_pkt_err(shift)) {
5769 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5770
5771 handle_send_egress_err_info(dd, vl);
5772 handled |= mask;
5773 }
5774 reg_copy &= ~mask;
5775 }
5776
5777 reg &= ~handled;
5778
5779 if (reg)
5780 dd_dev_info(dd, "Egress Error: %s\n",
5781 egress_err_status_string(buf, sizeof(buf), reg));
5782
5783 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5784 if (reg & (1ull << i))
5785 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5786 }
5787 }
5788
5789 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5790 {
5791 char buf[96];
5792 int i = 0;
5793
5794 dd_dev_info(dd, "Send Error: %s\n",
5795 send_err_status_string(buf, sizeof(buf), reg));
5796
5797 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5798 if (reg & (1ull << i))
5799 incr_cntr64(&dd->send_err_status_cnt[i]);
5800 }
5801 }
5802
5803 /*
5804 * The maximum number of times the error clear down will loop before
5805 * blocking a repeating error. This value is arbitrary.
5806 */
5807 #define MAX_CLEAR_COUNT 20
5808
5809 /*
5810 * Clear and handle an error register. All error interrupts are funneled
5811 * through here to have a central location to correctly handle single-
5812 * or multi-shot errors.
5813 *
5814 * For non per-context registers, call this routine with a context value
5815 * of 0 so the per-context offset is zero.
5816 *
5817 * If the handler loops too many times, assume that something is wrong
5818 * and can't be fixed, so mask the error bits.
5819 */
5820 static void interrupt_clear_down(struct hfi1_devdata *dd,
5821 u32 context,
5822 const struct err_reg_info *eri)
5823 {
5824 u64 reg;
5825 u32 count;
5826
5827 /* read in a loop until no more errors are seen */
5828 count = 0;
5829 while (1) {
5830 reg = read_kctxt_csr(dd, context, eri->status);
5831 if (reg == 0)
5832 break;
5833 write_kctxt_csr(dd, context, eri->clear, reg);
5834 if (likely(eri->handler))
5835 eri->handler(dd, context, reg);
5836 count++;
5837 if (count > MAX_CLEAR_COUNT) {
5838 u64 mask;
5839
5840 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5841 eri->desc, reg);
5842 /*
5843 * Read-modify-write so any other masked bits
5844 * remain masked.
5845 */
5846 mask = read_kctxt_csr(dd, context, eri->mask);
5847 mask &= ~reg;
5848 write_kctxt_csr(dd, context, eri->mask, mask);
5849 break;
5850 }
5851 }
5852 }
5853
5854 /*
5855 * CCE block "misc" interrupt. Source is < 16.
5856 */
5857 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5858 {
5859 const struct err_reg_info *eri = &misc_errs[source];
5860
5861 if (eri->handler) {
5862 interrupt_clear_down(dd, 0, eri);
5863 } else {
5864 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5865 source);
5866 }
5867 }
5868
5869 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5870 {
5871 return flag_string(buf, buf_len, flags,
5872 sc_err_status_flags,
5873 ARRAY_SIZE(sc_err_status_flags));
5874 }
5875
5876 /*
5877 * Send context error interrupt. Source (hw_context) is < 160.
5878 *
5879 * All send context errors cause the send context to halt. The normal
5880 * clear-down mechanism cannot be used because we cannot clear the
5881 * error bits until several other long-running items are done first.
5882 * This is OK because with the context halted, nothing else is going
5883 * to happen on it anyway.
5884 */
5885 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5886 unsigned int hw_context)
5887 {
5888 struct send_context_info *sci;
5889 struct send_context *sc;
5890 char flags[96];
5891 u64 status;
5892 u32 sw_index;
5893 int i = 0;
5894
5895 sw_index = dd->hw_to_sw[hw_context];
5896 if (sw_index >= dd->num_send_contexts) {
5897 dd_dev_err(dd,
5898 "out of range sw index %u for send context %u\n",
5899 sw_index, hw_context);
5900 return;
5901 }
5902 sci = &dd->send_contexts[sw_index];
5903 sc = sci->sc;
5904 if (!sc) {
5905 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5906 sw_index, hw_context);
5907 return;
5908 }
5909
5910 /* tell the software that a halt has begun */
5911 sc_stop(sc, SCF_HALTED);
5912
5913 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5914
5915 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5916 send_context_err_status_string(flags, sizeof(flags),
5917 status));
5918
5919 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5920 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5921
5922 /*
5923 * Automatically restart halted kernel contexts out of interrupt
5924 * context. User contexts must ask the driver to restart the context.
5925 */
5926 if (sc->type != SC_USER)
5927 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5928
5929 /*
5930 * Update the counters for the corresponding status bits.
5931 * Note that these particular counters are aggregated over all
5932 * 160 contexts.
5933 */
5934 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5935 if (status & (1ull << i))
5936 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5937 }
5938 }
5939
5940 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5941 unsigned int source, u64 status)
5942 {
5943 struct sdma_engine *sde;
5944 int i = 0;
5945
5946 sde = &dd->per_sdma[source];
5947 #ifdef CONFIG_SDMA_VERBOSITY
5948 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5949 slashstrip(__FILE__), __LINE__, __func__);
5950 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5951 sde->this_idx, source, (unsigned long long)status);
5952 #endif
5953 sde->err_cnt++;
5954 sdma_engine_error(sde, status);
5955
5956 /*
5957 * Update the counters for the corresponding status bits.
5958 * Note that these particular counters are aggregated over
5959 * all 16 DMA engines.
5960 */
5961 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5962 if (status & (1ull << i))
5963 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5964 }
5965 }
5966
5967 /*
5968 * CCE block SDMA error interrupt. Source is < 16.
5969 */
5970 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5971 {
5972 #ifdef CONFIG_SDMA_VERBOSITY
5973 struct sdma_engine *sde = &dd->per_sdma[source];
5974
5975 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5976 slashstrip(__FILE__), __LINE__, __func__);
5977 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5978 source);
5979 sdma_dumpstate(sde);
5980 #endif
5981 interrupt_clear_down(dd, source, &sdma_eng_err);
5982 }
5983
5984 /*
5985 * CCE block "various" interrupt. Source is < 8.
5986 */
5987 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5988 {
5989 const struct err_reg_info *eri = &various_err[source];
5990
5991 /*
5992 * TCritInt cannot go through interrupt_clear_down()
5993 * because it is not a second tier interrupt. The handler
5994 * should be called directly.
5995 */
5996 if (source == TCRIT_INT_SOURCE)
5997 handle_temp_err(dd);
5998 else if (eri->handler)
5999 interrupt_clear_down(dd, 0, eri);
6000 else
6001 dd_dev_info(dd,
6002 "%s: Unimplemented/reserved interrupt %d\n",
6003 __func__, source);
6004 }
6005
6006 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6007 {
6008 /* src_ctx is always zero */
6009 struct hfi1_pportdata *ppd = dd->pport;
6010 unsigned long flags;
6011 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6012
6013 if (reg & QSFP_HFI0_MODPRST_N) {
6014 if (!qsfp_mod_present(ppd)) {
6015 dd_dev_info(dd, "%s: QSFP module removed\n",
6016 __func__);
6017
6018 ppd->driver_link_ready = 0;
6019 /*
6020 * Cable removed, reset all our information about the
6021 * cache and cable capabilities
6022 */
6023
6024 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6025 /*
6026 * We don't set cache_refresh_required here as we expect
6027 * an interrupt when a cable is inserted
6028 */
6029 ppd->qsfp_info.cache_valid = 0;
6030 ppd->qsfp_info.reset_needed = 0;
6031 ppd->qsfp_info.limiting_active = 0;
6032 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6033 flags);
6034 /* Invert the ModPresent pin now to detect plug-in */
6035 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6036 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6037
6038 if ((ppd->offline_disabled_reason >
6039 HFI1_ODR_MASK(
6040 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6041 (ppd->offline_disabled_reason ==
6042 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6043 ppd->offline_disabled_reason =
6044 HFI1_ODR_MASK(
6045 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6046
6047 if (ppd->host_link_state == HLS_DN_POLL) {
6048 /*
6049 * The link is still in POLL. This means
6050 * that the normal link down processing
6051 * will not happen. We have to do it here
6052 * before turning the DC off.
6053 */
6054 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6055 }
6056 } else {
6057 dd_dev_info(dd, "%s: QSFP module inserted\n",
6058 __func__);
6059
6060 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6061 ppd->qsfp_info.cache_valid = 0;
6062 ppd->qsfp_info.cache_refresh_required = 1;
6063 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6064 flags);
6065
6066 /*
6067 * Stop inversion of ModPresent pin to detect
6068 * removal of the cable
6069 */
6070 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6071 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6072 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6073
6074 ppd->offline_disabled_reason =
6075 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6076 }
6077 }
6078
6079 if (reg & QSFP_HFI0_INT_N) {
6080 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6081 __func__);
6082 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 ppd->qsfp_info.check_interrupt_flags = 1;
6084 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6085 }
6086
6087 /* Schedule the QSFP work only if there is a cable attached. */
6088 if (qsfp_mod_present(ppd))
6089 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6090 }
6091
6092 static int request_host_lcb_access(struct hfi1_devdata *dd)
6093 {
6094 int ret;
6095
6096 ret = do_8051_command(dd, HCMD_MISC,
6097 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6098 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6099 if (ret != HCMD_SUCCESS) {
6100 dd_dev_err(dd, "%s: command failed with error %d\n",
6101 __func__, ret);
6102 }
6103 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6104 }
6105
6106 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6107 {
6108 int ret;
6109
6110 ret = do_8051_command(dd, HCMD_MISC,
6111 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6112 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6113 if (ret != HCMD_SUCCESS) {
6114 dd_dev_err(dd, "%s: command failed with error %d\n",
6115 __func__, ret);
6116 }
6117 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6118 }
6119
6120 /*
6121 * Set the LCB selector - allow host access. The DCC selector always
6122 * points to the host.
6123 */
6124 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6125 {
6126 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6127 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6128 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6129 }
6130
6131 /*
6132 * Clear the LCB selector - allow 8051 access. The DCC selector always
6133 * points to the host.
6134 */
6135 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6136 {
6137 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6138 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6139 }
6140
6141 /*
6142 * Acquire LCB access from the 8051. If the host already has access,
6143 * just increment a counter. Otherwise, inform the 8051 that the
6144 * host is taking access.
6145 *
6146 * Returns:
6147 * 0 on success
6148 * -EBUSY if the 8051 has control and cannot be disturbed
6149 * -errno if unable to acquire access from the 8051
6150 */
6151 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6152 {
6153 struct hfi1_pportdata *ppd = dd->pport;
6154 int ret = 0;
6155
6156 /*
6157 * Use the host link state lock so the operation of this routine
6158 * { link state check, selector change, count increment } can occur
6159 * as a unit against a link state change. Otherwise there is a
6160 * race between the state change and the count increment.
6161 */
6162 if (sleep_ok) {
6163 mutex_lock(&ppd->hls_lock);
6164 } else {
6165 while (!mutex_trylock(&ppd->hls_lock))
6166 udelay(1);
6167 }
6168
6169 /* this access is valid only when the link is up */
6170 if (ppd->host_link_state & HLS_DOWN) {
6171 dd_dev_info(dd, "%s: link state %s not up\n",
6172 __func__, link_state_name(ppd->host_link_state));
6173 ret = -EBUSY;
6174 goto done;
6175 }
6176
6177 if (dd->lcb_access_count == 0) {
6178 ret = request_host_lcb_access(dd);
6179 if (ret) {
6180 dd_dev_err(dd,
6181 "%s: unable to acquire LCB access, err %d\n",
6182 __func__, ret);
6183 goto done;
6184 }
6185 set_host_lcb_access(dd);
6186 }
6187 dd->lcb_access_count++;
6188 done:
6189 mutex_unlock(&ppd->hls_lock);
6190 return ret;
6191 }
6192
6193 /*
6194 * Release LCB access by decrementing the use count. If the count is moving
6195 * from 1 to 0, inform 8051 that it has control back.
6196 *
6197 * Returns:
6198 * 0 on success
6199 * -errno if unable to release access to the 8051
6200 */
6201 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6202 {
6203 int ret = 0;
6204
6205 /*
6206 * Use the host link state lock because the acquire needed it.
6207 * Here, we only need to keep { selector change, count decrement }
6208 * as a unit.
6209 */
6210 if (sleep_ok) {
6211 mutex_lock(&dd->pport->hls_lock);
6212 } else {
6213 while (!mutex_trylock(&dd->pport->hls_lock))
6214 udelay(1);
6215 }
6216
6217 if (dd->lcb_access_count == 0) {
6218 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6219 __func__);
6220 goto done;
6221 }
6222
6223 if (dd->lcb_access_count == 1) {
6224 set_8051_lcb_access(dd);
6225 ret = request_8051_lcb_access(dd);
6226 if (ret) {
6227 dd_dev_err(dd,
6228 "%s: unable to release LCB access, err %d\n",
6229 __func__, ret);
6230 /* restore host access if the grant didn't work */
6231 set_host_lcb_access(dd);
6232 goto done;
6233 }
6234 }
6235 dd->lcb_access_count--;
6236 done:
6237 mutex_unlock(&dd->pport->hls_lock);
6238 return ret;
6239 }
6240
6241 /*
6242 * Initialize LCB access variables and state. Called during driver load,
6243 * after most of the initialization is finished.
6244 *
6245 * The DC default is LCB access on for the host. The driver defaults to
6246 * leaving access to the 8051. Assign access now - this constrains the call
6247 * to this routine to be after all LCB set-up is done. In particular, after
6248 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6249 */
6250 static void init_lcb_access(struct hfi1_devdata *dd)
6251 {
6252 dd->lcb_access_count = 0;
6253 }
6254
6255 /*
6256 * Write a response back to a 8051 request.
6257 */
6258 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6259 {
6260 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6261 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6262 (u64)return_code <<
6263 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6264 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6265 }
6266
6267 /*
6268 * Handle host requests from the 8051.
6269 */
6270 static void handle_8051_request(struct hfi1_pportdata *ppd)
6271 {
6272 struct hfi1_devdata *dd = ppd->dd;
6273 u64 reg;
6274 u16 data = 0;
6275 u8 type;
6276
6277 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6278 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6279 return; /* no request */
6280
6281 /* zero out COMPLETED so the response is seen */
6282 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6283
6284 /* extract request details */
6285 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6286 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6287 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6288 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6289
6290 switch (type) {
6291 case HREQ_LOAD_CONFIG:
6292 case HREQ_SAVE_CONFIG:
6293 case HREQ_READ_CONFIG:
6294 case HREQ_SET_TX_EQ_ABS:
6295 case HREQ_SET_TX_EQ_REL:
6296 case HREQ_ENABLE:
6297 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6298 type);
6299 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6300 break;
6301 case HREQ_CONFIG_DONE:
6302 hreq_response(dd, HREQ_SUCCESS, 0);
6303 break;
6304
6305 case HREQ_INTERFACE_TEST:
6306 hreq_response(dd, HREQ_SUCCESS, data);
6307 break;
6308 default:
6309 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6310 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6311 break;
6312 }
6313 }
6314
6315 /*
6316 * Set up allocation unit vaulue.
6317 */
6318 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6319 {
6320 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6321
6322 /* do not modify other values in the register */
6323 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6324 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6325 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6326 }
6327
6328 /*
6329 * Set up initial VL15 credits of the remote. Assumes the rest of
6330 * the CM credit registers are zero from a previous global or credit reset.
6331 * Shared limit for VL15 will always be 0.
6332 */
6333 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6334 {
6335 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6336
6337 /* set initial values for total and shared credit limit */
6338 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6339 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6340
6341 /*
6342 * Set total limit to be equal to VL15 credits.
6343 * Leave shared limit at 0.
6344 */
6345 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6346 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6347
6348 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6349 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6350 }
6351
6352 /*
6353 * Zero all credit details from the previous connection and
6354 * reset the CM manager's internal counters.
6355 */
6356 void reset_link_credits(struct hfi1_devdata *dd)
6357 {
6358 int i;
6359
6360 /* remove all previous VL credit limits */
6361 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6362 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6363 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6364 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6365 /* reset the CM block */
6366 pio_send_control(dd, PSC_CM_RESET);
6367 /* reset cached value */
6368 dd->vl15buf_cached = 0;
6369 }
6370
6371 /* convert a vCU to a CU */
6372 static u32 vcu_to_cu(u8 vcu)
6373 {
6374 return 1 << vcu;
6375 }
6376
6377 /* convert a CU to a vCU */
6378 static u8 cu_to_vcu(u32 cu)
6379 {
6380 return ilog2(cu);
6381 }
6382
6383 /* convert a vAU to an AU */
6384 static u32 vau_to_au(u8 vau)
6385 {
6386 return 8 * (1 << vau);
6387 }
6388
6389 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6390 {
6391 ppd->sm_trap_qp = 0x0;
6392 ppd->sa_qp = 0x1;
6393 }
6394
6395 /*
6396 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6397 */
6398 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6399 {
6400 u64 reg;
6401
6402 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6403 write_csr(dd, DC_LCB_CFG_RUN, 0);
6404 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6405 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6406 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6407 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6408 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6409 reg = read_csr(dd, DCC_CFG_RESET);
6410 write_csr(dd, DCC_CFG_RESET, reg |
6411 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6412 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6413 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6414 if (!abort) {
6415 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6416 write_csr(dd, DCC_CFG_RESET, reg);
6417 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6418 }
6419 }
6420
6421 /*
6422 * This routine should be called after the link has been transitioned to
6423 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6424 * reset).
6425 *
6426 * The expectation is that the caller of this routine would have taken
6427 * care of properly transitioning the link into the correct state.
6428 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6429 * before calling this function.
6430 */
6431 static void _dc_shutdown(struct hfi1_devdata *dd)
6432 {
6433 lockdep_assert_held(&dd->dc8051_lock);
6434
6435 if (dd->dc_shutdown)
6436 return;
6437
6438 dd->dc_shutdown = 1;
6439 /* Shutdown the LCB */
6440 lcb_shutdown(dd, 1);
6441 /*
6442 * Going to OFFLINE would have causes the 8051 to put the
6443 * SerDes into reset already. Just need to shut down the 8051,
6444 * itself.
6445 */
6446 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6447 }
6448
6449 static void dc_shutdown(struct hfi1_devdata *dd)
6450 {
6451 mutex_lock(&dd->dc8051_lock);
6452 _dc_shutdown(dd);
6453 mutex_unlock(&dd->dc8051_lock);
6454 }
6455
6456 /*
6457 * Calling this after the DC has been brought out of reset should not
6458 * do any damage.
6459 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6460 * before calling this function.
6461 */
6462 static void _dc_start(struct hfi1_devdata *dd)
6463 {
6464 lockdep_assert_held(&dd->dc8051_lock);
6465
6466 if (!dd->dc_shutdown)
6467 return;
6468
6469 /* Take the 8051 out of reset */
6470 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6471 /* Wait until 8051 is ready */
6472 if (wait_fm_ready(dd, TIMEOUT_8051_START))
6473 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6474 __func__);
6475
6476 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6477 write_csr(dd, DCC_CFG_RESET, 0x10);
6478 /* lcb_shutdown() with abort=1 does not restore these */
6479 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6480 dd->dc_shutdown = 0;
6481 }
6482
6483 static void dc_start(struct hfi1_devdata *dd)
6484 {
6485 mutex_lock(&dd->dc8051_lock);
6486 _dc_start(dd);
6487 mutex_unlock(&dd->dc8051_lock);
6488 }
6489
6490 /*
6491 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6492 */
6493 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6494 {
6495 u64 rx_radr, tx_radr;
6496 u32 version;
6497
6498 if (dd->icode != ICODE_FPGA_EMULATION)
6499 return;
6500
6501 /*
6502 * These LCB defaults on emulator _s are good, nothing to do here:
6503 * LCB_CFG_TX_FIFOS_RADR
6504 * LCB_CFG_RX_FIFOS_RADR
6505 * LCB_CFG_LN_DCLK
6506 * LCB_CFG_IGNORE_LOST_RCLK
6507 */
6508 if (is_emulator_s(dd))
6509 return;
6510 /* else this is _p */
6511
6512 version = emulator_rev(dd);
6513 if (!is_ax(dd))
6514 version = 0x2d; /* all B0 use 0x2d or higher settings */
6515
6516 if (version <= 0x12) {
6517 /* release 0x12 and below */
6518
6519 /*
6520 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6521 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6522 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6523 */
6524 rx_radr =
6525 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6526 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6527 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6528 /*
6529 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6530 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6531 */
6532 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6533 } else if (version <= 0x18) {
6534 /* release 0x13 up to 0x18 */
6535 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6536 rx_radr =
6537 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6538 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6539 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6540 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6541 } else if (version == 0x19) {
6542 /* release 0x19 */
6543 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6544 rx_radr =
6545 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6546 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6547 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6548 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6549 } else if (version == 0x1a) {
6550 /* release 0x1a */
6551 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6552 rx_radr =
6553 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6554 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6555 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6556 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6557 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6558 } else {
6559 /* release 0x1b and higher */
6560 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6561 rx_radr =
6562 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6563 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6564 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6565 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6566 }
6567
6568 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6569 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6570 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6571 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6572 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6573 }
6574
6575 /*
6576 * Handle a SMA idle message
6577 *
6578 * This is a work-queue function outside of the interrupt.
6579 */
6580 void handle_sma_message(struct work_struct *work)
6581 {
6582 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6583 sma_message_work);
6584 struct hfi1_devdata *dd = ppd->dd;
6585 u64 msg;
6586 int ret;
6587
6588 /*
6589 * msg is bytes 1-4 of the 40-bit idle message - the command code
6590 * is stripped off
6591 */
6592 ret = read_idle_sma(dd, &msg);
6593 if (ret)
6594 return;
6595 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6596 /*
6597 * React to the SMA message. Byte[1] (0 for us) is the command.
6598 */
6599 switch (msg & 0xff) {
6600 case SMA_IDLE_ARM:
6601 /*
6602 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6603 * State Transitions
6604 *
6605 * Only expected in INIT or ARMED, discard otherwise.
6606 */
6607 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6608 ppd->neighbor_normal = 1;
6609 break;
6610 case SMA_IDLE_ACTIVE:
6611 /*
6612 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6613 * State Transitions
6614 *
6615 * Can activate the node. Discard otherwise.
6616 */
6617 if (ppd->host_link_state == HLS_UP_ARMED &&
6618 ppd->is_active_optimize_enabled) {
6619 ppd->neighbor_normal = 1;
6620 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6621 if (ret)
6622 dd_dev_err(
6623 dd,
6624 "%s: received Active SMA idle message, couldn't set link to Active\n",
6625 __func__);
6626 }
6627 break;
6628 default:
6629 dd_dev_err(dd,
6630 "%s: received unexpected SMA idle message 0x%llx\n",
6631 __func__, msg);
6632 break;
6633 }
6634 }
6635
6636 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6637 {
6638 u64 rcvctrl;
6639 unsigned long flags;
6640
6641 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6642 rcvctrl = read_csr(dd, RCV_CTRL);
6643 rcvctrl |= add;
6644 rcvctrl &= ~clear;
6645 write_csr(dd, RCV_CTRL, rcvctrl);
6646 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6647 }
6648
6649 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6650 {
6651 adjust_rcvctrl(dd, add, 0);
6652 }
6653
6654 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6655 {
6656 adjust_rcvctrl(dd, 0, clear);
6657 }
6658
6659 /*
6660 * Called from all interrupt handlers to start handling an SPC freeze.
6661 */
6662 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6663 {
6664 struct hfi1_devdata *dd = ppd->dd;
6665 struct send_context *sc;
6666 int i;
6667
6668 if (flags & FREEZE_SELF)
6669 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6670
6671 /* enter frozen mode */
6672 dd->flags |= HFI1_FROZEN;
6673
6674 /* notify all SDMA engines that they are going into a freeze */
6675 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6676
6677 /* do halt pre-handling on all enabled send contexts */
6678 for (i = 0; i < dd->num_send_contexts; i++) {
6679 sc = dd->send_contexts[i].sc;
6680 if (sc && (sc->flags & SCF_ENABLED))
6681 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6682 }
6683
6684 /* Send context are frozen. Notify user space */
6685 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6686
6687 if (flags & FREEZE_ABORT) {
6688 dd_dev_err(dd,
6689 "Aborted freeze recovery. Please REBOOT system\n");
6690 return;
6691 }
6692 /* queue non-interrupt handler */
6693 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6694 }
6695
6696 /*
6697 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6698 * depending on the "freeze" parameter.
6699 *
6700 * No need to return an error if it times out, our only option
6701 * is to proceed anyway.
6702 */
6703 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6704 {
6705 unsigned long timeout;
6706 u64 reg;
6707
6708 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6709 while (1) {
6710 reg = read_csr(dd, CCE_STATUS);
6711 if (freeze) {
6712 /* waiting until all indicators are set */
6713 if ((reg & ALL_FROZE) == ALL_FROZE)
6714 return; /* all done */
6715 } else {
6716 /* waiting until all indicators are clear */
6717 if ((reg & ALL_FROZE) == 0)
6718 return; /* all done */
6719 }
6720
6721 if (time_after(jiffies, timeout)) {
6722 dd_dev_err(dd,
6723 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6724 freeze ? "" : "un", reg & ALL_FROZE,
6725 freeze ? ALL_FROZE : 0ull);
6726 return;
6727 }
6728 usleep_range(80, 120);
6729 }
6730 }
6731
6732 /*
6733 * Do all freeze handling for the RXE block.
6734 */
6735 static void rxe_freeze(struct hfi1_devdata *dd)
6736 {
6737 int i;
6738
6739 /* disable port */
6740 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6741
6742 /* disable all receive contexts */
6743 for (i = 0; i < dd->num_rcv_contexts; i++)
6744 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6745 }
6746
6747 /*
6748 * Unfreeze handling for the RXE block - kernel contexts only.
6749 * This will also enable the port. User contexts will do unfreeze
6750 * handling on a per-context basis as they call into the driver.
6751 *
6752 */
6753 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6754 {
6755 u32 rcvmask;
6756 int i;
6757
6758 /* enable all kernel contexts */
6759 for (i = 0; i < dd->num_rcv_contexts; i++) {
6760 struct hfi1_ctxtdata *rcd = dd->rcd[i];
6761
6762 /* Ensure all non-user contexts(including vnic) are enabled */
6763 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER))
6764 continue;
6765
6766 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6767 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6768 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6769 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6770 hfi1_rcvctrl(dd, rcvmask, i);
6771 }
6772
6773 /* enable port */
6774 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6775 }
6776
6777 /*
6778 * Non-interrupt SPC freeze handling.
6779 *
6780 * This is a work-queue function outside of the triggering interrupt.
6781 */
6782 void handle_freeze(struct work_struct *work)
6783 {
6784 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6785 freeze_work);
6786 struct hfi1_devdata *dd = ppd->dd;
6787
6788 /* wait for freeze indicators on all affected blocks */
6789 wait_for_freeze_status(dd, 1);
6790
6791 /* SPC is now frozen */
6792
6793 /* do send PIO freeze steps */
6794 pio_freeze(dd);
6795
6796 /* do send DMA freeze steps */
6797 sdma_freeze(dd);
6798
6799 /* do send egress freeze steps - nothing to do */
6800
6801 /* do receive freeze steps */
6802 rxe_freeze(dd);
6803
6804 /*
6805 * Unfreeze the hardware - clear the freeze, wait for each
6806 * block's frozen bit to clear, then clear the frozen flag.
6807 */
6808 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6809 wait_for_freeze_status(dd, 0);
6810
6811 if (is_ax(dd)) {
6812 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6813 wait_for_freeze_status(dd, 1);
6814 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6815 wait_for_freeze_status(dd, 0);
6816 }
6817
6818 /* do send PIO unfreeze steps for kernel contexts */
6819 pio_kernel_unfreeze(dd);
6820
6821 /* do send DMA unfreeze steps */
6822 sdma_unfreeze(dd);
6823
6824 /* do send egress unfreeze steps - nothing to do */
6825
6826 /* do receive unfreeze steps for kernel contexts */
6827 rxe_kernel_unfreeze(dd);
6828
6829 /*
6830 * The unfreeze procedure touches global device registers when
6831 * it disables and re-enables RXE. Mark the device unfrozen
6832 * after all that is done so other parts of the driver waiting
6833 * for the device to unfreeze don't do things out of order.
6834 *
6835 * The above implies that the meaning of HFI1_FROZEN flag is
6836 * "Device has gone into freeze mode and freeze mode handling
6837 * is still in progress."
6838 *
6839 * The flag will be removed when freeze mode processing has
6840 * completed.
6841 */
6842 dd->flags &= ~HFI1_FROZEN;
6843 wake_up(&dd->event_queue);
6844
6845 /* no longer frozen */
6846 }
6847
6848 /*
6849 * Handle a link up interrupt from the 8051.
6850 *
6851 * This is a work-queue function outside of the interrupt.
6852 */
6853 void handle_link_up(struct work_struct *work)
6854 {
6855 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6856 link_up_work);
6857 struct hfi1_devdata *dd = ppd->dd;
6858
6859 set_link_state(ppd, HLS_UP_INIT);
6860
6861 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6862 read_ltp_rtt(dd);
6863 /*
6864 * OPA specifies that certain counters are cleared on a transition
6865 * to link up, so do that.
6866 */
6867 clear_linkup_counters(dd);
6868 /*
6869 * And (re)set link up default values.
6870 */
6871 set_linkup_defaults(ppd);
6872
6873 /*
6874 * Set VL15 credits. Use cached value from verify cap interrupt.
6875 * In case of quick linkup or simulator, vl15 value will be set by
6876 * handle_linkup_change. VerifyCap interrupt handler will not be
6877 * called in those scenarios.
6878 */
6879 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6880 set_up_vl15(dd, dd->vl15buf_cached);
6881
6882 /* enforce link speed enabled */
6883 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6884 /* oops - current speed is not enabled, bounce */
6885 dd_dev_err(dd,
6886 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6887 ppd->link_speed_active, ppd->link_speed_enabled);
6888 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6889 OPA_LINKDOWN_REASON_SPEED_POLICY);
6890 set_link_state(ppd, HLS_DN_OFFLINE);
6891 start_link(ppd);
6892 }
6893 }
6894
6895 /*
6896 * Several pieces of LNI information were cached for SMA in ppd.
6897 * Reset these on link down
6898 */
6899 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6900 {
6901 ppd->neighbor_guid = 0;
6902 ppd->neighbor_port_number = 0;
6903 ppd->neighbor_type = 0;
6904 ppd->neighbor_fm_security = 0;
6905 }
6906
6907 static const char * const link_down_reason_strs[] = {
6908 [OPA_LINKDOWN_REASON_NONE] = "None",
6909 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6910 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6911 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6912 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6913 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6914 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6915 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6916 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6917 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6918 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6919 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6920 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6921 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6922 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6923 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6924 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6925 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6926 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6927 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6928 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6929 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6930 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6931 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6932 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6933 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6934 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6935 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6936 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6937 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6938 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6939 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6940 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6941 "Excessive buffer overrun",
6942 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6943 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6944 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6945 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6946 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6947 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6948 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6949 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6950 "Local media not installed",
6951 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6952 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6953 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6954 "End to end not installed",
6955 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6956 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6957 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6958 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6959 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6960 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6961 };
6962
6963 /* return the neighbor link down reason string */
6964 static const char *link_down_reason_str(u8 reason)
6965 {
6966 const char *str = NULL;
6967
6968 if (reason < ARRAY_SIZE(link_down_reason_strs))
6969 str = link_down_reason_strs[reason];
6970 if (!str)
6971 str = "(invalid)";
6972
6973 return str;
6974 }
6975
6976 /*
6977 * Handle a link down interrupt from the 8051.
6978 *
6979 * This is a work-queue function outside of the interrupt.
6980 */
6981 void handle_link_down(struct work_struct *work)
6982 {
6983 u8 lcl_reason, neigh_reason = 0;
6984 u8 link_down_reason;
6985 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6986 link_down_work);
6987 int was_up;
6988 static const char ldr_str[] = "Link down reason: ";
6989
6990 if ((ppd->host_link_state &
6991 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6992 ppd->port_type == PORT_TYPE_FIXED)
6993 ppd->offline_disabled_reason =
6994 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6995
6996 /* Go offline first, then deal with reading/writing through 8051 */
6997 was_up = !!(ppd->host_link_state & HLS_UP);
6998 set_link_state(ppd, HLS_DN_OFFLINE);
6999
7000 if (was_up) {
7001 lcl_reason = 0;
7002 /* link down reason is only valid if the link was up */
7003 read_link_down_reason(ppd->dd, &link_down_reason);
7004 switch (link_down_reason) {
7005 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7006 /* the link went down, no idle message reason */
7007 dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7008 ldr_str);
7009 break;
7010 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7011 /*
7012 * The neighbor reason is only valid if an idle message
7013 * was received for it.
7014 */
7015 read_planned_down_reason_code(ppd->dd, &neigh_reason);
7016 dd_dev_info(ppd->dd,
7017 "%sNeighbor link down message %d, %s\n",
7018 ldr_str, neigh_reason,
7019 link_down_reason_str(neigh_reason));
7020 break;
7021 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7022 dd_dev_info(ppd->dd,
7023 "%sHost requested link to go offline\n",
7024 ldr_str);
7025 break;
7026 default:
7027 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7028 ldr_str, link_down_reason);
7029 break;
7030 }
7031
7032 /*
7033 * If no reason, assume peer-initiated but missed
7034 * LinkGoingDown idle flits.
7035 */
7036 if (neigh_reason == 0)
7037 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7038 } else {
7039 /* went down while polling or going up */
7040 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7041 }
7042
7043 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7044
7045 /* inform the SMA when the link transitions from up to down */
7046 if (was_up && ppd->local_link_down_reason.sma == 0 &&
7047 ppd->neigh_link_down_reason.sma == 0) {
7048 ppd->local_link_down_reason.sma =
7049 ppd->local_link_down_reason.latest;
7050 ppd->neigh_link_down_reason.sma =
7051 ppd->neigh_link_down_reason.latest;
7052 }
7053
7054 reset_neighbor_info(ppd);
7055
7056 /* disable the port */
7057 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7058
7059 /*
7060 * If there is no cable attached, turn the DC off. Otherwise,
7061 * start the link bring up.
7062 */
7063 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7064 dc_shutdown(ppd->dd);
7065 else
7066 start_link(ppd);
7067 }
7068
7069 void handle_link_bounce(struct work_struct *work)
7070 {
7071 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7072 link_bounce_work);
7073
7074 /*
7075 * Only do something if the link is currently up.
7076 */
7077 if (ppd->host_link_state & HLS_UP) {
7078 set_link_state(ppd, HLS_DN_OFFLINE);
7079 start_link(ppd);
7080 } else {
7081 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7082 __func__, link_state_name(ppd->host_link_state));
7083 }
7084 }
7085
7086 /*
7087 * Mask conversion: Capability exchange to Port LTP. The capability
7088 * exchange has an implicit 16b CRC that is mandatory.
7089 */
7090 static int cap_to_port_ltp(int cap)
7091 {
7092 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7093
7094 if (cap & CAP_CRC_14B)
7095 port_ltp |= PORT_LTP_CRC_MODE_14;
7096 if (cap & CAP_CRC_48B)
7097 port_ltp |= PORT_LTP_CRC_MODE_48;
7098 if (cap & CAP_CRC_12B_16B_PER_LANE)
7099 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7100
7101 return port_ltp;
7102 }
7103
7104 /*
7105 * Convert an OPA Port LTP mask to capability mask
7106 */
7107 int port_ltp_to_cap(int port_ltp)
7108 {
7109 int cap_mask = 0;
7110
7111 if (port_ltp & PORT_LTP_CRC_MODE_14)
7112 cap_mask |= CAP_CRC_14B;
7113 if (port_ltp & PORT_LTP_CRC_MODE_48)
7114 cap_mask |= CAP_CRC_48B;
7115 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7116 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7117
7118 return cap_mask;
7119 }
7120
7121 /*
7122 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7123 */
7124 static int lcb_to_port_ltp(int lcb_crc)
7125 {
7126 int port_ltp = 0;
7127
7128 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7129 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7130 else if (lcb_crc == LCB_CRC_48B)
7131 port_ltp = PORT_LTP_CRC_MODE_48;
7132 else if (lcb_crc == LCB_CRC_14B)
7133 port_ltp = PORT_LTP_CRC_MODE_14;
7134 else
7135 port_ltp = PORT_LTP_CRC_MODE_16;
7136
7137 return port_ltp;
7138 }
7139
7140 /*
7141 * Our neighbor has indicated that we are allowed to act as a fabric
7142 * manager, so place the full management partition key in the second
7143 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7144 * that we should already have the limited management partition key in
7145 * array element 1, and also that the port is not yet up when
7146 * add_full_mgmt_pkey() is invoked.
7147 */
7148 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7149 {
7150 struct hfi1_devdata *dd = ppd->dd;
7151
7152 /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7153 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7154 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7155 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7156 ppd->pkeys[2] = FULL_MGMT_P_KEY;
7157 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7158 hfi1_event_pkey_change(ppd->dd, ppd->port);
7159 }
7160
7161 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7162 {
7163 if (ppd->pkeys[2] != 0) {
7164 ppd->pkeys[2] = 0;
7165 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7166 hfi1_event_pkey_change(ppd->dd, ppd->port);
7167 }
7168 }
7169
7170 /*
7171 * Convert the given link width to the OPA link width bitmask.
7172 */
7173 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7174 {
7175 switch (width) {
7176 case 0:
7177 /*
7178 * Simulator and quick linkup do not set the width.
7179 * Just set it to 4x without complaint.
7180 */
7181 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7182 return OPA_LINK_WIDTH_4X;
7183 return 0; /* no lanes up */
7184 case 1: return OPA_LINK_WIDTH_1X;
7185 case 2: return OPA_LINK_WIDTH_2X;
7186 case 3: return OPA_LINK_WIDTH_3X;
7187 default:
7188 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7189 __func__, width);
7190 /* fall through */
7191 case 4: return OPA_LINK_WIDTH_4X;
7192 }
7193 }
7194
7195 /*
7196 * Do a population count on the bottom nibble.
7197 */
7198 static const u8 bit_counts[16] = {
7199 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7200 };
7201
7202 static inline u8 nibble_to_count(u8 nibble)
7203 {
7204 return bit_counts[nibble & 0xf];
7205 }
7206
7207 /*
7208 * Read the active lane information from the 8051 registers and return
7209 * their widths.
7210 *
7211 * Active lane information is found in these 8051 registers:
7212 * enable_lane_tx
7213 * enable_lane_rx
7214 */
7215 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7216 u16 *rx_width)
7217 {
7218 u16 tx, rx;
7219 u8 enable_lane_rx;
7220 u8 enable_lane_tx;
7221 u8 tx_polarity_inversion;
7222 u8 rx_polarity_inversion;
7223 u8 max_rate;
7224
7225 /* read the active lanes */
7226 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7227 &rx_polarity_inversion, &max_rate);
7228 read_local_lni(dd, &enable_lane_rx);
7229
7230 /* convert to counts */
7231 tx = nibble_to_count(enable_lane_tx);
7232 rx = nibble_to_count(enable_lane_rx);
7233
7234 /*
7235 * Set link_speed_active here, overriding what was set in
7236 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7237 * set the max_rate field in handle_verify_cap until v0.19.
7238 */
7239 if ((dd->icode == ICODE_RTL_SILICON) &&
7240 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7241 /* max_rate: 0 = 12.5G, 1 = 25G */
7242 switch (max_rate) {
7243 case 0:
7244 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7245 break;
7246 default:
7247 dd_dev_err(dd,
7248 "%s: unexpected max rate %d, using 25Gb\n",
7249 __func__, (int)max_rate);
7250 /* fall through */
7251 case 1:
7252 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7253 break;
7254 }
7255 }
7256
7257 dd_dev_info(dd,
7258 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7259 enable_lane_tx, tx, enable_lane_rx, rx);
7260 *tx_width = link_width_to_bits(dd, tx);
7261 *rx_width = link_width_to_bits(dd, rx);
7262 }
7263
7264 /*
7265 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7266 * Valid after the end of VerifyCap and during LinkUp. Does not change
7267 * after link up. I.e. look elsewhere for downgrade information.
7268 *
7269 * Bits are:
7270 * + bits [7:4] contain the number of active transmitters
7271 * + bits [3:0] contain the number of active receivers
7272 * These are numbers 1 through 4 and can be different values if the
7273 * link is asymmetric.
7274 *
7275 * verify_cap_local_fm_link_width[0] retains its original value.
7276 */
7277 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7278 u16 *rx_width)
7279 {
7280 u16 widths, tx, rx;
7281 u8 misc_bits, local_flags;
7282 u16 active_tx, active_rx;
7283
7284 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7285 tx = widths >> 12;
7286 rx = (widths >> 8) & 0xf;
7287
7288 *tx_width = link_width_to_bits(dd, tx);
7289 *rx_width = link_width_to_bits(dd, rx);
7290
7291 /* print the active widths */
7292 get_link_widths(dd, &active_tx, &active_rx);
7293 }
7294
7295 /*
7296 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7297 * hardware information when the link first comes up.
7298 *
7299 * The link width is not available until after VerifyCap.AllFramesReceived
7300 * (the trigger for handle_verify_cap), so this is outside that routine
7301 * and should be called when the 8051 signals linkup.
7302 */
7303 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7304 {
7305 u16 tx_width, rx_width;
7306
7307 /* get end-of-LNI link widths */
7308 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7309
7310 /* use tx_width as the link is supposed to be symmetric on link up */
7311 ppd->link_width_active = tx_width;
7312 /* link width downgrade active (LWD.A) starts out matching LW.A */
7313 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7314 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7315 /* per OPA spec, on link up LWD.E resets to LWD.S */
7316 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7317 /* cache the active egress rate (units {10^6 bits/sec]) */
7318 ppd->current_egress_rate = active_egress_rate(ppd);
7319 }
7320
7321 /*
7322 * Handle a verify capabilities interrupt from the 8051.
7323 *
7324 * This is a work-queue function outside of the interrupt.
7325 */
7326 void handle_verify_cap(struct work_struct *work)
7327 {
7328 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7329 link_vc_work);
7330 struct hfi1_devdata *dd = ppd->dd;
7331 u64 reg;
7332 u8 power_management;
7333 u8 continious;
7334 u8 vcu;
7335 u8 vau;
7336 u8 z;
7337 u16 vl15buf;
7338 u16 link_widths;
7339 u16 crc_mask;
7340 u16 crc_val;
7341 u16 device_id;
7342 u16 active_tx, active_rx;
7343 u8 partner_supported_crc;
7344 u8 remote_tx_rate;
7345 u8 device_rev;
7346
7347 set_link_state(ppd, HLS_VERIFY_CAP);
7348
7349 lcb_shutdown(dd, 0);
7350 adjust_lcb_for_fpga_serdes(dd);
7351
7352 read_vc_remote_phy(dd, &power_management, &continious);
7353 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7354 &partner_supported_crc);
7355 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7356 read_remote_device_id(dd, &device_id, &device_rev);
7357 /*
7358 * And the 'MgmtAllowed' information, which is exchanged during
7359 * LNI, is also be available at this point.
7360 */
7361 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7362 /* print the active widths */
7363 get_link_widths(dd, &active_tx, &active_rx);
7364 dd_dev_info(dd,
7365 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7366 (int)power_management, (int)continious);
7367 dd_dev_info(dd,
7368 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7369 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7370 (int)partner_supported_crc);
7371 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7372 (u32)remote_tx_rate, (u32)link_widths);
7373 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7374 (u32)device_id, (u32)device_rev);
7375 /*
7376 * The peer vAU value just read is the peer receiver value. HFI does
7377 * not support a transmit vAU of 0 (AU == 8). We advertised that
7378 * with Z=1 in the fabric capabilities sent to the peer. The peer
7379 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7380 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7381 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7382 * subject to the Z value exception.
7383 */
7384 if (vau == 0)
7385 vau = 1;
7386 set_up_vau(dd, vau);
7387
7388 /*
7389 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7390 * credits value and wait for link-up interrupt ot set it.
7391 */
7392 set_up_vl15(dd, 0);
7393 dd->vl15buf_cached = vl15buf;
7394
7395 /* set up the LCB CRC mode */
7396 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7397
7398 /* order is important: use the lowest bit in common */
7399 if (crc_mask & CAP_CRC_14B)
7400 crc_val = LCB_CRC_14B;
7401 else if (crc_mask & CAP_CRC_48B)
7402 crc_val = LCB_CRC_48B;
7403 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7404 crc_val = LCB_CRC_12B_16B_PER_LANE;
7405 else
7406 crc_val = LCB_CRC_16B;
7407
7408 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7409 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7410 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7411
7412 /* set (14b only) or clear sideband credit */
7413 reg = read_csr(dd, SEND_CM_CTRL);
7414 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7415 write_csr(dd, SEND_CM_CTRL,
7416 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7417 } else {
7418 write_csr(dd, SEND_CM_CTRL,
7419 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7420 }
7421
7422 ppd->link_speed_active = 0; /* invalid value */
7423 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7424 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7425 switch (remote_tx_rate) {
7426 case 0:
7427 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7428 break;
7429 case 1:
7430 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7431 break;
7432 }
7433 } else {
7434 /* actual rate is highest bit of the ANDed rates */
7435 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7436
7437 if (rate & 2)
7438 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7439 else if (rate & 1)
7440 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7441 }
7442 if (ppd->link_speed_active == 0) {
7443 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7444 __func__, (int)remote_tx_rate);
7445 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7446 }
7447
7448 /*
7449 * Cache the values of the supported, enabled, and active
7450 * LTP CRC modes to return in 'portinfo' queries. But the bit
7451 * flags that are returned in the portinfo query differ from
7452 * what's in the link_crc_mask, crc_sizes, and crc_val
7453 * variables. Convert these here.
7454 */
7455 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7456 /* supported crc modes */
7457 ppd->port_ltp_crc_mode |=
7458 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7459 /* enabled crc modes */
7460 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7461 /* active crc mode */
7462
7463 /* set up the remote credit return table */
7464 assign_remote_cm_au_table(dd, vcu);
7465
7466 /*
7467 * The LCB is reset on entry to handle_verify_cap(), so this must
7468 * be applied on every link up.
7469 *
7470 * Adjust LCB error kill enable to kill the link if
7471 * these RBUF errors are seen:
7472 * REPLAY_BUF_MBE_SMASK
7473 * FLIT_INPUT_BUF_MBE_SMASK
7474 */
7475 if (is_ax(dd)) { /* fixed in B0 */
7476 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7477 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7478 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7479 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7480 }
7481
7482 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7483 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7484
7485 /* give 8051 access to the LCB CSRs */
7486 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7487 set_8051_lcb_access(dd);
7488
7489 if (ppd->mgmt_allowed)
7490 add_full_mgmt_pkey(ppd);
7491
7492 /* tell the 8051 to go to LinkUp */
7493 set_link_state(ppd, HLS_GOING_UP);
7494 }
7495
7496 /*
7497 * Apply the link width downgrade enabled policy against the current active
7498 * link widths.
7499 *
7500 * Called when the enabled policy changes or the active link widths change.
7501 */
7502 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7503 {
7504 int do_bounce = 0;
7505 int tries;
7506 u16 lwde;
7507 u16 tx, rx;
7508
7509 /* use the hls lock to avoid a race with actual link up */
7510 tries = 0;
7511 retry:
7512 mutex_lock(&ppd->hls_lock);
7513 /* only apply if the link is up */
7514 if (ppd->host_link_state & HLS_DOWN) {
7515 /* still going up..wait and retry */
7516 if (ppd->host_link_state & HLS_GOING_UP) {
7517 if (++tries < 1000) {
7518 mutex_unlock(&ppd->hls_lock);
7519 usleep_range(100, 120); /* arbitrary */
7520 goto retry;
7521 }
7522 dd_dev_err(ppd->dd,
7523 "%s: giving up waiting for link state change\n",
7524 __func__);
7525 }
7526 goto done;
7527 }
7528
7529 lwde = ppd->link_width_downgrade_enabled;
7530
7531 if (refresh_widths) {
7532 get_link_widths(ppd->dd, &tx, &rx);
7533 ppd->link_width_downgrade_tx_active = tx;
7534 ppd->link_width_downgrade_rx_active = rx;
7535 }
7536
7537 if (ppd->link_width_downgrade_tx_active == 0 ||
7538 ppd->link_width_downgrade_rx_active == 0) {
7539 /* the 8051 reported a dead link as a downgrade */
7540 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7541 } else if (lwde == 0) {
7542 /* downgrade is disabled */
7543
7544 /* bounce if not at starting active width */
7545 if ((ppd->link_width_active !=
7546 ppd->link_width_downgrade_tx_active) ||
7547 (ppd->link_width_active !=
7548 ppd->link_width_downgrade_rx_active)) {
7549 dd_dev_err(ppd->dd,
7550 "Link downgrade is disabled and link has downgraded, downing link\n");
7551 dd_dev_err(ppd->dd,
7552 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7553 ppd->link_width_active,
7554 ppd->link_width_downgrade_tx_active,
7555 ppd->link_width_downgrade_rx_active);
7556 do_bounce = 1;
7557 }
7558 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7559 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7560 /* Tx or Rx is outside the enabled policy */
7561 dd_dev_err(ppd->dd,
7562 "Link is outside of downgrade allowed, downing link\n");
7563 dd_dev_err(ppd->dd,
7564 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7565 lwde, ppd->link_width_downgrade_tx_active,
7566 ppd->link_width_downgrade_rx_active);
7567 do_bounce = 1;
7568 }
7569
7570 done:
7571 mutex_unlock(&ppd->hls_lock);
7572
7573 if (do_bounce) {
7574 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7575 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7576 set_link_state(ppd, HLS_DN_OFFLINE);
7577 start_link(ppd);
7578 }
7579 }
7580
7581 /*
7582 * Handle a link downgrade interrupt from the 8051.
7583 *
7584 * This is a work-queue function outside of the interrupt.
7585 */
7586 void handle_link_downgrade(struct work_struct *work)
7587 {
7588 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7589 link_downgrade_work);
7590
7591 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7592 apply_link_downgrade_policy(ppd, 1);
7593 }
7594
7595 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7596 {
7597 return flag_string(buf, buf_len, flags, dcc_err_flags,
7598 ARRAY_SIZE(dcc_err_flags));
7599 }
7600
7601 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7602 {
7603 return flag_string(buf, buf_len, flags, lcb_err_flags,
7604 ARRAY_SIZE(lcb_err_flags));
7605 }
7606
7607 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7608 {
7609 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7610 ARRAY_SIZE(dc8051_err_flags));
7611 }
7612
7613 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7614 {
7615 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7616 ARRAY_SIZE(dc8051_info_err_flags));
7617 }
7618
7619 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7620 {
7621 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7622 ARRAY_SIZE(dc8051_info_host_msg_flags));
7623 }
7624
7625 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7626 {
7627 struct hfi1_pportdata *ppd = dd->pport;
7628 u64 info, err, host_msg;
7629 int queue_link_down = 0;
7630 char buf[96];
7631
7632 /* look at the flags */
7633 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7634 /* 8051 information set by firmware */
7635 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7636 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7637 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7638 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7639 host_msg = (info >>
7640 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7641 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7642
7643 /*
7644 * Handle error flags.
7645 */
7646 if (err & FAILED_LNI) {
7647 /*
7648 * LNI error indications are cleared by the 8051
7649 * only when starting polling. Only pay attention
7650 * to them when in the states that occur during
7651 * LNI.
7652 */
7653 if (ppd->host_link_state
7654 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7655 queue_link_down = 1;
7656 dd_dev_info(dd, "Link error: %s\n",
7657 dc8051_info_err_string(buf,
7658 sizeof(buf),
7659 err &
7660 FAILED_LNI));
7661 }
7662 err &= ~(u64)FAILED_LNI;
7663 }
7664 /* unknown frames can happen durning LNI, just count */
7665 if (err & UNKNOWN_FRAME) {
7666 ppd->unknown_frame_count++;
7667 err &= ~(u64)UNKNOWN_FRAME;
7668 }
7669 if (err) {
7670 /* report remaining errors, but do not do anything */
7671 dd_dev_err(dd, "8051 info error: %s\n",
7672 dc8051_info_err_string(buf, sizeof(buf),
7673 err));
7674 }
7675
7676 /*
7677 * Handle host message flags.
7678 */
7679 if (host_msg & HOST_REQ_DONE) {
7680 /*
7681 * Presently, the driver does a busy wait for
7682 * host requests to complete. This is only an
7683 * informational message.
7684 * NOTE: The 8051 clears the host message
7685 * information *on the next 8051 command*.
7686 * Therefore, when linkup is achieved,
7687 * this flag will still be set.
7688 */
7689 host_msg &= ~(u64)HOST_REQ_DONE;
7690 }
7691 if (host_msg & BC_SMA_MSG) {
7692 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7693 host_msg &= ~(u64)BC_SMA_MSG;
7694 }
7695 if (host_msg & LINKUP_ACHIEVED) {
7696 dd_dev_info(dd, "8051: Link up\n");
7697 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7698 host_msg &= ~(u64)LINKUP_ACHIEVED;
7699 }
7700 if (host_msg & EXT_DEVICE_CFG_REQ) {
7701 handle_8051_request(ppd);
7702 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7703 }
7704 if (host_msg & VERIFY_CAP_FRAME) {
7705 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7706 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7707 }
7708 if (host_msg & LINK_GOING_DOWN) {
7709 const char *extra = "";
7710 /* no downgrade action needed if going down */
7711 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7712 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7713 extra = " (ignoring downgrade)";
7714 }
7715 dd_dev_info(dd, "8051: Link down%s\n", extra);
7716 queue_link_down = 1;
7717 host_msg &= ~(u64)LINK_GOING_DOWN;
7718 }
7719 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7720 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7721 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7722 }
7723 if (host_msg) {
7724 /* report remaining messages, but do not do anything */
7725 dd_dev_info(dd, "8051 info host message: %s\n",
7726 dc8051_info_host_msg_string(buf,
7727 sizeof(buf),
7728 host_msg));
7729 }
7730
7731 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7732 }
7733 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7734 /*
7735 * Lost the 8051 heartbeat. If this happens, we
7736 * receive constant interrupts about it. Disable
7737 * the interrupt after the first.
7738 */
7739 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7740 write_csr(dd, DC_DC8051_ERR_EN,
7741 read_csr(dd, DC_DC8051_ERR_EN) &
7742 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7743
7744 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7745 }
7746 if (reg) {
7747 /* report the error, but do not do anything */
7748 dd_dev_err(dd, "8051 error: %s\n",
7749 dc8051_err_string(buf, sizeof(buf), reg));
7750 }
7751
7752 if (queue_link_down) {
7753 /*
7754 * if the link is already going down or disabled, do not
7755 * queue another
7756 */
7757 if ((ppd->host_link_state &
7758 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7759 ppd->link_enabled == 0) {
7760 dd_dev_info(dd, "%s: not queuing link down\n",
7761 __func__);
7762 } else {
7763 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7764 }
7765 }
7766 }
7767
7768 static const char * const fm_config_txt[] = {
7769 [0] =
7770 "BadHeadDist: Distance violation between two head flits",
7771 [1] =
7772 "BadTailDist: Distance violation between two tail flits",
7773 [2] =
7774 "BadCtrlDist: Distance violation between two credit control flits",
7775 [3] =
7776 "BadCrdAck: Credits return for unsupported VL",
7777 [4] =
7778 "UnsupportedVLMarker: Received VL Marker",
7779 [5] =
7780 "BadPreempt: Exceeded the preemption nesting level",
7781 [6] =
7782 "BadControlFlit: Received unsupported control flit",
7783 /* no 7 */
7784 [8] =
7785 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7786 };
7787
7788 static const char * const port_rcv_txt[] = {
7789 [1] =
7790 "BadPktLen: Illegal PktLen",
7791 [2] =
7792 "PktLenTooLong: Packet longer than PktLen",
7793 [3] =
7794 "PktLenTooShort: Packet shorter than PktLen",
7795 [4] =
7796 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7797 [5] =
7798 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7799 [6] =
7800 "BadL2: Illegal L2 opcode",
7801 [7] =
7802 "BadSC: Unsupported SC",
7803 [9] =
7804 "BadRC: Illegal RC",
7805 [11] =
7806 "PreemptError: Preempting with same VL",
7807 [12] =
7808 "PreemptVL15: Preempting a VL15 packet",
7809 };
7810
7811 #define OPA_LDR_FMCONFIG_OFFSET 16
7812 #define OPA_LDR_PORTRCV_OFFSET 0
7813 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7814 {
7815 u64 info, hdr0, hdr1;
7816 const char *extra;
7817 char buf[96];
7818 struct hfi1_pportdata *ppd = dd->pport;
7819 u8 lcl_reason = 0;
7820 int do_bounce = 0;
7821
7822 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7823 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7824 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7825 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7826 /* set status bit */
7827 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7828 }
7829 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7830 }
7831
7832 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7833 struct hfi1_pportdata *ppd = dd->pport;
7834 /* this counter saturates at (2^32) - 1 */
7835 if (ppd->link_downed < (u32)UINT_MAX)
7836 ppd->link_downed++;
7837 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7838 }
7839
7840 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7841 u8 reason_valid = 1;
7842
7843 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7844 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7845 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7846 /* set status bit */
7847 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7848 }
7849 switch (info) {
7850 case 0:
7851 case 1:
7852 case 2:
7853 case 3:
7854 case 4:
7855 case 5:
7856 case 6:
7857 extra = fm_config_txt[info];
7858 break;
7859 case 8:
7860 extra = fm_config_txt[info];
7861 if (ppd->port_error_action &
7862 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7863 do_bounce = 1;
7864 /*
7865 * lcl_reason cannot be derived from info
7866 * for this error
7867 */
7868 lcl_reason =
7869 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7870 }
7871 break;
7872 default:
7873 reason_valid = 0;
7874 snprintf(buf, sizeof(buf), "reserved%lld", info);
7875 extra = buf;
7876 break;
7877 }
7878
7879 if (reason_valid && !do_bounce) {
7880 do_bounce = ppd->port_error_action &
7881 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7882 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7883 }
7884
7885 /* just report this */
7886 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7887 extra);
7888 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7889 }
7890
7891 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7892 u8 reason_valid = 1;
7893
7894 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7895 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7896 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7897 if (!(dd->err_info_rcvport.status_and_code &
7898 OPA_EI_STATUS_SMASK)) {
7899 dd->err_info_rcvport.status_and_code =
7900 info & OPA_EI_CODE_SMASK;
7901 /* set status bit */
7902 dd->err_info_rcvport.status_and_code |=
7903 OPA_EI_STATUS_SMASK;
7904 /*
7905 * save first 2 flits in the packet that caused
7906 * the error
7907 */
7908 dd->err_info_rcvport.packet_flit1 = hdr0;
7909 dd->err_info_rcvport.packet_flit2 = hdr1;
7910 }
7911 switch (info) {
7912 case 1:
7913 case 2:
7914 case 3:
7915 case 4:
7916 case 5:
7917 case 6:
7918 case 7:
7919 case 9:
7920 case 11:
7921 case 12:
7922 extra = port_rcv_txt[info];
7923 break;
7924 default:
7925 reason_valid = 0;
7926 snprintf(buf, sizeof(buf), "reserved%lld", info);
7927 extra = buf;
7928 break;
7929 }
7930
7931 if (reason_valid && !do_bounce) {
7932 do_bounce = ppd->port_error_action &
7933 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7934 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7935 }
7936
7937 /* just report this */
7938 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7939 " hdr0 0x%llx, hdr1 0x%llx\n",
7940 extra, hdr0, hdr1);
7941
7942 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7943 }
7944
7945 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7946 /* informative only */
7947 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7948 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7949 }
7950 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7951 /* informative only */
7952 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7953 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7954 }
7955
7956 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
7957 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
7958
7959 /* report any remaining errors */
7960 if (reg)
7961 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
7962 dcc_err_string(buf, sizeof(buf), reg));
7963
7964 if (lcl_reason == 0)
7965 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7966
7967 if (do_bounce) {
7968 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
7969 __func__);
7970 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7971 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7972 }
7973 }
7974
7975 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7976 {
7977 char buf[96];
7978
7979 dd_dev_info(dd, "LCB Error: %s\n",
7980 lcb_err_string(buf, sizeof(buf), reg));
7981 }
7982
7983 /*
7984 * CCE block DC interrupt. Source is < 8.
7985 */
7986 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7987 {
7988 const struct err_reg_info *eri = &dc_errs[source];
7989
7990 if (eri->handler) {
7991 interrupt_clear_down(dd, 0, eri);
7992 } else if (source == 3 /* dc_lbm_int */) {
7993 /*
7994 * This indicates that a parity error has occurred on the
7995 * address/control lines presented to the LBM. The error
7996 * is a single pulse, there is no associated error flag,
7997 * and it is non-maskable. This is because if a parity
7998 * error occurs on the request the request is dropped.
7999 * This should never occur, but it is nice to know if it
8000 * ever does.
8001 */
8002 dd_dev_err(dd, "Parity error in DC LBM block\n");
8003 } else {
8004 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8005 }
8006 }
8007
8008 /*
8009 * TX block send credit interrupt. Source is < 160.
8010 */
8011 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8012 {
8013 sc_group_release_update(dd, source);
8014 }
8015
8016 /*
8017 * TX block SDMA interrupt. Source is < 48.
8018 *
8019 * SDMA interrupts are grouped by type:
8020 *
8021 * 0 - N-1 = SDma
8022 * N - 2N-1 = SDmaProgress
8023 * 2N - 3N-1 = SDmaIdle
8024 */
8025 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8026 {
8027 /* what interrupt */
8028 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
8029 /* which engine */
8030 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8031
8032 #ifdef CONFIG_SDMA_VERBOSITY
8033 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8034 slashstrip(__FILE__), __LINE__, __func__);
8035 sdma_dumpstate(&dd->per_sdma[which]);
8036 #endif
8037
8038 if (likely(what < 3 && which < dd->num_sdma)) {
8039 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8040 } else {
8041 /* should not happen */
8042 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8043 }
8044 }
8045
8046 /*
8047 * RX block receive available interrupt. Source is < 160.
8048 */
8049 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8050 {
8051 struct hfi1_ctxtdata *rcd;
8052 char *err_detail;
8053
8054 if (likely(source < dd->num_rcv_contexts)) {
8055 rcd = dd->rcd[source];
8056 if (rcd) {
8057 /* Check for non-user contexts, including vnic */
8058 if ((source < dd->first_dyn_alloc_ctxt) ||
8059 (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8060 rcd->do_interrupt(rcd, 0);
8061 else
8062 handle_user_interrupt(rcd);
8063 return; /* OK */
8064 }
8065 /* received an interrupt, but no rcd */
8066 err_detail = "dataless";
8067 } else {
8068 /* received an interrupt, but are not using that context */
8069 err_detail = "out of range";
8070 }
8071 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8072 err_detail, source);
8073 }
8074
8075 /*
8076 * RX block receive urgent interrupt. Source is < 160.
8077 */
8078 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8079 {
8080 struct hfi1_ctxtdata *rcd;
8081 char *err_detail;
8082
8083 if (likely(source < dd->num_rcv_contexts)) {
8084 rcd = dd->rcd[source];
8085 if (rcd) {
8086 /* only pay attention to user urgent interrupts */
8087 if ((source >= dd->first_dyn_alloc_ctxt) &&
8088 (!rcd->sc || (rcd->sc->type == SC_USER)))
8089 handle_user_interrupt(rcd);
8090 return; /* OK */
8091 }
8092 /* received an interrupt, but no rcd */
8093 err_detail = "dataless";
8094 } else {
8095 /* received an interrupt, but are not using that context */
8096 err_detail = "out of range";
8097 }
8098 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8099 err_detail, source);
8100 }
8101
8102 /*
8103 * Reserved range interrupt. Should not be called in normal operation.
8104 */
8105 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8106 {
8107 char name[64];
8108
8109 dd_dev_err(dd, "unexpected %s interrupt\n",
8110 is_reserved_name(name, sizeof(name), source));
8111 }
8112
8113 static const struct is_table is_table[] = {
8114 /*
8115 * start end
8116 * name func interrupt func
8117 */
8118 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
8119 is_misc_err_name, is_misc_err_int },
8120 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
8121 is_sdma_eng_err_name, is_sdma_eng_err_int },
8122 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8123 is_sendctxt_err_name, is_sendctxt_err_int },
8124 { IS_SDMA_START, IS_SDMA_END,
8125 is_sdma_eng_name, is_sdma_eng_int },
8126 { IS_VARIOUS_START, IS_VARIOUS_END,
8127 is_various_name, is_various_int },
8128 { IS_DC_START, IS_DC_END,
8129 is_dc_name, is_dc_int },
8130 { IS_RCVAVAIL_START, IS_RCVAVAIL_END,
8131 is_rcv_avail_name, is_rcv_avail_int },
8132 { IS_RCVURGENT_START, IS_RCVURGENT_END,
8133 is_rcv_urgent_name, is_rcv_urgent_int },
8134 { IS_SENDCREDIT_START, IS_SENDCREDIT_END,
8135 is_send_credit_name, is_send_credit_int},
8136 { IS_RESERVED_START, IS_RESERVED_END,
8137 is_reserved_name, is_reserved_int},
8138 };
8139
8140 /*
8141 * Interrupt source interrupt - called when the given source has an interrupt.
8142 * Source is a bit index into an array of 64-bit integers.
8143 */
8144 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8145 {
8146 const struct is_table *entry;
8147
8148 /* avoids a double compare by walking the table in-order */
8149 for (entry = &is_table[0]; entry->is_name; entry++) {
8150 if (source < entry->end) {
8151 trace_hfi1_interrupt(dd, entry, source);
8152 entry->is_int(dd, source - entry->start);
8153 return;
8154 }
8155 }
8156 /* fell off the end */
8157 dd_dev_err(dd, "invalid interrupt source %u\n", source);
8158 }
8159
8160 /*
8161 * General interrupt handler. This is able to correctly handle
8162 * all interrupts in case INTx is used.
8163 */
8164 static irqreturn_t general_interrupt(int irq, void *data)
8165 {
8166 struct hfi1_devdata *dd = data;
8167 u64 regs[CCE_NUM_INT_CSRS];
8168 u32 bit;
8169 int i;
8170
8171 this_cpu_inc(*dd->int_counter);
8172
8173 /* phase 1: scan and clear all handled interrupts */
8174 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8175 if (dd->gi_mask[i] == 0) {
8176 regs[i] = 0; /* used later */
8177 continue;
8178 }
8179 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8180 dd->gi_mask[i];
8181 /* only clear if anything is set */
8182 if (regs[i])
8183 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8184 }
8185
8186 /* phase 2: call the appropriate handler */
8187 for_each_set_bit(bit, (unsigned long *)&regs[0],
8188 CCE_NUM_INT_CSRS * 64) {
8189 is_interrupt(dd, bit);
8190 }
8191
8192 return IRQ_HANDLED;
8193 }
8194
8195 static irqreturn_t sdma_interrupt(int irq, void *data)
8196 {
8197 struct sdma_engine *sde = data;
8198 struct hfi1_devdata *dd = sde->dd;
8199 u64 status;
8200
8201 #ifdef CONFIG_SDMA_VERBOSITY
8202 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8203 slashstrip(__FILE__), __LINE__, __func__);
8204 sdma_dumpstate(sde);
8205 #endif
8206
8207 this_cpu_inc(*dd->int_counter);
8208
8209 /* This read_csr is really bad in the hot path */
8210 status = read_csr(dd,
8211 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8212 & sde->imask;
8213 if (likely(status)) {
8214 /* clear the interrupt(s) */
8215 write_csr(dd,
8216 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8217 status);
8218
8219 /* handle the interrupt(s) */
8220 sdma_engine_interrupt(sde, status);
8221 } else {
8222 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8223 sde->this_idx);
8224 }
8225 return IRQ_HANDLED;
8226 }
8227
8228 /*
8229 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8230 * to insure that the write completed. This does NOT guarantee that
8231 * queued DMA writes to memory from the chip are pushed.
8232 */
8233 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8234 {
8235 struct hfi1_devdata *dd = rcd->dd;
8236 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8237
8238 mmiowb(); /* make sure everything before is written */
8239 write_csr(dd, addr, rcd->imask);
8240 /* force the above write on the chip and get a value back */
8241 (void)read_csr(dd, addr);
8242 }
8243
8244 /* force the receive interrupt */
8245 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8246 {
8247 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8248 }
8249
8250 /*
8251 * Return non-zero if a packet is present.
8252 *
8253 * This routine is called when rechecking for packets after the RcvAvail
8254 * interrupt has been cleared down. First, do a quick check of memory for
8255 * a packet present. If not found, use an expensive CSR read of the context
8256 * tail to determine the actual tail. The CSR read is necessary because there
8257 * is no method to push pending DMAs to memory other than an interrupt and we
8258 * are trying to determine if we need to force an interrupt.
8259 */
8260 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8261 {
8262 u32 tail;
8263 int present;
8264
8265 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8266 present = (rcd->seq_cnt ==
8267 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8268 else /* is RDMA rtail */
8269 present = (rcd->head != get_rcvhdrtail(rcd));
8270
8271 if (present)
8272 return 1;
8273
8274 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8275 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8276 return rcd->head != tail;
8277 }
8278
8279 /*
8280 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8281 * This routine will try to handle packets immediately (latency), but if
8282 * it finds too many, it will invoke the thread handler (bandwitdh). The
8283 * chip receive interrupt is *not* cleared down until this or the thread (if
8284 * invoked) is finished. The intent is to avoid extra interrupts while we
8285 * are processing packets anyway.
8286 */
8287 static irqreturn_t receive_context_interrupt(int irq, void *data)
8288 {
8289 struct hfi1_ctxtdata *rcd = data;
8290 struct hfi1_devdata *dd = rcd->dd;
8291 int disposition;
8292 int present;
8293
8294 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8295 this_cpu_inc(*dd->int_counter);
8296 aspm_ctx_disable(rcd);
8297
8298 /* receive interrupt remains blocked while processing packets */
8299 disposition = rcd->do_interrupt(rcd, 0);
8300
8301 /*
8302 * Too many packets were seen while processing packets in this
8303 * IRQ handler. Invoke the handler thread. The receive interrupt
8304 * remains blocked.
8305 */
8306 if (disposition == RCV_PKT_LIMIT)
8307 return IRQ_WAKE_THREAD;
8308
8309 /*
8310 * The packet processor detected no more packets. Clear the receive
8311 * interrupt and recheck for a packet packet that may have arrived
8312 * after the previous check and interrupt clear. If a packet arrived,
8313 * force another interrupt.
8314 */
8315 clear_recv_intr(rcd);
8316 present = check_packet_present(rcd);
8317 if (present)
8318 force_recv_intr(rcd);
8319
8320 return IRQ_HANDLED;
8321 }
8322
8323 /*
8324 * Receive packet thread handler. This expects to be invoked with the
8325 * receive interrupt still blocked.
8326 */
8327 static irqreturn_t receive_context_thread(int irq, void *data)
8328 {
8329 struct hfi1_ctxtdata *rcd = data;
8330 int present;
8331
8332 /* receive interrupt is still blocked from the IRQ handler */
8333 (void)rcd->do_interrupt(rcd, 1);
8334
8335 /*
8336 * The packet processor will only return if it detected no more
8337 * packets. Hold IRQs here so we can safely clear the interrupt and
8338 * recheck for a packet that may have arrived after the previous
8339 * check and the interrupt clear. If a packet arrived, force another
8340 * interrupt.
8341 */
8342 local_irq_disable();
8343 clear_recv_intr(rcd);
8344 present = check_packet_present(rcd);
8345 if (present)
8346 force_recv_intr(rcd);
8347 local_irq_enable();
8348
8349 return IRQ_HANDLED;
8350 }
8351
8352 /* ========================================================================= */
8353
8354 u32 read_physical_state(struct hfi1_devdata *dd)
8355 {
8356 u64 reg;
8357
8358 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8359 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8360 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8361 }
8362
8363 u32 read_logical_state(struct hfi1_devdata *dd)
8364 {
8365 u64 reg;
8366
8367 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8368 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8369 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8370 }
8371
8372 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8373 {
8374 u64 reg;
8375
8376 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8377 /* clear current state, set new state */
8378 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8379 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8380 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8381 }
8382
8383 /*
8384 * Use the 8051 to read a LCB CSR.
8385 */
8386 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8387 {
8388 u32 regno;
8389 int ret;
8390
8391 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8392 if (acquire_lcb_access(dd, 0) == 0) {
8393 *data = read_csr(dd, addr);
8394 release_lcb_access(dd, 0);
8395 return 0;
8396 }
8397 return -EBUSY;
8398 }
8399
8400 /* register is an index of LCB registers: (offset - base) / 8 */
8401 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8402 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8403 if (ret != HCMD_SUCCESS)
8404 return -EBUSY;
8405 return 0;
8406 }
8407
8408 /*
8409 * Provide a cache for some of the LCB registers in case the LCB is
8410 * unavailable.
8411 * (The LCB is unavailable in certain link states, for example.)
8412 */
8413 struct lcb_datum {
8414 u32 off;
8415 u64 val;
8416 };
8417
8418 static struct lcb_datum lcb_cache[] = {
8419 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8420 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8421 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8422 };
8423
8424 static void update_lcb_cache(struct hfi1_devdata *dd)
8425 {
8426 int i;
8427 int ret;
8428 u64 val;
8429
8430 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8431 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8432
8433 /* Update if we get good data */
8434 if (likely(ret != -EBUSY))
8435 lcb_cache[i].val = val;
8436 }
8437 }
8438
8439 static int read_lcb_cache(u32 off, u64 *val)
8440 {
8441 int i;
8442
8443 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8444 if (lcb_cache[i].off == off) {
8445 *val = lcb_cache[i].val;
8446 return 0;
8447 }
8448 }
8449
8450 pr_warn("%s bad offset 0x%x\n", __func__, off);
8451 return -1;
8452 }
8453
8454 /*
8455 * Read an LCB CSR. Access may not be in host control, so check.
8456 * Return 0 on success, -EBUSY on failure.
8457 */
8458 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8459 {
8460 struct hfi1_pportdata *ppd = dd->pport;
8461
8462 /* if up, go through the 8051 for the value */
8463 if (ppd->host_link_state & HLS_UP)
8464 return read_lcb_via_8051(dd, addr, data);
8465 /* if going up or down, check the cache, otherwise, no access */
8466 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8467 if (read_lcb_cache(addr, data))
8468 return -EBUSY;
8469 return 0;
8470 }
8471
8472 /* otherwise, host has access */
8473 *data = read_csr(dd, addr);
8474 return 0;
8475 }
8476
8477 /*
8478 * Use the 8051 to write a LCB CSR.
8479 */
8480 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8481 {
8482 u32 regno;
8483 int ret;
8484
8485 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8486 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8487 if (acquire_lcb_access(dd, 0) == 0) {
8488 write_csr(dd, addr, data);
8489 release_lcb_access(dd, 0);
8490 return 0;
8491 }
8492 return -EBUSY;
8493 }
8494
8495 /* register is an index of LCB registers: (offset - base) / 8 */
8496 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8497 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8498 if (ret != HCMD_SUCCESS)
8499 return -EBUSY;
8500 return 0;
8501 }
8502
8503 /*
8504 * Write an LCB CSR. Access may not be in host control, so check.
8505 * Return 0 on success, -EBUSY on failure.
8506 */
8507 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8508 {
8509 struct hfi1_pportdata *ppd = dd->pport;
8510
8511 /* if up, go through the 8051 for the value */
8512 if (ppd->host_link_state & HLS_UP)
8513 return write_lcb_via_8051(dd, addr, data);
8514 /* if going up or down, no access */
8515 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8516 return -EBUSY;
8517 /* otherwise, host has access */
8518 write_csr(dd, addr, data);
8519 return 0;
8520 }
8521
8522 /*
8523 * Returns:
8524 * < 0 = Linux error, not able to get access
8525 * > 0 = 8051 command RETURN_CODE
8526 */
8527 static int do_8051_command(
8528 struct hfi1_devdata *dd,
8529 u32 type,
8530 u64 in_data,
8531 u64 *out_data)
8532 {
8533 u64 reg, completed;
8534 int return_code;
8535 unsigned long timeout;
8536
8537 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8538
8539 mutex_lock(&dd->dc8051_lock);
8540
8541 /* We can't send any commands to the 8051 if it's in reset */
8542 if (dd->dc_shutdown) {
8543 return_code = -ENODEV;
8544 goto fail;
8545 }
8546
8547 /*
8548 * If an 8051 host command timed out previously, then the 8051 is
8549 * stuck.
8550 *
8551 * On first timeout, attempt to reset and restart the entire DC
8552 * block (including 8051). (Is this too big of a hammer?)
8553 *
8554 * If the 8051 times out a second time, the reset did not bring it
8555 * back to healthy life. In that case, fail any subsequent commands.
8556 */
8557 if (dd->dc8051_timed_out) {
8558 if (dd->dc8051_timed_out > 1) {
8559 dd_dev_err(dd,
8560 "Previous 8051 host command timed out, skipping command %u\n",
8561 type);
8562 return_code = -ENXIO;
8563 goto fail;
8564 }
8565 _dc_shutdown(dd);
8566 _dc_start(dd);
8567 }
8568
8569 /*
8570 * If there is no timeout, then the 8051 command interface is
8571 * waiting for a command.
8572 */
8573
8574 /*
8575 * When writing a LCB CSR, out_data contains the full value to
8576 * to be written, while in_data contains the relative LCB
8577 * address in 7:0. Do the work here, rather than the caller,
8578 * of distrubting the write data to where it needs to go:
8579 *
8580 * Write data
8581 * 39:00 -> in_data[47:8]
8582 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8583 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8584 */
8585 if (type == HCMD_WRITE_LCB_CSR) {
8586 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8587 /* must preserve COMPLETED - it is tied to hardware */
8588 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8589 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8590 reg |= ((((*out_data) >> 40) & 0xff) <<
8591 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8592 | ((((*out_data) >> 48) & 0xffff) <<
8593 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8594 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8595 }
8596
8597 /*
8598 * Do two writes: the first to stabilize the type and req_data, the
8599 * second to activate.
8600 */
8601 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8602 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8603 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8604 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8605 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8606 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8607 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8608
8609 /* wait for completion, alternate: interrupt */
8610 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8611 while (1) {
8612 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8613 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8614 if (completed)
8615 break;
8616 if (time_after(jiffies, timeout)) {
8617 dd->dc8051_timed_out++;
8618 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8619 if (out_data)
8620 *out_data = 0;
8621 return_code = -ETIMEDOUT;
8622 goto fail;
8623 }
8624 udelay(2);
8625 }
8626
8627 if (out_data) {
8628 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8629 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8630 if (type == HCMD_READ_LCB_CSR) {
8631 /* top 16 bits are in a different register */
8632 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8633 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8634 << (48
8635 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8636 }
8637 }
8638 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8639 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8640 dd->dc8051_timed_out = 0;
8641 /*
8642 * Clear command for next user.
8643 */
8644 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8645
8646 fail:
8647 mutex_unlock(&dd->dc8051_lock);
8648 return return_code;
8649 }
8650
8651 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8652 {
8653 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8654 }
8655
8656 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8657 u8 lane_id, u32 config_data)
8658 {
8659 u64 data;
8660 int ret;
8661
8662 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8663 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8664 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8665 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8666 if (ret != HCMD_SUCCESS) {
8667 dd_dev_err(dd,
8668 "load 8051 config: field id %d, lane %d, err %d\n",
8669 (int)field_id, (int)lane_id, ret);
8670 }
8671 return ret;
8672 }
8673
8674 /*
8675 * Read the 8051 firmware "registers". Use the RAM directly. Always
8676 * set the result, even on error.
8677 * Return 0 on success, -errno on failure
8678 */
8679 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8680 u32 *result)
8681 {
8682 u64 big_data;
8683 u32 addr;
8684 int ret;
8685
8686 /* address start depends on the lane_id */
8687 if (lane_id < 4)
8688 addr = (4 * NUM_GENERAL_FIELDS)
8689 + (lane_id * 4 * NUM_LANE_FIELDS);
8690 else
8691 addr = 0;
8692 addr += field_id * 4;
8693
8694 /* read is in 8-byte chunks, hardware will truncate the address down */
8695 ret = read_8051_data(dd, addr, 8, &big_data);
8696
8697 if (ret == 0) {
8698 /* extract the 4 bytes we want */
8699 if (addr & 0x4)
8700 *result = (u32)(big_data >> 32);
8701 else
8702 *result = (u32)big_data;
8703 } else {
8704 *result = 0;
8705 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8706 __func__, lane_id, field_id);
8707 }
8708
8709 return ret;
8710 }
8711
8712 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8713 u8 continuous)
8714 {
8715 u32 frame;
8716
8717 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8718 | power_management << POWER_MANAGEMENT_SHIFT;
8719 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8720 GENERAL_CONFIG, frame);
8721 }
8722
8723 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8724 u16 vl15buf, u8 crc_sizes)
8725 {
8726 u32 frame;
8727
8728 frame = (u32)vau << VAU_SHIFT
8729 | (u32)z << Z_SHIFT
8730 | (u32)vcu << VCU_SHIFT
8731 | (u32)vl15buf << VL15BUF_SHIFT
8732 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8733 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8734 GENERAL_CONFIG, frame);
8735 }
8736
8737 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8738 u8 *flag_bits, u16 *link_widths)
8739 {
8740 u32 frame;
8741
8742 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8743 &frame);
8744 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8745 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8746 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8747 }
8748
8749 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8750 u8 misc_bits,
8751 u8 flag_bits,
8752 u16 link_widths)
8753 {
8754 u32 frame;
8755
8756 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8757 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8758 | (u32)link_widths << LINK_WIDTH_SHIFT;
8759 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8760 frame);
8761 }
8762
8763 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8764 u8 device_rev)
8765 {
8766 u32 frame;
8767
8768 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8769 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8770 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8771 }
8772
8773 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8774 u8 *device_rev)
8775 {
8776 u32 frame;
8777
8778 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8779 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8780 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8781 & REMOTE_DEVICE_REV_MASK;
8782 }
8783
8784 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8785 u8 *ver_patch)
8786 {
8787 u32 frame;
8788
8789 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8790 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8791 STS_FM_VERSION_MAJOR_MASK;
8792 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8793 STS_FM_VERSION_MINOR_MASK;
8794
8795 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8796 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8797 STS_FM_VERSION_PATCH_MASK;
8798 }
8799
8800 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8801 u8 *continuous)
8802 {
8803 u32 frame;
8804
8805 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8806 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8807 & POWER_MANAGEMENT_MASK;
8808 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8809 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8810 }
8811
8812 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8813 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8814 {
8815 u32 frame;
8816
8817 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8818 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8819 *z = (frame >> Z_SHIFT) & Z_MASK;
8820 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8821 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8822 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8823 }
8824
8825 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8826 u8 *remote_tx_rate,
8827 u16 *link_widths)
8828 {
8829 u32 frame;
8830
8831 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8832 &frame);
8833 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8834 & REMOTE_TX_RATE_MASK;
8835 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8836 }
8837
8838 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8839 {
8840 u32 frame;
8841
8842 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8843 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8844 }
8845
8846 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8847 {
8848 u32 frame;
8849
8850 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8851 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8852 }
8853
8854 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8855 {
8856 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8857 }
8858
8859 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8860 {
8861 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8862 }
8863
8864 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8865 {
8866 u32 frame;
8867 int ret;
8868
8869 *link_quality = 0;
8870 if (dd->pport->host_link_state & HLS_UP) {
8871 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8872 &frame);
8873 if (ret == 0)
8874 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8875 & LINK_QUALITY_MASK;
8876 }
8877 }
8878
8879 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8880 {
8881 u32 frame;
8882
8883 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8884 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8885 }
8886
8887 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8888 {
8889 u32 frame;
8890
8891 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8892 *ldr = (frame & 0xff);
8893 }
8894
8895 static int read_tx_settings(struct hfi1_devdata *dd,
8896 u8 *enable_lane_tx,
8897 u8 *tx_polarity_inversion,
8898 u8 *rx_polarity_inversion,
8899 u8 *max_rate)
8900 {
8901 u32 frame;
8902 int ret;
8903
8904 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8905 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8906 & ENABLE_LANE_TX_MASK;
8907 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8908 & TX_POLARITY_INVERSION_MASK;
8909 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8910 & RX_POLARITY_INVERSION_MASK;
8911 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8912 return ret;
8913 }
8914
8915 static int write_tx_settings(struct hfi1_devdata *dd,
8916 u8 enable_lane_tx,
8917 u8 tx_polarity_inversion,
8918 u8 rx_polarity_inversion,
8919 u8 max_rate)
8920 {
8921 u32 frame;
8922
8923 /* no need to mask, all variable sizes match field widths */
8924 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8925 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8926 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8927 | max_rate << MAX_RATE_SHIFT;
8928 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8929 }
8930
8931 /*
8932 * Read an idle LCB message.
8933 *
8934 * Returns 0 on success, -EINVAL on error
8935 */
8936 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8937 {
8938 int ret;
8939
8940 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8941 if (ret != HCMD_SUCCESS) {
8942 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8943 (u32)type, ret);
8944 return -EINVAL;
8945 }
8946 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8947 /* return only the payload as we already know the type */
8948 *data_out >>= IDLE_PAYLOAD_SHIFT;
8949 return 0;
8950 }
8951
8952 /*
8953 * Read an idle SMA message. To be done in response to a notification from
8954 * the 8051.
8955 *
8956 * Returns 0 on success, -EINVAL on error
8957 */
8958 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8959 {
8960 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8961 data);
8962 }
8963
8964 /*
8965 * Send an idle LCB message.
8966 *
8967 * Returns 0 on success, -EINVAL on error
8968 */
8969 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8970 {
8971 int ret;
8972
8973 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8974 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8975 if (ret != HCMD_SUCCESS) {
8976 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8977 data, ret);
8978 return -EINVAL;
8979 }
8980 return 0;
8981 }
8982
8983 /*
8984 * Send an idle SMA message.
8985 *
8986 * Returns 0 on success, -EINVAL on error
8987 */
8988 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8989 {
8990 u64 data;
8991
8992 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8993 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8994 return send_idle_message(dd, data);
8995 }
8996
8997 /*
8998 * Initialize the LCB then do a quick link up. This may or may not be
8999 * in loopback.
9000 *
9001 * return 0 on success, -errno on error
9002 */
9003 static int do_quick_linkup(struct hfi1_devdata *dd)
9004 {
9005 int ret;
9006
9007 lcb_shutdown(dd, 0);
9008
9009 if (loopback) {
9010 /* LCB_CFG_LOOPBACK.VAL = 2 */
9011 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9012 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9013 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9014 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9015 }
9016
9017 /* start the LCBs */
9018 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9019 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9020
9021 /* simulator only loopback steps */
9022 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9023 /* LCB_CFG_RUN.EN = 1 */
9024 write_csr(dd, DC_LCB_CFG_RUN,
9025 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9026
9027 ret = wait_link_transfer_active(dd, 10);
9028 if (ret)
9029 return ret;
9030
9031 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9032 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9033 }
9034
9035 if (!loopback) {
9036 /*
9037 * When doing quick linkup and not in loopback, both
9038 * sides must be done with LCB set-up before either
9039 * starts the quick linkup. Put a delay here so that
9040 * both sides can be started and have a chance to be
9041 * done with LCB set up before resuming.
9042 */
9043 dd_dev_err(dd,
9044 "Pausing for peer to be finished with LCB set up\n");
9045 msleep(5000);
9046 dd_dev_err(dd, "Continuing with quick linkup\n");
9047 }
9048
9049 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9050 set_8051_lcb_access(dd);
9051
9052 /*
9053 * State "quick" LinkUp request sets the physical link state to
9054 * LinkUp without a verify capability sequence.
9055 * This state is in simulator v37 and later.
9056 */
9057 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9058 if (ret != HCMD_SUCCESS) {
9059 dd_dev_err(dd,
9060 "%s: set physical link state to quick LinkUp failed with return %d\n",
9061 __func__, ret);
9062
9063 set_host_lcb_access(dd);
9064 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9065
9066 if (ret >= 0)
9067 ret = -EINVAL;
9068 return ret;
9069 }
9070
9071 return 0; /* success */
9072 }
9073
9074 /*
9075 * Set the SerDes to internal loopback mode.
9076 * Returns 0 on success, -errno on error.
9077 */
9078 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9079 {
9080 int ret;
9081
9082 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9083 if (ret == HCMD_SUCCESS)
9084 return 0;
9085 dd_dev_err(dd,
9086 "Set physical link state to SerDes Loopback failed with return %d\n",
9087 ret);
9088 if (ret >= 0)
9089 ret = -EINVAL;
9090 return ret;
9091 }
9092
9093 /*
9094 * Do all special steps to set up loopback.
9095 */
9096 static int init_loopback(struct hfi1_devdata *dd)
9097 {
9098 dd_dev_info(dd, "Entering loopback mode\n");
9099
9100 /* all loopbacks should disable self GUID check */
9101 write_csr(dd, DC_DC8051_CFG_MODE,
9102 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9103
9104 /*
9105 * The simulator has only one loopback option - LCB. Switch
9106 * to that option, which includes quick link up.
9107 *
9108 * Accept all valid loopback values.
9109 */
9110 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9111 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9112 loopback == LOOPBACK_CABLE)) {
9113 loopback = LOOPBACK_LCB;
9114 quick_linkup = 1;
9115 return 0;
9116 }
9117
9118 /* handle serdes loopback */
9119 if (loopback == LOOPBACK_SERDES) {
9120 /* internal serdes loopack needs quick linkup on RTL */
9121 if (dd->icode == ICODE_RTL_SILICON)
9122 quick_linkup = 1;
9123 return set_serdes_loopback_mode(dd);
9124 }
9125
9126 /* LCB loopback - handled at poll time */
9127 if (loopback == LOOPBACK_LCB) {
9128 quick_linkup = 1; /* LCB is always quick linkup */
9129
9130 /* not supported in emulation due to emulation RTL changes */
9131 if (dd->icode == ICODE_FPGA_EMULATION) {
9132 dd_dev_err(dd,
9133 "LCB loopback not supported in emulation\n");
9134 return -EINVAL;
9135 }
9136 return 0;
9137 }
9138
9139 /* external cable loopback requires no extra steps */
9140 if (loopback == LOOPBACK_CABLE)
9141 return 0;
9142
9143 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9144 return -EINVAL;
9145 }
9146
9147 /*
9148 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9149 * used in the Verify Capability link width attribute.
9150 */
9151 static u16 opa_to_vc_link_widths(u16 opa_widths)
9152 {
9153 int i;
9154 u16 result = 0;
9155
9156 static const struct link_bits {
9157 u16 from;
9158 u16 to;
9159 } opa_link_xlate[] = {
9160 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
9161 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
9162 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
9163 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
9164 };
9165
9166 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9167 if (opa_widths & opa_link_xlate[i].from)
9168 result |= opa_link_xlate[i].to;
9169 }
9170 return result;
9171 }
9172
9173 /*
9174 * Set link attributes before moving to polling.
9175 */
9176 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9177 {
9178 struct hfi1_devdata *dd = ppd->dd;
9179 u8 enable_lane_tx;
9180 u8 tx_polarity_inversion;
9181 u8 rx_polarity_inversion;
9182 int ret;
9183
9184 /* reset our fabric serdes to clear any lingering problems */
9185 fabric_serdes_reset(dd);
9186
9187 /* set the local tx rate - need to read-modify-write */
9188 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9189 &rx_polarity_inversion, &ppd->local_tx_rate);
9190 if (ret)
9191 goto set_local_link_attributes_fail;
9192
9193 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9194 /* set the tx rate to the fastest enabled */
9195 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9196 ppd->local_tx_rate = 1;
9197 else
9198 ppd->local_tx_rate = 0;
9199 } else {
9200 /* set the tx rate to all enabled */
9201 ppd->local_tx_rate = 0;
9202 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9203 ppd->local_tx_rate |= 2;
9204 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9205 ppd->local_tx_rate |= 1;
9206 }
9207
9208 enable_lane_tx = 0xF; /* enable all four lanes */
9209 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9210 rx_polarity_inversion, ppd->local_tx_rate);
9211 if (ret != HCMD_SUCCESS)
9212 goto set_local_link_attributes_fail;
9213
9214 /*
9215 * DC supports continuous updates.
9216 */
9217 ret = write_vc_local_phy(dd,
9218 0 /* no power management */,
9219 1 /* continuous updates */);
9220 if (ret != HCMD_SUCCESS)
9221 goto set_local_link_attributes_fail;
9222
9223 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9224 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9225 ppd->port_crc_mode_enabled);
9226 if (ret != HCMD_SUCCESS)
9227 goto set_local_link_attributes_fail;
9228
9229 ret = write_vc_local_link_width(dd, 0, 0,
9230 opa_to_vc_link_widths(
9231 ppd->link_width_enabled));
9232 if (ret != HCMD_SUCCESS)
9233 goto set_local_link_attributes_fail;
9234
9235 /* let peer know who we are */
9236 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9237 if (ret == HCMD_SUCCESS)
9238 return 0;
9239
9240 set_local_link_attributes_fail:
9241 dd_dev_err(dd,
9242 "Failed to set local link attributes, return 0x%x\n",
9243 ret);
9244 return ret;
9245 }
9246
9247 /*
9248 * Call this to start the link.
9249 * Do not do anything if the link is disabled.
9250 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9251 */
9252 int start_link(struct hfi1_pportdata *ppd)
9253 {
9254 /*
9255 * Tune the SerDes to a ballpark setting for optimal signal and bit
9256 * error rate. Needs to be done before starting the link.
9257 */
9258 tune_serdes(ppd);
9259
9260 if (!ppd->link_enabled) {
9261 dd_dev_info(ppd->dd,
9262 "%s: stopping link start because link is disabled\n",
9263 __func__);
9264 return 0;
9265 }
9266 if (!ppd->driver_link_ready) {
9267 dd_dev_info(ppd->dd,
9268 "%s: stopping link start because driver is not ready\n",
9269 __func__);
9270 return 0;
9271 }
9272
9273 /*
9274 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9275 * pkey table can be configured properly if the HFI unit is connected
9276 * to switch port with MgmtAllowed=NO
9277 */
9278 clear_full_mgmt_pkey(ppd);
9279
9280 return set_link_state(ppd, HLS_DN_POLL);
9281 }
9282
9283 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9284 {
9285 struct hfi1_devdata *dd = ppd->dd;
9286 u64 mask;
9287 unsigned long timeout;
9288
9289 /*
9290 * Some QSFP cables have a quirk that asserts the IntN line as a side
9291 * effect of power up on plug-in. We ignore this false positive
9292 * interrupt until the module has finished powering up by waiting for
9293 * a minimum timeout of the module inrush initialization time of
9294 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9295 * module have stabilized.
9296 */
9297 msleep(500);
9298
9299 /*
9300 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9301 */
9302 timeout = jiffies + msecs_to_jiffies(2000);
9303 while (1) {
9304 mask = read_csr(dd, dd->hfi1_id ?
9305 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9306 if (!(mask & QSFP_HFI0_INT_N))
9307 break;
9308 if (time_after(jiffies, timeout)) {
9309 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9310 __func__);
9311 break;
9312 }
9313 udelay(2);
9314 }
9315 }
9316
9317 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9318 {
9319 struct hfi1_devdata *dd = ppd->dd;
9320 u64 mask;
9321
9322 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9323 if (enable) {
9324 /*
9325 * Clear the status register to avoid an immediate interrupt
9326 * when we re-enable the IntN pin
9327 */
9328 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9329 QSFP_HFI0_INT_N);
9330 mask |= (u64)QSFP_HFI0_INT_N;
9331 } else {
9332 mask &= ~(u64)QSFP_HFI0_INT_N;
9333 }
9334 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9335 }
9336
9337 void reset_qsfp(struct hfi1_pportdata *ppd)
9338 {
9339 struct hfi1_devdata *dd = ppd->dd;
9340 u64 mask, qsfp_mask;
9341
9342 /* Disable INT_N from triggering QSFP interrupts */
9343 set_qsfp_int_n(ppd, 0);
9344
9345 /* Reset the QSFP */
9346 mask = (u64)QSFP_HFI0_RESET_N;
9347
9348 qsfp_mask = read_csr(dd,
9349 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9350 qsfp_mask &= ~mask;
9351 write_csr(dd,
9352 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9353
9354 udelay(10);
9355
9356 qsfp_mask |= mask;
9357 write_csr(dd,
9358 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9359
9360 wait_for_qsfp_init(ppd);
9361
9362 /*
9363 * Allow INT_N to trigger the QSFP interrupt to watch
9364 * for alarms and warnings
9365 */
9366 set_qsfp_int_n(ppd, 1);
9367 }
9368
9369 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9370 u8 *qsfp_interrupt_status)
9371 {
9372 struct hfi1_devdata *dd = ppd->dd;
9373
9374 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9375 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9376 dd_dev_info(dd, "%s: QSFP cable temperature too high\n",
9377 __func__);
9378
9379 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9380 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9381 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9382 __func__);
9383
9384 /*
9385 * The remaining alarms/warnings don't matter if the link is down.
9386 */
9387 if (ppd->host_link_state & HLS_DOWN)
9388 return 0;
9389
9390 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9391 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9392 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9393 __func__);
9394
9395 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9396 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9397 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9398 __func__);
9399
9400 /* Byte 2 is vendor specific */
9401
9402 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9403 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9404 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9405 __func__);
9406
9407 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9408 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9409 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9410 __func__);
9411
9412 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9413 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9414 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9415 __func__);
9416
9417 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9418 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9419 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9420 __func__);
9421
9422 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9423 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9424 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9425 __func__);
9426
9427 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9428 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9429 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9430 __func__);
9431
9432 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9433 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9434 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9435 __func__);
9436
9437 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9438 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9439 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9440 __func__);
9441
9442 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9443 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9444 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9445 __func__);
9446
9447 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9448 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9449 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9450 __func__);
9451
9452 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9453 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9454 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9455 __func__);
9456
9457 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9458 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9459 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9460 __func__);
9461
9462 /* Bytes 9-10 and 11-12 are reserved */
9463 /* Bytes 13-15 are vendor specific */
9464
9465 return 0;
9466 }
9467
9468 /* This routine will only be scheduled if the QSFP module present is asserted */
9469 void qsfp_event(struct work_struct *work)
9470 {
9471 struct qsfp_data *qd;
9472 struct hfi1_pportdata *ppd;
9473 struct hfi1_devdata *dd;
9474
9475 qd = container_of(work, struct qsfp_data, qsfp_work);
9476 ppd = qd->ppd;
9477 dd = ppd->dd;
9478
9479 /* Sanity check */
9480 if (!qsfp_mod_present(ppd))
9481 return;
9482
9483 /*
9484 * Turn DC back on after cable has been re-inserted. Up until
9485 * now, the DC has been in reset to save power.
9486 */
9487 dc_start(dd);
9488
9489 if (qd->cache_refresh_required) {
9490 set_qsfp_int_n(ppd, 0);
9491
9492 wait_for_qsfp_init(ppd);
9493
9494 /*
9495 * Allow INT_N to trigger the QSFP interrupt to watch
9496 * for alarms and warnings
9497 */
9498 set_qsfp_int_n(ppd, 1);
9499
9500 start_link(ppd);
9501 }
9502
9503 if (qd->check_interrupt_flags) {
9504 u8 qsfp_interrupt_status[16] = {0,};
9505
9506 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9507 &qsfp_interrupt_status[0], 16) != 16) {
9508 dd_dev_info(dd,
9509 "%s: Failed to read status of QSFP module\n",
9510 __func__);
9511 } else {
9512 unsigned long flags;
9513
9514 handle_qsfp_error_conditions(
9515 ppd, qsfp_interrupt_status);
9516 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9517 ppd->qsfp_info.check_interrupt_flags = 0;
9518 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9519 flags);
9520 }
9521 }
9522 }
9523
9524 static void init_qsfp_int(struct hfi1_devdata *dd)
9525 {
9526 struct hfi1_pportdata *ppd = dd->pport;
9527 u64 qsfp_mask, cce_int_mask;
9528 const int qsfp1_int_smask = QSFP1_INT % 64;
9529 const int qsfp2_int_smask = QSFP2_INT % 64;
9530
9531 /*
9532 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9533 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9534 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9535 * the index of the appropriate CSR in the CCEIntMask CSR array
9536 */
9537 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9538 (8 * (QSFP1_INT / 64)));
9539 if (dd->hfi1_id) {
9540 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9541 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9542 cce_int_mask);
9543 } else {
9544 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9545 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9546 cce_int_mask);
9547 }
9548
9549 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9550 /* Clear current status to avoid spurious interrupts */
9551 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9552 qsfp_mask);
9553 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9554 qsfp_mask);
9555
9556 set_qsfp_int_n(ppd, 0);
9557
9558 /* Handle active low nature of INT_N and MODPRST_N pins */
9559 if (qsfp_mod_present(ppd))
9560 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9561 write_csr(dd,
9562 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9563 qsfp_mask);
9564 }
9565
9566 /*
9567 * Do a one-time initialize of the LCB block.
9568 */
9569 static void init_lcb(struct hfi1_devdata *dd)
9570 {
9571 /* simulator does not correctly handle LCB cclk loopback, skip */
9572 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9573 return;
9574
9575 /* the DC has been reset earlier in the driver load */
9576
9577 /* set LCB for cclk loopback on the port */
9578 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9579 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9580 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9581 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9582 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9583 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9584 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9585 }
9586
9587 /*
9588 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9589 * on error.
9590 */
9591 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9592 {
9593 int ret;
9594 u8 status;
9595
9596 /*
9597 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9598 * not present
9599 */
9600 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9601 return 0;
9602
9603 /* read byte 2, the status byte */
9604 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9605 if (ret < 0)
9606 return ret;
9607 if (ret != 1)
9608 return -EIO;
9609
9610 return 0; /* success */
9611 }
9612
9613 /*
9614 * Values for QSFP retry.
9615 *
9616 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9617 * arrived at from experience on a large cluster.
9618 */
9619 #define MAX_QSFP_RETRIES 20
9620 #define QSFP_RETRY_WAIT 500 /* msec */
9621
9622 /*
9623 * Try a QSFP read. If it fails, schedule a retry for later.
9624 * Called on first link activation after driver load.
9625 */
9626 static void try_start_link(struct hfi1_pportdata *ppd)
9627 {
9628 if (test_qsfp_read(ppd)) {
9629 /* read failed */
9630 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9631 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9632 return;
9633 }
9634 dd_dev_info(ppd->dd,
9635 "QSFP not responding, waiting and retrying %d\n",
9636 (int)ppd->qsfp_retry_count);
9637 ppd->qsfp_retry_count++;
9638 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9639 msecs_to_jiffies(QSFP_RETRY_WAIT));
9640 return;
9641 }
9642 ppd->qsfp_retry_count = 0;
9643
9644 start_link(ppd);
9645 }
9646
9647 /*
9648 * Workqueue function to start the link after a delay.
9649 */
9650 void handle_start_link(struct work_struct *work)
9651 {
9652 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9653 start_link_work.work);
9654 try_start_link(ppd);
9655 }
9656
9657 int bringup_serdes(struct hfi1_pportdata *ppd)
9658 {
9659 struct hfi1_devdata *dd = ppd->dd;
9660 u64 guid;
9661 int ret;
9662
9663 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9664 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9665
9666 guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9667 if (!guid) {
9668 if (dd->base_guid)
9669 guid = dd->base_guid + ppd->port - 1;
9670 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9671 }
9672
9673 /* Set linkinit_reason on power up per OPA spec */
9674 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9675
9676 /* one-time init of the LCB */
9677 init_lcb(dd);
9678
9679 if (loopback) {
9680 ret = init_loopback(dd);
9681 if (ret < 0)
9682 return ret;
9683 }
9684
9685 get_port_type(ppd);
9686 if (ppd->port_type == PORT_TYPE_QSFP) {
9687 set_qsfp_int_n(ppd, 0);
9688 wait_for_qsfp_init(ppd);
9689 set_qsfp_int_n(ppd, 1);
9690 }
9691
9692 try_start_link(ppd);
9693 return 0;
9694 }
9695
9696 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9697 {
9698 struct hfi1_devdata *dd = ppd->dd;
9699
9700 /*
9701 * Shut down the link and keep it down. First turn off that the
9702 * driver wants to allow the link to be up (driver_link_ready).
9703 * Then make sure the link is not automatically restarted
9704 * (link_enabled). Cancel any pending restart. And finally
9705 * go offline.
9706 */
9707 ppd->driver_link_ready = 0;
9708 ppd->link_enabled = 0;
9709
9710 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9711 flush_delayed_work(&ppd->start_link_work);
9712 cancel_delayed_work_sync(&ppd->start_link_work);
9713
9714 ppd->offline_disabled_reason =
9715 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9716 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9717 OPA_LINKDOWN_REASON_SMA_DISABLED);
9718 set_link_state(ppd, HLS_DN_OFFLINE);
9719
9720 /* disable the port */
9721 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9722 }
9723
9724 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9725 {
9726 struct hfi1_pportdata *ppd;
9727 int i;
9728
9729 ppd = (struct hfi1_pportdata *)(dd + 1);
9730 for (i = 0; i < dd->num_pports; i++, ppd++) {
9731 ppd->ibport_data.rvp.rc_acks = NULL;
9732 ppd->ibport_data.rvp.rc_qacks = NULL;
9733 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9734 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9735 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9736 if (!ppd->ibport_data.rvp.rc_acks ||
9737 !ppd->ibport_data.rvp.rc_delayed_comp ||
9738 !ppd->ibport_data.rvp.rc_qacks)
9739 return -ENOMEM;
9740 }
9741
9742 return 0;
9743 }
9744
9745 static const char * const pt_names[] = {
9746 "expected",
9747 "eager",
9748 "invalid"
9749 };
9750
9751 static const char *pt_name(u32 type)
9752 {
9753 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9754 }
9755
9756 /*
9757 * index is the index into the receive array
9758 */
9759 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9760 u32 type, unsigned long pa, u16 order)
9761 {
9762 u64 reg;
9763 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9764 (dd->kregbase + RCV_ARRAY));
9765
9766 if (!(dd->flags & HFI1_PRESENT))
9767 goto done;
9768
9769 if (type == PT_INVALID) {
9770 pa = 0;
9771 } else if (type > PT_INVALID) {
9772 dd_dev_err(dd,
9773 "unexpected receive array type %u for index %u, not handled\n",
9774 type, index);
9775 goto done;
9776 }
9777
9778 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9779 pt_name(type), index, pa, (unsigned long)order);
9780
9781 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9782 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9783 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9784 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9785 << RCV_ARRAY_RT_ADDR_SHIFT;
9786 writeq(reg, base + (index * 8));
9787
9788 if (type == PT_EAGER)
9789 /*
9790 * Eager entries are written one-by-one so we have to push them
9791 * after we write the entry.
9792 */
9793 flush_wc();
9794 done:
9795 return;
9796 }
9797
9798 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9799 {
9800 struct hfi1_devdata *dd = rcd->dd;
9801 u32 i;
9802
9803 /* this could be optimized */
9804 for (i = rcd->eager_base; i < rcd->eager_base +
9805 rcd->egrbufs.alloced; i++)
9806 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9807
9808 for (i = rcd->expected_base;
9809 i < rcd->expected_base + rcd->expected_count; i++)
9810 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9811 }
9812
9813 struct ib_header *hfi1_get_msgheader(
9814 struct hfi1_devdata *dd, __le32 *rhf_addr)
9815 {
9816 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9817
9818 return (struct ib_header *)
9819 (rhf_addr - dd->rhf_offset + offset);
9820 }
9821
9822 static const char * const ib_cfg_name_strings[] = {
9823 "HFI1_IB_CFG_LIDLMC",
9824 "HFI1_IB_CFG_LWID_DG_ENB",
9825 "HFI1_IB_CFG_LWID_ENB",
9826 "HFI1_IB_CFG_LWID",
9827 "HFI1_IB_CFG_SPD_ENB",
9828 "HFI1_IB_CFG_SPD",
9829 "HFI1_IB_CFG_RXPOL_ENB",
9830 "HFI1_IB_CFG_LREV_ENB",
9831 "HFI1_IB_CFG_LINKLATENCY",
9832 "HFI1_IB_CFG_HRTBT",
9833 "HFI1_IB_CFG_OP_VLS",
9834 "HFI1_IB_CFG_VL_HIGH_CAP",
9835 "HFI1_IB_CFG_VL_LOW_CAP",
9836 "HFI1_IB_CFG_OVERRUN_THRESH",
9837 "HFI1_IB_CFG_PHYERR_THRESH",
9838 "HFI1_IB_CFG_LINKDEFAULT",
9839 "HFI1_IB_CFG_PKEYS",
9840 "HFI1_IB_CFG_MTU",
9841 "HFI1_IB_CFG_LSTATE",
9842 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9843 "HFI1_IB_CFG_PMA_TICKS",
9844 "HFI1_IB_CFG_PORT"
9845 };
9846
9847 static const char *ib_cfg_name(int which)
9848 {
9849 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9850 return "invalid";
9851 return ib_cfg_name_strings[which];
9852 }
9853
9854 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9855 {
9856 struct hfi1_devdata *dd = ppd->dd;
9857 int val = 0;
9858
9859 switch (which) {
9860 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9861 val = ppd->link_width_enabled;
9862 break;
9863 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9864 val = ppd->link_width_active;
9865 break;
9866 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9867 val = ppd->link_speed_enabled;
9868 break;
9869 case HFI1_IB_CFG_SPD: /* current Link speed */
9870 val = ppd->link_speed_active;
9871 break;
9872
9873 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9874 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9875 case HFI1_IB_CFG_LINKLATENCY:
9876 goto unimplemented;
9877
9878 case HFI1_IB_CFG_OP_VLS:
9879 val = ppd->vls_operational;
9880 break;
9881 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9882 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9883 break;
9884 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9885 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9886 break;
9887 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9888 val = ppd->overrun_threshold;
9889 break;
9890 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9891 val = ppd->phy_error_threshold;
9892 break;
9893 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9894 val = dd->link_default;
9895 break;
9896
9897 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9898 case HFI1_IB_CFG_PMA_TICKS:
9899 default:
9900 unimplemented:
9901 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9902 dd_dev_info(
9903 dd,
9904 "%s: which %s: not implemented\n",
9905 __func__,
9906 ib_cfg_name(which));
9907 break;
9908 }
9909
9910 return val;
9911 }
9912
9913 /*
9914 * The largest MAD packet size.
9915 */
9916 #define MAX_MAD_PACKET 2048
9917
9918 /*
9919 * Return the maximum header bytes that can go on the _wire_
9920 * for this device. This count includes the ICRC which is
9921 * not part of the packet held in memory but it is appended
9922 * by the HW.
9923 * This is dependent on the device's receive header entry size.
9924 * HFI allows this to be set per-receive context, but the
9925 * driver presently enforces a global value.
9926 */
9927 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9928 {
9929 /*
9930 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9931 * the Receive Header Entry Size minus the PBC (or RHF) size
9932 * plus one DW for the ICRC appended by HW.
9933 *
9934 * dd->rcd[0].rcvhdrqentsize is in DW.
9935 * We use rcd[0] as all context will have the same value. Also,
9936 * the first kernel context would have been allocated by now so
9937 * we are guaranteed a valid value.
9938 */
9939 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9940 }
9941
9942 /*
9943 * Set Send Length
9944 * @ppd - per port data
9945 *
9946 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9947 * registers compare against LRH.PktLen, so use the max bytes included
9948 * in the LRH.
9949 *
9950 * This routine changes all VL values except VL15, which it maintains at
9951 * the same value.
9952 */
9953 static void set_send_length(struct hfi1_pportdata *ppd)
9954 {
9955 struct hfi1_devdata *dd = ppd->dd;
9956 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9957 u32 maxvlmtu = dd->vld[15].mtu;
9958 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9959 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9960 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9961 int i, j;
9962 u32 thres;
9963
9964 for (i = 0; i < ppd->vls_supported; i++) {
9965 if (dd->vld[i].mtu > maxvlmtu)
9966 maxvlmtu = dd->vld[i].mtu;
9967 if (i <= 3)
9968 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9969 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9970 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9971 else
9972 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9973 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9974 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9975 }
9976 write_csr(dd, SEND_LEN_CHECK0, len1);
9977 write_csr(dd, SEND_LEN_CHECK1, len2);
9978 /* adjust kernel credit return thresholds based on new MTUs */
9979 /* all kernel receive contexts have the same hdrqentsize */
9980 for (i = 0; i < ppd->vls_supported; i++) {
9981 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9982 sc_mtu_to_threshold(dd->vld[i].sc,
9983 dd->vld[i].mtu,
9984 dd->rcd[0]->rcvhdrqentsize));
9985 for (j = 0; j < INIT_SC_PER_VL; j++)
9986 sc_set_cr_threshold(
9987 pio_select_send_context_vl(dd, j, i),
9988 thres);
9989 }
9990 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9991 sc_mtu_to_threshold(dd->vld[15].sc,
9992 dd->vld[15].mtu,
9993 dd->rcd[0]->rcvhdrqentsize));
9994 sc_set_cr_threshold(dd->vld[15].sc, thres);
9995
9996 /* Adjust maximum MTU for the port in DC */
9997 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9998 (ilog2(maxvlmtu >> 8) + 1);
9999 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10000 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10001 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10002 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10003 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10004 }
10005
10006 static void set_lidlmc(struct hfi1_pportdata *ppd)
10007 {
10008 int i;
10009 u64 sreg = 0;
10010 struct hfi1_devdata *dd = ppd->dd;
10011 u32 mask = ~((1U << ppd->lmc) - 1);
10012 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10013
10014 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10015 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10016 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10017 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10018 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10019 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10020 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10021
10022 /*
10023 * Iterate over all the send contexts and set their SLID check
10024 */
10025 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10026 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10027 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10028 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10029
10030 for (i = 0; i < dd->chip_send_contexts; i++) {
10031 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10032 i, (u32)sreg);
10033 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10034 }
10035
10036 /* Now we have to do the same thing for the sdma engines */
10037 sdma_update_lmc(dd, mask, ppd->lid);
10038 }
10039
10040 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
10041 {
10042 unsigned long timeout;
10043 u32 curr_state;
10044
10045 timeout = jiffies + msecs_to_jiffies(msecs);
10046 while (1) {
10047 curr_state = read_physical_state(dd);
10048 if (curr_state == state)
10049 break;
10050 if (time_after(jiffies, timeout)) {
10051 dd_dev_err(dd,
10052 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
10053 state, curr_state);
10054 return -ETIMEDOUT;
10055 }
10056 usleep_range(1950, 2050); /* sleep 2ms-ish */
10057 }
10058
10059 return 0;
10060 }
10061
10062 static const char *state_completed_string(u32 completed)
10063 {
10064 static const char * const state_completed[] = {
10065 "EstablishComm",
10066 "OptimizeEQ",
10067 "VerifyCap"
10068 };
10069
10070 if (completed < ARRAY_SIZE(state_completed))
10071 return state_completed[completed];
10072
10073 return "unknown";
10074 }
10075
10076 static const char all_lanes_dead_timeout_expired[] =
10077 "All lanes were inactive – was the interconnect media removed?";
10078 static const char tx_out_of_policy[] =
10079 "Passing lanes on local port do not meet the local link width policy";
10080 static const char no_state_complete[] =
10081 "State timeout occurred before link partner completed the state";
10082 static const char * const state_complete_reasons[] = {
10083 [0x00] = "Reason unknown",
10084 [0x01] = "Link was halted by driver, refer to LinkDownReason",
10085 [0x02] = "Link partner reported failure",
10086 [0x10] = "Unable to achieve frame sync on any lane",
10087 [0x11] =
10088 "Unable to find a common bit rate with the link partner",
10089 [0x12] =
10090 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10091 [0x13] =
10092 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10093 [0x14] = no_state_complete,
10094 [0x15] =
10095 "State timeout occurred before link partner identified equalization presets",
10096 [0x16] =
10097 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10098 [0x17] = tx_out_of_policy,
10099 [0x20] = all_lanes_dead_timeout_expired,
10100 [0x21] =
10101 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10102 [0x22] = no_state_complete,
10103 [0x23] =
10104 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10105 [0x24] = tx_out_of_policy,
10106 [0x30] = all_lanes_dead_timeout_expired,
10107 [0x31] =
10108 "State timeout occurred waiting for host to process received frames",
10109 [0x32] = no_state_complete,
10110 [0x33] =
10111 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10112 [0x34] = tx_out_of_policy,
10113 };
10114
10115 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10116 u32 code)
10117 {
10118 const char *str = NULL;
10119
10120 if (code < ARRAY_SIZE(state_complete_reasons))
10121 str = state_complete_reasons[code];
10122
10123 if (str)
10124 return str;
10125 return "Reserved";
10126 }
10127
10128 /* describe the given last state complete frame */
10129 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10130 const char *prefix)
10131 {
10132 struct hfi1_devdata *dd = ppd->dd;
10133 u32 success;
10134 u32 state;
10135 u32 reason;
10136 u32 lanes;
10137
10138 /*
10139 * Decode frame:
10140 * [ 0: 0] - success
10141 * [ 3: 1] - state
10142 * [ 7: 4] - next state timeout
10143 * [15: 8] - reason code
10144 * [31:16] - lanes
10145 */
10146 success = frame & 0x1;
10147 state = (frame >> 1) & 0x7;
10148 reason = (frame >> 8) & 0xff;
10149 lanes = (frame >> 16) & 0xffff;
10150
10151 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10152 prefix, frame);
10153 dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
10154 state_completed_string(state), state);
10155 dd_dev_err(dd, " state successfully completed: %s\n",
10156 success ? "yes" : "no");
10157 dd_dev_err(dd, " fail reason 0x%x: %s\n",
10158 reason, state_complete_reason_code_string(ppd, reason));
10159 dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
10160 }
10161
10162 /*
10163 * Read the last state complete frames and explain them. This routine
10164 * expects to be called if the link went down during link negotiation
10165 * and initialization (LNI). That is, anywhere between polling and link up.
10166 */
10167 static void check_lni_states(struct hfi1_pportdata *ppd)
10168 {
10169 u32 last_local_state;
10170 u32 last_remote_state;
10171
10172 read_last_local_state(ppd->dd, &last_local_state);
10173 read_last_remote_state(ppd->dd, &last_remote_state);
10174
10175 /*
10176 * Don't report anything if there is nothing to report. A value of
10177 * 0 means the link was taken down while polling and there was no
10178 * training in-process.
10179 */
10180 if (last_local_state == 0 && last_remote_state == 0)
10181 return;
10182
10183 decode_state_complete(ppd, last_local_state, "transmitted");
10184 decode_state_complete(ppd, last_remote_state, "received");
10185 }
10186
10187 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10188 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10189 {
10190 u64 reg;
10191 unsigned long timeout;
10192
10193 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10194 timeout = jiffies + msecs_to_jiffies(wait_ms);
10195 while (1) {
10196 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10197 if (reg)
10198 break;
10199 if (time_after(jiffies, timeout)) {
10200 dd_dev_err(dd,
10201 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10202 return -ETIMEDOUT;
10203 }
10204 udelay(2);
10205 }
10206 return 0;
10207 }
10208
10209 /* called when the logical link state is not down as it should be */
10210 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10211 {
10212 struct hfi1_devdata *dd = ppd->dd;
10213
10214 /*
10215 * Bring link up in LCB loopback
10216 */
10217 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10218 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10219 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10220
10221 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10222 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10223 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10224 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10225
10226 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10227 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10228 udelay(3);
10229 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10230 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10231
10232 wait_link_transfer_active(dd, 100);
10233
10234 /*
10235 * Bring the link down again.
10236 */
10237 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10238 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10239 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10240
10241 /* call again to adjust ppd->statusp, if needed */
10242 get_logical_state(ppd);
10243 }
10244
10245 /*
10246 * Helper for set_link_state(). Do not call except from that routine.
10247 * Expects ppd->hls_mutex to be held.
10248 *
10249 * @rem_reason value to be sent to the neighbor
10250 *
10251 * LinkDownReasons only set if transition succeeds.
10252 */
10253 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10254 {
10255 struct hfi1_devdata *dd = ppd->dd;
10256 u32 pstate, previous_state;
10257 int ret;
10258 int do_transition;
10259 int do_wait;
10260
10261 update_lcb_cache(dd);
10262
10263 previous_state = ppd->host_link_state;
10264 ppd->host_link_state = HLS_GOING_OFFLINE;
10265 pstate = read_physical_state(dd);
10266 if (pstate == PLS_OFFLINE) {
10267 do_transition = 0; /* in right state */
10268 do_wait = 0; /* ...no need to wait */
10269 } else if ((pstate & 0xf0) == PLS_OFFLINE) {
10270 do_transition = 0; /* in an offline transient state */
10271 do_wait = 1; /* ...wait for it to settle */
10272 } else {
10273 do_transition = 1; /* need to move to offline */
10274 do_wait = 1; /* ...will need to wait */
10275 }
10276
10277 if (do_transition) {
10278 ret = set_physical_link_state(dd,
10279 (rem_reason << 8) | PLS_OFFLINE);
10280
10281 if (ret != HCMD_SUCCESS) {
10282 dd_dev_err(dd,
10283 "Failed to transition to Offline link state, return %d\n",
10284 ret);
10285 return -EINVAL;
10286 }
10287 if (ppd->offline_disabled_reason ==
10288 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10289 ppd->offline_disabled_reason =
10290 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10291 }
10292
10293 if (do_wait) {
10294 /* it can take a while for the link to go down */
10295 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10296 if (ret < 0)
10297 return ret;
10298 }
10299
10300 /*
10301 * Now in charge of LCB - must be after the physical state is
10302 * offline.quiet and before host_link_state is changed.
10303 */
10304 set_host_lcb_access(dd);
10305 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10306
10307 /* make sure the logical state is also down */
10308 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10309 if (ret)
10310 force_logical_link_state_down(ppd);
10311
10312 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10313
10314 if (ppd->port_type == PORT_TYPE_QSFP &&
10315 ppd->qsfp_info.limiting_active &&
10316 qsfp_mod_present(ppd)) {
10317 int ret;
10318
10319 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10320 if (ret == 0) {
10321 set_qsfp_tx(ppd, 0);
10322 release_chip_resource(dd, qsfp_resource(dd));
10323 } else {
10324 /* not fatal, but should warn */
10325 dd_dev_err(dd,
10326 "Unable to acquire lock to turn off QSFP TX\n");
10327 }
10328 }
10329
10330 /*
10331 * The LNI has a mandatory wait time after the physical state
10332 * moves to Offline.Quiet. The wait time may be different
10333 * depending on how the link went down. The 8051 firmware
10334 * will observe the needed wait time and only move to ready
10335 * when that is completed. The largest of the quiet timeouts
10336 * is 6s, so wait that long and then at least 0.5s more for
10337 * other transitions, and another 0.5s for a buffer.
10338 */
10339 ret = wait_fm_ready(dd, 7000);
10340 if (ret) {
10341 dd_dev_err(dd,
10342 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10343 /* state is really offline, so make it so */
10344 ppd->host_link_state = HLS_DN_OFFLINE;
10345 return ret;
10346 }
10347
10348 /*
10349 * The state is now offline and the 8051 is ready to accept host
10350 * requests.
10351 * - change our state
10352 * - notify others if we were previously in a linkup state
10353 */
10354 ppd->host_link_state = HLS_DN_OFFLINE;
10355 if (previous_state & HLS_UP) {
10356 /* went down while link was up */
10357 handle_linkup_change(dd, 0);
10358 } else if (previous_state
10359 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10360 /* went down while attempting link up */
10361 check_lni_states(ppd);
10362 }
10363
10364 /* the active link width (downgrade) is 0 on link down */
10365 ppd->link_width_active = 0;
10366 ppd->link_width_downgrade_tx_active = 0;
10367 ppd->link_width_downgrade_rx_active = 0;
10368 ppd->current_egress_rate = 0;
10369 return 0;
10370 }
10371
10372 /* return the link state name */
10373 static const char *link_state_name(u32 state)
10374 {
10375 const char *name;
10376 int n = ilog2(state);
10377 static const char * const names[] = {
10378 [__HLS_UP_INIT_BP] = "INIT",
10379 [__HLS_UP_ARMED_BP] = "ARMED",
10380 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
10381 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
10382 [__HLS_DN_POLL_BP] = "POLL",
10383 [__HLS_DN_DISABLE_BP] = "DISABLE",
10384 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
10385 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
10386 [__HLS_GOING_UP_BP] = "GOING_UP",
10387 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10388 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10389 };
10390
10391 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10392 return name ? name : "unknown";
10393 }
10394
10395 /* return the link state reason name */
10396 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10397 {
10398 if (state == HLS_UP_INIT) {
10399 switch (ppd->linkinit_reason) {
10400 case OPA_LINKINIT_REASON_LINKUP:
10401 return "(LINKUP)";
10402 case OPA_LINKINIT_REASON_FLAPPING:
10403 return "(FLAPPING)";
10404 case OPA_LINKINIT_OUTSIDE_POLICY:
10405 return "(OUTSIDE_POLICY)";
10406 case OPA_LINKINIT_QUARANTINED:
10407 return "(QUARANTINED)";
10408 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10409 return "(INSUFIC_CAPABILITY)";
10410 default:
10411 break;
10412 }
10413 }
10414 return "";
10415 }
10416
10417 /*
10418 * driver_physical_state - convert the driver's notion of a port's
10419 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10420 * Return -1 (converted to a u32) to indicate error.
10421 */
10422 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10423 {
10424 switch (ppd->host_link_state) {
10425 case HLS_UP_INIT:
10426 case HLS_UP_ARMED:
10427 case HLS_UP_ACTIVE:
10428 return IB_PORTPHYSSTATE_LINKUP;
10429 case HLS_DN_POLL:
10430 return IB_PORTPHYSSTATE_POLLING;
10431 case HLS_DN_DISABLE:
10432 return IB_PORTPHYSSTATE_DISABLED;
10433 case HLS_DN_OFFLINE:
10434 return OPA_PORTPHYSSTATE_OFFLINE;
10435 case HLS_VERIFY_CAP:
10436 return IB_PORTPHYSSTATE_POLLING;
10437 case HLS_GOING_UP:
10438 return IB_PORTPHYSSTATE_POLLING;
10439 case HLS_GOING_OFFLINE:
10440 return OPA_PORTPHYSSTATE_OFFLINE;
10441 case HLS_LINK_COOLDOWN:
10442 return OPA_PORTPHYSSTATE_OFFLINE;
10443 case HLS_DN_DOWNDEF:
10444 default:
10445 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10446 ppd->host_link_state);
10447 return -1;
10448 }
10449 }
10450
10451 /*
10452 * driver_logical_state - convert the driver's notion of a port's
10453 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10454 * (converted to a u32) to indicate error.
10455 */
10456 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10457 {
10458 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10459 return IB_PORT_DOWN;
10460
10461 switch (ppd->host_link_state & HLS_UP) {
10462 case HLS_UP_INIT:
10463 return IB_PORT_INIT;
10464 case HLS_UP_ARMED:
10465 return IB_PORT_ARMED;
10466 case HLS_UP_ACTIVE:
10467 return IB_PORT_ACTIVE;
10468 default:
10469 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10470 ppd->host_link_state);
10471 return -1;
10472 }
10473 }
10474
10475 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10476 u8 neigh_reason, u8 rem_reason)
10477 {
10478 if (ppd->local_link_down_reason.latest == 0 &&
10479 ppd->neigh_link_down_reason.latest == 0) {
10480 ppd->local_link_down_reason.latest = lcl_reason;
10481 ppd->neigh_link_down_reason.latest = neigh_reason;
10482 ppd->remote_link_down_reason = rem_reason;
10483 }
10484 }
10485
10486 /*
10487 * Change the physical and/or logical link state.
10488 *
10489 * Do not call this routine while inside an interrupt. It contains
10490 * calls to routines that can take multiple seconds to finish.
10491 *
10492 * Returns 0 on success, -errno on failure.
10493 */
10494 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10495 {
10496 struct hfi1_devdata *dd = ppd->dd;
10497 struct ib_event event = {.device = NULL};
10498 int ret1, ret = 0;
10499 int orig_new_state, poll_bounce;
10500
10501 mutex_lock(&ppd->hls_lock);
10502
10503 orig_new_state = state;
10504 if (state == HLS_DN_DOWNDEF)
10505 state = dd->link_default;
10506
10507 /* interpret poll -> poll as a link bounce */
10508 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10509 state == HLS_DN_POLL;
10510
10511 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10512 link_state_name(ppd->host_link_state),
10513 link_state_name(orig_new_state),
10514 poll_bounce ? "(bounce) " : "",
10515 link_state_reason_name(ppd, state));
10516
10517 /*
10518 * If we're going to a (HLS_*) link state that implies the logical
10519 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10520 * reset is_sm_config_started to 0.
10521 */
10522 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10523 ppd->is_sm_config_started = 0;
10524
10525 /*
10526 * Do nothing if the states match. Let a poll to poll link bounce
10527 * go through.
10528 */
10529 if (ppd->host_link_state == state && !poll_bounce)
10530 goto done;
10531
10532 switch (state) {
10533 case HLS_UP_INIT:
10534 if (ppd->host_link_state == HLS_DN_POLL &&
10535 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10536 /*
10537 * Quick link up jumps from polling to here.
10538 *
10539 * Whether in normal or loopback mode, the
10540 * simulator jumps from polling to link up.
10541 * Accept that here.
10542 */
10543 /* OK */
10544 } else if (ppd->host_link_state != HLS_GOING_UP) {
10545 goto unexpected;
10546 }
10547
10548 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10549 if (ret) {
10550 dd_dev_err(dd,
10551 "%s: logical state did not change to INIT\n",
10552 __func__);
10553 } else {
10554 /* clear old transient LINKINIT_REASON code */
10555 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10556 ppd->linkinit_reason =
10557 OPA_LINKINIT_REASON_LINKUP;
10558
10559 /* enable the port */
10560 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10561
10562 handle_linkup_change(dd, 1);
10563 ppd->host_link_state = HLS_UP_INIT;
10564 }
10565 break;
10566 case HLS_UP_ARMED:
10567 if (ppd->host_link_state != HLS_UP_INIT)
10568 goto unexpected;
10569
10570 ppd->host_link_state = HLS_UP_ARMED;
10571 set_logical_state(dd, LSTATE_ARMED);
10572 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10573 if (ret) {
10574 /* logical state didn't change, stay at init */
10575 ppd->host_link_state = HLS_UP_INIT;
10576 dd_dev_err(dd,
10577 "%s: logical state did not change to ARMED\n",
10578 __func__);
10579 }
10580 /*
10581 * The simulator does not currently implement SMA messages,
10582 * so neighbor_normal is not set. Set it here when we first
10583 * move to Armed.
10584 */
10585 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10586 ppd->neighbor_normal = 1;
10587 break;
10588 case HLS_UP_ACTIVE:
10589 if (ppd->host_link_state != HLS_UP_ARMED)
10590 goto unexpected;
10591
10592 ppd->host_link_state = HLS_UP_ACTIVE;
10593 set_logical_state(dd, LSTATE_ACTIVE);
10594 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10595 if (ret) {
10596 /* logical state didn't change, stay at armed */
10597 ppd->host_link_state = HLS_UP_ARMED;
10598 dd_dev_err(dd,
10599 "%s: logical state did not change to ACTIVE\n",
10600 __func__);
10601 } else {
10602 /* tell all engines to go running */
10603 sdma_all_running(dd);
10604
10605 /* Signal the IB layer that the port has went active */
10606 event.device = &dd->verbs_dev.rdi.ibdev;
10607 event.element.port_num = ppd->port;
10608 event.event = IB_EVENT_PORT_ACTIVE;
10609 }
10610 break;
10611 case HLS_DN_POLL:
10612 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10613 ppd->host_link_state == HLS_DN_OFFLINE) &&
10614 dd->dc_shutdown)
10615 dc_start(dd);
10616 /* Hand LED control to the DC */
10617 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10618
10619 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10620 u8 tmp = ppd->link_enabled;
10621
10622 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10623 if (ret) {
10624 ppd->link_enabled = tmp;
10625 break;
10626 }
10627 ppd->remote_link_down_reason = 0;
10628
10629 if (ppd->driver_link_ready)
10630 ppd->link_enabled = 1;
10631 }
10632
10633 set_all_slowpath(ppd->dd);
10634 ret = set_local_link_attributes(ppd);
10635 if (ret)
10636 break;
10637
10638 ppd->port_error_action = 0;
10639 ppd->host_link_state = HLS_DN_POLL;
10640
10641 if (quick_linkup) {
10642 /* quick linkup does not go into polling */
10643 ret = do_quick_linkup(dd);
10644 } else {
10645 ret1 = set_physical_link_state(dd, PLS_POLLING);
10646 if (ret1 != HCMD_SUCCESS) {
10647 dd_dev_err(dd,
10648 "Failed to transition to Polling link state, return 0x%x\n",
10649 ret1);
10650 ret = -EINVAL;
10651 }
10652 }
10653 ppd->offline_disabled_reason =
10654 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10655 /*
10656 * If an error occurred above, go back to offline. The
10657 * caller may reschedule another attempt.
10658 */
10659 if (ret)
10660 goto_offline(ppd, 0);
10661 break;
10662 case HLS_DN_DISABLE:
10663 /* link is disabled */
10664 ppd->link_enabled = 0;
10665
10666 /* allow any state to transition to disabled */
10667
10668 /* must transition to offline first */
10669 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10670 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10671 if (ret)
10672 break;
10673 ppd->remote_link_down_reason = 0;
10674 }
10675
10676 if (!dd->dc_shutdown) {
10677 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10678 if (ret1 != HCMD_SUCCESS) {
10679 dd_dev_err(dd,
10680 "Failed to transition to Disabled link state, return 0x%x\n",
10681 ret1);
10682 ret = -EINVAL;
10683 break;
10684 }
10685 dc_shutdown(dd);
10686 }
10687 ppd->host_link_state = HLS_DN_DISABLE;
10688 break;
10689 case HLS_DN_OFFLINE:
10690 if (ppd->host_link_state == HLS_DN_DISABLE)
10691 dc_start(dd);
10692
10693 /* allow any state to transition to offline */
10694 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10695 if (!ret)
10696 ppd->remote_link_down_reason = 0;
10697 break;
10698 case HLS_VERIFY_CAP:
10699 if (ppd->host_link_state != HLS_DN_POLL)
10700 goto unexpected;
10701 ppd->host_link_state = HLS_VERIFY_CAP;
10702 break;
10703 case HLS_GOING_UP:
10704 if (ppd->host_link_state != HLS_VERIFY_CAP)
10705 goto unexpected;
10706
10707 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10708 if (ret1 != HCMD_SUCCESS) {
10709 dd_dev_err(dd,
10710 "Failed to transition to link up state, return 0x%x\n",
10711 ret1);
10712 ret = -EINVAL;
10713 break;
10714 }
10715 ppd->host_link_state = HLS_GOING_UP;
10716 break;
10717
10718 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10719 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10720 default:
10721 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10722 __func__, state);
10723 ret = -EINVAL;
10724 break;
10725 }
10726
10727 goto done;
10728
10729 unexpected:
10730 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10731 __func__, link_state_name(ppd->host_link_state),
10732 link_state_name(state));
10733 ret = -EINVAL;
10734
10735 done:
10736 mutex_unlock(&ppd->hls_lock);
10737
10738 if (event.device)
10739 ib_dispatch_event(&event);
10740
10741 return ret;
10742 }
10743
10744 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10745 {
10746 u64 reg;
10747 int ret = 0;
10748
10749 switch (which) {
10750 case HFI1_IB_CFG_LIDLMC:
10751 set_lidlmc(ppd);
10752 break;
10753 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10754 /*
10755 * The VL Arbitrator high limit is sent in units of 4k
10756 * bytes, while HFI stores it in units of 64 bytes.
10757 */
10758 val *= 4096 / 64;
10759 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10760 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10761 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10762 break;
10763 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10764 /* HFI only supports POLL as the default link down state */
10765 if (val != HLS_DN_POLL)
10766 ret = -EINVAL;
10767 break;
10768 case HFI1_IB_CFG_OP_VLS:
10769 if (ppd->vls_operational != val) {
10770 ppd->vls_operational = val;
10771 if (!ppd->port)
10772 ret = -EINVAL;
10773 }
10774 break;
10775 /*
10776 * For link width, link width downgrade, and speed enable, always AND
10777 * the setting with what is actually supported. This has two benefits.
10778 * First, enabled can't have unsupported values, no matter what the
10779 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10780 * "fill in with your supported value" have all the bits in the
10781 * field set, so simply ANDing with supported has the desired result.
10782 */
10783 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10784 ppd->link_width_enabled = val & ppd->link_width_supported;
10785 break;
10786 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10787 ppd->link_width_downgrade_enabled =
10788 val & ppd->link_width_downgrade_supported;
10789 break;
10790 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10791 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10792 break;
10793 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10794 /*
10795 * HFI does not follow IB specs, save this value
10796 * so we can report it, if asked.
10797 */
10798 ppd->overrun_threshold = val;
10799 break;
10800 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10801 /*
10802 * HFI does not follow IB specs, save this value
10803 * so we can report it, if asked.
10804 */
10805 ppd->phy_error_threshold = val;
10806 break;
10807
10808 case HFI1_IB_CFG_MTU:
10809 set_send_length(ppd);
10810 break;
10811
10812 case HFI1_IB_CFG_PKEYS:
10813 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10814 set_partition_keys(ppd);
10815 break;
10816
10817 default:
10818 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10819 dd_dev_info(ppd->dd,
10820 "%s: which %s, val 0x%x: not implemented\n",
10821 __func__, ib_cfg_name(which), val);
10822 break;
10823 }
10824 return ret;
10825 }
10826
10827 /* begin functions related to vl arbitration table caching */
10828 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10829 {
10830 int i;
10831
10832 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10833 VL_ARB_LOW_PRIO_TABLE_SIZE);
10834 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10835 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10836
10837 /*
10838 * Note that we always return values directly from the
10839 * 'vl_arb_cache' (and do no CSR reads) in response to a
10840 * 'Get(VLArbTable)'. This is obviously correct after a
10841 * 'Set(VLArbTable)', since the cache will then be up to
10842 * date. But it's also correct prior to any 'Set(VLArbTable)'
10843 * since then both the cache, and the relevant h/w registers
10844 * will be zeroed.
10845 */
10846
10847 for (i = 0; i < MAX_PRIO_TABLE; i++)
10848 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10849 }
10850
10851 /*
10852 * vl_arb_lock_cache
10853 *
10854 * All other vl_arb_* functions should be called only after locking
10855 * the cache.
10856 */
10857 static inline struct vl_arb_cache *
10858 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10859 {
10860 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10861 return NULL;
10862 spin_lock(&ppd->vl_arb_cache[idx].lock);
10863 return &ppd->vl_arb_cache[idx];
10864 }
10865
10866 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10867 {
10868 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10869 }
10870
10871 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10872 struct ib_vl_weight_elem *vl)
10873 {
10874 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10875 }
10876
10877 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10878 struct ib_vl_weight_elem *vl)
10879 {
10880 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10881 }
10882
10883 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10884 struct ib_vl_weight_elem *vl)
10885 {
10886 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10887 }
10888
10889 /* end functions related to vl arbitration table caching */
10890
10891 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10892 u32 size, struct ib_vl_weight_elem *vl)
10893 {
10894 struct hfi1_devdata *dd = ppd->dd;
10895 u64 reg;
10896 unsigned int i, is_up = 0;
10897 int drain, ret = 0;
10898
10899 mutex_lock(&ppd->hls_lock);
10900
10901 if (ppd->host_link_state & HLS_UP)
10902 is_up = 1;
10903
10904 drain = !is_ax(dd) && is_up;
10905
10906 if (drain)
10907 /*
10908 * Before adjusting VL arbitration weights, empty per-VL
10909 * FIFOs, otherwise a packet whose VL weight is being
10910 * set to 0 could get stuck in a FIFO with no chance to
10911 * egress.
10912 */
10913 ret = stop_drain_data_vls(dd);
10914
10915 if (ret) {
10916 dd_dev_err(
10917 dd,
10918 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10919 __func__);
10920 goto err;
10921 }
10922
10923 for (i = 0; i < size; i++, vl++) {
10924 /*
10925 * NOTE: The low priority shift and mask are used here, but
10926 * they are the same for both the low and high registers.
10927 */
10928 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10929 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10930 | (((u64)vl->weight
10931 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10932 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10933 write_csr(dd, target + (i * 8), reg);
10934 }
10935 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10936
10937 if (drain)
10938 open_fill_data_vls(dd); /* reopen all VLs */
10939
10940 err:
10941 mutex_unlock(&ppd->hls_lock);
10942
10943 return ret;
10944 }
10945
10946 /*
10947 * Read one credit merge VL register.
10948 */
10949 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10950 struct vl_limit *vll)
10951 {
10952 u64 reg = read_csr(dd, csr);
10953
10954 vll->dedicated = cpu_to_be16(
10955 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10956 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10957 vll->shared = cpu_to_be16(
10958 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10959 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10960 }
10961
10962 /*
10963 * Read the current credit merge limits.
10964 */
10965 static int get_buffer_control(struct hfi1_devdata *dd,
10966 struct buffer_control *bc, u16 *overall_limit)
10967 {
10968 u64 reg;
10969 int i;
10970
10971 /* not all entries are filled in */
10972 memset(bc, 0, sizeof(*bc));
10973
10974 /* OPA and HFI have a 1-1 mapping */
10975 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10976 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10977
10978 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10979 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10980
10981 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10982 bc->overall_shared_limit = cpu_to_be16(
10983 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10984 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10985 if (overall_limit)
10986 *overall_limit = (reg
10987 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10988 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10989 return sizeof(struct buffer_control);
10990 }
10991
10992 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10993 {
10994 u64 reg;
10995 int i;
10996
10997 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10998 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10999 for (i = 0; i < sizeof(u64); i++) {
11000 u8 byte = *(((u8 *)&reg) + i);
11001
11002 dp->vlnt[2 * i] = byte & 0xf;
11003 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11004 }
11005
11006 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11007 for (i = 0; i < sizeof(u64); i++) {
11008 u8 byte = *(((u8 *)&reg) + i);
11009
11010 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11011 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11012 }
11013 return sizeof(struct sc2vlnt);
11014 }
11015
11016 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11017 struct ib_vl_weight_elem *vl)
11018 {
11019 unsigned int i;
11020
11021 for (i = 0; i < nelems; i++, vl++) {
11022 vl->vl = 0xf;
11023 vl->weight = 0;
11024 }
11025 }
11026
11027 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11028 {
11029 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11030 DC_SC_VL_VAL(15_0,
11031 0, dp->vlnt[0] & 0xf,
11032 1, dp->vlnt[1] & 0xf,
11033 2, dp->vlnt[2] & 0xf,
11034 3, dp->vlnt[3] & 0xf,
11035 4, dp->vlnt[4] & 0xf,
11036 5, dp->vlnt[5] & 0xf,
11037 6, dp->vlnt[6] & 0xf,
11038 7, dp->vlnt[7] & 0xf,
11039 8, dp->vlnt[8] & 0xf,
11040 9, dp->vlnt[9] & 0xf,
11041 10, dp->vlnt[10] & 0xf,
11042 11, dp->vlnt[11] & 0xf,
11043 12, dp->vlnt[12] & 0xf,
11044 13, dp->vlnt[13] & 0xf,
11045 14, dp->vlnt[14] & 0xf,
11046 15, dp->vlnt[15] & 0xf));
11047 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11048 DC_SC_VL_VAL(31_16,
11049 16, dp->vlnt[16] & 0xf,
11050 17, dp->vlnt[17] & 0xf,
11051 18, dp->vlnt[18] & 0xf,
11052 19, dp->vlnt[19] & 0xf,
11053 20, dp->vlnt[20] & 0xf,
11054 21, dp->vlnt[21] & 0xf,
11055 22, dp->vlnt[22] & 0xf,
11056 23, dp->vlnt[23] & 0xf,
11057 24, dp->vlnt[24] & 0xf,
11058 25, dp->vlnt[25] & 0xf,
11059 26, dp->vlnt[26] & 0xf,
11060 27, dp->vlnt[27] & 0xf,
11061 28, dp->vlnt[28] & 0xf,
11062 29, dp->vlnt[29] & 0xf,
11063 30, dp->vlnt[30] & 0xf,
11064 31, dp->vlnt[31] & 0xf));
11065 }
11066
11067 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11068 u16 limit)
11069 {
11070 if (limit != 0)
11071 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11072 what, (int)limit, idx);
11073 }
11074
11075 /* change only the shared limit portion of SendCmGLobalCredit */
11076 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11077 {
11078 u64 reg;
11079
11080 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11081 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11082 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11083 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11084 }
11085
11086 /* change only the total credit limit portion of SendCmGLobalCredit */
11087 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11088 {
11089 u64 reg;
11090
11091 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11092 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11093 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11094 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11095 }
11096
11097 /* set the given per-VL shared limit */
11098 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11099 {
11100 u64 reg;
11101 u32 addr;
11102
11103 if (vl < TXE_NUM_DATA_VL)
11104 addr = SEND_CM_CREDIT_VL + (8 * vl);
11105 else
11106 addr = SEND_CM_CREDIT_VL15;
11107
11108 reg = read_csr(dd, addr);
11109 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11110 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11111 write_csr(dd, addr, reg);
11112 }
11113
11114 /* set the given per-VL dedicated limit */
11115 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11116 {
11117 u64 reg;
11118 u32 addr;
11119
11120 if (vl < TXE_NUM_DATA_VL)
11121 addr = SEND_CM_CREDIT_VL + (8 * vl);
11122 else
11123 addr = SEND_CM_CREDIT_VL15;
11124
11125 reg = read_csr(dd, addr);
11126 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11127 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11128 write_csr(dd, addr, reg);
11129 }
11130
11131 /* spin until the given per-VL status mask bits clear */
11132 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11133 const char *which)
11134 {
11135 unsigned long timeout;
11136 u64 reg;
11137
11138 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11139 while (1) {
11140 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11141
11142 if (reg == 0)
11143 return; /* success */
11144 if (time_after(jiffies, timeout))
11145 break; /* timed out */
11146 udelay(1);
11147 }
11148
11149 dd_dev_err(dd,
11150 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11151 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11152 /*
11153 * If this occurs, it is likely there was a credit loss on the link.
11154 * The only recovery from that is a link bounce.
11155 */
11156 dd_dev_err(dd,
11157 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
11158 }
11159
11160 /*
11161 * The number of credits on the VLs may be changed while everything
11162 * is "live", but the following algorithm must be followed due to
11163 * how the hardware is actually implemented. In particular,
11164 * Return_Credit_Status[] is the only correct status check.
11165 *
11166 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11167 * set Global_Shared_Credit_Limit = 0
11168 * use_all_vl = 1
11169 * mask0 = all VLs that are changing either dedicated or shared limits
11170 * set Shared_Limit[mask0] = 0
11171 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11172 * if (changing any dedicated limit)
11173 * mask1 = all VLs that are lowering dedicated limits
11174 * lower Dedicated_Limit[mask1]
11175 * spin until Return_Credit_Status[mask1] == 0
11176 * raise Dedicated_Limits
11177 * raise Shared_Limits
11178 * raise Global_Shared_Credit_Limit
11179 *
11180 * lower = if the new limit is lower, set the limit to the new value
11181 * raise = if the new limit is higher than the current value (may be changed
11182 * earlier in the algorithm), set the new limit to the new value
11183 */
11184 int set_buffer_control(struct hfi1_pportdata *ppd,
11185 struct buffer_control *new_bc)
11186 {
11187 struct hfi1_devdata *dd = ppd->dd;
11188 u64 changing_mask, ld_mask, stat_mask;
11189 int change_count;
11190 int i, use_all_mask;
11191 int this_shared_changing;
11192 int vl_count = 0, ret;
11193 /*
11194 * A0: add the variable any_shared_limit_changing below and in the
11195 * algorithm above. If removing A0 support, it can be removed.
11196 */
11197 int any_shared_limit_changing;
11198 struct buffer_control cur_bc;
11199 u8 changing[OPA_MAX_VLS];
11200 u8 lowering_dedicated[OPA_MAX_VLS];
11201 u16 cur_total;
11202 u32 new_total = 0;
11203 const u64 all_mask =
11204 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11205 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11206 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11207 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11208 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11209 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11210 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11211 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11212 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11213
11214 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11215 #define NUM_USABLE_VLS 16 /* look at VL15 and less */
11216
11217 /* find the new total credits, do sanity check on unused VLs */
11218 for (i = 0; i < OPA_MAX_VLS; i++) {
11219 if (valid_vl(i)) {
11220 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11221 continue;
11222 }
11223 nonzero_msg(dd, i, "dedicated",
11224 be16_to_cpu(new_bc->vl[i].dedicated));
11225 nonzero_msg(dd, i, "shared",
11226 be16_to_cpu(new_bc->vl[i].shared));
11227 new_bc->vl[i].dedicated = 0;
11228 new_bc->vl[i].shared = 0;
11229 }
11230 new_total += be16_to_cpu(new_bc->overall_shared_limit);
11231
11232 /* fetch the current values */
11233 get_buffer_control(dd, &cur_bc, &cur_total);
11234
11235 /*
11236 * Create the masks we will use.
11237 */
11238 memset(changing, 0, sizeof(changing));
11239 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11240 /*
11241 * NOTE: Assumes that the individual VL bits are adjacent and in
11242 * increasing order
11243 */
11244 stat_mask =
11245 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11246 changing_mask = 0;
11247 ld_mask = 0;
11248 change_count = 0;
11249 any_shared_limit_changing = 0;
11250 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11251 if (!valid_vl(i))
11252 continue;
11253 this_shared_changing = new_bc->vl[i].shared
11254 != cur_bc.vl[i].shared;
11255 if (this_shared_changing)
11256 any_shared_limit_changing = 1;
11257 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11258 this_shared_changing) {
11259 changing[i] = 1;
11260 changing_mask |= stat_mask;
11261 change_count++;
11262 }
11263 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11264 be16_to_cpu(cur_bc.vl[i].dedicated)) {
11265 lowering_dedicated[i] = 1;
11266 ld_mask |= stat_mask;
11267 }
11268 }
11269
11270 /* bracket the credit change with a total adjustment */
11271 if (new_total > cur_total)
11272 set_global_limit(dd, new_total);
11273
11274 /*
11275 * Start the credit change algorithm.
11276 */
11277 use_all_mask = 0;
11278 if ((be16_to_cpu(new_bc->overall_shared_limit) <
11279 be16_to_cpu(cur_bc.overall_shared_limit)) ||
11280 (is_ax(dd) && any_shared_limit_changing)) {
11281 set_global_shared(dd, 0);
11282 cur_bc.overall_shared_limit = 0;
11283 use_all_mask = 1;
11284 }
11285
11286 for (i = 0; i < NUM_USABLE_VLS; i++) {
11287 if (!valid_vl(i))
11288 continue;
11289
11290 if (changing[i]) {
11291 set_vl_shared(dd, i, 0);
11292 cur_bc.vl[i].shared = 0;
11293 }
11294 }
11295
11296 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11297 "shared");
11298
11299 if (change_count > 0) {
11300 for (i = 0; i < NUM_USABLE_VLS; i++) {
11301 if (!valid_vl(i))
11302 continue;
11303
11304 if (lowering_dedicated[i]) {
11305 set_vl_dedicated(dd, i,
11306 be16_to_cpu(new_bc->
11307 vl[i].dedicated));
11308 cur_bc.vl[i].dedicated =
11309 new_bc->vl[i].dedicated;
11310 }
11311 }
11312
11313 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11314
11315 /* now raise all dedicated that are going up */
11316 for (i = 0; i < NUM_USABLE_VLS; i++) {
11317 if (!valid_vl(i))
11318 continue;
11319
11320 if (be16_to_cpu(new_bc->vl[i].dedicated) >
11321 be16_to_cpu(cur_bc.vl[i].dedicated))
11322 set_vl_dedicated(dd, i,
11323 be16_to_cpu(new_bc->
11324 vl[i].dedicated));
11325 }
11326 }
11327
11328 /* next raise all shared that are going up */
11329 for (i = 0; i < NUM_USABLE_VLS; i++) {
11330 if (!valid_vl(i))
11331 continue;
11332
11333 if (be16_to_cpu(new_bc->vl[i].shared) >
11334 be16_to_cpu(cur_bc.vl[i].shared))
11335 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11336 }
11337
11338 /* finally raise the global shared */
11339 if (be16_to_cpu(new_bc->overall_shared_limit) >
11340 be16_to_cpu(cur_bc.overall_shared_limit))
11341 set_global_shared(dd,
11342 be16_to_cpu(new_bc->overall_shared_limit));
11343
11344 /* bracket the credit change with a total adjustment */
11345 if (new_total < cur_total)
11346 set_global_limit(dd, new_total);
11347
11348 /*
11349 * Determine the actual number of operational VLS using the number of
11350 * dedicated and shared credits for each VL.
11351 */
11352 if (change_count > 0) {
11353 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11354 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11355 be16_to_cpu(new_bc->vl[i].shared) > 0)
11356 vl_count++;
11357 ppd->actual_vls_operational = vl_count;
11358 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11359 ppd->actual_vls_operational :
11360 ppd->vls_operational,
11361 NULL);
11362 if (ret == 0)
11363 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11364 ppd->actual_vls_operational :
11365 ppd->vls_operational, NULL);
11366 if (ret)
11367 return ret;
11368 }
11369 return 0;
11370 }
11371
11372 /*
11373 * Read the given fabric manager table. Return the size of the
11374 * table (in bytes) on success, and a negative error code on
11375 * failure.
11376 */
11377 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11378
11379 {
11380 int size;
11381 struct vl_arb_cache *vlc;
11382
11383 switch (which) {
11384 case FM_TBL_VL_HIGH_ARB:
11385 size = 256;
11386 /*
11387 * OPA specifies 128 elements (of 2 bytes each), though
11388 * HFI supports only 16 elements in h/w.
11389 */
11390 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11391 vl_arb_get_cache(vlc, t);
11392 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11393 break;
11394 case FM_TBL_VL_LOW_ARB:
11395 size = 256;
11396 /*
11397 * OPA specifies 128 elements (of 2 bytes each), though
11398 * HFI supports only 16 elements in h/w.
11399 */
11400 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11401 vl_arb_get_cache(vlc, t);
11402 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11403 break;
11404 case FM_TBL_BUFFER_CONTROL:
11405 size = get_buffer_control(ppd->dd, t, NULL);
11406 break;
11407 case FM_TBL_SC2VLNT:
11408 size = get_sc2vlnt(ppd->dd, t);
11409 break;
11410 case FM_TBL_VL_PREEMPT_ELEMS:
11411 size = 256;
11412 /* OPA specifies 128 elements, of 2 bytes each */
11413 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11414 break;
11415 case FM_TBL_VL_PREEMPT_MATRIX:
11416 size = 256;
11417 /*
11418 * OPA specifies that this is the same size as the VL
11419 * arbitration tables (i.e., 256 bytes).
11420 */
11421 break;
11422 default:
11423 return -EINVAL;
11424 }
11425 return size;
11426 }
11427
11428 /*
11429 * Write the given fabric manager table.
11430 */
11431 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11432 {
11433 int ret = 0;
11434 struct vl_arb_cache *vlc;
11435
11436 switch (which) {
11437 case FM_TBL_VL_HIGH_ARB:
11438 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11439 if (vl_arb_match_cache(vlc, t)) {
11440 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11441 break;
11442 }
11443 vl_arb_set_cache(vlc, t);
11444 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11445 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11446 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11447 break;
11448 case FM_TBL_VL_LOW_ARB:
11449 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11450 if (vl_arb_match_cache(vlc, t)) {
11451 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11452 break;
11453 }
11454 vl_arb_set_cache(vlc, t);
11455 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11456 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11457 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11458 break;
11459 case FM_TBL_BUFFER_CONTROL:
11460 ret = set_buffer_control(ppd, t);
11461 break;
11462 case FM_TBL_SC2VLNT:
11463 set_sc2vlnt(ppd->dd, t);
11464 break;
11465 default:
11466 ret = -EINVAL;
11467 }
11468 return ret;
11469 }
11470
11471 /*
11472 * Disable all data VLs.
11473 *
11474 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11475 */
11476 static int disable_data_vls(struct hfi1_devdata *dd)
11477 {
11478 if (is_ax(dd))
11479 return 1;
11480
11481 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11482
11483 return 0;
11484 }
11485
11486 /*
11487 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11488 * Just re-enables all data VLs (the "fill" part happens
11489 * automatically - the name was chosen for symmetry with
11490 * stop_drain_data_vls()).
11491 *
11492 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11493 */
11494 int open_fill_data_vls(struct hfi1_devdata *dd)
11495 {
11496 if (is_ax(dd))
11497 return 1;
11498
11499 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11500
11501 return 0;
11502 }
11503
11504 /*
11505 * drain_data_vls() - assumes that disable_data_vls() has been called,
11506 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11507 * engines to drop to 0.
11508 */
11509 static void drain_data_vls(struct hfi1_devdata *dd)
11510 {
11511 sc_wait(dd);
11512 sdma_wait(dd);
11513 pause_for_credit_return(dd);
11514 }
11515
11516 /*
11517 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11518 *
11519 * Use open_fill_data_vls() to resume using data VLs. This pair is
11520 * meant to be used like this:
11521 *
11522 * stop_drain_data_vls(dd);
11523 * // do things with per-VL resources
11524 * open_fill_data_vls(dd);
11525 */
11526 int stop_drain_data_vls(struct hfi1_devdata *dd)
11527 {
11528 int ret;
11529
11530 ret = disable_data_vls(dd);
11531 if (ret == 0)
11532 drain_data_vls(dd);
11533
11534 return ret;
11535 }
11536
11537 /*
11538 * Convert a nanosecond time to a cclock count. No matter how slow
11539 * the cclock, a non-zero ns will always have a non-zero result.
11540 */
11541 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11542 {
11543 u32 cclocks;
11544
11545 if (dd->icode == ICODE_FPGA_EMULATION)
11546 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11547 else /* simulation pretends to be ASIC */
11548 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11549 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11550 cclocks = 1;
11551 return cclocks;
11552 }
11553
11554 /*
11555 * Convert a cclock count to nanoseconds. Not matter how slow
11556 * the cclock, a non-zero cclocks will always have a non-zero result.
11557 */
11558 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11559 {
11560 u32 ns;
11561
11562 if (dd->icode == ICODE_FPGA_EMULATION)
11563 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11564 else /* simulation pretends to be ASIC */
11565 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11566 if (cclocks && !ns)
11567 ns = 1;
11568 return ns;
11569 }
11570
11571 /*
11572 * Dynamically adjust the receive interrupt timeout for a context based on
11573 * incoming packet rate.
11574 *
11575 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11576 */
11577 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11578 {
11579 struct hfi1_devdata *dd = rcd->dd;
11580 u32 timeout = rcd->rcvavail_timeout;
11581
11582 /*
11583 * This algorithm doubles or halves the timeout depending on whether
11584 * the number of packets received in this interrupt were less than or
11585 * greater equal the interrupt count.
11586 *
11587 * The calculations below do not allow a steady state to be achieved.
11588 * Only at the endpoints it is possible to have an unchanging
11589 * timeout.
11590 */
11591 if (npkts < rcv_intr_count) {
11592 /*
11593 * Not enough packets arrived before the timeout, adjust
11594 * timeout downward.
11595 */
11596 if (timeout < 2) /* already at minimum? */
11597 return;
11598 timeout >>= 1;
11599 } else {
11600 /*
11601 * More than enough packets arrived before the timeout, adjust
11602 * timeout upward.
11603 */
11604 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11605 return;
11606 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11607 }
11608
11609 rcd->rcvavail_timeout = timeout;
11610 /*
11611 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11612 * been verified to be in range
11613 */
11614 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11615 (u64)timeout <<
11616 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11617 }
11618
11619 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11620 u32 intr_adjust, u32 npkts)
11621 {
11622 struct hfi1_devdata *dd = rcd->dd;
11623 u64 reg;
11624 u32 ctxt = rcd->ctxt;
11625
11626 /*
11627 * Need to write timeout register before updating RcvHdrHead to ensure
11628 * that a new value is used when the HW decides to restart counting.
11629 */
11630 if (intr_adjust)
11631 adjust_rcv_timeout(rcd, npkts);
11632 if (updegr) {
11633 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11634 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11635 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11636 }
11637 mmiowb();
11638 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11639 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11640 << RCV_HDR_HEAD_HEAD_SHIFT);
11641 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11642 mmiowb();
11643 }
11644
11645 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11646 {
11647 u32 head, tail;
11648
11649 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11650 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11651
11652 if (rcd->rcvhdrtail_kvaddr)
11653 tail = get_rcvhdrtail(rcd);
11654 else
11655 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11656
11657 return head == tail;
11658 }
11659
11660 /*
11661 * Context Control and Receive Array encoding for buffer size:
11662 * 0x0 invalid
11663 * 0x1 4 KB
11664 * 0x2 8 KB
11665 * 0x3 16 KB
11666 * 0x4 32 KB
11667 * 0x5 64 KB
11668 * 0x6 128 KB
11669 * 0x7 256 KB
11670 * 0x8 512 KB (Receive Array only)
11671 * 0x9 1 MB (Receive Array only)
11672 * 0xa 2 MB (Receive Array only)
11673 *
11674 * 0xB-0xF - reserved (Receive Array only)
11675 *
11676 *
11677 * This routine assumes that the value has already been sanity checked.
11678 */
11679 static u32 encoded_size(u32 size)
11680 {
11681 switch (size) {
11682 case 4 * 1024: return 0x1;
11683 case 8 * 1024: return 0x2;
11684 case 16 * 1024: return 0x3;
11685 case 32 * 1024: return 0x4;
11686 case 64 * 1024: return 0x5;
11687 case 128 * 1024: return 0x6;
11688 case 256 * 1024: return 0x7;
11689 case 512 * 1024: return 0x8;
11690 case 1 * 1024 * 1024: return 0x9;
11691 case 2 * 1024 * 1024: return 0xa;
11692 }
11693 return 0x1; /* if invalid, go with the minimum size */
11694 }
11695
11696 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11697 {
11698 struct hfi1_ctxtdata *rcd;
11699 u64 rcvctrl, reg;
11700 int did_enable = 0;
11701
11702 rcd = dd->rcd[ctxt];
11703 if (!rcd)
11704 return;
11705
11706 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11707
11708 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11709 /* if the context already enabled, don't do the extra steps */
11710 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11711 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11712 /* reset the tail and hdr addresses, and sequence count */
11713 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11714 rcd->rcvhdrq_dma);
11715 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11716 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11717 rcd->rcvhdrqtailaddr_dma);
11718 rcd->seq_cnt = 1;
11719
11720 /* reset the cached receive header queue head value */
11721 rcd->head = 0;
11722
11723 /*
11724 * Zero the receive header queue so we don't get false
11725 * positives when checking the sequence number. The
11726 * sequence numbers could land exactly on the same spot.
11727 * E.g. a rcd restart before the receive header wrapped.
11728 */
11729 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11730
11731 /* starting timeout */
11732 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11733
11734 /* enable the context */
11735 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11736
11737 /* clean the egr buffer size first */
11738 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11739 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11740 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11741 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11742
11743 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11744 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11745 did_enable = 1;
11746
11747 /* zero RcvEgrIndexHead */
11748 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11749
11750 /* set eager count and base index */
11751 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11752 & RCV_EGR_CTRL_EGR_CNT_MASK)
11753 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11754 (((rcd->eager_base >> RCV_SHIFT)
11755 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11756 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11757 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11758
11759 /*
11760 * Set TID (expected) count and base index.
11761 * rcd->expected_count is set to individual RcvArray entries,
11762 * not pairs, and the CSR takes a pair-count in groups of
11763 * four, so divide by 8.
11764 */
11765 reg = (((rcd->expected_count >> RCV_SHIFT)
11766 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11767 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11768 (((rcd->expected_base >> RCV_SHIFT)
11769 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11770 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11771 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11772 if (ctxt == HFI1_CTRL_CTXT)
11773 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11774 }
11775 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11776 write_csr(dd, RCV_VL15, 0);
11777 /*
11778 * When receive context is being disabled turn on tail
11779 * update with a dummy tail address and then disable
11780 * receive context.
11781 */
11782 if (dd->rcvhdrtail_dummy_dma) {
11783 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11784 dd->rcvhdrtail_dummy_dma);
11785 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11786 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11787 }
11788
11789 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11790 }
11791 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11792 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11793 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11794 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11795 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11796 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11797 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11798 /* See comment on RcvCtxtCtrl.TailUpd above */
11799 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11800 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11801 }
11802 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11803 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11804 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11805 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11806 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11807 /*
11808 * In one-packet-per-eager mode, the size comes from
11809 * the RcvArray entry.
11810 */
11811 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11812 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11813 }
11814 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11815 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11816 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11817 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11818 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11819 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11820 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11821 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11822 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11823 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11824 rcd->rcvctrl = rcvctrl;
11825 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11826 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11827
11828 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11829 if (did_enable &&
11830 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11831 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11832 if (reg != 0) {
11833 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11834 ctxt, reg);
11835 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11836 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11837 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11838 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11839 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11840 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11841 ctxt, reg, reg == 0 ? "not" : "still");
11842 }
11843 }
11844
11845 if (did_enable) {
11846 /*
11847 * The interrupt timeout and count must be set after
11848 * the context is enabled to take effect.
11849 */
11850 /* set interrupt timeout */
11851 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11852 (u64)rcd->rcvavail_timeout <<
11853 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11854
11855 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11856 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11857 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11858 }
11859
11860 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11861 /*
11862 * If the context has been disabled and the Tail Update has
11863 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11864 * so it doesn't contain an address that is invalid.
11865 */
11866 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11867 dd->rcvhdrtail_dummy_dma);
11868 }
11869
11870 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11871 {
11872 int ret;
11873 u64 val = 0;
11874
11875 if (namep) {
11876 ret = dd->cntrnameslen;
11877 *namep = dd->cntrnames;
11878 } else {
11879 const struct cntr_entry *entry;
11880 int i, j;
11881
11882 ret = (dd->ndevcntrs) * sizeof(u64);
11883
11884 /* Get the start of the block of counters */
11885 *cntrp = dd->cntrs;
11886
11887 /*
11888 * Now go and fill in each counter in the block.
11889 */
11890 for (i = 0; i < DEV_CNTR_LAST; i++) {
11891 entry = &dev_cntrs[i];
11892 hfi1_cdbg(CNTR, "reading %s", entry->name);
11893 if (entry->flags & CNTR_DISABLED) {
11894 /* Nothing */
11895 hfi1_cdbg(CNTR, "\tDisabled\n");
11896 } else {
11897 if (entry->flags & CNTR_VL) {
11898 hfi1_cdbg(CNTR, "\tPer VL\n");
11899 for (j = 0; j < C_VL_COUNT; j++) {
11900 val = entry->rw_cntr(entry,
11901 dd, j,
11902 CNTR_MODE_R,
11903 0);
11904 hfi1_cdbg(
11905 CNTR,
11906 "\t\tRead 0x%llx for %d\n",
11907 val, j);
11908 dd->cntrs[entry->offset + j] =
11909 val;
11910 }
11911 } else if (entry->flags & CNTR_SDMA) {
11912 hfi1_cdbg(CNTR,
11913 "\t Per SDMA Engine\n");
11914 for (j = 0; j < dd->chip_sdma_engines;
11915 j++) {
11916 val =
11917 entry->rw_cntr(entry, dd, j,
11918 CNTR_MODE_R, 0);
11919 hfi1_cdbg(CNTR,
11920 "\t\tRead 0x%llx for %d\n",
11921 val, j);
11922 dd->cntrs[entry->offset + j] =
11923 val;
11924 }
11925 } else {
11926 val = entry->rw_cntr(entry, dd,
11927 CNTR_INVALID_VL,
11928 CNTR_MODE_R, 0);
11929 dd->cntrs[entry->offset] = val;
11930 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11931 }
11932 }
11933 }
11934 }
11935 return ret;
11936 }
11937
11938 /*
11939 * Used by sysfs to create files for hfi stats to read
11940 */
11941 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11942 {
11943 int ret;
11944 u64 val = 0;
11945
11946 if (namep) {
11947 ret = ppd->dd->portcntrnameslen;
11948 *namep = ppd->dd->portcntrnames;
11949 } else {
11950 const struct cntr_entry *entry;
11951 int i, j;
11952
11953 ret = ppd->dd->nportcntrs * sizeof(u64);
11954 *cntrp = ppd->cntrs;
11955
11956 for (i = 0; i < PORT_CNTR_LAST; i++) {
11957 entry = &port_cntrs[i];
11958 hfi1_cdbg(CNTR, "reading %s", entry->name);
11959 if (entry->flags & CNTR_DISABLED) {
11960 /* Nothing */
11961 hfi1_cdbg(CNTR, "\tDisabled\n");
11962 continue;
11963 }
11964
11965 if (entry->flags & CNTR_VL) {
11966 hfi1_cdbg(CNTR, "\tPer VL");
11967 for (j = 0; j < C_VL_COUNT; j++) {
11968 val = entry->rw_cntr(entry, ppd, j,
11969 CNTR_MODE_R,
11970 0);
11971 hfi1_cdbg(
11972 CNTR,
11973 "\t\tRead 0x%llx for %d",
11974 val, j);
11975 ppd->cntrs[entry->offset + j] = val;
11976 }
11977 } else {
11978 val = entry->rw_cntr(entry, ppd,
11979 CNTR_INVALID_VL,
11980 CNTR_MODE_R,
11981 0);
11982 ppd->cntrs[entry->offset] = val;
11983 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11984 }
11985 }
11986 }
11987 return ret;
11988 }
11989
11990 static void free_cntrs(struct hfi1_devdata *dd)
11991 {
11992 struct hfi1_pportdata *ppd;
11993 int i;
11994
11995 if (dd->synth_stats_timer.data)
11996 del_timer_sync(&dd->synth_stats_timer);
11997 dd->synth_stats_timer.data = 0;
11998 ppd = (struct hfi1_pportdata *)(dd + 1);
11999 for (i = 0; i < dd->num_pports; i++, ppd++) {
12000 kfree(ppd->cntrs);
12001 kfree(ppd->scntrs);
12002 free_percpu(ppd->ibport_data.rvp.rc_acks);
12003 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12004 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12005 ppd->cntrs = NULL;
12006 ppd->scntrs = NULL;
12007 ppd->ibport_data.rvp.rc_acks = NULL;
12008 ppd->ibport_data.rvp.rc_qacks = NULL;
12009 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12010 }
12011 kfree(dd->portcntrnames);
12012 dd->portcntrnames = NULL;
12013 kfree(dd->cntrs);
12014 dd->cntrs = NULL;
12015 kfree(dd->scntrs);
12016 dd->scntrs = NULL;
12017 kfree(dd->cntrnames);
12018 dd->cntrnames = NULL;
12019 if (dd->update_cntr_wq) {
12020 destroy_workqueue(dd->update_cntr_wq);
12021 dd->update_cntr_wq = NULL;
12022 }
12023 }
12024
12025 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12026 u64 *psval, void *context, int vl)
12027 {
12028 u64 val;
12029 u64 sval = *psval;
12030
12031 if (entry->flags & CNTR_DISABLED) {
12032 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12033 return 0;
12034 }
12035
12036 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12037
12038 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12039
12040 /* If its a synthetic counter there is more work we need to do */
12041 if (entry->flags & CNTR_SYNTH) {
12042 if (sval == CNTR_MAX) {
12043 /* No need to read already saturated */
12044 return CNTR_MAX;
12045 }
12046
12047 if (entry->flags & CNTR_32BIT) {
12048 /* 32bit counters can wrap multiple times */
12049 u64 upper = sval >> 32;
12050 u64 lower = (sval << 32) >> 32;
12051
12052 if (lower > val) { /* hw wrapped */
12053 if (upper == CNTR_32BIT_MAX)
12054 val = CNTR_MAX;
12055 else
12056 upper++;
12057 }
12058
12059 if (val != CNTR_MAX)
12060 val = (upper << 32) | val;
12061
12062 } else {
12063 /* If we rolled we are saturated */
12064 if ((val < sval) || (val > CNTR_MAX))
12065 val = CNTR_MAX;
12066 }
12067 }
12068
12069 *psval = val;
12070
12071 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12072
12073 return val;
12074 }
12075
12076 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12077 struct cntr_entry *entry,
12078 u64 *psval, void *context, int vl, u64 data)
12079 {
12080 u64 val;
12081
12082 if (entry->flags & CNTR_DISABLED) {
12083 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12084 return 0;
12085 }
12086
12087 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12088
12089 if (entry->flags & CNTR_SYNTH) {
12090 *psval = data;
12091 if (entry->flags & CNTR_32BIT) {
12092 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12093 (data << 32) >> 32);
12094 val = data; /* return the full 64bit value */
12095 } else {
12096 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12097 data);
12098 }
12099 } else {
12100 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12101 }
12102
12103 *psval = val;
12104
12105 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12106
12107 return val;
12108 }
12109
12110 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12111 {
12112 struct cntr_entry *entry;
12113 u64 *sval;
12114
12115 entry = &dev_cntrs[index];
12116 sval = dd->scntrs + entry->offset;
12117
12118 if (vl != CNTR_INVALID_VL)
12119 sval += vl;
12120
12121 return read_dev_port_cntr(dd, entry, sval, dd, vl);
12122 }
12123
12124 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12125 {
12126 struct cntr_entry *entry;
12127 u64 *sval;
12128
12129 entry = &dev_cntrs[index];
12130 sval = dd->scntrs + entry->offset;
12131
12132 if (vl != CNTR_INVALID_VL)
12133 sval += vl;
12134
12135 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12136 }
12137
12138 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12139 {
12140 struct cntr_entry *entry;
12141 u64 *sval;
12142
12143 entry = &port_cntrs[index];
12144 sval = ppd->scntrs + entry->offset;
12145
12146 if (vl != CNTR_INVALID_VL)
12147 sval += vl;
12148
12149 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12150 (index <= C_RCV_HDR_OVF_LAST)) {
12151 /* We do not want to bother for disabled contexts */
12152 return 0;
12153 }
12154
12155 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12156 }
12157
12158 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12159 {
12160 struct cntr_entry *entry;
12161 u64 *sval;
12162
12163 entry = &port_cntrs[index];
12164 sval = ppd->scntrs + entry->offset;
12165
12166 if (vl != CNTR_INVALID_VL)
12167 sval += vl;
12168
12169 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12170 (index <= C_RCV_HDR_OVF_LAST)) {
12171 /* We do not want to bother for disabled contexts */
12172 return 0;
12173 }
12174
12175 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12176 }
12177
12178 static void do_update_synth_timer(struct work_struct *work)
12179 {
12180 u64 cur_tx;
12181 u64 cur_rx;
12182 u64 total_flits;
12183 u8 update = 0;
12184 int i, j, vl;
12185 struct hfi1_pportdata *ppd;
12186 struct cntr_entry *entry;
12187 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12188 update_cntr_work);
12189
12190 /*
12191 * Rather than keep beating on the CSRs pick a minimal set that we can
12192 * check to watch for potential roll over. We can do this by looking at
12193 * the number of flits sent/recv. If the total flits exceeds 32bits then
12194 * we have to iterate all the counters and update.
12195 */
12196 entry = &dev_cntrs[C_DC_RCV_FLITS];
12197 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12198
12199 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12200 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12201
12202 hfi1_cdbg(
12203 CNTR,
12204 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12205 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12206
12207 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12208 /*
12209 * May not be strictly necessary to update but it won't hurt and
12210 * simplifies the logic here.
12211 */
12212 update = 1;
12213 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12214 dd->unit);
12215 } else {
12216 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12217 hfi1_cdbg(CNTR,
12218 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12219 total_flits, (u64)CNTR_32BIT_MAX);
12220 if (total_flits >= CNTR_32BIT_MAX) {
12221 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12222 dd->unit);
12223 update = 1;
12224 }
12225 }
12226
12227 if (update) {
12228 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12229 for (i = 0; i < DEV_CNTR_LAST; i++) {
12230 entry = &dev_cntrs[i];
12231 if (entry->flags & CNTR_VL) {
12232 for (vl = 0; vl < C_VL_COUNT; vl++)
12233 read_dev_cntr(dd, i, vl);
12234 } else {
12235 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12236 }
12237 }
12238 ppd = (struct hfi1_pportdata *)(dd + 1);
12239 for (i = 0; i < dd->num_pports; i++, ppd++) {
12240 for (j = 0; j < PORT_CNTR_LAST; j++) {
12241 entry = &port_cntrs[j];
12242 if (entry->flags & CNTR_VL) {
12243 for (vl = 0; vl < C_VL_COUNT; vl++)
12244 read_port_cntr(ppd, j, vl);
12245 } else {
12246 read_port_cntr(ppd, j, CNTR_INVALID_VL);
12247 }
12248 }
12249 }
12250
12251 /*
12252 * We want the value in the register. The goal is to keep track
12253 * of the number of "ticks" not the counter value. In other
12254 * words if the register rolls we want to notice it and go ahead
12255 * and force an update.
12256 */
12257 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12258 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12259 CNTR_MODE_R, 0);
12260
12261 entry = &dev_cntrs[C_DC_RCV_FLITS];
12262 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12263 CNTR_MODE_R, 0);
12264
12265 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12266 dd->unit, dd->last_tx, dd->last_rx);
12267
12268 } else {
12269 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12270 }
12271 }
12272
12273 static void update_synth_timer(unsigned long opaque)
12274 {
12275 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12276
12277 queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12278 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12279 }
12280
12281 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12282 static int init_cntrs(struct hfi1_devdata *dd)
12283 {
12284 int i, rcv_ctxts, j;
12285 size_t sz;
12286 char *p;
12287 char name[C_MAX_NAME];
12288 struct hfi1_pportdata *ppd;
12289 const char *bit_type_32 = ",32";
12290 const int bit_type_32_sz = strlen(bit_type_32);
12291
12292 /* set up the stats timer; the add_timer is done at the end */
12293 setup_timer(&dd->synth_stats_timer, update_synth_timer,
12294 (unsigned long)dd);
12295
12296 /***********************/
12297 /* per device counters */
12298 /***********************/
12299
12300 /* size names and determine how many we have*/
12301 dd->ndevcntrs = 0;
12302 sz = 0;
12303
12304 for (i = 0; i < DEV_CNTR_LAST; i++) {
12305 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12306 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12307 continue;
12308 }
12309
12310 if (dev_cntrs[i].flags & CNTR_VL) {
12311 dev_cntrs[i].offset = dd->ndevcntrs;
12312 for (j = 0; j < C_VL_COUNT; j++) {
12313 snprintf(name, C_MAX_NAME, "%s%d",
12314 dev_cntrs[i].name, vl_from_idx(j));
12315 sz += strlen(name);
12316 /* Add ",32" for 32-bit counters */
12317 if (dev_cntrs[i].flags & CNTR_32BIT)
12318 sz += bit_type_32_sz;
12319 sz++;
12320 dd->ndevcntrs++;
12321 }
12322 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12323 dev_cntrs[i].offset = dd->ndevcntrs;
12324 for (j = 0; j < dd->chip_sdma_engines; j++) {
12325 snprintf(name, C_MAX_NAME, "%s%d",
12326 dev_cntrs[i].name, j);
12327 sz += strlen(name);
12328 /* Add ",32" for 32-bit counters */
12329 if (dev_cntrs[i].flags & CNTR_32BIT)
12330 sz += bit_type_32_sz;
12331 sz++;
12332 dd->ndevcntrs++;
12333 }
12334 } else {
12335 /* +1 for newline. */
12336 sz += strlen(dev_cntrs[i].name) + 1;
12337 /* Add ",32" for 32-bit counters */
12338 if (dev_cntrs[i].flags & CNTR_32BIT)
12339 sz += bit_type_32_sz;
12340 dev_cntrs[i].offset = dd->ndevcntrs;
12341 dd->ndevcntrs++;
12342 }
12343 }
12344
12345 /* allocate space for the counter values */
12346 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12347 if (!dd->cntrs)
12348 goto bail;
12349
12350 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12351 if (!dd->scntrs)
12352 goto bail;
12353
12354 /* allocate space for the counter names */
12355 dd->cntrnameslen = sz;
12356 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12357 if (!dd->cntrnames)
12358 goto bail;
12359
12360 /* fill in the names */
12361 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12362 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12363 /* Nothing */
12364 } else if (dev_cntrs[i].flags & CNTR_VL) {
12365 for (j = 0; j < C_VL_COUNT; j++) {
12366 snprintf(name, C_MAX_NAME, "%s%d",
12367 dev_cntrs[i].name,
12368 vl_from_idx(j));
12369 memcpy(p, name, strlen(name));
12370 p += strlen(name);
12371
12372 /* Counter is 32 bits */
12373 if (dev_cntrs[i].flags & CNTR_32BIT) {
12374 memcpy(p, bit_type_32, bit_type_32_sz);
12375 p += bit_type_32_sz;
12376 }
12377
12378 *p++ = '\n';
12379 }
12380 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12381 for (j = 0; j < dd->chip_sdma_engines; j++) {
12382 snprintf(name, C_MAX_NAME, "%s%d",
12383 dev_cntrs[i].name, j);
12384 memcpy(p, name, strlen(name));
12385 p += strlen(name);
12386
12387 /* Counter is 32 bits */
12388 if (dev_cntrs[i].flags & CNTR_32BIT) {
12389 memcpy(p, bit_type_32, bit_type_32_sz);
12390 p += bit_type_32_sz;
12391 }
12392
12393 *p++ = '\n';
12394 }
12395 } else {
12396 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12397 p += strlen(dev_cntrs[i].name);
12398
12399 /* Counter is 32 bits */
12400 if (dev_cntrs[i].flags & CNTR_32BIT) {
12401 memcpy(p, bit_type_32, bit_type_32_sz);
12402 p += bit_type_32_sz;
12403 }
12404
12405 *p++ = '\n';
12406 }
12407 }
12408
12409 /*********************/
12410 /* per port counters */
12411 /*********************/
12412
12413 /*
12414 * Go through the counters for the overflows and disable the ones we
12415 * don't need. This varies based on platform so we need to do it
12416 * dynamically here.
12417 */
12418 rcv_ctxts = dd->num_rcv_contexts;
12419 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12420 i <= C_RCV_HDR_OVF_LAST; i++) {
12421 port_cntrs[i].flags |= CNTR_DISABLED;
12422 }
12423
12424 /* size port counter names and determine how many we have*/
12425 sz = 0;
12426 dd->nportcntrs = 0;
12427 for (i = 0; i < PORT_CNTR_LAST; i++) {
12428 if (port_cntrs[i].flags & CNTR_DISABLED) {
12429 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12430 continue;
12431 }
12432
12433 if (port_cntrs[i].flags & CNTR_VL) {
12434 port_cntrs[i].offset = dd->nportcntrs;
12435 for (j = 0; j < C_VL_COUNT; j++) {
12436 snprintf(name, C_MAX_NAME, "%s%d",
12437 port_cntrs[i].name, vl_from_idx(j));
12438 sz += strlen(name);
12439 /* Add ",32" for 32-bit counters */
12440 if (port_cntrs[i].flags & CNTR_32BIT)
12441 sz += bit_type_32_sz;
12442 sz++;
12443 dd->nportcntrs++;
12444 }
12445 } else {
12446 /* +1 for newline */
12447 sz += strlen(port_cntrs[i].name) + 1;
12448 /* Add ",32" for 32-bit counters */
12449 if (port_cntrs[i].flags & CNTR_32BIT)
12450 sz += bit_type_32_sz;
12451 port_cntrs[i].offset = dd->nportcntrs;
12452 dd->nportcntrs++;
12453 }
12454 }
12455
12456 /* allocate space for the counter names */
12457 dd->portcntrnameslen = sz;
12458 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12459 if (!dd->portcntrnames)
12460 goto bail;
12461
12462 /* fill in port cntr names */
12463 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12464 if (port_cntrs[i].flags & CNTR_DISABLED)
12465 continue;
12466
12467 if (port_cntrs[i].flags & CNTR_VL) {
12468 for (j = 0; j < C_VL_COUNT; j++) {
12469 snprintf(name, C_MAX_NAME, "%s%d",
12470 port_cntrs[i].name, vl_from_idx(j));
12471 memcpy(p, name, strlen(name));
12472 p += strlen(name);
12473
12474 /* Counter is 32 bits */
12475 if (port_cntrs[i].flags & CNTR_32BIT) {
12476 memcpy(p, bit_type_32, bit_type_32_sz);
12477 p += bit_type_32_sz;
12478 }
12479
12480 *p++ = '\n';
12481 }
12482 } else {
12483 memcpy(p, port_cntrs[i].name,
12484 strlen(port_cntrs[i].name));
12485 p += strlen(port_cntrs[i].name);
12486
12487 /* Counter is 32 bits */
12488 if (port_cntrs[i].flags & CNTR_32BIT) {
12489 memcpy(p, bit_type_32, bit_type_32_sz);
12490 p += bit_type_32_sz;
12491 }
12492
12493 *p++ = '\n';
12494 }
12495 }
12496
12497 /* allocate per port storage for counter values */
12498 ppd = (struct hfi1_pportdata *)(dd + 1);
12499 for (i = 0; i < dd->num_pports; i++, ppd++) {
12500 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12501 if (!ppd->cntrs)
12502 goto bail;
12503
12504 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12505 if (!ppd->scntrs)
12506 goto bail;
12507 }
12508
12509 /* CPU counters need to be allocated and zeroed */
12510 if (init_cpu_counters(dd))
12511 goto bail;
12512
12513 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12514 WQ_MEM_RECLAIM, dd->unit);
12515 if (!dd->update_cntr_wq)
12516 goto bail;
12517
12518 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12519
12520 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12521 return 0;
12522 bail:
12523 free_cntrs(dd);
12524 return -ENOMEM;
12525 }
12526
12527 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12528 {
12529 switch (chip_lstate) {
12530 default:
12531 dd_dev_err(dd,
12532 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12533 chip_lstate);
12534 /* fall through */
12535 case LSTATE_DOWN:
12536 return IB_PORT_DOWN;
12537 case LSTATE_INIT:
12538 return IB_PORT_INIT;
12539 case LSTATE_ARMED:
12540 return IB_PORT_ARMED;
12541 case LSTATE_ACTIVE:
12542 return IB_PORT_ACTIVE;
12543 }
12544 }
12545
12546 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12547 {
12548 /* look at the HFI meta-states only */
12549 switch (chip_pstate & 0xf0) {
12550 default:
12551 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12552 chip_pstate);
12553 /* fall through */
12554 case PLS_DISABLED:
12555 return IB_PORTPHYSSTATE_DISABLED;
12556 case PLS_OFFLINE:
12557 return OPA_PORTPHYSSTATE_OFFLINE;
12558 case PLS_POLLING:
12559 return IB_PORTPHYSSTATE_POLLING;
12560 case PLS_CONFIGPHY:
12561 return IB_PORTPHYSSTATE_TRAINING;
12562 case PLS_LINKUP:
12563 return IB_PORTPHYSSTATE_LINKUP;
12564 case PLS_PHYTEST:
12565 return IB_PORTPHYSSTATE_PHY_TEST;
12566 }
12567 }
12568
12569 /* return the OPA port logical state name */
12570 const char *opa_lstate_name(u32 lstate)
12571 {
12572 static const char * const port_logical_names[] = {
12573 "PORT_NOP",
12574 "PORT_DOWN",
12575 "PORT_INIT",
12576 "PORT_ARMED",
12577 "PORT_ACTIVE",
12578 "PORT_ACTIVE_DEFER",
12579 };
12580 if (lstate < ARRAY_SIZE(port_logical_names))
12581 return port_logical_names[lstate];
12582 return "unknown";
12583 }
12584
12585 /* return the OPA port physical state name */
12586 const char *opa_pstate_name(u32 pstate)
12587 {
12588 static const char * const port_physical_names[] = {
12589 "PHYS_NOP",
12590 "reserved1",
12591 "PHYS_POLL",
12592 "PHYS_DISABLED",
12593 "PHYS_TRAINING",
12594 "PHYS_LINKUP",
12595 "PHYS_LINK_ERR_RECOVER",
12596 "PHYS_PHY_TEST",
12597 "reserved8",
12598 "PHYS_OFFLINE",
12599 "PHYS_GANGED",
12600 "PHYS_TEST",
12601 };
12602 if (pstate < ARRAY_SIZE(port_physical_names))
12603 return port_physical_names[pstate];
12604 return "unknown";
12605 }
12606
12607 /*
12608 * Read the hardware link state and set the driver's cached value of it.
12609 * Return the (new) current value.
12610 */
12611 u32 get_logical_state(struct hfi1_pportdata *ppd)
12612 {
12613 u32 new_state;
12614
12615 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12616 if (new_state != ppd->lstate) {
12617 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12618 opa_lstate_name(new_state), new_state);
12619 ppd->lstate = new_state;
12620 }
12621 /*
12622 * Set port status flags in the page mapped into userspace
12623 * memory. Do it here to ensure a reliable state - this is
12624 * the only function called by all state handling code.
12625 * Always set the flags due to the fact that the cache value
12626 * might have been changed explicitly outside of this
12627 * function.
12628 */
12629 if (ppd->statusp) {
12630 switch (ppd->lstate) {
12631 case IB_PORT_DOWN:
12632 case IB_PORT_INIT:
12633 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12634 HFI1_STATUS_IB_READY);
12635 break;
12636 case IB_PORT_ARMED:
12637 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12638 break;
12639 case IB_PORT_ACTIVE:
12640 *ppd->statusp |= HFI1_STATUS_IB_READY;
12641 break;
12642 }
12643 }
12644 return ppd->lstate;
12645 }
12646
12647 /**
12648 * wait_logical_linkstate - wait for an IB link state change to occur
12649 * @ppd: port device
12650 * @state: the state to wait for
12651 * @msecs: the number of milliseconds to wait
12652 *
12653 * Wait up to msecs milliseconds for IB link state change to occur.
12654 * For now, take the easy polling route.
12655 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12656 */
12657 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12658 int msecs)
12659 {
12660 unsigned long timeout;
12661
12662 timeout = jiffies + msecs_to_jiffies(msecs);
12663 while (1) {
12664 if (get_logical_state(ppd) == state)
12665 return 0;
12666 if (time_after(jiffies, timeout))
12667 break;
12668 msleep(20);
12669 }
12670 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12671
12672 return -ETIMEDOUT;
12673 }
12674
12675 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12676 {
12677 u32 pstate;
12678 u32 ib_pstate;
12679
12680 pstate = read_physical_state(ppd->dd);
12681 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12682 if (ppd->last_pstate != ib_pstate) {
12683 dd_dev_info(ppd->dd,
12684 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12685 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12686 pstate);
12687 ppd->last_pstate = ib_pstate;
12688 }
12689 return ib_pstate;
12690 }
12691
12692 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12693 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12694
12695 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12696 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12697
12698 void hfi1_init_ctxt(struct send_context *sc)
12699 {
12700 if (sc) {
12701 struct hfi1_devdata *dd = sc->dd;
12702 u64 reg;
12703 u8 set = (sc->type == SC_USER ?
12704 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12705 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12706 reg = read_kctxt_csr(dd, sc->hw_context,
12707 SEND_CTXT_CHECK_ENABLE);
12708 if (set)
12709 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12710 else
12711 SET_STATIC_RATE_CONTROL_SMASK(reg);
12712 write_kctxt_csr(dd, sc->hw_context,
12713 SEND_CTXT_CHECK_ENABLE, reg);
12714 }
12715 }
12716
12717 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12718 {
12719 int ret = 0;
12720 u64 reg;
12721
12722 if (dd->icode != ICODE_RTL_SILICON) {
12723 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12724 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12725 __func__);
12726 return -EINVAL;
12727 }
12728 reg = read_csr(dd, ASIC_STS_THERM);
12729 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12730 ASIC_STS_THERM_CURR_TEMP_MASK);
12731 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12732 ASIC_STS_THERM_LO_TEMP_MASK);
12733 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12734 ASIC_STS_THERM_HI_TEMP_MASK);
12735 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12736 ASIC_STS_THERM_CRIT_TEMP_MASK);
12737 /* triggers is a 3-bit value - 1 bit per trigger. */
12738 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12739
12740 return ret;
12741 }
12742
12743 /* ========================================================================= */
12744
12745 /*
12746 * Enable/disable chip from delivering interrupts.
12747 */
12748 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12749 {
12750 int i;
12751
12752 /*
12753 * In HFI, the mask needs to be 1 to allow interrupts.
12754 */
12755 if (enable) {
12756 /* enable all interrupts */
12757 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12758 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12759
12760 init_qsfp_int(dd);
12761 } else {
12762 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12763 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12764 }
12765 }
12766
12767 /*
12768 * Clear all interrupt sources on the chip.
12769 */
12770 static void clear_all_interrupts(struct hfi1_devdata *dd)
12771 {
12772 int i;
12773
12774 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12775 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12776
12777 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12778 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12779 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12780 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12781 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12782 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12783 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12784 for (i = 0; i < dd->chip_send_contexts; i++)
12785 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12786 for (i = 0; i < dd->chip_sdma_engines; i++)
12787 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12788
12789 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12790 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12791 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12792 }
12793
12794 /* Move to pcie.c? */
12795 static void disable_intx(struct pci_dev *pdev)
12796 {
12797 pci_intx(pdev, 0);
12798 }
12799
12800 static void clean_up_interrupts(struct hfi1_devdata *dd)
12801 {
12802 int i;
12803
12804 /* remove irqs - must happen before disabling/turning off */
12805 if (dd->num_msix_entries) {
12806 /* MSI-X */
12807 struct hfi1_msix_entry *me = dd->msix_entries;
12808
12809 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12810 if (!me->arg) /* => no irq, no affinity */
12811 continue;
12812 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12813 free_irq(me->msix.vector, me->arg);
12814 }
12815 } else {
12816 /* INTx */
12817 if (dd->requested_intx_irq) {
12818 free_irq(dd->pcidev->irq, dd);
12819 dd->requested_intx_irq = 0;
12820 }
12821 }
12822
12823 /* turn off interrupts */
12824 if (dd->num_msix_entries) {
12825 /* MSI-X */
12826 pci_disable_msix(dd->pcidev);
12827 } else {
12828 /* INTx */
12829 disable_intx(dd->pcidev);
12830 }
12831
12832 /* clean structures */
12833 kfree(dd->msix_entries);
12834 dd->msix_entries = NULL;
12835 dd->num_msix_entries = 0;
12836 }
12837
12838 /*
12839 * Remap the interrupt source from the general handler to the given MSI-X
12840 * interrupt.
12841 */
12842 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12843 {
12844 u64 reg;
12845 int m, n;
12846
12847 /* clear from the handled mask of the general interrupt */
12848 m = isrc / 64;
12849 n = isrc % 64;
12850 dd->gi_mask[m] &= ~((u64)1 << n);
12851
12852 /* direct the chip source to the given MSI-X interrupt */
12853 m = isrc / 8;
12854 n = isrc % 8;
12855 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12856 reg &= ~((u64)0xff << (8 * n));
12857 reg |= ((u64)msix_intr & 0xff) << (8 * n);
12858 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12859 }
12860
12861 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12862 int engine, int msix_intr)
12863 {
12864 /*
12865 * SDMA engine interrupt sources grouped by type, rather than
12866 * engine. Per-engine interrupts are as follows:
12867 * SDMA
12868 * SDMAProgress
12869 * SDMAIdle
12870 */
12871 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12872 msix_intr);
12873 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12874 msix_intr);
12875 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12876 msix_intr);
12877 }
12878
12879 static int request_intx_irq(struct hfi1_devdata *dd)
12880 {
12881 int ret;
12882
12883 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12884 dd->unit);
12885 ret = request_irq(dd->pcidev->irq, general_interrupt,
12886 IRQF_SHARED, dd->intx_name, dd);
12887 if (ret)
12888 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12889 ret);
12890 else
12891 dd->requested_intx_irq = 1;
12892 return ret;
12893 }
12894
12895 static int request_msix_irqs(struct hfi1_devdata *dd)
12896 {
12897 int first_general, last_general;
12898 int first_sdma, last_sdma;
12899 int first_rx, last_rx;
12900 int i, ret = 0;
12901
12902 /* calculate the ranges we are going to use */
12903 first_general = 0;
12904 last_general = first_general + 1;
12905 first_sdma = last_general;
12906 last_sdma = first_sdma + dd->num_sdma;
12907 first_rx = last_sdma;
12908 last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
12909
12910 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
12911 dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
12912
12913 /*
12914 * Sanity check - the code expects all SDMA chip source
12915 * interrupts to be in the same CSR, starting at bit 0. Verify
12916 * that this is true by checking the bit location of the start.
12917 */
12918 BUILD_BUG_ON(IS_SDMA_START % 64);
12919
12920 for (i = 0; i < dd->num_msix_entries; i++) {
12921 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12922 const char *err_info;
12923 irq_handler_t handler;
12924 irq_handler_t thread = NULL;
12925 void *arg = NULL;
12926 int idx;
12927 struct hfi1_ctxtdata *rcd = NULL;
12928 struct sdma_engine *sde = NULL;
12929
12930 /* obtain the arguments to request_irq */
12931 if (first_general <= i && i < last_general) {
12932 idx = i - first_general;
12933 handler = general_interrupt;
12934 arg = dd;
12935 snprintf(me->name, sizeof(me->name),
12936 DRIVER_NAME "_%d", dd->unit);
12937 err_info = "general";
12938 me->type = IRQ_GENERAL;
12939 } else if (first_sdma <= i && i < last_sdma) {
12940 idx = i - first_sdma;
12941 sde = &dd->per_sdma[idx];
12942 handler = sdma_interrupt;
12943 arg = sde;
12944 snprintf(me->name, sizeof(me->name),
12945 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12946 err_info = "sdma";
12947 remap_sdma_interrupts(dd, idx, i);
12948 me->type = IRQ_SDMA;
12949 } else if (first_rx <= i && i < last_rx) {
12950 idx = i - first_rx;
12951 rcd = dd->rcd[idx];
12952 if (rcd) {
12953 /*
12954 * Set the interrupt register and mask for this
12955 * context's interrupt.
12956 */
12957 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12958 rcd->imask = ((u64)1) <<
12959 ((IS_RCVAVAIL_START + idx) % 64);
12960 handler = receive_context_interrupt;
12961 thread = receive_context_thread;
12962 arg = rcd;
12963 snprintf(me->name, sizeof(me->name),
12964 DRIVER_NAME "_%d kctxt%d",
12965 dd->unit, idx);
12966 err_info = "receive context";
12967 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12968 me->type = IRQ_RCVCTXT;
12969 rcd->msix_intr = i;
12970 }
12971 } else {
12972 /* not in our expected range - complain, then
12973 * ignore it
12974 */
12975 dd_dev_err(dd,
12976 "Unexpected extra MSI-X interrupt %d\n", i);
12977 continue;
12978 }
12979 /* no argument, no interrupt */
12980 if (!arg)
12981 continue;
12982 /* make sure the name is terminated */
12983 me->name[sizeof(me->name) - 1] = 0;
12984
12985 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12986 me->name, arg);
12987 if (ret) {
12988 dd_dev_err(dd,
12989 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12990 err_info, me->msix.vector, idx, ret);
12991 return ret;
12992 }
12993 /*
12994 * assign arg after request_irq call, so it will be
12995 * cleaned up
12996 */
12997 me->arg = arg;
12998
12999 ret = hfi1_get_irq_affinity(dd, me);
13000 if (ret)
13001 dd_dev_err(dd,
13002 "unable to pin IRQ %d\n", ret);
13003 }
13004
13005 return ret;
13006 }
13007
13008 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13009 {
13010 int i;
13011
13012 if (!dd->num_msix_entries) {
13013 synchronize_irq(dd->pcidev->irq);
13014 return;
13015 }
13016
13017 for (i = 0; i < dd->vnic.num_ctxt; i++) {
13018 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13019 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13020
13021 synchronize_irq(me->msix.vector);
13022 }
13023 }
13024
13025 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13026 {
13027 struct hfi1_devdata *dd = rcd->dd;
13028 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13029
13030 if (!me->arg) /* => no irq, no affinity */
13031 return;
13032
13033 hfi1_put_irq_affinity(dd, me);
13034 free_irq(me->msix.vector, me->arg);
13035
13036 me->arg = NULL;
13037 }
13038
13039 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13040 {
13041 struct hfi1_devdata *dd = rcd->dd;
13042 struct hfi1_msix_entry *me;
13043 int idx = rcd->ctxt;
13044 void *arg = rcd;
13045 int ret;
13046
13047 rcd->msix_intr = dd->vnic.msix_idx++;
13048 me = &dd->msix_entries[rcd->msix_intr];
13049
13050 /*
13051 * Set the interrupt register and mask for this
13052 * context's interrupt.
13053 */
13054 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13055 rcd->imask = ((u64)1) <<
13056 ((IS_RCVAVAIL_START + idx) % 64);
13057
13058 snprintf(me->name, sizeof(me->name),
13059 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13060 me->name[sizeof(me->name) - 1] = 0;
13061 me->type = IRQ_RCVCTXT;
13062
13063 remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13064
13065 ret = request_threaded_irq(me->msix.vector, receive_context_interrupt,
13066 receive_context_thread, 0, me->name, arg);
13067 if (ret) {
13068 dd_dev_err(dd, "vnic irq request (vector %d, idx %d) fail %d\n",
13069 me->msix.vector, idx, ret);
13070 return;
13071 }
13072 /*
13073 * assign arg after request_irq call, so it will be
13074 * cleaned up
13075 */
13076 me->arg = arg;
13077
13078 ret = hfi1_get_irq_affinity(dd, me);
13079 if (ret) {
13080 dd_dev_err(dd,
13081 "unable to pin IRQ %d\n", ret);
13082 free_irq(me->msix.vector, me->arg);
13083 }
13084 }
13085
13086 /*
13087 * Set the general handler to accept all interrupts, remap all
13088 * chip interrupts back to MSI-X 0.
13089 */
13090 static void reset_interrupts(struct hfi1_devdata *dd)
13091 {
13092 int i;
13093
13094 /* all interrupts handled by the general handler */
13095 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13096 dd->gi_mask[i] = ~(u64)0;
13097
13098 /* all chip interrupts map to MSI-X 0 */
13099 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13100 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13101 }
13102
13103 static int set_up_interrupts(struct hfi1_devdata *dd)
13104 {
13105 struct hfi1_msix_entry *entries;
13106 u32 total, request;
13107 int i, ret;
13108 int single_interrupt = 0; /* we expect to have all the interrupts */
13109
13110 /*
13111 * Interrupt count:
13112 * 1 general, "slow path" interrupt (includes the SDMA engines
13113 * slow source, SDMACleanupDone)
13114 * N interrupts - one per used SDMA engine
13115 * M interrupt - one per kernel receive context
13116 */
13117 total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13118
13119 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
13120 if (!entries) {
13121 ret = -ENOMEM;
13122 goto fail;
13123 }
13124 /* 1-1 MSI-X entry assignment */
13125 for (i = 0; i < total; i++)
13126 entries[i].msix.entry = i;
13127
13128 /* ask for MSI-X interrupts */
13129 request = total;
13130 request_msix(dd, &request, entries);
13131
13132 if (request == 0) {
13133 /* using INTx */
13134 /* dd->num_msix_entries already zero */
13135 kfree(entries);
13136 single_interrupt = 1;
13137 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13138 } else {
13139 /* using MSI-X */
13140 dd->num_msix_entries = request;
13141 dd->msix_entries = entries;
13142
13143 if (request != total) {
13144 /* using MSI-X, with reduced interrupts */
13145 dd_dev_err(
13146 dd,
13147 "cannot handle reduced interrupt case, want %u, got %u\n",
13148 total, request);
13149 ret = -EINVAL;
13150 goto fail;
13151 }
13152 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13153 }
13154
13155 /* mask all interrupts */
13156 set_intr_state(dd, 0);
13157 /* clear all pending interrupts */
13158 clear_all_interrupts(dd);
13159
13160 /* reset general handler mask, chip MSI-X mappings */
13161 reset_interrupts(dd);
13162
13163 if (single_interrupt)
13164 ret = request_intx_irq(dd);
13165 else
13166 ret = request_msix_irqs(dd);
13167 if (ret)
13168 goto fail;
13169
13170 return 0;
13171
13172 fail:
13173 clean_up_interrupts(dd);
13174 return ret;
13175 }
13176
13177 /*
13178 * Set up context values in dd. Sets:
13179 *
13180 * num_rcv_contexts - number of contexts being used
13181 * n_krcv_queues - number of kernel contexts
13182 * first_dyn_alloc_ctxt - first dynamically allocated context
13183 * in array of contexts
13184 * freectxts - number of free user contexts
13185 * num_send_contexts - number of PIO send contexts being used
13186 */
13187 static int set_up_context_variables(struct hfi1_devdata *dd)
13188 {
13189 unsigned long num_kernel_contexts;
13190 int total_contexts;
13191 int ret;
13192 unsigned ngroups;
13193 int qos_rmt_count;
13194 int user_rmt_reduced;
13195
13196 /*
13197 * Kernel receive contexts:
13198 * - Context 0 - control context (VL15/multicast/error)
13199 * - Context 1 - first kernel context
13200 * - Context 2 - second kernel context
13201 * ...
13202 */
13203 if (n_krcvqs)
13204 /*
13205 * n_krcvqs is the sum of module parameter kernel receive
13206 * contexts, krcvqs[]. It does not include the control
13207 * context, so add that.
13208 */
13209 num_kernel_contexts = n_krcvqs + 1;
13210 else
13211 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13212 /*
13213 * Every kernel receive context needs an ACK send context.
13214 * one send context is allocated for each VL{0-7} and VL15
13215 */
13216 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13217 dd_dev_err(dd,
13218 "Reducing # kernel rcv contexts to: %d, from %lu\n",
13219 (int)(dd->chip_send_contexts - num_vls - 1),
13220 num_kernel_contexts);
13221 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13222 }
13223 /*
13224 * User contexts:
13225 * - default to 1 user context per real (non-HT) CPU core if
13226 * num_user_contexts is negative
13227 */
13228 if (num_user_contexts < 0)
13229 num_user_contexts =
13230 cpumask_weight(&node_affinity.real_cpu_mask);
13231
13232 total_contexts = num_kernel_contexts + num_user_contexts;
13233
13234 /*
13235 * Adjust the counts given a global max.
13236 */
13237 if (total_contexts > dd->chip_rcv_contexts) {
13238 dd_dev_err(dd,
13239 "Reducing # user receive contexts to: %d, from %d\n",
13240 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13241 (int)num_user_contexts);
13242 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13243 /* recalculate */
13244 total_contexts = num_kernel_contexts + num_user_contexts;
13245 }
13246
13247 /* each user context requires an entry in the RMT */
13248 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13249 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13250 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13251 dd_dev_err(dd,
13252 "RMT size is reducing the number of user receive contexts from %d to %d\n",
13253 (int)num_user_contexts,
13254 user_rmt_reduced);
13255 /* recalculate */
13256 num_user_contexts = user_rmt_reduced;
13257 total_contexts = num_kernel_contexts + num_user_contexts;
13258 }
13259
13260 /* Accommodate VNIC contexts */
13261 if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13262 total_contexts += HFI1_NUM_VNIC_CTXT;
13263
13264 /* the first N are kernel contexts, the rest are user/vnic contexts */
13265 dd->num_rcv_contexts = total_contexts;
13266 dd->n_krcv_queues = num_kernel_contexts;
13267 dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13268 dd->num_user_contexts = num_user_contexts;
13269 dd->freectxts = num_user_contexts;
13270 dd_dev_info(dd,
13271 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13272 (int)dd->chip_rcv_contexts,
13273 (int)dd->num_rcv_contexts,
13274 (int)dd->n_krcv_queues,
13275 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13276
13277 /*
13278 * Receive array allocation:
13279 * All RcvArray entries are divided into groups of 8. This
13280 * is required by the hardware and will speed up writes to
13281 * consecutive entries by using write-combining of the entire
13282 * cacheline.
13283 *
13284 * The number of groups are evenly divided among all contexts.
13285 * any left over groups will be given to the first N user
13286 * contexts.
13287 */
13288 dd->rcv_entries.group_size = RCV_INCREMENT;
13289 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13290 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13291 dd->rcv_entries.nctxt_extra = ngroups -
13292 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13293 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13294 dd->rcv_entries.ngroups,
13295 dd->rcv_entries.nctxt_extra);
13296 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13297 MAX_EAGER_ENTRIES * 2) {
13298 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13299 dd->rcv_entries.group_size;
13300 dd_dev_info(dd,
13301 "RcvArray group count too high, change to %u\n",
13302 dd->rcv_entries.ngroups);
13303 dd->rcv_entries.nctxt_extra = 0;
13304 }
13305 /*
13306 * PIO send contexts
13307 */
13308 ret = init_sc_pools_and_sizes(dd);
13309 if (ret >= 0) { /* success */
13310 dd->num_send_contexts = ret;
13311 dd_dev_info(
13312 dd,
13313 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13314 dd->chip_send_contexts,
13315 dd->num_send_contexts,
13316 dd->sc_sizes[SC_KERNEL].count,
13317 dd->sc_sizes[SC_ACK].count,
13318 dd->sc_sizes[SC_USER].count,
13319 dd->sc_sizes[SC_VL15].count);
13320 ret = 0; /* success */
13321 }
13322
13323 return ret;
13324 }
13325
13326 /*
13327 * Set the device/port partition key table. The MAD code
13328 * will ensure that, at least, the partial management
13329 * partition key is present in the table.
13330 */
13331 static void set_partition_keys(struct hfi1_pportdata *ppd)
13332 {
13333 struct hfi1_devdata *dd = ppd->dd;
13334 u64 reg = 0;
13335 int i;
13336
13337 dd_dev_info(dd, "Setting partition keys\n");
13338 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13339 reg |= (ppd->pkeys[i] &
13340 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13341 ((i % 4) *
13342 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13343 /* Each register holds 4 PKey values. */
13344 if ((i % 4) == 3) {
13345 write_csr(dd, RCV_PARTITION_KEY +
13346 ((i - 3) * 2), reg);
13347 reg = 0;
13348 }
13349 }
13350
13351 /* Always enable HW pkeys check when pkeys table is set */
13352 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13353 }
13354
13355 /*
13356 * These CSRs and memories are uninitialized on reset and must be
13357 * written before reading to set the ECC/parity bits.
13358 *
13359 * NOTE: All user context CSRs that are not mmaped write-only
13360 * (e.g. the TID flows) must be initialized even if the driver never
13361 * reads them.
13362 */
13363 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13364 {
13365 int i, j;
13366
13367 /* CceIntMap */
13368 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13369 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13370
13371 /* SendCtxtCreditReturnAddr */
13372 for (i = 0; i < dd->chip_send_contexts; i++)
13373 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13374
13375 /* PIO Send buffers */
13376 /* SDMA Send buffers */
13377 /*
13378 * These are not normally read, and (presently) have no method
13379 * to be read, so are not pre-initialized
13380 */
13381
13382 /* RcvHdrAddr */
13383 /* RcvHdrTailAddr */
13384 /* RcvTidFlowTable */
13385 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13386 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13387 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13388 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13389 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13390 }
13391
13392 /* RcvArray */
13393 for (i = 0; i < dd->chip_rcv_array_count; i++)
13394 write_csr(dd, RCV_ARRAY + (8 * i),
13395 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13396
13397 /* RcvQPMapTable */
13398 for (i = 0; i < 32; i++)
13399 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13400 }
13401
13402 /*
13403 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13404 */
13405 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13406 u64 ctrl_bits)
13407 {
13408 unsigned long timeout;
13409 u64 reg;
13410
13411 /* is the condition present? */
13412 reg = read_csr(dd, CCE_STATUS);
13413 if ((reg & status_bits) == 0)
13414 return;
13415
13416 /* clear the condition */
13417 write_csr(dd, CCE_CTRL, ctrl_bits);
13418
13419 /* wait for the condition to clear */
13420 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13421 while (1) {
13422 reg = read_csr(dd, CCE_STATUS);
13423 if ((reg & status_bits) == 0)
13424 return;
13425 if (time_after(jiffies, timeout)) {
13426 dd_dev_err(dd,
13427 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13428 status_bits, reg & status_bits);
13429 return;
13430 }
13431 udelay(1);
13432 }
13433 }
13434
13435 /* set CCE CSRs to chip reset defaults */
13436 static void reset_cce_csrs(struct hfi1_devdata *dd)
13437 {
13438 int i;
13439
13440 /* CCE_REVISION read-only */
13441 /* CCE_REVISION2 read-only */
13442 /* CCE_CTRL - bits clear automatically */
13443 /* CCE_STATUS read-only, use CceCtrl to clear */
13444 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13445 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13446 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13447 for (i = 0; i < CCE_NUM_SCRATCH; i++)
13448 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13449 /* CCE_ERR_STATUS read-only */
13450 write_csr(dd, CCE_ERR_MASK, 0);
13451 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13452 /* CCE_ERR_FORCE leave alone */
13453 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13454 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13455 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13456 /* CCE_PCIE_CTRL leave alone */
13457 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13458 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13459 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13460 CCE_MSIX_TABLE_UPPER_RESETCSR);
13461 }
13462 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13463 /* CCE_MSIX_PBA read-only */
13464 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13465 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13466 }
13467 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13468 write_csr(dd, CCE_INT_MAP, 0);
13469 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13470 /* CCE_INT_STATUS read-only */
13471 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13472 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13473 /* CCE_INT_FORCE leave alone */
13474 /* CCE_INT_BLOCKED read-only */
13475 }
13476 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13477 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13478 }
13479
13480 /* set MISC CSRs to chip reset defaults */
13481 static void reset_misc_csrs(struct hfi1_devdata *dd)
13482 {
13483 int i;
13484
13485 for (i = 0; i < 32; i++) {
13486 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13487 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13488 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13489 }
13490 /*
13491 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13492 * only be written 128-byte chunks
13493 */
13494 /* init RSA engine to clear lingering errors */
13495 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13496 write_csr(dd, MISC_CFG_RSA_MU, 0);
13497 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13498 /* MISC_STS_8051_DIGEST read-only */
13499 /* MISC_STS_SBM_DIGEST read-only */
13500 /* MISC_STS_PCIE_DIGEST read-only */
13501 /* MISC_STS_FAB_DIGEST read-only */
13502 /* MISC_ERR_STATUS read-only */
13503 write_csr(dd, MISC_ERR_MASK, 0);
13504 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13505 /* MISC_ERR_FORCE leave alone */
13506 }
13507
13508 /* set TXE CSRs to chip reset defaults */
13509 static void reset_txe_csrs(struct hfi1_devdata *dd)
13510 {
13511 int i;
13512
13513 /*
13514 * TXE Kernel CSRs
13515 */
13516 write_csr(dd, SEND_CTRL, 0);
13517 __cm_reset(dd, 0); /* reset CM internal state */
13518 /* SEND_CONTEXTS read-only */
13519 /* SEND_DMA_ENGINES read-only */
13520 /* SEND_PIO_MEM_SIZE read-only */
13521 /* SEND_DMA_MEM_SIZE read-only */
13522 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13523 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13524 /* SEND_PIO_ERR_STATUS read-only */
13525 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13526 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13527 /* SEND_PIO_ERR_FORCE leave alone */
13528 /* SEND_DMA_ERR_STATUS read-only */
13529 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13530 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13531 /* SEND_DMA_ERR_FORCE leave alone */
13532 /* SEND_EGRESS_ERR_STATUS read-only */
13533 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13534 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13535 /* SEND_EGRESS_ERR_FORCE leave alone */
13536 write_csr(dd, SEND_BTH_QP, 0);
13537 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13538 write_csr(dd, SEND_SC2VLT0, 0);
13539 write_csr(dd, SEND_SC2VLT1, 0);
13540 write_csr(dd, SEND_SC2VLT2, 0);
13541 write_csr(dd, SEND_SC2VLT3, 0);
13542 write_csr(dd, SEND_LEN_CHECK0, 0);
13543 write_csr(dd, SEND_LEN_CHECK1, 0);
13544 /* SEND_ERR_STATUS read-only */
13545 write_csr(dd, SEND_ERR_MASK, 0);
13546 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13547 /* SEND_ERR_FORCE read-only */
13548 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13549 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13550 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13551 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13552 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13553 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13554 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13555 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13556 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13557 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13558 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13559 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13560 /* SEND_CM_CREDIT_USED_STATUS read-only */
13561 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13562 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13563 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13564 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13565 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13566 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13567 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13568 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13569 /* SEND_CM_CREDIT_USED_VL read-only */
13570 /* SEND_CM_CREDIT_USED_VL15 read-only */
13571 /* SEND_EGRESS_CTXT_STATUS read-only */
13572 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13573 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13574 /* SEND_EGRESS_ERR_INFO read-only */
13575 /* SEND_EGRESS_ERR_SOURCE read-only */
13576
13577 /*
13578 * TXE Per-Context CSRs
13579 */
13580 for (i = 0; i < dd->chip_send_contexts; i++) {
13581 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13582 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13583 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13584 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13585 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13586 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13587 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13588 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13589 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13590 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13591 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13592 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13593 }
13594
13595 /*
13596 * TXE Per-SDMA CSRs
13597 */
13598 for (i = 0; i < dd->chip_sdma_engines; i++) {
13599 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13600 /* SEND_DMA_STATUS read-only */
13601 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13602 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13603 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13604 /* SEND_DMA_HEAD read-only */
13605 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13606 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13607 /* SEND_DMA_IDLE_CNT read-only */
13608 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13609 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13610 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13611 /* SEND_DMA_ENG_ERR_STATUS read-only */
13612 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13613 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13614 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13615 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13616 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13617 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13618 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13619 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13620 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13621 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13622 }
13623 }
13624
13625 /*
13626 * Expect on entry:
13627 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13628 */
13629 static void init_rbufs(struct hfi1_devdata *dd)
13630 {
13631 u64 reg;
13632 int count;
13633
13634 /*
13635 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13636 * clear.
13637 */
13638 count = 0;
13639 while (1) {
13640 reg = read_csr(dd, RCV_STATUS);
13641 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13642 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13643 break;
13644 /*
13645 * Give up after 1ms - maximum wait time.
13646 *
13647 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
13648 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13649 * 136 KB / (66% * 250MB/s) = 844us
13650 */
13651 if (count++ > 500) {
13652 dd_dev_err(dd,
13653 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13654 __func__, reg);
13655 break;
13656 }
13657 udelay(2); /* do not busy-wait the CSR */
13658 }
13659
13660 /* start the init - expect RcvCtrl to be 0 */
13661 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13662
13663 /*
13664 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13665 * period after the write before RcvStatus.RxRbufInitDone is valid.
13666 * The delay in the first run through the loop below is sufficient and
13667 * required before the first read of RcvStatus.RxRbufInintDone.
13668 */
13669 read_csr(dd, RCV_CTRL);
13670
13671 /* wait for the init to finish */
13672 count = 0;
13673 while (1) {
13674 /* delay is required first time through - see above */
13675 udelay(2); /* do not busy-wait the CSR */
13676 reg = read_csr(dd, RCV_STATUS);
13677 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13678 break;
13679
13680 /* give up after 100us - slowest possible at 33MHz is 73us */
13681 if (count++ > 50) {
13682 dd_dev_err(dd,
13683 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13684 __func__);
13685 break;
13686 }
13687 }
13688 }
13689
13690 /* set RXE CSRs to chip reset defaults */
13691 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13692 {
13693 int i, j;
13694
13695 /*
13696 * RXE Kernel CSRs
13697 */
13698 write_csr(dd, RCV_CTRL, 0);
13699 init_rbufs(dd);
13700 /* RCV_STATUS read-only */
13701 /* RCV_CONTEXTS read-only */
13702 /* RCV_ARRAY_CNT read-only */
13703 /* RCV_BUF_SIZE read-only */
13704 write_csr(dd, RCV_BTH_QP, 0);
13705 write_csr(dd, RCV_MULTICAST, 0);
13706 write_csr(dd, RCV_BYPASS, 0);
13707 write_csr(dd, RCV_VL15, 0);
13708 /* this is a clear-down */
13709 write_csr(dd, RCV_ERR_INFO,
13710 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13711 /* RCV_ERR_STATUS read-only */
13712 write_csr(dd, RCV_ERR_MASK, 0);
13713 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13714 /* RCV_ERR_FORCE leave alone */
13715 for (i = 0; i < 32; i++)
13716 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13717 for (i = 0; i < 4; i++)
13718 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13719 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13720 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13721 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13722 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13723 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13724 clear_rsm_rule(dd, i);
13725 for (i = 0; i < 32; i++)
13726 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13727
13728 /*
13729 * RXE Kernel and User Per-Context CSRs
13730 */
13731 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13732 /* kernel */
13733 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13734 /* RCV_CTXT_STATUS read-only */
13735 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13736 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13737 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13738 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13739 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13740 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13741 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13742 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13743 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13744 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13745
13746 /* user */
13747 /* RCV_HDR_TAIL read-only */
13748 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13749 /* RCV_EGR_INDEX_TAIL read-only */
13750 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13751 /* RCV_EGR_OFFSET_TAIL read-only */
13752 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13753 write_uctxt_csr(dd, i,
13754 RCV_TID_FLOW_TABLE + (8 * j), 0);
13755 }
13756 }
13757 }
13758
13759 /*
13760 * Set sc2vl tables.
13761 *
13762 * They power on to zeros, so to avoid send context errors
13763 * they need to be set:
13764 *
13765 * SC 0-7 -> VL 0-7 (respectively)
13766 * SC 15 -> VL 15
13767 * otherwise
13768 * -> VL 0
13769 */
13770 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13771 {
13772 int i;
13773 /* init per architecture spec, constrained by hardware capability */
13774
13775 /* HFI maps sent packets */
13776 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13777 0,
13778 0, 0, 1, 1,
13779 2, 2, 3, 3,
13780 4, 4, 5, 5,
13781 6, 6, 7, 7));
13782 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13783 1,
13784 8, 0, 9, 0,
13785 10, 0, 11, 0,
13786 12, 0, 13, 0,
13787 14, 0, 15, 15));
13788 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13789 2,
13790 16, 0, 17, 0,
13791 18, 0, 19, 0,
13792 20, 0, 21, 0,
13793 22, 0, 23, 0));
13794 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13795 3,
13796 24, 0, 25, 0,
13797 26, 0, 27, 0,
13798 28, 0, 29, 0,
13799 30, 0, 31, 0));
13800
13801 /* DC maps received packets */
13802 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13803 15_0,
13804 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13805 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13806 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13807 31_16,
13808 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13809 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13810
13811 /* initialize the cached sc2vl values consistently with h/w */
13812 for (i = 0; i < 32; i++) {
13813 if (i < 8 || i == 15)
13814 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13815 else
13816 *((u8 *)(dd->sc2vl) + i) = 0;
13817 }
13818 }
13819
13820 /*
13821 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13822 * depend on the chip going through a power-on reset - a driver may be loaded
13823 * and unloaded many times.
13824 *
13825 * Do not write any CSR values to the chip in this routine - there may be
13826 * a reset following the (possible) FLR in this routine.
13827 *
13828 */
13829 static void init_chip(struct hfi1_devdata *dd)
13830 {
13831 int i;
13832
13833 /*
13834 * Put the HFI CSRs in a known state.
13835 * Combine this with a DC reset.
13836 *
13837 * Stop the device from doing anything while we do a
13838 * reset. We know there are no other active users of
13839 * the device since we are now in charge. Turn off
13840 * off all outbound and inbound traffic and make sure
13841 * the device does not generate any interrupts.
13842 */
13843
13844 /* disable send contexts and SDMA engines */
13845 write_csr(dd, SEND_CTRL, 0);
13846 for (i = 0; i < dd->chip_send_contexts; i++)
13847 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13848 for (i = 0; i < dd->chip_sdma_engines; i++)
13849 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13850 /* disable port (turn off RXE inbound traffic) and contexts */
13851 write_csr(dd, RCV_CTRL, 0);
13852 for (i = 0; i < dd->chip_rcv_contexts; i++)
13853 write_csr(dd, RCV_CTXT_CTRL, 0);
13854 /* mask all interrupt sources */
13855 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13856 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13857
13858 /*
13859 * DC Reset: do a full DC reset before the register clear.
13860 * A recommended length of time to hold is one CSR read,
13861 * so reread the CceDcCtrl. Then, hold the DC in reset
13862 * across the clear.
13863 */
13864 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13865 (void)read_csr(dd, CCE_DC_CTRL);
13866
13867 if (use_flr) {
13868 /*
13869 * A FLR will reset the SPC core and part of the PCIe.
13870 * The parts that need to be restored have already been
13871 * saved.
13872 */
13873 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13874
13875 /* do the FLR, the DC reset will remain */
13876 pcie_flr(dd->pcidev);
13877
13878 /* restore command and BARs */
13879 restore_pci_variables(dd);
13880
13881 if (is_ax(dd)) {
13882 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13883 pcie_flr(dd->pcidev);
13884 restore_pci_variables(dd);
13885 }
13886 } else {
13887 dd_dev_info(dd, "Resetting CSRs with writes\n");
13888 reset_cce_csrs(dd);
13889 reset_txe_csrs(dd);
13890 reset_rxe_csrs(dd);
13891 reset_misc_csrs(dd);
13892 }
13893 /* clear the DC reset */
13894 write_csr(dd, CCE_DC_CTRL, 0);
13895
13896 /* Set the LED off */
13897 setextled(dd, 0);
13898
13899 /*
13900 * Clear the QSFP reset.
13901 * An FLR enforces a 0 on all out pins. The driver does not touch
13902 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
13903 * anything plugged constantly in reset, if it pays attention
13904 * to RESET_N.
13905 * Prime examples of this are optical cables. Set all pins high.
13906 * I2CCLK and I2CDAT will change per direction, and INT_N and
13907 * MODPRS_N are input only and their value is ignored.
13908 */
13909 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13910 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13911 init_chip_resources(dd);
13912 }
13913
13914 static void init_early_variables(struct hfi1_devdata *dd)
13915 {
13916 int i;
13917
13918 /* assign link credit variables */
13919 dd->vau = CM_VAU;
13920 dd->link_credits = CM_GLOBAL_CREDITS;
13921 if (is_ax(dd))
13922 dd->link_credits--;
13923 dd->vcu = cu_to_vcu(hfi1_cu);
13924 /* enough room for 8 MAD packets plus header - 17K */
13925 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13926 if (dd->vl15_init > dd->link_credits)
13927 dd->vl15_init = dd->link_credits;
13928
13929 write_uninitialized_csrs_and_memories(dd);
13930
13931 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13932 for (i = 0; i < dd->num_pports; i++) {
13933 struct hfi1_pportdata *ppd = &dd->pport[i];
13934
13935 set_partition_keys(ppd);
13936 }
13937 init_sc2vl_tables(dd);
13938 }
13939
13940 static void init_kdeth_qp(struct hfi1_devdata *dd)
13941 {
13942 /* user changed the KDETH_QP */
13943 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13944 /* out of range or illegal value */
13945 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13946 kdeth_qp = 0;
13947 }
13948 if (kdeth_qp == 0) /* not set, or failed range check */
13949 kdeth_qp = DEFAULT_KDETH_QP;
13950
13951 write_csr(dd, SEND_BTH_QP,
13952 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13953 SEND_BTH_QP_KDETH_QP_SHIFT);
13954
13955 write_csr(dd, RCV_BTH_QP,
13956 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13957 RCV_BTH_QP_KDETH_QP_SHIFT);
13958 }
13959
13960 /**
13961 * init_qpmap_table
13962 * @dd - device data
13963 * @first_ctxt - first context
13964 * @last_ctxt - first context
13965 *
13966 * This return sets the qpn mapping table that
13967 * is indexed by qpn[8:1].
13968 *
13969 * The routine will round robin the 256 settings
13970 * from first_ctxt to last_ctxt.
13971 *
13972 * The first/last looks ahead to having specialized
13973 * receive contexts for mgmt and bypass. Normal
13974 * verbs traffic will assumed to be on a range
13975 * of receive contexts.
13976 */
13977 static void init_qpmap_table(struct hfi1_devdata *dd,
13978 u32 first_ctxt,
13979 u32 last_ctxt)
13980 {
13981 u64 reg = 0;
13982 u64 regno = RCV_QP_MAP_TABLE;
13983 int i;
13984 u64 ctxt = first_ctxt;
13985
13986 for (i = 0; i < 256; i++) {
13987 reg |= ctxt << (8 * (i % 8));
13988 ctxt++;
13989 if (ctxt > last_ctxt)
13990 ctxt = first_ctxt;
13991 if (i % 8 == 7) {
13992 write_csr(dd, regno, reg);
13993 reg = 0;
13994 regno += 8;
13995 }
13996 }
13997
13998 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13999 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14000 }
14001
14002 struct rsm_map_table {
14003 u64 map[NUM_MAP_REGS];
14004 unsigned int used;
14005 };
14006
14007 struct rsm_rule_data {
14008 u8 offset;
14009 u8 pkt_type;
14010 u32 field1_off;
14011 u32 field2_off;
14012 u32 index1_off;
14013 u32 index1_width;
14014 u32 index2_off;
14015 u32 index2_width;
14016 u32 mask1;
14017 u32 value1;
14018 u32 mask2;
14019 u32 value2;
14020 };
14021
14022 /*
14023 * Return an initialized RMT map table for users to fill in. OK if it
14024 * returns NULL, indicating no table.
14025 */
14026 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14027 {
14028 struct rsm_map_table *rmt;
14029 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
14030
14031 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14032 if (rmt) {
14033 memset(rmt->map, rxcontext, sizeof(rmt->map));
14034 rmt->used = 0;
14035 }
14036
14037 return rmt;
14038 }
14039
14040 /*
14041 * Write the final RMT map table to the chip and free the table. OK if
14042 * table is NULL.
14043 */
14044 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14045 struct rsm_map_table *rmt)
14046 {
14047 int i;
14048
14049 if (rmt) {
14050 /* write table to chip */
14051 for (i = 0; i < NUM_MAP_REGS; i++)
14052 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14053
14054 /* enable RSM */
14055 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14056 }
14057 }
14058
14059 /*
14060 * Add a receive side mapping rule.
14061 */
14062 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14063 struct rsm_rule_data *rrd)
14064 {
14065 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14066 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14067 1ull << rule_index | /* enable bit */
14068 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14069 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14070 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14071 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14072 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14073 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14074 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14075 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14076 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14077 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14078 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14079 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14080 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14081 }
14082
14083 /*
14084 * Clear a receive side mapping rule.
14085 */
14086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14087 {
14088 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14089 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14090 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14091 }
14092
14093 /* return the number of RSM map table entries that will be used for QOS */
14094 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14095 unsigned int *np)
14096 {
14097 int i;
14098 unsigned int m, n;
14099 u8 max_by_vl = 0;
14100
14101 /* is QOS active at all? */
14102 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14103 num_vls == 1 ||
14104 krcvqsset <= 1)
14105 goto no_qos;
14106
14107 /* determine bits for qpn */
14108 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14109 if (krcvqs[i] > max_by_vl)
14110 max_by_vl = krcvqs[i];
14111 if (max_by_vl > 32)
14112 goto no_qos;
14113 m = ilog2(__roundup_pow_of_two(max_by_vl));
14114
14115 /* determine bits for vl */
14116 n = ilog2(__roundup_pow_of_two(num_vls));
14117
14118 /* reject if too much is used */
14119 if ((m + n) > 7)
14120 goto no_qos;
14121
14122 if (mp)
14123 *mp = m;
14124 if (np)
14125 *np = n;
14126
14127 return 1 << (m + n);
14128
14129 no_qos:
14130 if (mp)
14131 *mp = 0;
14132 if (np)
14133 *np = 0;
14134 return 0;
14135 }
14136
14137 /**
14138 * init_qos - init RX qos
14139 * @dd - device data
14140 * @rmt - RSM map table
14141 *
14142 * This routine initializes Rule 0 and the RSM map table to implement
14143 * quality of service (qos).
14144 *
14145 * If all of the limit tests succeed, qos is applied based on the array
14146 * interpretation of krcvqs where entry 0 is VL0.
14147 *
14148 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14149 * feed both the RSM map table and the single rule.
14150 */
14151 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14152 {
14153 struct rsm_rule_data rrd;
14154 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14155 unsigned int rmt_entries;
14156 u64 reg;
14157
14158 if (!rmt)
14159 goto bail;
14160 rmt_entries = qos_rmt_entries(dd, &m, &n);
14161 if (rmt_entries == 0)
14162 goto bail;
14163 qpns_per_vl = 1 << m;
14164
14165 /* enough room in the map table? */
14166 rmt_entries = 1 << (m + n);
14167 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14168 goto bail;
14169
14170 /* add qos entries to the the RSM map table */
14171 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14172 unsigned tctxt;
14173
14174 for (qpn = 0, tctxt = ctxt;
14175 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14176 unsigned idx, regoff, regidx;
14177
14178 /* generate the index the hardware will produce */
14179 idx = rmt->used + ((qpn << n) ^ i);
14180 regoff = (idx % 8) * 8;
14181 regidx = idx / 8;
14182 /* replace default with context number */
14183 reg = rmt->map[regidx];
14184 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14185 << regoff);
14186 reg |= (u64)(tctxt++) << regoff;
14187 rmt->map[regidx] = reg;
14188 if (tctxt == ctxt + krcvqs[i])
14189 tctxt = ctxt;
14190 }
14191 ctxt += krcvqs[i];
14192 }
14193
14194 rrd.offset = rmt->used;
14195 rrd.pkt_type = 2;
14196 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14197 rrd.field2_off = LRH_SC_MATCH_OFFSET;
14198 rrd.index1_off = LRH_SC_SELECT_OFFSET;
14199 rrd.index1_width = n;
14200 rrd.index2_off = QPN_SELECT_OFFSET;
14201 rrd.index2_width = m + n;
14202 rrd.mask1 = LRH_BTH_MASK;
14203 rrd.value1 = LRH_BTH_VALUE;
14204 rrd.mask2 = LRH_SC_MASK;
14205 rrd.value2 = LRH_SC_VALUE;
14206
14207 /* add rule 0 */
14208 add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14209
14210 /* mark RSM map entries as used */
14211 rmt->used += rmt_entries;
14212 /* map everything else to the mcast/err/vl15 context */
14213 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14214 dd->qos_shift = n + 1;
14215 return;
14216 bail:
14217 dd->qos_shift = 1;
14218 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14219 }
14220
14221 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14222 struct rsm_map_table *rmt)
14223 {
14224 struct rsm_rule_data rrd;
14225 u64 reg;
14226 int i, idx, regoff, regidx;
14227 u8 offset;
14228
14229 /* there needs to be enough room in the map table */
14230 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14231 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14232 return;
14233 }
14234
14235 /*
14236 * RSM will extract the destination context as an index into the
14237 * map table. The destination contexts are a sequential block
14238 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14239 * Map entries are accessed as offset + extracted value. Adjust
14240 * the added offset so this sequence can be placed anywhere in
14241 * the table - as long as the entries themselves do not wrap.
14242 * There are only enough bits in offset for the table size, so
14243 * start with that to allow for a "negative" offset.
14244 */
14245 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14246 (int)dd->first_dyn_alloc_ctxt);
14247
14248 for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14249 i < dd->num_rcv_contexts; i++, idx++) {
14250 /* replace with identity mapping */
14251 regoff = (idx % 8) * 8;
14252 regidx = idx / 8;
14253 reg = rmt->map[regidx];
14254 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14255 reg |= (u64)i << regoff;
14256 rmt->map[regidx] = reg;
14257 }
14258
14259 /*
14260 * For RSM intercept of Expected FECN packets:
14261 * o packet type 0 - expected
14262 * o match on F (bit 95), using select/match 1, and
14263 * o match on SH (bit 133), using select/match 2.
14264 *
14265 * Use index 1 to extract the 8-bit receive context from DestQP
14266 * (start at bit 64). Use that as the RSM map table index.
14267 */
14268 rrd.offset = offset;
14269 rrd.pkt_type = 0;
14270 rrd.field1_off = 95;
14271 rrd.field2_off = 133;
14272 rrd.index1_off = 64;
14273 rrd.index1_width = 8;
14274 rrd.index2_off = 0;
14275 rrd.index2_width = 0;
14276 rrd.mask1 = 1;
14277 rrd.value1 = 1;
14278 rrd.mask2 = 1;
14279 rrd.value2 = 1;
14280
14281 /* add rule 1 */
14282 add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14283
14284 rmt->used += dd->num_user_contexts;
14285 }
14286
14287 /* Initialize RSM for VNIC */
14288 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14289 {
14290 u8 i, j;
14291 u8 ctx_id = 0;
14292 u64 reg;
14293 u32 regoff;
14294 struct rsm_rule_data rrd;
14295
14296 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14297 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14298 dd->vnic.rmt_start);
14299 return;
14300 }
14301
14302 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14303 dd->vnic.rmt_start,
14304 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14305
14306 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14307 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14308 reg = read_csr(dd, regoff);
14309 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14310 /* Update map register with vnic context */
14311 j = (dd->vnic.rmt_start + i) % 8;
14312 reg &= ~(0xffllu << (j * 8));
14313 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14314 /* Wrap up vnic ctx index */
14315 ctx_id %= dd->vnic.num_ctxt;
14316 /* Write back map register */
14317 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14318 dev_dbg(&(dd)->pcidev->dev,
14319 "Vnic rsm map reg[%d] =0x%llx\n",
14320 regoff - RCV_RSM_MAP_TABLE, reg);
14321
14322 write_csr(dd, regoff, reg);
14323 regoff += 8;
14324 if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14325 reg = read_csr(dd, regoff);
14326 }
14327 }
14328
14329 /* Add rule for vnic */
14330 rrd.offset = dd->vnic.rmt_start;
14331 rrd.pkt_type = 4;
14332 /* Match 16B packets */
14333 rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14334 rrd.mask1 = L2_TYPE_MASK;
14335 rrd.value1 = L2_16B_VALUE;
14336 /* Match ETH L4 packets */
14337 rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14338 rrd.mask2 = L4_16B_TYPE_MASK;
14339 rrd.value2 = L4_16B_ETH_VALUE;
14340 /* Calc context from veswid and entropy */
14341 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14342 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14343 rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14344 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14345 add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14346
14347 /* Enable RSM if not already enabled */
14348 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14349 }
14350
14351 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14352 {
14353 clear_rsm_rule(dd, RSM_INS_VNIC);
14354
14355 /* Disable RSM if used only by vnic */
14356 if (dd->vnic.rmt_start == 0)
14357 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14358 }
14359
14360 static void init_rxe(struct hfi1_devdata *dd)
14361 {
14362 struct rsm_map_table *rmt;
14363
14364 /* enable all receive errors */
14365 write_csr(dd, RCV_ERR_MASK, ~0ull);
14366
14367 rmt = alloc_rsm_map_table(dd);
14368 /* set up QOS, including the QPN map table */
14369 init_qos(dd, rmt);
14370 init_user_fecn_handling(dd, rmt);
14371 complete_rsm_map_table(dd, rmt);
14372 /* record number of used rsm map entries for vnic */
14373 dd->vnic.rmt_start = rmt->used;
14374 kfree(rmt);
14375
14376 /*
14377 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14378 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14379 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14380 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14381 * Max_PayLoad_Size set to its minimum of 128.
14382 *
14383 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14384 * (64 bytes). Max_Payload_Size is possibly modified upward in
14385 * tune_pcie_caps() which is called after this routine.
14386 */
14387 }
14388
14389 static void init_other(struct hfi1_devdata *dd)
14390 {
14391 /* enable all CCE errors */
14392 write_csr(dd, CCE_ERR_MASK, ~0ull);
14393 /* enable *some* Misc errors */
14394 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14395 /* enable all DC errors, except LCB */
14396 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14397 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14398 }
14399
14400 /*
14401 * Fill out the given AU table using the given CU. A CU is defined in terms
14402 * AUs. The table is a an encoding: given the index, how many AUs does that
14403 * represent?
14404 *
14405 * NOTE: Assumes that the register layout is the same for the
14406 * local and remote tables.
14407 */
14408 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14409 u32 csr0to3, u32 csr4to7)
14410 {
14411 write_csr(dd, csr0to3,
14412 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14413 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14414 2ull * cu <<
14415 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14416 4ull * cu <<
14417 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14418 write_csr(dd, csr4to7,
14419 8ull * cu <<
14420 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14421 16ull * cu <<
14422 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14423 32ull * cu <<
14424 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14425 64ull * cu <<
14426 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14427 }
14428
14429 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14430 {
14431 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14432 SEND_CM_LOCAL_AU_TABLE4_TO7);
14433 }
14434
14435 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14436 {
14437 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14438 SEND_CM_REMOTE_AU_TABLE4_TO7);
14439 }
14440
14441 static void init_txe(struct hfi1_devdata *dd)
14442 {
14443 int i;
14444
14445 /* enable all PIO, SDMA, general, and Egress errors */
14446 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14447 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14448 write_csr(dd, SEND_ERR_MASK, ~0ull);
14449 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14450
14451 /* enable all per-context and per-SDMA engine errors */
14452 for (i = 0; i < dd->chip_send_contexts; i++)
14453 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14454 for (i = 0; i < dd->chip_sdma_engines; i++)
14455 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14456
14457 /* set the local CU to AU mapping */
14458 assign_local_cm_au_table(dd, dd->vcu);
14459
14460 /*
14461 * Set reasonable default for Credit Return Timer
14462 * Don't set on Simulator - causes it to choke.
14463 */
14464 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14465 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14466 }
14467
14468 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14469 {
14470 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14471 unsigned sctxt;
14472 int ret = 0;
14473 u64 reg;
14474
14475 if (!rcd || !rcd->sc) {
14476 ret = -EINVAL;
14477 goto done;
14478 }
14479 sctxt = rcd->sc->hw_context;
14480 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14481 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14482 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14483 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14484 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14485 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14486 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14487 /*
14488 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14489 */
14490 if (!is_ax(dd)) {
14491 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14492 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14493 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14494 }
14495
14496 /* Enable J_KEY check on receive context. */
14497 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14498 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14499 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14500 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14501 done:
14502 return ret;
14503 }
14504
14505 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14506 {
14507 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14508 unsigned sctxt;
14509 int ret = 0;
14510 u64 reg;
14511
14512 if (!rcd || !rcd->sc) {
14513 ret = -EINVAL;
14514 goto done;
14515 }
14516 sctxt = rcd->sc->hw_context;
14517 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14518 /*
14519 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14520 * This check would not have been enabled for A0 h/w, see
14521 * set_ctxt_jkey().
14522 */
14523 if (!is_ax(dd)) {
14524 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14525 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14526 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14527 }
14528 /* Turn off the J_KEY on the receive side */
14529 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14530 done:
14531 return ret;
14532 }
14533
14534 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14535 {
14536 struct hfi1_ctxtdata *rcd;
14537 unsigned sctxt;
14538 int ret = 0;
14539 u64 reg;
14540
14541 if (ctxt < dd->num_rcv_contexts) {
14542 rcd = dd->rcd[ctxt];
14543 } else {
14544 ret = -EINVAL;
14545 goto done;
14546 }
14547 if (!rcd || !rcd->sc) {
14548 ret = -EINVAL;
14549 goto done;
14550 }
14551 sctxt = rcd->sc->hw_context;
14552 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14553 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14554 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14555 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14556 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14557 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14558 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14559 done:
14560 return ret;
14561 }
14562
14563 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14564 {
14565 u8 hw_ctxt;
14566 u64 reg;
14567
14568 if (!ctxt || !ctxt->sc)
14569 return -EINVAL;
14570
14571 if (ctxt->ctxt >= dd->num_rcv_contexts)
14572 return -EINVAL;
14573
14574 hw_ctxt = ctxt->sc->hw_context;
14575 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14576 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14577 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14578 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14579
14580 return 0;
14581 }
14582
14583 /*
14584 * Start doing the clean up the the chip. Our clean up happens in multiple
14585 * stages and this is just the first.
14586 */
14587 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14588 {
14589 aspm_exit(dd);
14590 free_cntrs(dd);
14591 free_rcverr(dd);
14592 clean_up_interrupts(dd);
14593 finish_chip_resources(dd);
14594 }
14595
14596 #define HFI_BASE_GUID(dev) \
14597 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14598
14599 /*
14600 * Information can be shared between the two HFIs on the same ASIC
14601 * in the same OS. This function finds the peer device and sets
14602 * up a shared structure.
14603 */
14604 static int init_asic_data(struct hfi1_devdata *dd)
14605 {
14606 unsigned long flags;
14607 struct hfi1_devdata *tmp, *peer = NULL;
14608 struct hfi1_asic_data *asic_data;
14609 int ret = 0;
14610
14611 /* pre-allocate the asic structure in case we are the first device */
14612 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14613 if (!asic_data)
14614 return -ENOMEM;
14615
14616 spin_lock_irqsave(&hfi1_devs_lock, flags);
14617 /* Find our peer device */
14618 list_for_each_entry(tmp, &hfi1_dev_list, list) {
14619 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14620 dd->unit != tmp->unit) {
14621 peer = tmp;
14622 break;
14623 }
14624 }
14625
14626 if (peer) {
14627 /* use already allocated structure */
14628 dd->asic_data = peer->asic_data;
14629 kfree(asic_data);
14630 } else {
14631 dd->asic_data = asic_data;
14632 mutex_init(&dd->asic_data->asic_resource_mutex);
14633 }
14634 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14635 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14636
14637 /* first one through - set up i2c devices */
14638 if (!peer)
14639 ret = set_up_i2c(dd, dd->asic_data);
14640
14641 return ret;
14642 }
14643
14644 /*
14645 * Set dd->boardname. Use a generic name if a name is not returned from
14646 * EFI variable space.
14647 *
14648 * Return 0 on success, -ENOMEM if space could not be allocated.
14649 */
14650 static int obtain_boardname(struct hfi1_devdata *dd)
14651 {
14652 /* generic board description */
14653 const char generic[] =
14654 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14655 unsigned long size;
14656 int ret;
14657
14658 ret = read_hfi1_efi_var(dd, "description", &size,
14659 (void **)&dd->boardname);
14660 if (ret) {
14661 dd_dev_info(dd, "Board description not found\n");
14662 /* use generic description */
14663 dd->boardname = kstrdup(generic, GFP_KERNEL);
14664 if (!dd->boardname)
14665 return -ENOMEM;
14666 }
14667 return 0;
14668 }
14669
14670 /*
14671 * Check the interrupt registers to make sure that they are mapped correctly.
14672 * It is intended to help user identify any mismapping by VMM when the driver
14673 * is running in a VM. This function should only be called before interrupt
14674 * is set up properly.
14675 *
14676 * Return 0 on success, -EINVAL on failure.
14677 */
14678 static int check_int_registers(struct hfi1_devdata *dd)
14679 {
14680 u64 reg;
14681 u64 all_bits = ~(u64)0;
14682 u64 mask;
14683
14684 /* Clear CceIntMask[0] to avoid raising any interrupts */
14685 mask = read_csr(dd, CCE_INT_MASK);
14686 write_csr(dd, CCE_INT_MASK, 0ull);
14687 reg = read_csr(dd, CCE_INT_MASK);
14688 if (reg)
14689 goto err_exit;
14690
14691 /* Clear all interrupt status bits */
14692 write_csr(dd, CCE_INT_CLEAR, all_bits);
14693 reg = read_csr(dd, CCE_INT_STATUS);
14694 if (reg)
14695 goto err_exit;
14696
14697 /* Set all interrupt status bits */
14698 write_csr(dd, CCE_INT_FORCE, all_bits);
14699 reg = read_csr(dd, CCE_INT_STATUS);
14700 if (reg != all_bits)
14701 goto err_exit;
14702
14703 /* Restore the interrupt mask */
14704 write_csr(dd, CCE_INT_CLEAR, all_bits);
14705 write_csr(dd, CCE_INT_MASK, mask);
14706
14707 return 0;
14708 err_exit:
14709 write_csr(dd, CCE_INT_MASK, mask);
14710 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14711 return -EINVAL;
14712 }
14713
14714 /**
14715 * Allocate and initialize the device structure for the hfi.
14716 * @dev: the pci_dev for hfi1_ib device
14717 * @ent: pci_device_id struct for this dev
14718 *
14719 * Also allocates, initializes, and returns the devdata struct for this
14720 * device instance
14721 *
14722 * This is global, and is called directly at init to set up the
14723 * chip-specific function pointers for later use.
14724 */
14725 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14726 const struct pci_device_id *ent)
14727 {
14728 struct hfi1_devdata *dd;
14729 struct hfi1_pportdata *ppd;
14730 u64 reg;
14731 int i, ret;
14732 static const char * const inames[] = { /* implementation names */
14733 "RTL silicon",
14734 "RTL VCS simulation",
14735 "RTL FPGA emulation",
14736 "Functional simulator"
14737 };
14738 struct pci_dev *parent = pdev->bus->self;
14739
14740 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14741 sizeof(struct hfi1_pportdata));
14742 if (IS_ERR(dd))
14743 goto bail;
14744 ppd = dd->pport;
14745 for (i = 0; i < dd->num_pports; i++, ppd++) {
14746 int vl;
14747 /* init common fields */
14748 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14749 /* DC supports 4 link widths */
14750 ppd->link_width_supported =
14751 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14752 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14753 ppd->link_width_downgrade_supported =
14754 ppd->link_width_supported;
14755 /* start out enabling only 4X */
14756 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14757 ppd->link_width_downgrade_enabled =
14758 ppd->link_width_downgrade_supported;
14759 /* link width active is 0 when link is down */
14760 /* link width downgrade active is 0 when link is down */
14761
14762 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14763 num_vls > HFI1_MAX_VLS_SUPPORTED) {
14764 hfi1_early_err(&pdev->dev,
14765 "Invalid num_vls %u, using %u VLs\n",
14766 num_vls, HFI1_MAX_VLS_SUPPORTED);
14767 num_vls = HFI1_MAX_VLS_SUPPORTED;
14768 }
14769 ppd->vls_supported = num_vls;
14770 ppd->vls_operational = ppd->vls_supported;
14771 ppd->actual_vls_operational = ppd->vls_supported;
14772 /* Set the default MTU. */
14773 for (vl = 0; vl < num_vls; vl++)
14774 dd->vld[vl].mtu = hfi1_max_mtu;
14775 dd->vld[15].mtu = MAX_MAD_PACKET;
14776 /*
14777 * Set the initial values to reasonable default, will be set
14778 * for real when link is up.
14779 */
14780 ppd->lstate = IB_PORT_DOWN;
14781 ppd->overrun_threshold = 0x4;
14782 ppd->phy_error_threshold = 0xf;
14783 ppd->port_crc_mode_enabled = link_crc_mask;
14784 /* initialize supported LTP CRC mode */
14785 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14786 /* initialize enabled LTP CRC mode */
14787 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14788 /* start in offline */
14789 ppd->host_link_state = HLS_DN_OFFLINE;
14790 init_vl_arb_caches(ppd);
14791 ppd->last_pstate = 0xff; /* invalid value */
14792 }
14793
14794 dd->link_default = HLS_DN_POLL;
14795
14796 /*
14797 * Do remaining PCIe setup and save PCIe values in dd.
14798 * Any error printing is already done by the init code.
14799 * On return, we have the chip mapped.
14800 */
14801 ret = hfi1_pcie_ddinit(dd, pdev);
14802 if (ret < 0)
14803 goto bail_free;
14804
14805 /* verify that reads actually work, save revision for reset check */
14806 dd->revision = read_csr(dd, CCE_REVISION);
14807 if (dd->revision == ~(u64)0) {
14808 dd_dev_err(dd, "cannot read chip CSRs\n");
14809 ret = -EINVAL;
14810 goto bail_cleanup;
14811 }
14812 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14813 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14814 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14815 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14816
14817 /*
14818 * Check interrupt registers mapping if the driver has no access to
14819 * the upstream component. In this case, it is likely that the driver
14820 * is running in a VM.
14821 */
14822 if (!parent) {
14823 ret = check_int_registers(dd);
14824 if (ret)
14825 goto bail_cleanup;
14826 }
14827
14828 /*
14829 * obtain the hardware ID - NOT related to unit, which is a
14830 * software enumeration
14831 */
14832 reg = read_csr(dd, CCE_REVISION2);
14833 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14834 & CCE_REVISION2_HFI_ID_MASK;
14835 /* the variable size will remove unwanted bits */
14836 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14837 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14838 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14839 dd->icode < ARRAY_SIZE(inames) ?
14840 inames[dd->icode] : "unknown", (int)dd->irev);
14841
14842 /* speeds the hardware can support */
14843 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14844 /* speeds allowed to run at */
14845 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14846 /* give a reasonable active value, will be set on link up */
14847 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14848
14849 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14850 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14851 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14852 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14853 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14854 /* fix up link widths for emulation _p */
14855 ppd = dd->pport;
14856 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14857 ppd->link_width_supported =
14858 ppd->link_width_enabled =
14859 ppd->link_width_downgrade_supported =
14860 ppd->link_width_downgrade_enabled =
14861 OPA_LINK_WIDTH_1X;
14862 }
14863 /* insure num_vls isn't larger than number of sdma engines */
14864 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14865 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14866 num_vls, dd->chip_sdma_engines);
14867 num_vls = dd->chip_sdma_engines;
14868 ppd->vls_supported = dd->chip_sdma_engines;
14869 ppd->vls_operational = ppd->vls_supported;
14870 }
14871
14872 /*
14873 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14874 * Limit the max if larger than the field holds. If timeout is
14875 * non-zero, then the calculated field will be at least 1.
14876 *
14877 * Must be after icode is set up - the cclock rate depends
14878 * on knowing the hardware being used.
14879 */
14880 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14881 if (dd->rcv_intr_timeout_csr >
14882 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14883 dd->rcv_intr_timeout_csr =
14884 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14885 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14886 dd->rcv_intr_timeout_csr = 1;
14887
14888 /* needs to be done before we look for the peer device */
14889 read_guid(dd);
14890
14891 /* set up shared ASIC data with peer device */
14892 ret = init_asic_data(dd);
14893 if (ret)
14894 goto bail_cleanup;
14895
14896 /* obtain chip sizes, reset chip CSRs */
14897 init_chip(dd);
14898
14899 /* read in the PCIe link speed information */
14900 ret = pcie_speeds(dd);
14901 if (ret)
14902 goto bail_cleanup;
14903
14904 /* call before get_platform_config(), after init_chip_resources() */
14905 ret = eprom_init(dd);
14906 if (ret)
14907 goto bail_free_rcverr;
14908
14909 /* Needs to be called before hfi1_firmware_init */
14910 get_platform_config(dd);
14911
14912 /* read in firmware */
14913 ret = hfi1_firmware_init(dd);
14914 if (ret)
14915 goto bail_cleanup;
14916
14917 /*
14918 * In general, the PCIe Gen3 transition must occur after the
14919 * chip has been idled (so it won't initiate any PCIe transactions
14920 * e.g. an interrupt) and before the driver changes any registers
14921 * (the transition will reset the registers).
14922 *
14923 * In particular, place this call after:
14924 * - init_chip() - the chip will not initiate any PCIe transactions
14925 * - pcie_speeds() - reads the current link speed
14926 * - hfi1_firmware_init() - the needed firmware is ready to be
14927 * downloaded
14928 */
14929 ret = do_pcie_gen3_transition(dd);
14930 if (ret)
14931 goto bail_cleanup;
14932
14933 /* start setting dd values and adjusting CSRs */
14934 init_early_variables(dd);
14935
14936 parse_platform_config(dd);
14937
14938 ret = obtain_boardname(dd);
14939 if (ret)
14940 goto bail_cleanup;
14941
14942 snprintf(dd->boardversion, BOARD_VERS_MAX,
14943 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14944 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14945 (u32)dd->majrev,
14946 (u32)dd->minrev,
14947 (dd->revision >> CCE_REVISION_SW_SHIFT)
14948 & CCE_REVISION_SW_MASK);
14949
14950 ret = set_up_context_variables(dd);
14951 if (ret)
14952 goto bail_cleanup;
14953
14954 /* set initial RXE CSRs */
14955 init_rxe(dd);
14956 /* set initial TXE CSRs */
14957 init_txe(dd);
14958 /* set initial non-RXE, non-TXE CSRs */
14959 init_other(dd);
14960 /* set up KDETH QP prefix in both RX and TX CSRs */
14961 init_kdeth_qp(dd);
14962
14963 ret = hfi1_dev_affinity_init(dd);
14964 if (ret)
14965 goto bail_cleanup;
14966
14967 /* send contexts must be set up before receive contexts */
14968 ret = init_send_contexts(dd);
14969 if (ret)
14970 goto bail_cleanup;
14971
14972 ret = hfi1_create_ctxts(dd);
14973 if (ret)
14974 goto bail_cleanup;
14975
14976 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14977 /*
14978 * rcd[0] is guaranteed to be valid by this point. Also, all
14979 * context are using the same value, as per the module parameter.
14980 */
14981 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14982
14983 ret = init_pervl_scs(dd);
14984 if (ret)
14985 goto bail_cleanup;
14986
14987 /* sdma init */
14988 for (i = 0; i < dd->num_pports; ++i) {
14989 ret = sdma_init(dd, i);
14990 if (ret)
14991 goto bail_cleanup;
14992 }
14993
14994 /* use contexts created by hfi1_create_ctxts */
14995 ret = set_up_interrupts(dd);
14996 if (ret)
14997 goto bail_cleanup;
14998
14999 /* set up LCB access - must be after set_up_interrupts() */
15000 init_lcb_access(dd);
15001
15002 /*
15003 * Serial number is created from the base guid:
15004 * [27:24] = base guid [38:35]
15005 * [23: 0] = base guid [23: 0]
15006 */
15007 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15008 (dd->base_guid & 0xFFFFFF) |
15009 ((dd->base_guid >> 11) & 0xF000000));
15010
15011 dd->oui1 = dd->base_guid >> 56 & 0xFF;
15012 dd->oui2 = dd->base_guid >> 48 & 0xFF;
15013 dd->oui3 = dd->base_guid >> 40 & 0xFF;
15014
15015 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15016 if (ret)
15017 goto bail_clear_intr;
15018
15019 thermal_init(dd);
15020
15021 ret = init_cntrs(dd);
15022 if (ret)
15023 goto bail_clear_intr;
15024
15025 ret = init_rcverr(dd);
15026 if (ret)
15027 goto bail_free_cntrs;
15028
15029 init_completion(&dd->user_comp);
15030
15031 /* The user refcount starts with one to inidicate an active device */
15032 atomic_set(&dd->user_refcount, 1);
15033
15034 goto bail;
15035
15036 bail_free_rcverr:
15037 free_rcverr(dd);
15038 bail_free_cntrs:
15039 free_cntrs(dd);
15040 bail_clear_intr:
15041 clean_up_interrupts(dd);
15042 bail_cleanup:
15043 hfi1_pcie_ddcleanup(dd);
15044 bail_free:
15045 hfi1_free_devdata(dd);
15046 dd = ERR_PTR(ret);
15047 bail:
15048 return dd;
15049 }
15050
15051 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15052 u32 dw_len)
15053 {
15054 u32 delta_cycles;
15055 u32 current_egress_rate = ppd->current_egress_rate;
15056 /* rates here are in units of 10^6 bits/sec */
15057
15058 if (desired_egress_rate == -1)
15059 return 0; /* shouldn't happen */
15060
15061 if (desired_egress_rate >= current_egress_rate)
15062 return 0; /* we can't help go faster, only slower */
15063
15064 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15065 egress_cycles(dw_len * 4, current_egress_rate);
15066
15067 return (u16)delta_cycles;
15068 }
15069
15070 /**
15071 * create_pbc - build a pbc for transmission
15072 * @flags: special case flags or-ed in built pbc
15073 * @srate: static rate
15074 * @vl: vl
15075 * @dwlen: dword length (header words + data words + pbc words)
15076 *
15077 * Create a PBC with the given flags, rate, VL, and length.
15078 *
15079 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15080 * for verbs, which does not use this PSM feature. The lone other caller
15081 * is for the diagnostic interface which calls this if the user does not
15082 * supply their own PBC.
15083 */
15084 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15085 u32 dw_len)
15086 {
15087 u64 pbc, delay = 0;
15088
15089 if (unlikely(srate_mbs))
15090 delay = delay_cycles(ppd, srate_mbs, dw_len);
15091
15092 pbc = flags
15093 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15094 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15095 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15096 | (dw_len & PBC_LENGTH_DWS_MASK)
15097 << PBC_LENGTH_DWS_SHIFT;
15098
15099 return pbc;
15100 }
15101
15102 #define SBUS_THERMAL 0x4f
15103 #define SBUS_THERM_MONITOR_MODE 0x1
15104
15105 #define THERM_FAILURE(dev, ret, reason) \
15106 dd_dev_err((dd), \
15107 "Thermal sensor initialization failed: %s (%d)\n", \
15108 (reason), (ret))
15109
15110 /*
15111 * Initialize the thermal sensor.
15112 *
15113 * After initialization, enable polling of thermal sensor through
15114 * SBus interface. In order for this to work, the SBus Master
15115 * firmware has to be loaded due to the fact that the HW polling
15116 * logic uses SBus interrupts, which are not supported with
15117 * default firmware. Otherwise, no data will be returned through
15118 * the ASIC_STS_THERM CSR.
15119 */
15120 static int thermal_init(struct hfi1_devdata *dd)
15121 {
15122 int ret = 0;
15123
15124 if (dd->icode != ICODE_RTL_SILICON ||
15125 check_chip_resource(dd, CR_THERM_INIT, NULL))
15126 return ret;
15127
15128 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15129 if (ret) {
15130 THERM_FAILURE(dd, ret, "Acquire SBus");
15131 return ret;
15132 }
15133
15134 dd_dev_info(dd, "Initializing thermal sensor\n");
15135 /* Disable polling of thermal readings */
15136 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15137 msleep(100);
15138 /* Thermal Sensor Initialization */
15139 /* Step 1: Reset the Thermal SBus Receiver */
15140 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15141 RESET_SBUS_RECEIVER, 0);
15142 if (ret) {
15143 THERM_FAILURE(dd, ret, "Bus Reset");
15144 goto done;
15145 }
15146 /* Step 2: Set Reset bit in Thermal block */
15147 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15148 WRITE_SBUS_RECEIVER, 0x1);
15149 if (ret) {
15150 THERM_FAILURE(dd, ret, "Therm Block Reset");
15151 goto done;
15152 }
15153 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
15154 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15155 WRITE_SBUS_RECEIVER, 0x32);
15156 if (ret) {
15157 THERM_FAILURE(dd, ret, "Write Clock Div");
15158 goto done;
15159 }
15160 /* Step 4: Select temperature mode */
15161 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15162 WRITE_SBUS_RECEIVER,
15163 SBUS_THERM_MONITOR_MODE);
15164 if (ret) {
15165 THERM_FAILURE(dd, ret, "Write Mode Sel");
15166 goto done;
15167 }
15168 /* Step 5: De-assert block reset and start conversion */
15169 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15170 WRITE_SBUS_RECEIVER, 0x2);
15171 if (ret) {
15172 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15173 goto done;
15174 }
15175 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
15176 msleep(22);
15177
15178 /* Enable polling of thermal readings */
15179 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15180
15181 /* Set initialized flag */
15182 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15183 if (ret)
15184 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15185
15186 done:
15187 release_chip_resource(dd, CR_SBUS);
15188 return ret;
15189 }
15190
15191 static void handle_temp_err(struct hfi1_devdata *dd)
15192 {
15193 struct hfi1_pportdata *ppd = &dd->pport[0];
15194 /*
15195 * Thermal Critical Interrupt
15196 * Put the device into forced freeze mode, take link down to
15197 * offline, and put DC into reset.
15198 */
15199 dd_dev_emerg(dd,
15200 "Critical temperature reached! Forcing device into freeze mode!\n");
15201 dd->flags |= HFI1_FORCED_FREEZE;
15202 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15203 /*
15204 * Shut DC down as much and as quickly as possible.
15205 *
15206 * Step 1: Take the link down to OFFLINE. This will cause the
15207 * 8051 to put the Serdes in reset. However, we don't want to
15208 * go through the entire link state machine since we want to
15209 * shutdown ASAP. Furthermore, this is not a graceful shutdown
15210 * but rather an attempt to save the chip.
15211 * Code below is almost the same as quiet_serdes() but avoids
15212 * all the extra work and the sleeps.
15213 */
15214 ppd->driver_link_ready = 0;
15215 ppd->link_enabled = 0;
15216 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15217 PLS_OFFLINE);
15218 /*
15219 * Step 2: Shutdown LCB and 8051
15220 * After shutdown, do not restore DC_CFG_RESET value.
15221 */
15222 dc_shutdown(dd);
15223 }