]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/infiniband/hw/hfi1/file_ops.c
IB/hfi1: Move driver out of staging
[mirror_ubuntu-zesty-kernel.git] / drivers / infiniband / hw / hfi1 / file_ops.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51
52 #include <rdma/ib.h>
53
54 #include "hfi.h"
55 #include "pio.h"
56 #include "device.h"
57 #include "common.h"
58 #include "trace.h"
59 #include "user_sdma.h"
60 #include "user_exp_rcv.h"
61 #include "eprom.h"
62 #include "aspm.h"
63 #include "mmu_rb.h"
64
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67
68 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
69
70 /*
71 * File operation functions
72 */
73 static int hfi1_file_open(struct inode *, struct file *);
74 static int hfi1_file_close(struct inode *, struct file *);
75 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *);
76 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *);
77 static int hfi1_file_mmap(struct file *, struct vm_area_struct *);
78
79 static u64 kvirt_to_phys(void *);
80 static int assign_ctxt(struct file *, struct hfi1_user_info *);
81 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *);
82 static int user_init(struct file *);
83 static int get_ctxt_info(struct file *, void __user *, __u32);
84 static int get_base_info(struct file *, void __user *, __u32);
85 static int setup_ctxt(struct file *);
86 static int setup_subctxt(struct hfi1_ctxtdata *);
87 static int get_user_context(struct file *, struct hfi1_user_info *, int);
88 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *);
89 static int allocate_ctxt(struct file *, struct hfi1_devdata *,
90 struct hfi1_user_info *);
91 static unsigned int poll_urgent(struct file *, struct poll_table_struct *);
92 static unsigned int poll_next(struct file *, struct poll_table_struct *);
93 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long);
94 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16);
95 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int);
96 static int vma_fault(struct vm_area_struct *, struct vm_fault *);
97 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
98 unsigned long arg);
99
100 static const struct file_operations hfi1_file_ops = {
101 .owner = THIS_MODULE,
102 .write_iter = hfi1_write_iter,
103 .open = hfi1_file_open,
104 .release = hfi1_file_close,
105 .unlocked_ioctl = hfi1_file_ioctl,
106 .poll = hfi1_poll,
107 .mmap = hfi1_file_mmap,
108 .llseek = noop_llseek,
109 };
110
111 static struct vm_operations_struct vm_ops = {
112 .fault = vma_fault,
113 };
114
115 /*
116 * Types of memories mapped into user processes' space
117 */
118 enum mmap_types {
119 PIO_BUFS = 1,
120 PIO_BUFS_SOP,
121 PIO_CRED,
122 RCV_HDRQ,
123 RCV_EGRBUF,
124 UREGS,
125 EVENTS,
126 STATUS,
127 RTAIL,
128 SUBCTXT_UREGS,
129 SUBCTXT_RCV_HDRQ,
130 SUBCTXT_EGRBUF,
131 SDMA_COMP
132 };
133
134 /*
135 * Masks and offsets defining the mmap tokens
136 */
137 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
138 #define HFI1_MMAP_OFFSET_SHIFT 0
139 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
140 #define HFI1_MMAP_SUBCTXT_SHIFT 12
141 #define HFI1_MMAP_CTXT_MASK 0xffULL
142 #define HFI1_MMAP_CTXT_SHIFT 16
143 #define HFI1_MMAP_TYPE_MASK 0xfULL
144 #define HFI1_MMAP_TYPE_SHIFT 24
145 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
146 #define HFI1_MMAP_MAGIC_SHIFT 32
147
148 #define HFI1_MMAP_MAGIC 0xdabbad00
149
150 #define HFI1_MMAP_TOKEN_SET(field, val) \
151 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
152 #define HFI1_MMAP_TOKEN_GET(field, token) \
153 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
154 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
155 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
156 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
157 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
158 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
159 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
160
161 #define dbg(fmt, ...) \
162 pr_info(fmt, ##__VA_ARGS__)
163
164 static inline int is_valid_mmap(u64 token)
165 {
166 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
167 }
168
169 static int hfi1_file_open(struct inode *inode, struct file *fp)
170 {
171 struct hfi1_devdata *dd = container_of(inode->i_cdev,
172 struct hfi1_devdata,
173 user_cdev);
174
175 /* Just take a ref now. Not all opens result in a context assign */
176 kobject_get(&dd->kobj);
177
178 /* The real work is performed later in assign_ctxt() */
179 fp->private_data = kzalloc(sizeof(struct hfi1_filedata), GFP_KERNEL);
180 if (fp->private_data) /* no cpu affinity by default */
181 ((struct hfi1_filedata *)fp->private_data)->rec_cpu_num = -1;
182 return fp->private_data ? 0 : -ENOMEM;
183 }
184
185 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
186 unsigned long arg)
187 {
188 struct hfi1_filedata *fd = fp->private_data;
189 struct hfi1_ctxtdata *uctxt = fd->uctxt;
190 struct hfi1_user_info uinfo;
191 struct hfi1_tid_info tinfo;
192 int ret = 0;
193 unsigned long addr;
194 int uval = 0;
195 unsigned long ul_uval = 0;
196 u16 uval16 = 0;
197
198 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
199 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
200 cmd != HFI1_IOCTL_GET_VERS &&
201 !uctxt)
202 return -EINVAL;
203
204 switch (cmd) {
205 case HFI1_IOCTL_ASSIGN_CTXT:
206 if (copy_from_user(&uinfo,
207 (struct hfi1_user_info __user *)arg,
208 sizeof(uinfo)))
209 return -EFAULT;
210
211 ret = assign_ctxt(fp, &uinfo);
212 if (ret < 0)
213 return ret;
214 setup_ctxt(fp);
215 if (ret)
216 return ret;
217 ret = user_init(fp);
218 break;
219 case HFI1_IOCTL_CTXT_INFO:
220 ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg,
221 sizeof(struct hfi1_ctxt_info));
222 break;
223 case HFI1_IOCTL_USER_INFO:
224 ret = get_base_info(fp, (void __user *)(unsigned long)arg,
225 sizeof(struct hfi1_base_info));
226 break;
227 case HFI1_IOCTL_CREDIT_UPD:
228 if (uctxt && uctxt->sc)
229 sc_return_credits(uctxt->sc);
230 break;
231
232 case HFI1_IOCTL_TID_UPDATE:
233 if (copy_from_user(&tinfo,
234 (struct hfi11_tid_info __user *)arg,
235 sizeof(tinfo)))
236 return -EFAULT;
237
238 ret = hfi1_user_exp_rcv_setup(fp, &tinfo);
239 if (!ret) {
240 /*
241 * Copy the number of tidlist entries we used
242 * and the length of the buffer we registered.
243 * These fields are adjacent in the structure so
244 * we can copy them at the same time.
245 */
246 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
247 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
248 sizeof(tinfo.tidcnt) +
249 sizeof(tinfo.length)))
250 ret = -EFAULT;
251 }
252 break;
253
254 case HFI1_IOCTL_TID_FREE:
255 if (copy_from_user(&tinfo,
256 (struct hfi11_tid_info __user *)arg,
257 sizeof(tinfo)))
258 return -EFAULT;
259
260 ret = hfi1_user_exp_rcv_clear(fp, &tinfo);
261 if (ret)
262 break;
263 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
264 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
265 sizeof(tinfo.tidcnt)))
266 ret = -EFAULT;
267 break;
268
269 case HFI1_IOCTL_TID_INVAL_READ:
270 if (copy_from_user(&tinfo,
271 (struct hfi11_tid_info __user *)arg,
272 sizeof(tinfo)))
273 return -EFAULT;
274
275 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo);
276 if (ret)
277 break;
278 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
279 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
280 sizeof(tinfo.tidcnt)))
281 ret = -EFAULT;
282 break;
283
284 case HFI1_IOCTL_RECV_CTRL:
285 ret = get_user(uval, (int __user *)arg);
286 if (ret != 0)
287 return -EFAULT;
288 ret = manage_rcvq(uctxt, fd->subctxt, uval);
289 break;
290
291 case HFI1_IOCTL_POLL_TYPE:
292 ret = get_user(uval, (int __user *)arg);
293 if (ret != 0)
294 return -EFAULT;
295 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
296 break;
297
298 case HFI1_IOCTL_ACK_EVENT:
299 ret = get_user(ul_uval, (unsigned long __user *)arg);
300 if (ret != 0)
301 return -EFAULT;
302 ret = user_event_ack(uctxt, fd->subctxt, ul_uval);
303 break;
304
305 case HFI1_IOCTL_SET_PKEY:
306 ret = get_user(uval16, (u16 __user *)arg);
307 if (ret != 0)
308 return -EFAULT;
309 if (HFI1_CAP_IS_USET(PKEY_CHECK))
310 ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16);
311 else
312 return -EPERM;
313 break;
314
315 case HFI1_IOCTL_CTXT_RESET: {
316 struct send_context *sc;
317 struct hfi1_devdata *dd;
318
319 if (!uctxt || !uctxt->dd || !uctxt->sc)
320 return -EINVAL;
321
322 /*
323 * There is no protection here. User level has to
324 * guarantee that no one will be writing to the send
325 * context while it is being re-initialized.
326 * If user level breaks that guarantee, it will break
327 * it's own context and no one else's.
328 */
329 dd = uctxt->dd;
330 sc = uctxt->sc;
331 /*
332 * Wait until the interrupt handler has marked the
333 * context as halted or frozen. Report error if we time
334 * out.
335 */
336 wait_event_interruptible_timeout(
337 sc->halt_wait, (sc->flags & SCF_HALTED),
338 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
339 if (!(sc->flags & SCF_HALTED))
340 return -ENOLCK;
341
342 /*
343 * If the send context was halted due to a Freeze,
344 * wait until the device has been "unfrozen" before
345 * resetting the context.
346 */
347 if (sc->flags & SCF_FROZEN) {
348 wait_event_interruptible_timeout(
349 dd->event_queue,
350 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN),
351 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
352 if (dd->flags & HFI1_FROZEN)
353 return -ENOLCK;
354
355 if (dd->flags & HFI1_FORCED_FREEZE)
356 /*
357 * Don't allow context reset if we are into
358 * forced freeze
359 */
360 return -ENODEV;
361
362 sc_disable(sc);
363 ret = sc_enable(sc);
364 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB,
365 uctxt->ctxt);
366 } else {
367 ret = sc_restart(sc);
368 }
369 if (!ret)
370 sc_return_credits(sc);
371 break;
372 }
373
374 case HFI1_IOCTL_GET_VERS:
375 uval = HFI1_USER_SWVERSION;
376 if (put_user(uval, (int __user *)arg))
377 return -EFAULT;
378 break;
379
380 default:
381 return -EINVAL;
382 }
383
384 return ret;
385 }
386
387 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
388 {
389 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
390 struct hfi1_user_sdma_pkt_q *pq = fd->pq;
391 struct hfi1_user_sdma_comp_q *cq = fd->cq;
392 int ret = 0, done = 0, reqs = 0;
393 unsigned long dim = from->nr_segs;
394
395 if (!cq || !pq) {
396 ret = -EIO;
397 goto done;
398 }
399
400 if (!iter_is_iovec(from) || !dim) {
401 ret = -EINVAL;
402 goto done;
403 }
404
405 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)",
406 fd->uctxt->ctxt, fd->subctxt, dim);
407
408 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
409 ret = -ENOSPC;
410 goto done;
411 }
412
413 while (dim) {
414 unsigned long count = 0;
415
416 ret = hfi1_user_sdma_process_request(
417 kiocb->ki_filp, (struct iovec *)(from->iov + done),
418 dim, &count);
419 if (ret)
420 goto done;
421 dim -= count;
422 done += count;
423 reqs++;
424 }
425 done:
426 return ret ? ret : reqs;
427 }
428
429 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
430 {
431 struct hfi1_filedata *fd = fp->private_data;
432 struct hfi1_ctxtdata *uctxt = fd->uctxt;
433 struct hfi1_devdata *dd;
434 unsigned long flags, pfn;
435 u64 token = vma->vm_pgoff << PAGE_SHIFT,
436 memaddr = 0;
437 u8 subctxt, mapio = 0, vmf = 0, type;
438 ssize_t memlen = 0;
439 int ret = 0;
440 u16 ctxt;
441
442 if (!is_valid_mmap(token) || !uctxt ||
443 !(vma->vm_flags & VM_SHARED)) {
444 ret = -EINVAL;
445 goto done;
446 }
447 dd = uctxt->dd;
448 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
449 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
450 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
451 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
452 ret = -EINVAL;
453 goto done;
454 }
455
456 flags = vma->vm_flags;
457
458 switch (type) {
459 case PIO_BUFS:
460 case PIO_BUFS_SOP:
461 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
462 /* chip pio base */
463 (uctxt->sc->hw_context * BIT(16))) +
464 /* 64K PIO space / ctxt */
465 (type == PIO_BUFS_SOP ?
466 (TXE_PIO_SIZE / 2) : 0); /* sop? */
467 /*
468 * Map only the amount allocated to the context, not the
469 * entire available context's PIO space.
470 */
471 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
472 flags &= ~VM_MAYREAD;
473 flags |= VM_DONTCOPY | VM_DONTEXPAND;
474 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
475 mapio = 1;
476 break;
477 case PIO_CRED:
478 if (flags & VM_WRITE) {
479 ret = -EPERM;
480 goto done;
481 }
482 /*
483 * The credit return location for this context could be on the
484 * second or third page allocated for credit returns (if number
485 * of enabled contexts > 64 and 128 respectively).
486 */
487 memaddr = dd->cr_base[uctxt->numa_id].pa +
488 (((u64)uctxt->sc->hw_free -
489 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
490 memlen = PAGE_SIZE;
491 flags &= ~VM_MAYWRITE;
492 flags |= VM_DONTCOPY | VM_DONTEXPAND;
493 /*
494 * The driver has already allocated memory for credit
495 * returns and programmed it into the chip. Has that
496 * memory been flagged as non-cached?
497 */
498 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
499 mapio = 1;
500 break;
501 case RCV_HDRQ:
502 memaddr = uctxt->rcvhdrq_phys;
503 memlen = uctxt->rcvhdrq_size;
504 break;
505 case RCV_EGRBUF: {
506 unsigned long addr;
507 int i;
508 /*
509 * The RcvEgr buffer need to be handled differently
510 * as multiple non-contiguous pages need to be mapped
511 * into the user process.
512 */
513 memlen = uctxt->egrbufs.size;
514 if ((vma->vm_end - vma->vm_start) != memlen) {
515 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
516 (vma->vm_end - vma->vm_start), memlen);
517 ret = -EINVAL;
518 goto done;
519 }
520 if (vma->vm_flags & VM_WRITE) {
521 ret = -EPERM;
522 goto done;
523 }
524 vma->vm_flags &= ~VM_MAYWRITE;
525 addr = vma->vm_start;
526 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
527 ret = remap_pfn_range(
528 vma, addr,
529 uctxt->egrbufs.buffers[i].phys >> PAGE_SHIFT,
530 uctxt->egrbufs.buffers[i].len,
531 vma->vm_page_prot);
532 if (ret < 0)
533 goto done;
534 addr += uctxt->egrbufs.buffers[i].len;
535 }
536 ret = 0;
537 goto done;
538 }
539 case UREGS:
540 /*
541 * Map only the page that contains this context's user
542 * registers.
543 */
544 memaddr = (unsigned long)
545 (dd->physaddr + RXE_PER_CONTEXT_USER)
546 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
547 /*
548 * TidFlow table is on the same page as the rest of the
549 * user registers.
550 */
551 memlen = PAGE_SIZE;
552 flags |= VM_DONTCOPY | VM_DONTEXPAND;
553 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
554 mapio = 1;
555 break;
556 case EVENTS:
557 /*
558 * Use the page where this context's flags are. User level
559 * knows where it's own bitmap is within the page.
560 */
561 memaddr = (unsigned long)(dd->events +
562 ((uctxt->ctxt - dd->first_user_ctxt) *
563 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK;
564 memlen = PAGE_SIZE;
565 /*
566 * v3.7 removes VM_RESERVED but the effect is kept by
567 * using VM_IO.
568 */
569 flags |= VM_IO | VM_DONTEXPAND;
570 vmf = 1;
571 break;
572 case STATUS:
573 memaddr = kvirt_to_phys((void *)dd->status);
574 memlen = PAGE_SIZE;
575 flags |= VM_IO | VM_DONTEXPAND;
576 break;
577 case RTAIL:
578 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
579 /*
580 * If the memory allocation failed, the context alloc
581 * also would have failed, so we would never get here
582 */
583 ret = -EINVAL;
584 goto done;
585 }
586 if (flags & VM_WRITE) {
587 ret = -EPERM;
588 goto done;
589 }
590 memaddr = uctxt->rcvhdrqtailaddr_phys;
591 memlen = PAGE_SIZE;
592 flags &= ~VM_MAYWRITE;
593 break;
594 case SUBCTXT_UREGS:
595 memaddr = (u64)uctxt->subctxt_uregbase;
596 memlen = PAGE_SIZE;
597 flags |= VM_IO | VM_DONTEXPAND;
598 vmf = 1;
599 break;
600 case SUBCTXT_RCV_HDRQ:
601 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
602 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt;
603 flags |= VM_IO | VM_DONTEXPAND;
604 vmf = 1;
605 break;
606 case SUBCTXT_EGRBUF:
607 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
608 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
609 flags |= VM_IO | VM_DONTEXPAND;
610 flags &= ~VM_MAYWRITE;
611 vmf = 1;
612 break;
613 case SDMA_COMP: {
614 struct hfi1_user_sdma_comp_q *cq = fd->cq;
615
616 if (!cq) {
617 ret = -EFAULT;
618 goto done;
619 }
620 memaddr = (u64)cq->comps;
621 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
622 flags |= VM_IO | VM_DONTEXPAND;
623 vmf = 1;
624 break;
625 }
626 default:
627 ret = -EINVAL;
628 break;
629 }
630
631 if ((vma->vm_end - vma->vm_start) != memlen) {
632 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
633 uctxt->ctxt, fd->subctxt,
634 (vma->vm_end - vma->vm_start), memlen);
635 ret = -EINVAL;
636 goto done;
637 }
638
639 vma->vm_flags = flags;
640 hfi1_cdbg(PROC,
641 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
642 ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
643 vma->vm_end - vma->vm_start, vma->vm_flags);
644 pfn = (unsigned long)(memaddr >> PAGE_SHIFT);
645 if (vmf) {
646 vma->vm_pgoff = pfn;
647 vma->vm_ops = &vm_ops;
648 ret = 0;
649 } else if (mapio) {
650 ret = io_remap_pfn_range(vma, vma->vm_start, pfn, memlen,
651 vma->vm_page_prot);
652 } else {
653 ret = remap_pfn_range(vma, vma->vm_start, pfn, memlen,
654 vma->vm_page_prot);
655 }
656 done:
657 return ret;
658 }
659
660 /*
661 * Local (non-chip) user memory is not mapped right away but as it is
662 * accessed by the user-level code.
663 */
664 static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
665 {
666 struct page *page;
667
668 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
669 if (!page)
670 return VM_FAULT_SIGBUS;
671
672 get_page(page);
673 vmf->page = page;
674
675 return 0;
676 }
677
678 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt)
679 {
680 struct hfi1_ctxtdata *uctxt;
681 unsigned pollflag;
682
683 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
684 if (!uctxt)
685 pollflag = POLLERR;
686 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
687 pollflag = poll_urgent(fp, pt);
688 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
689 pollflag = poll_next(fp, pt);
690 else /* invalid */
691 pollflag = POLLERR;
692
693 return pollflag;
694 }
695
696 static int hfi1_file_close(struct inode *inode, struct file *fp)
697 {
698 struct hfi1_filedata *fdata = fp->private_data;
699 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
700 struct hfi1_devdata *dd = container_of(inode->i_cdev,
701 struct hfi1_devdata,
702 user_cdev);
703 unsigned long flags, *ev;
704
705 fp->private_data = NULL;
706
707 if (!uctxt)
708 goto done;
709
710 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
711 mutex_lock(&hfi1_mutex);
712
713 flush_wc();
714 /* drain user sdma queue */
715 hfi1_user_sdma_free_queues(fdata);
716
717 /* release the cpu */
718 hfi1_put_proc_affinity(dd, fdata->rec_cpu_num);
719
720 /*
721 * Clear any left over, unhandled events so the next process that
722 * gets this context doesn't get confused.
723 */
724 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
725 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt;
726 *ev = 0;
727
728 if (--uctxt->cnt) {
729 uctxt->active_slaves &= ~(1 << fdata->subctxt);
730 uctxt->subpid[fdata->subctxt] = 0;
731 mutex_unlock(&hfi1_mutex);
732 goto done;
733 }
734
735 spin_lock_irqsave(&dd->uctxt_lock, flags);
736 /*
737 * Disable receive context and interrupt available, reset all
738 * RcvCtxtCtrl bits to default values.
739 */
740 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
741 HFI1_RCVCTRL_TIDFLOW_DIS |
742 HFI1_RCVCTRL_INTRAVAIL_DIS |
743 HFI1_RCVCTRL_TAILUPD_DIS |
744 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
745 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
746 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt);
747 /* Clear the context's J_KEY */
748 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt);
749 /*
750 * Reset context integrity checks to default.
751 * (writes to CSRs probably belong in chip.c)
752 */
753 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE,
754 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type));
755 sc_disable(uctxt->sc);
756 uctxt->pid = 0;
757 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
758
759 dd->rcd[uctxt->ctxt] = NULL;
760
761 hfi1_user_exp_rcv_free(fdata);
762 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt);
763
764 uctxt->rcvwait_to = 0;
765 uctxt->piowait_to = 0;
766 uctxt->rcvnowait = 0;
767 uctxt->pionowait = 0;
768 uctxt->event_flags = 0;
769
770 hfi1_stats.sps_ctxts--;
771 if (++dd->freectxts == dd->num_user_contexts)
772 aspm_enable_all(dd);
773 mutex_unlock(&hfi1_mutex);
774 hfi1_free_ctxtdata(dd, uctxt);
775 done:
776 kobject_put(&dd->kobj);
777 kfree(fdata);
778 return 0;
779 }
780
781 /*
782 * Convert kernel *virtual* addresses to physical addresses.
783 * This is used to vmalloc'ed addresses.
784 */
785 static u64 kvirt_to_phys(void *addr)
786 {
787 struct page *page;
788 u64 paddr = 0;
789
790 page = vmalloc_to_page(addr);
791 if (page)
792 paddr = page_to_pfn(page) << PAGE_SHIFT;
793
794 return paddr;
795 }
796
797 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo)
798 {
799 int i_minor, ret = 0;
800 unsigned int swmajor, swminor;
801
802 swmajor = uinfo->userversion >> 16;
803 if (swmajor != HFI1_USER_SWMAJOR) {
804 ret = -ENODEV;
805 goto done;
806 }
807
808 swminor = uinfo->userversion & 0xffff;
809
810 mutex_lock(&hfi1_mutex);
811 /* First, lets check if we need to setup a shared context? */
812 if (uinfo->subctxt_cnt) {
813 struct hfi1_filedata *fd = fp->private_data;
814
815 ret = find_shared_ctxt(fp, uinfo);
816 if (ret < 0)
817 goto done_unlock;
818 if (ret)
819 fd->rec_cpu_num = hfi1_get_proc_affinity(
820 fd->uctxt->dd, fd->uctxt->numa_id);
821 }
822
823 /*
824 * We execute the following block if we couldn't find a
825 * shared context or if context sharing is not required.
826 */
827 if (!ret) {
828 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE;
829 ret = get_user_context(fp, uinfo, i_minor);
830 }
831 done_unlock:
832 mutex_unlock(&hfi1_mutex);
833 done:
834 return ret;
835 }
836
837 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo,
838 int devno)
839 {
840 struct hfi1_devdata *dd = NULL;
841 int devmax, npresent, nup;
842
843 devmax = hfi1_count_units(&npresent, &nup);
844 if (!npresent)
845 return -ENXIO;
846
847 if (!nup)
848 return -ENETDOWN;
849
850 dd = hfi1_lookup(devno);
851 if (!dd)
852 return -ENODEV;
853 else if (!dd->freectxts)
854 return -EBUSY;
855
856 return allocate_ctxt(fp, dd, uinfo);
857 }
858
859 static int find_shared_ctxt(struct file *fp,
860 const struct hfi1_user_info *uinfo)
861 {
862 int devmax, ndev, i;
863 int ret = 0;
864 struct hfi1_filedata *fd = fp->private_data;
865
866 devmax = hfi1_count_units(NULL, NULL);
867
868 for (ndev = 0; ndev < devmax; ndev++) {
869 struct hfi1_devdata *dd = hfi1_lookup(ndev);
870
871 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase))
872 continue;
873 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
874 struct hfi1_ctxtdata *uctxt = dd->rcd[i];
875
876 /* Skip ctxts which are not yet open */
877 if (!uctxt || !uctxt->cnt)
878 continue;
879 /* Skip ctxt if it doesn't match the requested one */
880 if (memcmp(uctxt->uuid, uinfo->uuid,
881 sizeof(uctxt->uuid)) ||
882 uctxt->jkey != generate_jkey(current_uid()) ||
883 uctxt->subctxt_id != uinfo->subctxt_id ||
884 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
885 continue;
886
887 /* Verify the sharing process matches the master */
888 if (uctxt->userversion != uinfo->userversion ||
889 uctxt->cnt >= uctxt->subctxt_cnt) {
890 ret = -EINVAL;
891 goto done;
892 }
893 fd->uctxt = uctxt;
894 fd->subctxt = uctxt->cnt++;
895 uctxt->subpid[fd->subctxt] = current->pid;
896 uctxt->active_slaves |= 1 << fd->subctxt;
897 ret = 1;
898 goto done;
899 }
900 }
901
902 done:
903 return ret;
904 }
905
906 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd,
907 struct hfi1_user_info *uinfo)
908 {
909 struct hfi1_filedata *fd = fp->private_data;
910 struct hfi1_ctxtdata *uctxt;
911 unsigned ctxt;
912 int ret, numa;
913
914 if (dd->flags & HFI1_FROZEN) {
915 /*
916 * Pick an error that is unique from all other errors
917 * that are returned so the user process knows that
918 * it tried to allocate while the SPC was frozen. It
919 * it should be able to retry with success in a short
920 * while.
921 */
922 return -EIO;
923 }
924
925 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++)
926 if (!dd->rcd[ctxt])
927 break;
928
929 if (ctxt == dd->num_rcv_contexts)
930 return -EBUSY;
931
932 fd->rec_cpu_num = hfi1_get_proc_affinity(dd, -1);
933 if (fd->rec_cpu_num != -1)
934 numa = cpu_to_node(fd->rec_cpu_num);
935 else
936 numa = numa_node_id();
937 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa);
938 if (!uctxt) {
939 dd_dev_err(dd,
940 "Unable to allocate ctxtdata memory, failing open\n");
941 return -ENOMEM;
942 }
943 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
944 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
945 uctxt->numa_id);
946
947 /*
948 * Allocate and enable a PIO send context.
949 */
950 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize,
951 uctxt->dd->node);
952 if (!uctxt->sc)
953 return -ENOMEM;
954
955 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
956 uctxt->sc->hw_context);
957 ret = sc_enable(uctxt->sc);
958 if (ret)
959 return ret;
960 /*
961 * Setup shared context resources if the user-level has requested
962 * shared contexts and this is the 'master' process.
963 * This has to be done here so the rest of the sub-contexts find the
964 * proper master.
965 */
966 if (uinfo->subctxt_cnt && !fd->subctxt) {
967 ret = init_subctxts(uctxt, uinfo);
968 /*
969 * On error, we don't need to disable and de-allocate the
970 * send context because it will be done during file close
971 */
972 if (ret)
973 return ret;
974 }
975 uctxt->userversion = uinfo->userversion;
976 uctxt->pid = current->pid;
977 uctxt->flags = HFI1_CAP_UGET(MASK);
978 init_waitqueue_head(&uctxt->wait);
979 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
980 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
981 uctxt->jkey = generate_jkey(current_uid());
982 INIT_LIST_HEAD(&uctxt->sdma_queues);
983 spin_lock_init(&uctxt->sdma_qlock);
984 hfi1_stats.sps_ctxts++;
985 /*
986 * Disable ASPM when there are open user/PSM contexts to avoid
987 * issues with ASPM L1 exit latency
988 */
989 if (dd->freectxts-- == dd->num_user_contexts)
990 aspm_disable_all(dd);
991 fd->uctxt = uctxt;
992
993 return 0;
994 }
995
996 static int init_subctxts(struct hfi1_ctxtdata *uctxt,
997 const struct hfi1_user_info *uinfo)
998 {
999 unsigned num_subctxts;
1000
1001 num_subctxts = uinfo->subctxt_cnt;
1002 if (num_subctxts > HFI1_MAX_SHARED_CTXTS)
1003 return -EINVAL;
1004
1005 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1006 uctxt->subctxt_id = uinfo->subctxt_id;
1007 uctxt->active_slaves = 1;
1008 uctxt->redirect_seq_cnt = 1;
1009 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1010
1011 return 0;
1012 }
1013
1014 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1015 {
1016 int ret = 0;
1017 unsigned num_subctxts = uctxt->subctxt_cnt;
1018
1019 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1020 if (!uctxt->subctxt_uregbase) {
1021 ret = -ENOMEM;
1022 goto bail;
1023 }
1024 /* We can take the size of the RcvHdr Queue from the master */
1025 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size *
1026 num_subctxts);
1027 if (!uctxt->subctxt_rcvhdr_base) {
1028 ret = -ENOMEM;
1029 goto bail_ureg;
1030 }
1031
1032 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1033 num_subctxts);
1034 if (!uctxt->subctxt_rcvegrbuf) {
1035 ret = -ENOMEM;
1036 goto bail_rhdr;
1037 }
1038 goto bail;
1039 bail_rhdr:
1040 vfree(uctxt->subctxt_rcvhdr_base);
1041 bail_ureg:
1042 vfree(uctxt->subctxt_uregbase);
1043 uctxt->subctxt_uregbase = NULL;
1044 bail:
1045 return ret;
1046 }
1047
1048 static int user_init(struct file *fp)
1049 {
1050 unsigned int rcvctrl_ops = 0;
1051 struct hfi1_filedata *fd = fp->private_data;
1052 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1053
1054 /* make sure that the context has already been setup */
1055 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
1056 return -EFAULT;
1057
1058 /* initialize poll variables... */
1059 uctxt->urgent = 0;
1060 uctxt->urgent_poll = 0;
1061
1062 /*
1063 * Now enable the ctxt for receive.
1064 * For chips that are set to DMA the tail register to memory
1065 * when they change (and when the update bit transitions from
1066 * 0 to 1. So for those chips, we turn it off and then back on.
1067 * This will (very briefly) affect any other open ctxts, but the
1068 * duration is very short, and therefore isn't an issue. We
1069 * explicitly set the in-memory tail copy to 0 beforehand, so we
1070 * don't have to wait to be sure the DMA update has happened
1071 * (chip resets head/tail to 0 on transition to enable).
1072 */
1073 if (uctxt->rcvhdrtail_kvaddr)
1074 clear_rcvhdrtail(uctxt);
1075
1076 /* Setup J_KEY before enabling the context */
1077 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey);
1078
1079 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1080 if (HFI1_CAP_KGET_MASK(uctxt->flags, HDRSUPP))
1081 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1082 /*
1083 * Ignore the bit in the flags for now until proper
1084 * support for multiple packet per rcv array entry is
1085 * added.
1086 */
1087 if (!HFI1_CAP_KGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1088 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1089 if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1090 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1091 if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1092 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1093 /*
1094 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1095 * We can't rely on the correct value to be set from prior
1096 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1097 * for both cases.
1098 */
1099 if (HFI1_CAP_KGET_MASK(uctxt->flags, DMA_RTAIL))
1100 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1101 else
1102 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1103 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt);
1104
1105 /* Notify any waiting slaves */
1106 if (uctxt->subctxt_cnt) {
1107 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1108 wake_up(&uctxt->wait);
1109 }
1110
1111 return 0;
1112 }
1113
1114 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len)
1115 {
1116 struct hfi1_ctxt_info cinfo;
1117 struct hfi1_filedata *fd = fp->private_data;
1118 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1119 int ret = 0;
1120
1121 memset(&cinfo, 0, sizeof(cinfo));
1122 ret = hfi1_get_base_kinfo(uctxt, &cinfo);
1123 if (ret < 0)
1124 goto done;
1125 cinfo.num_active = hfi1_count_active_units();
1126 cinfo.unit = uctxt->dd->unit;
1127 cinfo.ctxt = uctxt->ctxt;
1128 cinfo.subctxt = fd->subctxt;
1129 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1130 uctxt->dd->rcv_entries.group_size) +
1131 uctxt->expected_count;
1132 cinfo.credits = uctxt->sc->credits;
1133 cinfo.numa_node = uctxt->numa_id;
1134 cinfo.rec_cpu = fd->rec_cpu_num;
1135 cinfo.send_ctxt = uctxt->sc->hw_context;
1136
1137 cinfo.egrtids = uctxt->egrbufs.alloced;
1138 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
1139 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
1140 cinfo.sdma_ring_size = fd->cq->nentries;
1141 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1142
1143 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo);
1144 if (copy_to_user(ubase, &cinfo, sizeof(cinfo)))
1145 ret = -EFAULT;
1146 done:
1147 return ret;
1148 }
1149
1150 static int setup_ctxt(struct file *fp)
1151 {
1152 struct hfi1_filedata *fd = fp->private_data;
1153 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1154 struct hfi1_devdata *dd = uctxt->dd;
1155 int ret = 0;
1156
1157 /*
1158 * Context should be set up only once, including allocation and
1159 * programming of eager buffers. This is done if context sharing
1160 * is not requested or by the master process.
1161 */
1162 if (!uctxt->subctxt_cnt || !fd->subctxt) {
1163 ret = hfi1_init_ctxt(uctxt->sc);
1164 if (ret)
1165 goto done;
1166
1167 /* Now allocate the RcvHdr queue and eager buffers. */
1168 ret = hfi1_create_rcvhdrq(dd, uctxt);
1169 if (ret)
1170 goto done;
1171 ret = hfi1_setup_eagerbufs(uctxt);
1172 if (ret)
1173 goto done;
1174 if (uctxt->subctxt_cnt && !fd->subctxt) {
1175 ret = setup_subctxt(uctxt);
1176 if (ret)
1177 goto done;
1178 }
1179 } else {
1180 ret = wait_event_interruptible(uctxt->wait, !test_bit(
1181 HFI1_CTXT_MASTER_UNINIT,
1182 &uctxt->event_flags));
1183 if (ret)
1184 goto done;
1185 }
1186
1187 ret = hfi1_user_sdma_alloc_queues(uctxt, fp);
1188 if (ret)
1189 goto done;
1190 /*
1191 * Expected receive has to be setup for all processes (including
1192 * shared contexts). However, it has to be done after the master
1193 * context has been fully configured as it depends on the
1194 * eager/expected split of the RcvArray entries.
1195 * Setting it up here ensures that the subcontexts will be waiting
1196 * (due to the above wait_event_interruptible() until the master
1197 * is setup.
1198 */
1199 ret = hfi1_user_exp_rcv_init(fp);
1200 if (ret)
1201 goto done;
1202
1203 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags);
1204 done:
1205 return ret;
1206 }
1207
1208 static int get_base_info(struct file *fp, void __user *ubase, __u32 len)
1209 {
1210 struct hfi1_base_info binfo;
1211 struct hfi1_filedata *fd = fp->private_data;
1212 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1213 struct hfi1_devdata *dd = uctxt->dd;
1214 ssize_t sz;
1215 unsigned offset;
1216 int ret = 0;
1217
1218 trace_hfi1_uctxtdata(uctxt->dd, uctxt);
1219
1220 memset(&binfo, 0, sizeof(binfo));
1221 binfo.hw_version = dd->revision;
1222 binfo.sw_version = HFI1_KERN_SWVERSION;
1223 binfo.bthqp = kdeth_qp;
1224 binfo.jkey = uctxt->jkey;
1225 /*
1226 * If more than 64 contexts are enabled the allocated credit
1227 * return will span two or three contiguous pages. Since we only
1228 * map the page containing the context's credit return address,
1229 * we need to calculate the offset in the proper page.
1230 */
1231 offset = ((u64)uctxt->sc->hw_free -
1232 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1233 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1234 fd->subctxt, offset);
1235 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1236 fd->subctxt,
1237 uctxt->sc->base_addr);
1238 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1239 uctxt->ctxt,
1240 fd->subctxt,
1241 uctxt->sc->base_addr);
1242 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1243 fd->subctxt,
1244 uctxt->rcvhdrq);
1245 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1246 fd->subctxt,
1247 uctxt->egrbufs.rcvtids[0].phys);
1248 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1249 fd->subctxt, 0);
1250 /*
1251 * user regs are at
1252 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1253 */
1254 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1255 fd->subctxt, 0);
1256 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) *
1257 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) *
1258 sizeof(*dd->events));
1259 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1260 fd->subctxt,
1261 offset);
1262 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1263 fd->subctxt,
1264 dd->status);
1265 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1266 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1267 fd->subctxt, 0);
1268 if (uctxt->subctxt_cnt) {
1269 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1270 uctxt->ctxt,
1271 fd->subctxt, 0);
1272 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1273 uctxt->ctxt,
1274 fd->subctxt, 0);
1275 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1276 uctxt->ctxt,
1277 fd->subctxt, 0);
1278 }
1279 sz = (len < sizeof(binfo)) ? len : sizeof(binfo);
1280 if (copy_to_user(ubase, &binfo, sz))
1281 ret = -EFAULT;
1282 return ret;
1283 }
1284
1285 static unsigned int poll_urgent(struct file *fp,
1286 struct poll_table_struct *pt)
1287 {
1288 struct hfi1_filedata *fd = fp->private_data;
1289 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1290 struct hfi1_devdata *dd = uctxt->dd;
1291 unsigned pollflag;
1292
1293 poll_wait(fp, &uctxt->wait, pt);
1294
1295 spin_lock_irq(&dd->uctxt_lock);
1296 if (uctxt->urgent != uctxt->urgent_poll) {
1297 pollflag = POLLIN | POLLRDNORM;
1298 uctxt->urgent_poll = uctxt->urgent;
1299 } else {
1300 pollflag = 0;
1301 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1302 }
1303 spin_unlock_irq(&dd->uctxt_lock);
1304
1305 return pollflag;
1306 }
1307
1308 static unsigned int poll_next(struct file *fp,
1309 struct poll_table_struct *pt)
1310 {
1311 struct hfi1_filedata *fd = fp->private_data;
1312 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1313 struct hfi1_devdata *dd = uctxt->dd;
1314 unsigned pollflag;
1315
1316 poll_wait(fp, &uctxt->wait, pt);
1317
1318 spin_lock_irq(&dd->uctxt_lock);
1319 if (hdrqempty(uctxt)) {
1320 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1321 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt);
1322 pollflag = 0;
1323 } else {
1324 pollflag = POLLIN | POLLRDNORM;
1325 }
1326 spin_unlock_irq(&dd->uctxt_lock);
1327
1328 return pollflag;
1329 }
1330
1331 /*
1332 * Find all user contexts in use, and set the specified bit in their
1333 * event mask.
1334 * See also find_ctxt() for a similar use, that is specific to send buffers.
1335 */
1336 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1337 {
1338 struct hfi1_ctxtdata *uctxt;
1339 struct hfi1_devdata *dd = ppd->dd;
1340 unsigned ctxt;
1341 int ret = 0;
1342 unsigned long flags;
1343
1344 if (!dd->events) {
1345 ret = -EINVAL;
1346 goto done;
1347 }
1348
1349 spin_lock_irqsave(&dd->uctxt_lock, flags);
1350 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts;
1351 ctxt++) {
1352 uctxt = dd->rcd[ctxt];
1353 if (uctxt) {
1354 unsigned long *evs = dd->events +
1355 (uctxt->ctxt - dd->first_user_ctxt) *
1356 HFI1_MAX_SHARED_CTXTS;
1357 int i;
1358 /*
1359 * subctxt_cnt is 0 if not shared, so do base
1360 * separately, first, then remaining subctxt, if any
1361 */
1362 set_bit(evtbit, evs);
1363 for (i = 1; i < uctxt->subctxt_cnt; i++)
1364 set_bit(evtbit, evs + i);
1365 }
1366 }
1367 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1368 done:
1369 return ret;
1370 }
1371
1372 /**
1373 * manage_rcvq - manage a context's receive queue
1374 * @uctxt: the context
1375 * @subctxt: the sub-context
1376 * @start_stop: action to carry out
1377 *
1378 * start_stop == 0 disables receive on the context, for use in queue
1379 * overflow conditions. start_stop==1 re-enables, to be used to
1380 * re-init the software copy of the head register
1381 */
1382 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1383 int start_stop)
1384 {
1385 struct hfi1_devdata *dd = uctxt->dd;
1386 unsigned int rcvctrl_op;
1387
1388 if (subctxt)
1389 goto bail;
1390 /* atomically clear receive enable ctxt. */
1391 if (start_stop) {
1392 /*
1393 * On enable, force in-memory copy of the tail register to
1394 * 0, so that protocol code doesn't have to worry about
1395 * whether or not the chip has yet updated the in-memory
1396 * copy or not on return from the system call. The chip
1397 * always resets it's tail register back to 0 on a
1398 * transition from disabled to enabled.
1399 */
1400 if (uctxt->rcvhdrtail_kvaddr)
1401 clear_rcvhdrtail(uctxt);
1402 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1403 } else {
1404 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1405 }
1406 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt);
1407 /* always; new head should be equal to new tail; see above */
1408 bail:
1409 return 0;
1410 }
1411
1412 /*
1413 * clear the event notifier events for this context.
1414 * User process then performs actions appropriate to bit having been
1415 * set, if desired, and checks again in future.
1416 */
1417 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt,
1418 unsigned long events)
1419 {
1420 int i;
1421 struct hfi1_devdata *dd = uctxt->dd;
1422 unsigned long *evs;
1423
1424 if (!dd->events)
1425 return 0;
1426
1427 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
1428 HFI1_MAX_SHARED_CTXTS) + subctxt;
1429
1430 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1431 if (!test_bit(i, &events))
1432 continue;
1433 clear_bit(i, evs);
1434 }
1435 return 0;
1436 }
1437
1438 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1439 u16 pkey)
1440 {
1441 int ret = -ENOENT, i, intable = 0;
1442 struct hfi1_pportdata *ppd = uctxt->ppd;
1443 struct hfi1_devdata *dd = uctxt->dd;
1444
1445 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) {
1446 ret = -EINVAL;
1447 goto done;
1448 }
1449
1450 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1451 if (pkey == ppd->pkeys[i]) {
1452 intable = 1;
1453 break;
1454 }
1455
1456 if (intable)
1457 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey);
1458 done:
1459 return ret;
1460 }
1461
1462 static void user_remove(struct hfi1_devdata *dd)
1463 {
1464
1465 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1466 }
1467
1468 static int user_add(struct hfi1_devdata *dd)
1469 {
1470 char name[10];
1471 int ret;
1472
1473 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1474 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1475 &dd->user_cdev, &dd->user_device,
1476 true, &dd->kobj);
1477 if (ret)
1478 user_remove(dd);
1479
1480 return ret;
1481 }
1482
1483 /*
1484 * Create per-unit files in /dev
1485 */
1486 int hfi1_device_create(struct hfi1_devdata *dd)
1487 {
1488 return user_add(dd);
1489 }
1490
1491 /*
1492 * Remove per-unit files in /dev
1493 * void, core kernel returns no errors for this stuff
1494 */
1495 void hfi1_device_remove(struct hfi1_devdata *dd)
1496 {
1497 user_remove(dd);
1498 }