]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/infiniband/hw/hfi1/driver.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / drivers / infiniband / hw / hfi1 / driver.c
1 /*
2 * Copyright(c) 2015-2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 #include "fault.h"
65
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68
69 /*
70 * The size has to be longer than this string, so we can append
71 * board/chip information to it in the initialization code.
72 */
73 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
74
75 DEFINE_SPINLOCK(hfi1_devs_lock);
76 LIST_HEAD(hfi1_dev_list);
77 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
78
79 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
80 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
82 HFI1_DEFAULT_MAX_MTU));
83
84 unsigned int hfi1_cu = 1;
85 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
86 MODULE_PARM_DESC(cu, "Credit return units");
87
88 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
89 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
90 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
91 static const struct kernel_param_ops cap_ops = {
92 .set = hfi1_caps_set,
93 .get = hfi1_caps_get
94 };
95 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
96 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
97
98 MODULE_LICENSE("Dual BSD/GPL");
99 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
100
101 /*
102 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
103 */
104 #define MAX_PKT_RECV 64
105 /*
106 * MAX_PKT_THREAD_RCV is the max # of packets processed before
107 * the qp_wait_list queue is flushed.
108 */
109 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
110 #define EGR_HEAD_UPDATE_THRESHOLD 16
111
112 struct hfi1_ib_stats hfi1_stats;
113
114 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
115 {
116 int ret = 0;
117 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
118 cap_mask = *cap_mask_ptr, value, diff,
119 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
120 HFI1_CAP_WRITABLE_MASK);
121
122 ret = kstrtoul(val, 0, &value);
123 if (ret) {
124 pr_warn("Invalid module parameter value for 'cap_mask'\n");
125 goto done;
126 }
127 /* Get the changed bits (except the locked bit) */
128 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
129
130 /* Remove any bits that are not allowed to change after driver load */
131 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
132 pr_warn("Ignoring non-writable capability bits %#lx\n",
133 diff & ~write_mask);
134 diff &= write_mask;
135 }
136
137 /* Mask off any reserved bits */
138 diff &= ~HFI1_CAP_RESERVED_MASK;
139 /* Clear any previously set and changing bits */
140 cap_mask &= ~diff;
141 /* Update the bits with the new capability */
142 cap_mask |= (value & diff);
143 /* Check for any kernel/user restrictions */
144 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
145 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
146 cap_mask &= ~diff;
147 /* Set the bitmask to the final set */
148 *cap_mask_ptr = cap_mask;
149 done:
150 return ret;
151 }
152
153 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
154 {
155 unsigned long cap_mask = *(unsigned long *)kp->arg;
156
157 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
158 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
159
160 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
161 }
162
163 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
164 {
165 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
166 struct hfi1_devdata *dd = container_of(ibdev,
167 struct hfi1_devdata, verbs_dev);
168 return dd->pcidev;
169 }
170
171 /*
172 * Return count of units with at least one port ACTIVE.
173 */
174 int hfi1_count_active_units(void)
175 {
176 struct hfi1_devdata *dd;
177 struct hfi1_pportdata *ppd;
178 unsigned long flags;
179 int pidx, nunits_active = 0;
180
181 spin_lock_irqsave(&hfi1_devs_lock, flags);
182 list_for_each_entry(dd, &hfi1_dev_list, list) {
183 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
184 continue;
185 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
186 ppd = dd->pport + pidx;
187 if (ppd->lid && ppd->linkup) {
188 nunits_active++;
189 break;
190 }
191 }
192 }
193 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
194 return nunits_active;
195 }
196
197 /*
198 * Get address of eager buffer from it's index (allocated in chunks, not
199 * contiguous).
200 */
201 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
202 u8 *update)
203 {
204 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
205
206 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
207 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
208 (offset * RCV_BUF_BLOCK_SIZE));
209 }
210
211 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
212 __le32 *rhf_addr)
213 {
214 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
215
216 return (void *)(rhf_addr - rcd->rhf_offset + offset);
217 }
218
219 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
220 __le32 *rhf_addr)
221 {
222 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
223 }
224
225 static inline struct hfi1_16b_header
226 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
227 __le32 *rhf_addr)
228 {
229 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
230 }
231
232 /*
233 * Validate and encode the a given RcvArray Buffer size.
234 * The function will check whether the given size falls within
235 * allowed size ranges for the respective type and, optionally,
236 * return the proper encoding.
237 */
238 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
239 {
240 if (unlikely(!PAGE_ALIGNED(size)))
241 return 0;
242 if (unlikely(size < MIN_EAGER_BUFFER))
243 return 0;
244 if (size >
245 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
246 return 0;
247 if (encoded)
248 *encoded = ilog2(size / PAGE_SIZE) + 1;
249 return 1;
250 }
251
252 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
253 struct hfi1_packet *packet)
254 {
255 struct ib_header *rhdr = packet->hdr;
256 u32 rte = rhf_rcv_type_err(packet->rhf);
257 u32 mlid_base;
258 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
259 struct hfi1_devdata *dd = ppd->dd;
260 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
261 struct rvt_dev_info *rdi = &verbs_dev->rdi;
262
263 if ((packet->rhf & RHF_DC_ERR) &&
264 hfi1_dbg_fault_suppress_err(verbs_dev))
265 return;
266
267 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
268 return;
269
270 if (packet->etype == RHF_RCV_TYPE_BYPASS) {
271 goto drop;
272 } else {
273 u8 lnh = ib_get_lnh(rhdr);
274
275 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
276 if (lnh == HFI1_LRH_BTH) {
277 packet->ohdr = &rhdr->u.oth;
278 } else if (lnh == HFI1_LRH_GRH) {
279 packet->ohdr = &rhdr->u.l.oth;
280 packet->grh = &rhdr->u.l.grh;
281 } else {
282 goto drop;
283 }
284 }
285
286 if (packet->rhf & RHF_TID_ERR) {
287 /* For TIDERR and RC QPs preemptively schedule a NAK */
288 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
289 u32 dlid = ib_get_dlid(rhdr);
290 u32 qp_num;
291
292 /* Sanity check packet */
293 if (tlen < 24)
294 goto drop;
295
296 /* Check for GRH */
297 if (packet->grh) {
298 u32 vtf;
299 struct ib_grh *grh = packet->grh;
300
301 if (grh->next_hdr != IB_GRH_NEXT_HDR)
302 goto drop;
303 vtf = be32_to_cpu(grh->version_tclass_flow);
304 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
305 goto drop;
306 }
307
308 /* Get the destination QP number. */
309 qp_num = ib_bth_get_qpn(packet->ohdr);
310 if (dlid < mlid_base) {
311 struct rvt_qp *qp;
312 unsigned long flags;
313
314 rcu_read_lock();
315 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
316 if (!qp) {
317 rcu_read_unlock();
318 goto drop;
319 }
320
321 /*
322 * Handle only RC QPs - for other QP types drop error
323 * packet.
324 */
325 spin_lock_irqsave(&qp->r_lock, flags);
326
327 /* Check for valid receive state. */
328 if (!(ib_rvt_state_ops[qp->state] &
329 RVT_PROCESS_RECV_OK)) {
330 ibp->rvp.n_pkt_drops++;
331 }
332
333 switch (qp->ibqp.qp_type) {
334 case IB_QPT_RC:
335 hfi1_rc_hdrerr(rcd, packet, qp);
336 break;
337 default:
338 /* For now don't handle any other QP types */
339 break;
340 }
341
342 spin_unlock_irqrestore(&qp->r_lock, flags);
343 rcu_read_unlock();
344 } /* Unicast QP */
345 } /* Valid packet with TIDErr */
346
347 /* handle "RcvTypeErr" flags */
348 switch (rte) {
349 case RHF_RTE_ERROR_OP_CODE_ERR:
350 {
351 void *ebuf = NULL;
352 u8 opcode;
353
354 if (rhf_use_egr_bfr(packet->rhf))
355 ebuf = packet->ebuf;
356
357 if (!ebuf)
358 goto drop; /* this should never happen */
359
360 opcode = ib_bth_get_opcode(packet->ohdr);
361 if (opcode == IB_OPCODE_CNP) {
362 /*
363 * Only in pre-B0 h/w is the CNP_OPCODE handled
364 * via this code path.
365 */
366 struct rvt_qp *qp = NULL;
367 u32 lqpn, rqpn;
368 u16 rlid;
369 u8 svc_type, sl, sc5;
370
371 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
372 sl = ibp->sc_to_sl[sc5];
373
374 lqpn = ib_bth_get_qpn(packet->ohdr);
375 rcu_read_lock();
376 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
377 if (!qp) {
378 rcu_read_unlock();
379 goto drop;
380 }
381
382 switch (qp->ibqp.qp_type) {
383 case IB_QPT_UD:
384 rlid = 0;
385 rqpn = 0;
386 svc_type = IB_CC_SVCTYPE_UD;
387 break;
388 case IB_QPT_UC:
389 rlid = ib_get_slid(rhdr);
390 rqpn = qp->remote_qpn;
391 svc_type = IB_CC_SVCTYPE_UC;
392 break;
393 default:
394 rcu_read_unlock();
395 goto drop;
396 }
397
398 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
399 rcu_read_unlock();
400 }
401
402 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
403 break;
404 }
405 default:
406 break;
407 }
408
409 drop:
410 return;
411 }
412
413 static inline void init_packet(struct hfi1_ctxtdata *rcd,
414 struct hfi1_packet *packet)
415 {
416 packet->rsize = rcd->rcvhdrqentsize; /* words */
417 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
418 packet->rcd = rcd;
419 packet->updegr = 0;
420 packet->etail = -1;
421 packet->rhf_addr = get_rhf_addr(rcd);
422 packet->rhf = rhf_to_cpu(packet->rhf_addr);
423 packet->rhqoff = rcd->head;
424 packet->numpkt = 0;
425 }
426
427 /* We support only two types - 9B and 16B for now */
428 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
429 [HFI1_PKT_TYPE_9B] = &return_cnp,
430 [HFI1_PKT_TYPE_16B] = &return_cnp_16B
431 };
432
433 /**
434 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
435 * @qp: The packet's destination QP
436 * @pkt: The packet itself.
437 * @prescan: Is the caller the RXQ prescan
438 *
439 * Process the packet's FECN or BECN bits. By now, the packet
440 * has already been evaluated whether processing of those bit should
441 * be done.
442 * The significance of the @prescan argument is that if the caller
443 * is the RXQ prescan, a CNP will be send out instead of waiting for the
444 * normal packet processing to send an ACK with BECN set (or a CNP).
445 */
446 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
447 bool prescan)
448 {
449 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
450 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
451 struct ib_other_headers *ohdr = pkt->ohdr;
452 struct ib_grh *grh = pkt->grh;
453 u32 rqpn = 0;
454 u16 pkey;
455 u32 rlid, slid, dlid = 0;
456 u8 hdr_type, sc, svc_type, opcode;
457 bool is_mcast = false, ignore_fecn = false, do_cnp = false,
458 fecn, becn;
459
460 /* can be called from prescan */
461 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
462 pkey = hfi1_16B_get_pkey(pkt->hdr);
463 sc = hfi1_16B_get_sc(pkt->hdr);
464 dlid = hfi1_16B_get_dlid(pkt->hdr);
465 slid = hfi1_16B_get_slid(pkt->hdr);
466 is_mcast = hfi1_is_16B_mcast(dlid);
467 opcode = ib_bth_get_opcode(ohdr);
468 hdr_type = HFI1_PKT_TYPE_16B;
469 fecn = hfi1_16B_get_fecn(pkt->hdr);
470 becn = hfi1_16B_get_becn(pkt->hdr);
471 } else {
472 pkey = ib_bth_get_pkey(ohdr);
473 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
474 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
475 ppd->lid;
476 slid = ib_get_slid(pkt->hdr);
477 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
478 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
479 opcode = ib_bth_get_opcode(ohdr);
480 hdr_type = HFI1_PKT_TYPE_9B;
481 fecn = ib_bth_get_fecn(ohdr);
482 becn = ib_bth_get_becn(ohdr);
483 }
484
485 switch (qp->ibqp.qp_type) {
486 case IB_QPT_UD:
487 rlid = slid;
488 rqpn = ib_get_sqpn(pkt->ohdr);
489 svc_type = IB_CC_SVCTYPE_UD;
490 break;
491 case IB_QPT_SMI:
492 case IB_QPT_GSI:
493 rlid = slid;
494 rqpn = ib_get_sqpn(pkt->ohdr);
495 svc_type = IB_CC_SVCTYPE_UD;
496 break;
497 case IB_QPT_UC:
498 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
499 rqpn = qp->remote_qpn;
500 svc_type = IB_CC_SVCTYPE_UC;
501 break;
502 case IB_QPT_RC:
503 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
504 rqpn = qp->remote_qpn;
505 svc_type = IB_CC_SVCTYPE_RC;
506 break;
507 default:
508 return false;
509 }
510
511 ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
512 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
513 /*
514 * ACKNOWLEDGE packets do not get a CNP but this will be
515 * guarded by ignore_fecn above.
516 */
517 do_cnp = prescan ||
518 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
519 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE);
520
521 /* Call appropriate CNP handler */
522 if (!ignore_fecn && do_cnp && fecn)
523 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
524 dlid, rlid, sc, grh);
525
526 if (becn) {
527 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
528 u8 sl = ibp->sc_to_sl[sc];
529
530 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
531 }
532 return !ignore_fecn && fecn;
533 }
534
535 struct ps_mdata {
536 struct hfi1_ctxtdata *rcd;
537 u32 rsize;
538 u32 maxcnt;
539 u32 ps_head;
540 u32 ps_tail;
541 u32 ps_seq;
542 };
543
544 static inline void init_ps_mdata(struct ps_mdata *mdata,
545 struct hfi1_packet *packet)
546 {
547 struct hfi1_ctxtdata *rcd = packet->rcd;
548
549 mdata->rcd = rcd;
550 mdata->rsize = packet->rsize;
551 mdata->maxcnt = packet->maxcnt;
552 mdata->ps_head = packet->rhqoff;
553
554 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
555 mdata->ps_tail = get_rcvhdrtail(rcd);
556 if (rcd->ctxt == HFI1_CTRL_CTXT)
557 mdata->ps_seq = rcd->seq_cnt;
558 else
559 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
560 } else {
561 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
562 mdata->ps_seq = rcd->seq_cnt;
563 }
564 }
565
566 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
567 struct hfi1_ctxtdata *rcd)
568 {
569 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
570 return mdata->ps_head == mdata->ps_tail;
571 return mdata->ps_seq != rhf_rcv_seq(rhf);
572 }
573
574 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
575 struct hfi1_ctxtdata *rcd)
576 {
577 /*
578 * Control context can potentially receive an invalid rhf.
579 * Drop such packets.
580 */
581 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
582 return mdata->ps_seq != rhf_rcv_seq(rhf);
583
584 return 0;
585 }
586
587 static inline void update_ps_mdata(struct ps_mdata *mdata,
588 struct hfi1_ctxtdata *rcd)
589 {
590 mdata->ps_head += mdata->rsize;
591 if (mdata->ps_head >= mdata->maxcnt)
592 mdata->ps_head = 0;
593
594 /* Control context must do seq counting */
595 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
596 (rcd->ctxt == HFI1_CTRL_CTXT)) {
597 if (++mdata->ps_seq > 13)
598 mdata->ps_seq = 1;
599 }
600 }
601
602 /*
603 * prescan_rxq - search through the receive queue looking for packets
604 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
605 * When an ECN is found, process the Congestion Notification, and toggle
606 * it off.
607 * This is declared as a macro to allow quick checking of the port to avoid
608 * the overhead of a function call if not enabled.
609 */
610 #define prescan_rxq(rcd, packet) \
611 do { \
612 if (rcd->ppd->cc_prescan) \
613 __prescan_rxq(packet); \
614 } while (0)
615 static void __prescan_rxq(struct hfi1_packet *packet)
616 {
617 struct hfi1_ctxtdata *rcd = packet->rcd;
618 struct ps_mdata mdata;
619
620 init_ps_mdata(&mdata, packet);
621
622 while (1) {
623 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
624 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
625 packet->rcd->rhf_offset;
626 struct rvt_qp *qp;
627 struct ib_header *hdr;
628 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
629 u64 rhf = rhf_to_cpu(rhf_addr);
630 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
631 u8 lnh;
632
633 if (ps_done(&mdata, rhf, rcd))
634 break;
635
636 if (ps_skip(&mdata, rhf, rcd))
637 goto next;
638
639 if (etype != RHF_RCV_TYPE_IB)
640 goto next;
641
642 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
643 hdr = packet->hdr;
644 lnh = ib_get_lnh(hdr);
645
646 if (lnh == HFI1_LRH_BTH) {
647 packet->ohdr = &hdr->u.oth;
648 packet->grh = NULL;
649 } else if (lnh == HFI1_LRH_GRH) {
650 packet->ohdr = &hdr->u.l.oth;
651 packet->grh = &hdr->u.l.grh;
652 } else {
653 goto next; /* just in case */
654 }
655
656 if (!hfi1_may_ecn(packet))
657 goto next;
658
659 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
660 qpn = bth1 & RVT_QPN_MASK;
661 rcu_read_lock();
662 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
663
664 if (!qp) {
665 rcu_read_unlock();
666 goto next;
667 }
668
669 hfi1_process_ecn_slowpath(qp, packet, true);
670 rcu_read_unlock();
671
672 /* turn off BECN, FECN */
673 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
674 packet->ohdr->bth[1] = cpu_to_be32(bth1);
675 next:
676 update_ps_mdata(&mdata, rcd);
677 }
678 }
679
680 static void process_rcv_qp_work(struct hfi1_packet *packet)
681 {
682 struct rvt_qp *qp, *nqp;
683 struct hfi1_ctxtdata *rcd = packet->rcd;
684
685 /*
686 * Iterate over all QPs waiting to respond.
687 * The list won't change since the IRQ is only run on one CPU.
688 */
689 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
690 list_del_init(&qp->rspwait);
691 if (qp->r_flags & RVT_R_RSP_NAK) {
692 qp->r_flags &= ~RVT_R_RSP_NAK;
693 packet->qp = qp;
694 hfi1_send_rc_ack(packet, 0);
695 }
696 if (qp->r_flags & RVT_R_RSP_SEND) {
697 unsigned long flags;
698
699 qp->r_flags &= ~RVT_R_RSP_SEND;
700 spin_lock_irqsave(&qp->s_lock, flags);
701 if (ib_rvt_state_ops[qp->state] &
702 RVT_PROCESS_OR_FLUSH_SEND)
703 hfi1_schedule_send(qp);
704 spin_unlock_irqrestore(&qp->s_lock, flags);
705 }
706 rvt_put_qp(qp);
707 }
708 }
709
710 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
711 {
712 if (thread) {
713 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
714 /* allow defered processing */
715 process_rcv_qp_work(packet);
716 cond_resched();
717 return RCV_PKT_OK;
718 } else {
719 this_cpu_inc(*packet->rcd->dd->rcv_limit);
720 return RCV_PKT_LIMIT;
721 }
722 }
723
724 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
725 {
726 int ret = RCV_PKT_OK;
727
728 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
729 ret = max_packet_exceeded(packet, thread);
730 return ret;
731 }
732
733 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
734 {
735 int ret;
736
737 /* Set up for the next packet */
738 packet->rhqoff += packet->rsize;
739 if (packet->rhqoff >= packet->maxcnt)
740 packet->rhqoff = 0;
741
742 packet->numpkt++;
743 ret = check_max_packet(packet, thread);
744
745 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
746 packet->rcd->rhf_offset;
747 packet->rhf = rhf_to_cpu(packet->rhf_addr);
748
749 return ret;
750 }
751
752 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
753 {
754 int ret;
755
756 packet->etype = rhf_rcv_type(packet->rhf);
757
758 /* total length */
759 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
760 /* retrieve eager buffer details */
761 packet->ebuf = NULL;
762 if (rhf_use_egr_bfr(packet->rhf)) {
763 packet->etail = rhf_egr_index(packet->rhf);
764 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
765 &packet->updegr);
766 /*
767 * Prefetch the contents of the eager buffer. It is
768 * OK to send a negative length to prefetch_range().
769 * The +2 is the size of the RHF.
770 */
771 prefetch_range(packet->ebuf,
772 packet->tlen - ((packet->rcd->rcvhdrqentsize -
773 (rhf_hdrq_offset(packet->rhf)
774 + 2)) * 4));
775 }
776
777 /*
778 * Call a type specific handler for the packet. We
779 * should be able to trust that etype won't be beyond
780 * the range of valid indexes. If so something is really
781 * wrong and we can probably just let things come
782 * crashing down. There is no need to eat another
783 * comparison in this performance critical code.
784 */
785 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
786 packet->numpkt++;
787
788 /* Set up for the next packet */
789 packet->rhqoff += packet->rsize;
790 if (packet->rhqoff >= packet->maxcnt)
791 packet->rhqoff = 0;
792
793 ret = check_max_packet(packet, thread);
794
795 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
796 packet->rcd->rhf_offset;
797 packet->rhf = rhf_to_cpu(packet->rhf_addr);
798
799 return ret;
800 }
801
802 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
803 {
804 /*
805 * Update head regs etc., every 16 packets, if not last pkt,
806 * to help prevent rcvhdrq overflows, when many packets
807 * are processed and queue is nearly full.
808 * Don't request an interrupt for intermediate updates.
809 */
810 if (!last && !(packet->numpkt & 0xf)) {
811 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
812 packet->etail, 0, 0);
813 packet->updegr = 0;
814 }
815 packet->grh = NULL;
816 }
817
818 static inline void finish_packet(struct hfi1_packet *packet)
819 {
820 /*
821 * Nothing we need to free for the packet.
822 *
823 * The only thing we need to do is a final update and call for an
824 * interrupt
825 */
826 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
827 packet->etail, rcv_intr_dynamic, packet->numpkt);
828 }
829
830 /*
831 * Handle receive interrupts when using the no dma rtail option.
832 */
833 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
834 {
835 u32 seq;
836 int last = RCV_PKT_OK;
837 struct hfi1_packet packet;
838
839 init_packet(rcd, &packet);
840 seq = rhf_rcv_seq(packet.rhf);
841 if (seq != rcd->seq_cnt) {
842 last = RCV_PKT_DONE;
843 goto bail;
844 }
845
846 prescan_rxq(rcd, &packet);
847
848 while (last == RCV_PKT_OK) {
849 last = process_rcv_packet(&packet, thread);
850 seq = rhf_rcv_seq(packet.rhf);
851 if (++rcd->seq_cnt > 13)
852 rcd->seq_cnt = 1;
853 if (seq != rcd->seq_cnt)
854 last = RCV_PKT_DONE;
855 process_rcv_update(last, &packet);
856 }
857 process_rcv_qp_work(&packet);
858 rcd->head = packet.rhqoff;
859 bail:
860 finish_packet(&packet);
861 return last;
862 }
863
864 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
865 {
866 u32 hdrqtail;
867 int last = RCV_PKT_OK;
868 struct hfi1_packet packet;
869
870 init_packet(rcd, &packet);
871 hdrqtail = get_rcvhdrtail(rcd);
872 if (packet.rhqoff == hdrqtail) {
873 last = RCV_PKT_DONE;
874 goto bail;
875 }
876 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
877
878 prescan_rxq(rcd, &packet);
879
880 while (last == RCV_PKT_OK) {
881 last = process_rcv_packet(&packet, thread);
882 if (packet.rhqoff == hdrqtail)
883 last = RCV_PKT_DONE;
884 process_rcv_update(last, &packet);
885 }
886 process_rcv_qp_work(&packet);
887 rcd->head = packet.rhqoff;
888 bail:
889 finish_packet(&packet);
890 return last;
891 }
892
893 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
894 {
895 struct hfi1_ctxtdata *rcd;
896 u16 i;
897
898 /*
899 * For dynamically allocated kernel contexts (like vnic) switch
900 * interrupt handler only for that context. Otherwise, switch
901 * interrupt handler for all statically allocated kernel contexts.
902 */
903 if (ctxt >= dd->first_dyn_alloc_ctxt) {
904 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
905 if (rcd) {
906 rcd->do_interrupt =
907 &handle_receive_interrupt_nodma_rtail;
908 hfi1_rcd_put(rcd);
909 }
910 return;
911 }
912
913 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
914 rcd = hfi1_rcd_get_by_index(dd, i);
915 if (rcd)
916 rcd->do_interrupt =
917 &handle_receive_interrupt_nodma_rtail;
918 hfi1_rcd_put(rcd);
919 }
920 }
921
922 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
923 {
924 struct hfi1_ctxtdata *rcd;
925 u16 i;
926
927 /*
928 * For dynamically allocated kernel contexts (like vnic) switch
929 * interrupt handler only for that context. Otherwise, switch
930 * interrupt handler for all statically allocated kernel contexts.
931 */
932 if (ctxt >= dd->first_dyn_alloc_ctxt) {
933 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
934 if (rcd) {
935 rcd->do_interrupt =
936 &handle_receive_interrupt_dma_rtail;
937 hfi1_rcd_put(rcd);
938 }
939 return;
940 }
941
942 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
943 rcd = hfi1_rcd_get_by_index(dd, i);
944 if (rcd)
945 rcd->do_interrupt =
946 &handle_receive_interrupt_dma_rtail;
947 hfi1_rcd_put(rcd);
948 }
949 }
950
951 void set_all_slowpath(struct hfi1_devdata *dd)
952 {
953 struct hfi1_ctxtdata *rcd;
954 u16 i;
955
956 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
957 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
958 rcd = hfi1_rcd_get_by_index(dd, i);
959 if (!rcd)
960 continue;
961 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
962 rcd->do_interrupt = &handle_receive_interrupt;
963
964 hfi1_rcd_put(rcd);
965 }
966 }
967
968 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
969 struct hfi1_packet *packet,
970 struct hfi1_devdata *dd)
971 {
972 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
973 u8 etype = rhf_rcv_type(packet->rhf);
974 u8 sc = SC15_PACKET;
975
976 if (etype == RHF_RCV_TYPE_IB) {
977 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
978 packet->rhf_addr);
979 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
980 } else if (etype == RHF_RCV_TYPE_BYPASS) {
981 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
982 packet->rcd,
983 packet->rhf_addr);
984 sc = hfi1_16B_get_sc(hdr);
985 }
986 if (sc != SC15_PACKET) {
987 int hwstate = driver_lstate(rcd->ppd);
988
989 if (hwstate != IB_PORT_ACTIVE) {
990 dd_dev_info(dd,
991 "Unexpected link state %s\n",
992 opa_lstate_name(hwstate));
993 return 0;
994 }
995
996 queue_work(rcd->ppd->link_wq, lsaw);
997 return 1;
998 }
999 return 0;
1000 }
1001
1002 /*
1003 * handle_receive_interrupt - receive a packet
1004 * @rcd: the context
1005 *
1006 * Called from interrupt handler for errors or receive interrupt.
1007 * This is the slow path interrupt handler.
1008 */
1009 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1010 {
1011 struct hfi1_devdata *dd = rcd->dd;
1012 u32 hdrqtail;
1013 int needset, last = RCV_PKT_OK;
1014 struct hfi1_packet packet;
1015 int skip_pkt = 0;
1016
1017 /* Control context will always use the slow path interrupt handler */
1018 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1019
1020 init_packet(rcd, &packet);
1021
1022 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1023 u32 seq = rhf_rcv_seq(packet.rhf);
1024
1025 if (seq != rcd->seq_cnt) {
1026 last = RCV_PKT_DONE;
1027 goto bail;
1028 }
1029 hdrqtail = 0;
1030 } else {
1031 hdrqtail = get_rcvhdrtail(rcd);
1032 if (packet.rhqoff == hdrqtail) {
1033 last = RCV_PKT_DONE;
1034 goto bail;
1035 }
1036 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1037
1038 /*
1039 * Control context can potentially receive an invalid
1040 * rhf. Drop such packets.
1041 */
1042 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1043 u32 seq = rhf_rcv_seq(packet.rhf);
1044
1045 if (seq != rcd->seq_cnt)
1046 skip_pkt = 1;
1047 }
1048 }
1049
1050 prescan_rxq(rcd, &packet);
1051
1052 while (last == RCV_PKT_OK) {
1053 if (unlikely(dd->do_drop &&
1054 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1055 DROP_PACKET_ON)) {
1056 dd->do_drop = 0;
1057
1058 /* On to the next packet */
1059 packet.rhqoff += packet.rsize;
1060 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1061 packet.rhqoff +
1062 rcd->rhf_offset;
1063 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1064
1065 } else if (skip_pkt) {
1066 last = skip_rcv_packet(&packet, thread);
1067 skip_pkt = 0;
1068 } else {
1069 /* Auto activate link on non-SC15 packet receive */
1070 if (unlikely(rcd->ppd->host_link_state ==
1071 HLS_UP_ARMED) &&
1072 set_armed_to_active(rcd, &packet, dd))
1073 goto bail;
1074 last = process_rcv_packet(&packet, thread);
1075 }
1076
1077 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1078 u32 seq = rhf_rcv_seq(packet.rhf);
1079
1080 if (++rcd->seq_cnt > 13)
1081 rcd->seq_cnt = 1;
1082 if (seq != rcd->seq_cnt)
1083 last = RCV_PKT_DONE;
1084 if (needset) {
1085 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1086 set_nodma_rtail(dd, rcd->ctxt);
1087 needset = 0;
1088 }
1089 } else {
1090 if (packet.rhqoff == hdrqtail)
1091 last = RCV_PKT_DONE;
1092 /*
1093 * Control context can potentially receive an invalid
1094 * rhf. Drop such packets.
1095 */
1096 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1097 u32 seq = rhf_rcv_seq(packet.rhf);
1098
1099 if (++rcd->seq_cnt > 13)
1100 rcd->seq_cnt = 1;
1101 if (!last && (seq != rcd->seq_cnt))
1102 skip_pkt = 1;
1103 }
1104
1105 if (needset) {
1106 dd_dev_info(dd,
1107 "Switching to DMA_RTAIL\n");
1108 set_dma_rtail(dd, rcd->ctxt);
1109 needset = 0;
1110 }
1111 }
1112
1113 process_rcv_update(last, &packet);
1114 }
1115
1116 process_rcv_qp_work(&packet);
1117 rcd->head = packet.rhqoff;
1118
1119 bail:
1120 /*
1121 * Always write head at end, and setup rcv interrupt, even
1122 * if no packets were processed.
1123 */
1124 finish_packet(&packet);
1125 return last;
1126 }
1127
1128 /*
1129 * We may discover in the interrupt that the hardware link state has
1130 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1131 * and we need to update the driver's notion of the link state. We cannot
1132 * run set_link_state from interrupt context, so we queue this function on
1133 * a workqueue.
1134 *
1135 * We delay the regular interrupt processing until after the state changes
1136 * so that the link will be in the correct state by the time any application
1137 * we wake up attempts to send a reply to any message it received.
1138 * (Subsequent receive interrupts may possibly force the wakeup before we
1139 * update the link state.)
1140 *
1141 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1142 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1143 * so we're safe from use-after-free of the rcd.
1144 */
1145 void receive_interrupt_work(struct work_struct *work)
1146 {
1147 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1148 linkstate_active_work);
1149 struct hfi1_devdata *dd = ppd->dd;
1150 struct hfi1_ctxtdata *rcd;
1151 u16 i;
1152
1153 /* Received non-SC15 packet implies neighbor_normal */
1154 ppd->neighbor_normal = 1;
1155 set_link_state(ppd, HLS_UP_ACTIVE);
1156
1157 /*
1158 * Interrupt all statically allocated kernel contexts that could
1159 * have had an interrupt during auto activation.
1160 */
1161 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1162 rcd = hfi1_rcd_get_by_index(dd, i);
1163 if (rcd)
1164 force_recv_intr(rcd);
1165 hfi1_rcd_put(rcd);
1166 }
1167 }
1168
1169 /*
1170 * Convert a given MTU size to the on-wire MAD packet enumeration.
1171 * Return -1 if the size is invalid.
1172 */
1173 int mtu_to_enum(u32 mtu, int default_if_bad)
1174 {
1175 switch (mtu) {
1176 case 0: return OPA_MTU_0;
1177 case 256: return OPA_MTU_256;
1178 case 512: return OPA_MTU_512;
1179 case 1024: return OPA_MTU_1024;
1180 case 2048: return OPA_MTU_2048;
1181 case 4096: return OPA_MTU_4096;
1182 case 8192: return OPA_MTU_8192;
1183 case 10240: return OPA_MTU_10240;
1184 }
1185 return default_if_bad;
1186 }
1187
1188 u16 enum_to_mtu(int mtu)
1189 {
1190 switch (mtu) {
1191 case OPA_MTU_0: return 0;
1192 case OPA_MTU_256: return 256;
1193 case OPA_MTU_512: return 512;
1194 case OPA_MTU_1024: return 1024;
1195 case OPA_MTU_2048: return 2048;
1196 case OPA_MTU_4096: return 4096;
1197 case OPA_MTU_8192: return 8192;
1198 case OPA_MTU_10240: return 10240;
1199 default: return 0xffff;
1200 }
1201 }
1202
1203 /*
1204 * set_mtu - set the MTU
1205 * @ppd: the per port data
1206 *
1207 * We can handle "any" incoming size, the issue here is whether we
1208 * need to restrict our outgoing size. We do not deal with what happens
1209 * to programs that are already running when the size changes.
1210 */
1211 int set_mtu(struct hfi1_pportdata *ppd)
1212 {
1213 struct hfi1_devdata *dd = ppd->dd;
1214 int i, drain, ret = 0, is_up = 0;
1215
1216 ppd->ibmtu = 0;
1217 for (i = 0; i < ppd->vls_supported; i++)
1218 if (ppd->ibmtu < dd->vld[i].mtu)
1219 ppd->ibmtu = dd->vld[i].mtu;
1220 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1221
1222 mutex_lock(&ppd->hls_lock);
1223 if (ppd->host_link_state == HLS_UP_INIT ||
1224 ppd->host_link_state == HLS_UP_ARMED ||
1225 ppd->host_link_state == HLS_UP_ACTIVE)
1226 is_up = 1;
1227
1228 drain = !is_ax(dd) && is_up;
1229
1230 if (drain)
1231 /*
1232 * MTU is specified per-VL. To ensure that no packet gets
1233 * stuck (due, e.g., to the MTU for the packet's VL being
1234 * reduced), empty the per-VL FIFOs before adjusting MTU.
1235 */
1236 ret = stop_drain_data_vls(dd);
1237
1238 if (ret) {
1239 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1240 __func__);
1241 goto err;
1242 }
1243
1244 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1245
1246 if (drain)
1247 open_fill_data_vls(dd); /* reopen all VLs */
1248
1249 err:
1250 mutex_unlock(&ppd->hls_lock);
1251
1252 return ret;
1253 }
1254
1255 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1256 {
1257 struct hfi1_devdata *dd = ppd->dd;
1258
1259 ppd->lid = lid;
1260 ppd->lmc = lmc;
1261 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1262
1263 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1264
1265 return 0;
1266 }
1267
1268 void shutdown_led_override(struct hfi1_pportdata *ppd)
1269 {
1270 struct hfi1_devdata *dd = ppd->dd;
1271
1272 /*
1273 * This pairs with the memory barrier in hfi1_start_led_override to
1274 * ensure that we read the correct state of LED beaconing represented
1275 * by led_override_timer_active
1276 */
1277 smp_rmb();
1278 if (atomic_read(&ppd->led_override_timer_active)) {
1279 del_timer_sync(&ppd->led_override_timer);
1280 atomic_set(&ppd->led_override_timer_active, 0);
1281 /* Ensure the atomic_set is visible to all CPUs */
1282 smp_wmb();
1283 }
1284
1285 /* Hand control of the LED to the DC for normal operation */
1286 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1287 }
1288
1289 static void run_led_override(struct timer_list *t)
1290 {
1291 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1292 struct hfi1_devdata *dd = ppd->dd;
1293 unsigned long timeout;
1294 int phase_idx;
1295
1296 if (!(dd->flags & HFI1_INITTED))
1297 return;
1298
1299 phase_idx = ppd->led_override_phase & 1;
1300
1301 setextled(dd, phase_idx);
1302
1303 timeout = ppd->led_override_vals[phase_idx];
1304
1305 /* Set up for next phase */
1306 ppd->led_override_phase = !ppd->led_override_phase;
1307
1308 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1309 }
1310
1311 /*
1312 * To have the LED blink in a particular pattern, provide timeon and timeoff
1313 * in milliseconds.
1314 * To turn off custom blinking and return to normal operation, use
1315 * shutdown_led_override()
1316 */
1317 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1318 unsigned int timeoff)
1319 {
1320 if (!(ppd->dd->flags & HFI1_INITTED))
1321 return;
1322
1323 /* Convert to jiffies for direct use in timer */
1324 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1325 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1326
1327 /* Arbitrarily start from LED on phase */
1328 ppd->led_override_phase = 1;
1329
1330 /*
1331 * If the timer has not already been started, do so. Use a "quick"
1332 * timeout so the handler will be called soon to look at our request.
1333 */
1334 if (!timer_pending(&ppd->led_override_timer)) {
1335 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1336 ppd->led_override_timer.expires = jiffies + 1;
1337 add_timer(&ppd->led_override_timer);
1338 atomic_set(&ppd->led_override_timer_active, 1);
1339 /* Ensure the atomic_set is visible to all CPUs */
1340 smp_wmb();
1341 }
1342 }
1343
1344 /**
1345 * hfi1_reset_device - reset the chip if possible
1346 * @unit: the device to reset
1347 *
1348 * Whether or not reset is successful, we attempt to re-initialize the chip
1349 * (that is, much like a driver unload/reload). We clear the INITTED flag
1350 * so that the various entry points will fail until we reinitialize. For
1351 * now, we only allow this if no user contexts are open that use chip resources
1352 */
1353 int hfi1_reset_device(int unit)
1354 {
1355 int ret;
1356 struct hfi1_devdata *dd = hfi1_lookup(unit);
1357 struct hfi1_pportdata *ppd;
1358 int pidx;
1359
1360 if (!dd) {
1361 ret = -ENODEV;
1362 goto bail;
1363 }
1364
1365 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1366
1367 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1368 dd_dev_info(dd,
1369 "Invalid unit number %u or not initialized or not present\n",
1370 unit);
1371 ret = -ENXIO;
1372 goto bail;
1373 }
1374
1375 /* If there are any user/vnic contexts, we cannot reset */
1376 mutex_lock(&hfi1_mutex);
1377 if (dd->rcd)
1378 if (hfi1_stats.sps_ctxts) {
1379 mutex_unlock(&hfi1_mutex);
1380 ret = -EBUSY;
1381 goto bail;
1382 }
1383 mutex_unlock(&hfi1_mutex);
1384
1385 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1386 ppd = dd->pport + pidx;
1387
1388 shutdown_led_override(ppd);
1389 }
1390 if (dd->flags & HFI1_HAS_SEND_DMA)
1391 sdma_exit(dd);
1392
1393 hfi1_reset_cpu_counters(dd);
1394
1395 ret = hfi1_init(dd, 1);
1396
1397 if (ret)
1398 dd_dev_err(dd,
1399 "Reinitialize unit %u after reset failed with %d\n",
1400 unit, ret);
1401 else
1402 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1403 unit);
1404
1405 bail:
1406 return ret;
1407 }
1408
1409 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1410 {
1411 packet->hdr = (struct hfi1_ib_message_header *)
1412 hfi1_get_msgheader(packet->rcd,
1413 packet->rhf_addr);
1414 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1415 }
1416
1417 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1418 {
1419 struct hfi1_pportdata *ppd = packet->rcd->ppd;
1420
1421 /* slid and dlid cannot be 0 */
1422 if ((!packet->slid) || (!packet->dlid))
1423 return -EINVAL;
1424
1425 /* Compare port lid with incoming packet dlid */
1426 if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1427 (packet->dlid !=
1428 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1429 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1430 return -EINVAL;
1431 }
1432
1433 /* No multicast packets with SC15 */
1434 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1435 return -EINVAL;
1436
1437 /* Packets with permissive DLID always on SC15 */
1438 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1439 16B)) &&
1440 (packet->sc != 0xF))
1441 return -EINVAL;
1442
1443 return 0;
1444 }
1445
1446 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1447 {
1448 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1449 struct ib_header *hdr;
1450 u8 lnh;
1451
1452 hfi1_setup_ib_header(packet);
1453 hdr = packet->hdr;
1454
1455 lnh = ib_get_lnh(hdr);
1456 if (lnh == HFI1_LRH_BTH) {
1457 packet->ohdr = &hdr->u.oth;
1458 packet->grh = NULL;
1459 } else if (lnh == HFI1_LRH_GRH) {
1460 u32 vtf;
1461
1462 packet->ohdr = &hdr->u.l.oth;
1463 packet->grh = &hdr->u.l.grh;
1464 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1465 goto drop;
1466 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1467 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1468 goto drop;
1469 } else {
1470 goto drop;
1471 }
1472
1473 /* Query commonly used fields from packet header */
1474 packet->payload = packet->ebuf;
1475 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1476 packet->slid = ib_get_slid(hdr);
1477 packet->dlid = ib_get_dlid(hdr);
1478 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1479 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1480 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1481 be16_to_cpu(IB_MULTICAST_LID_BASE);
1482 packet->sl = ib_get_sl(hdr);
1483 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1484 packet->pad = ib_bth_get_pad(packet->ohdr);
1485 packet->extra_byte = 0;
1486 packet->pkey = ib_bth_get_pkey(packet->ohdr);
1487 packet->migrated = ib_bth_is_migration(packet->ohdr);
1488
1489 return 0;
1490 drop:
1491 ibp->rvp.n_pkt_drops++;
1492 return -EINVAL;
1493 }
1494
1495 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1496 {
1497 /*
1498 * Bypass packets have a different header/payload split
1499 * compared to an IB packet.
1500 * Current split is set such that 16 bytes of the actual
1501 * header is in the header buffer and the remining is in
1502 * the eager buffer. We chose 16 since hfi1 driver only
1503 * supports 16B bypass packets and we will be able to
1504 * receive the entire LRH with such a split.
1505 */
1506
1507 struct hfi1_ctxtdata *rcd = packet->rcd;
1508 struct hfi1_pportdata *ppd = rcd->ppd;
1509 struct hfi1_ibport *ibp = &ppd->ibport_data;
1510 u8 l4;
1511
1512 packet->hdr = (struct hfi1_16b_header *)
1513 hfi1_get_16B_header(packet->rcd,
1514 packet->rhf_addr);
1515 l4 = hfi1_16B_get_l4(packet->hdr);
1516 if (l4 == OPA_16B_L4_IB_LOCAL) {
1517 packet->ohdr = packet->ebuf;
1518 packet->grh = NULL;
1519 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1520 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1521 /* hdr_len_by_opcode already has an IB LRH factored in */
1522 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1523 (LRH_16B_BYTES - LRH_9B_BYTES);
1524 packet->migrated = opa_bth_is_migration(packet->ohdr);
1525 } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1526 u32 vtf;
1527 u8 grh_len = sizeof(struct ib_grh);
1528
1529 packet->ohdr = packet->ebuf + grh_len;
1530 packet->grh = packet->ebuf;
1531 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1532 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1533 /* hdr_len_by_opcode already has an IB LRH factored in */
1534 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1535 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1536 packet->migrated = opa_bth_is_migration(packet->ohdr);
1537
1538 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1539 goto drop;
1540 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1541 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1542 goto drop;
1543 } else if (l4 == OPA_16B_L4_FM) {
1544 packet->mgmt = packet->ebuf;
1545 packet->ohdr = NULL;
1546 packet->grh = NULL;
1547 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1548 packet->pad = OPA_16B_L4_FM_PAD;
1549 packet->hlen = OPA_16B_L4_FM_HLEN;
1550 packet->migrated = false;
1551 } else {
1552 goto drop;
1553 }
1554
1555 /* Query commonly used fields from packet header */
1556 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1557 packet->slid = hfi1_16B_get_slid(packet->hdr);
1558 packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1559 if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1560 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1561 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1562 16B);
1563 packet->sc = hfi1_16B_get_sc(packet->hdr);
1564 packet->sl = ibp->sc_to_sl[packet->sc];
1565 packet->extra_byte = SIZE_OF_LT;
1566 packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1567
1568 if (hfi1_bypass_ingress_pkt_check(packet))
1569 goto drop;
1570
1571 return 0;
1572 drop:
1573 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1574 ibp->rvp.n_pkt_drops++;
1575 return -EINVAL;
1576 }
1577
1578 void handle_eflags(struct hfi1_packet *packet)
1579 {
1580 struct hfi1_ctxtdata *rcd = packet->rcd;
1581 u32 rte = rhf_rcv_type_err(packet->rhf);
1582
1583 rcv_hdrerr(rcd, rcd->ppd, packet);
1584 if (rhf_err_flags(packet->rhf))
1585 dd_dev_err(rcd->dd,
1586 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1587 rcd->ctxt, packet->rhf,
1588 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1589 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1590 packet->rhf & RHF_DC_ERR ? "dc " : "",
1591 packet->rhf & RHF_TID_ERR ? "tid " : "",
1592 packet->rhf & RHF_LEN_ERR ? "len " : "",
1593 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1594 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1595 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1596 rte);
1597 }
1598
1599 /*
1600 * The following functions are called by the interrupt handler. They are type
1601 * specific handlers for each packet type.
1602 */
1603 static int process_receive_ib(struct hfi1_packet *packet)
1604 {
1605 if (hfi1_setup_9B_packet(packet))
1606 return RHF_RCV_CONTINUE;
1607
1608 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1609 return RHF_RCV_CONTINUE;
1610
1611 trace_hfi1_rcvhdr(packet);
1612
1613 if (unlikely(rhf_err_flags(packet->rhf))) {
1614 handle_eflags(packet);
1615 return RHF_RCV_CONTINUE;
1616 }
1617
1618 hfi1_ib_rcv(packet);
1619 return RHF_RCV_CONTINUE;
1620 }
1621
1622 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1623 {
1624 /* Packet received in VNIC context via RSM */
1625 if (packet->rcd->is_vnic)
1626 return true;
1627
1628 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1629 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1630 return true;
1631
1632 return false;
1633 }
1634
1635 static int process_receive_bypass(struct hfi1_packet *packet)
1636 {
1637 struct hfi1_devdata *dd = packet->rcd->dd;
1638
1639 if (hfi1_is_vnic_packet(packet)) {
1640 hfi1_vnic_bypass_rcv(packet);
1641 return RHF_RCV_CONTINUE;
1642 }
1643
1644 if (hfi1_setup_bypass_packet(packet))
1645 return RHF_RCV_CONTINUE;
1646
1647 trace_hfi1_rcvhdr(packet);
1648
1649 if (unlikely(rhf_err_flags(packet->rhf))) {
1650 handle_eflags(packet);
1651 return RHF_RCV_CONTINUE;
1652 }
1653
1654 if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1655 hfi1_16B_rcv(packet);
1656 } else {
1657 dd_dev_err(dd,
1658 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1659 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1660 if (!(dd->err_info_rcvport.status_and_code &
1661 OPA_EI_STATUS_SMASK)) {
1662 u64 *flits = packet->ebuf;
1663
1664 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1665 dd->err_info_rcvport.packet_flit1 = flits[0];
1666 dd->err_info_rcvport.packet_flit2 =
1667 packet->tlen > sizeof(flits[0]) ?
1668 flits[1] : 0;
1669 }
1670 dd->err_info_rcvport.status_and_code |=
1671 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1672 }
1673 }
1674 return RHF_RCV_CONTINUE;
1675 }
1676
1677 static int process_receive_error(struct hfi1_packet *packet)
1678 {
1679 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1680 if (unlikely(
1681 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1682 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1683 packet->rhf & RHF_DC_ERR)))
1684 return RHF_RCV_CONTINUE;
1685
1686 hfi1_setup_ib_header(packet);
1687 handle_eflags(packet);
1688
1689 if (unlikely(rhf_err_flags(packet->rhf)))
1690 dd_dev_err(packet->rcd->dd,
1691 "Unhandled error packet received. Dropping.\n");
1692
1693 return RHF_RCV_CONTINUE;
1694 }
1695
1696 static int kdeth_process_expected(struct hfi1_packet *packet)
1697 {
1698 hfi1_setup_9B_packet(packet);
1699 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1700 return RHF_RCV_CONTINUE;
1701
1702 if (unlikely(rhf_err_flags(packet->rhf)))
1703 handle_eflags(packet);
1704
1705 dd_dev_err(packet->rcd->dd,
1706 "Unhandled expected packet received. Dropping.\n");
1707 return RHF_RCV_CONTINUE;
1708 }
1709
1710 static int kdeth_process_eager(struct hfi1_packet *packet)
1711 {
1712 hfi1_setup_9B_packet(packet);
1713 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1714 return RHF_RCV_CONTINUE;
1715 if (unlikely(rhf_err_flags(packet->rhf)))
1716 handle_eflags(packet);
1717
1718 dd_dev_err(packet->rcd->dd,
1719 "Unhandled eager packet received. Dropping.\n");
1720 return RHF_RCV_CONTINUE;
1721 }
1722
1723 static int process_receive_invalid(struct hfi1_packet *packet)
1724 {
1725 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1726 rhf_rcv_type(packet->rhf));
1727 return RHF_RCV_CONTINUE;
1728 }
1729
1730 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1731 {
1732 struct hfi1_packet packet;
1733 struct ps_mdata mdata;
1734
1735 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1736 rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1737 HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1738 "dma_rtail" : "nodma_rtail",
1739 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1740 RCV_HDR_HEAD_HEAD_MASK,
1741 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1742
1743 init_packet(rcd, &packet);
1744 init_ps_mdata(&mdata, &packet);
1745
1746 while (1) {
1747 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1748 rcd->rhf_offset;
1749 struct ib_header *hdr;
1750 u64 rhf = rhf_to_cpu(rhf_addr);
1751 u32 etype = rhf_rcv_type(rhf), qpn;
1752 u8 opcode;
1753 u32 psn;
1754 u8 lnh;
1755
1756 if (ps_done(&mdata, rhf, rcd))
1757 break;
1758
1759 if (ps_skip(&mdata, rhf, rcd))
1760 goto next;
1761
1762 if (etype > RHF_RCV_TYPE_IB)
1763 goto next;
1764
1765 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1766 hdr = packet.hdr;
1767
1768 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1769
1770 if (lnh == HFI1_LRH_BTH)
1771 packet.ohdr = &hdr->u.oth;
1772 else if (lnh == HFI1_LRH_GRH)
1773 packet.ohdr = &hdr->u.l.oth;
1774 else
1775 goto next; /* just in case */
1776
1777 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1778 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1779 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1780
1781 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1782 mdata.ps_head, opcode, qpn, psn);
1783 next:
1784 update_ps_mdata(&mdata, rcd);
1785 }
1786 }
1787
1788 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1789 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1790 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1791 [RHF_RCV_TYPE_IB] = process_receive_ib,
1792 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1793 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1794 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1795 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1796 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1797 };