]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/hw/hfi1/file_ops.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / hw / hfi1 / file_ops.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51 #include <linux/sched/mm.h>
52
53 #include <rdma/ib.h>
54
55 #include "hfi.h"
56 #include "pio.h"
57 #include "device.h"
58 #include "common.h"
59 #include "trace.h"
60 #include "user_sdma.h"
61 #include "user_exp_rcv.h"
62 #include "aspm.h"
63 #include "mmu_rb.h"
64
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67
68 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
69
70 /*
71 * File operation functions
72 */
73 static int hfi1_file_open(struct inode *, struct file *);
74 static int hfi1_file_close(struct inode *, struct file *);
75 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *);
76 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *);
77 static int hfi1_file_mmap(struct file *, struct vm_area_struct *);
78
79 static u64 kvirt_to_phys(void *);
80 static int assign_ctxt(struct file *, struct hfi1_user_info *);
81 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *);
82 static int user_init(struct file *);
83 static int get_ctxt_info(struct file *, void __user *, __u32);
84 static int get_base_info(struct file *, void __user *, __u32);
85 static int setup_ctxt(struct file *);
86 static int setup_subctxt(struct hfi1_ctxtdata *);
87 static int get_user_context(struct file *, struct hfi1_user_info *, int);
88 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *);
89 static int allocate_ctxt(struct file *, struct hfi1_devdata *,
90 struct hfi1_user_info *);
91 static unsigned int poll_urgent(struct file *, struct poll_table_struct *);
92 static unsigned int poll_next(struct file *, struct poll_table_struct *);
93 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long);
94 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16);
95 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int);
96 static int vma_fault(struct vm_fault *);
97 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
98 unsigned long arg);
99
100 static const struct file_operations hfi1_file_ops = {
101 .owner = THIS_MODULE,
102 .write_iter = hfi1_write_iter,
103 .open = hfi1_file_open,
104 .release = hfi1_file_close,
105 .unlocked_ioctl = hfi1_file_ioctl,
106 .poll = hfi1_poll,
107 .mmap = hfi1_file_mmap,
108 .llseek = noop_llseek,
109 };
110
111 static struct vm_operations_struct vm_ops = {
112 .fault = vma_fault,
113 };
114
115 /*
116 * Types of memories mapped into user processes' space
117 */
118 enum mmap_types {
119 PIO_BUFS = 1,
120 PIO_BUFS_SOP,
121 PIO_CRED,
122 RCV_HDRQ,
123 RCV_EGRBUF,
124 UREGS,
125 EVENTS,
126 STATUS,
127 RTAIL,
128 SUBCTXT_UREGS,
129 SUBCTXT_RCV_HDRQ,
130 SUBCTXT_EGRBUF,
131 SDMA_COMP
132 };
133
134 /*
135 * Masks and offsets defining the mmap tokens
136 */
137 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
138 #define HFI1_MMAP_OFFSET_SHIFT 0
139 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
140 #define HFI1_MMAP_SUBCTXT_SHIFT 12
141 #define HFI1_MMAP_CTXT_MASK 0xffULL
142 #define HFI1_MMAP_CTXT_SHIFT 16
143 #define HFI1_MMAP_TYPE_MASK 0xfULL
144 #define HFI1_MMAP_TYPE_SHIFT 24
145 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
146 #define HFI1_MMAP_MAGIC_SHIFT 32
147
148 #define HFI1_MMAP_MAGIC 0xdabbad00
149
150 #define HFI1_MMAP_TOKEN_SET(field, val) \
151 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
152 #define HFI1_MMAP_TOKEN_GET(field, token) \
153 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
154 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
155 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
156 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
157 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
158 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
159 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
160
161 #define dbg(fmt, ...) \
162 pr_info(fmt, ##__VA_ARGS__)
163
164 static inline int is_valid_mmap(u64 token)
165 {
166 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
167 }
168
169 static int hfi1_file_open(struct inode *inode, struct file *fp)
170 {
171 struct hfi1_filedata *fd;
172 struct hfi1_devdata *dd = container_of(inode->i_cdev,
173 struct hfi1_devdata,
174 user_cdev);
175
176 if (!atomic_inc_not_zero(&dd->user_refcount))
177 return -ENXIO;
178
179 /* Just take a ref now. Not all opens result in a context assign */
180 kobject_get(&dd->kobj);
181
182 /* The real work is performed later in assign_ctxt() */
183
184 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
185
186 if (fd) {
187 fd->rec_cpu_num = -1; /* no cpu affinity by default */
188 fd->mm = current->mm;
189 mmgrab(fd->mm);
190 fp->private_data = fd;
191 } else {
192 fp->private_data = NULL;
193
194 if (atomic_dec_and_test(&dd->user_refcount))
195 complete(&dd->user_comp);
196
197 return -ENOMEM;
198 }
199
200 return 0;
201 }
202
203 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
204 unsigned long arg)
205 {
206 struct hfi1_filedata *fd = fp->private_data;
207 struct hfi1_ctxtdata *uctxt = fd->uctxt;
208 struct hfi1_user_info uinfo;
209 struct hfi1_tid_info tinfo;
210 int ret = 0;
211 unsigned long addr;
212 int uval = 0;
213 unsigned long ul_uval = 0;
214 u16 uval16 = 0;
215
216 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
217 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
218 cmd != HFI1_IOCTL_GET_VERS &&
219 !uctxt)
220 return -EINVAL;
221
222 switch (cmd) {
223 case HFI1_IOCTL_ASSIGN_CTXT:
224 if (uctxt)
225 return -EINVAL;
226
227 if (copy_from_user(&uinfo,
228 (struct hfi1_user_info __user *)arg,
229 sizeof(uinfo)))
230 return -EFAULT;
231
232 ret = assign_ctxt(fp, &uinfo);
233 if (ret < 0)
234 return ret;
235 ret = setup_ctxt(fp);
236 if (ret)
237 return ret;
238 ret = user_init(fp);
239 break;
240 case HFI1_IOCTL_CTXT_INFO:
241 ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg,
242 sizeof(struct hfi1_ctxt_info));
243 break;
244 case HFI1_IOCTL_USER_INFO:
245 ret = get_base_info(fp, (void __user *)(unsigned long)arg,
246 sizeof(struct hfi1_base_info));
247 break;
248 case HFI1_IOCTL_CREDIT_UPD:
249 if (uctxt)
250 sc_return_credits(uctxt->sc);
251 break;
252
253 case HFI1_IOCTL_TID_UPDATE:
254 if (copy_from_user(&tinfo,
255 (struct hfi11_tid_info __user *)arg,
256 sizeof(tinfo)))
257 return -EFAULT;
258
259 ret = hfi1_user_exp_rcv_setup(fp, &tinfo);
260 if (!ret) {
261 /*
262 * Copy the number of tidlist entries we used
263 * and the length of the buffer we registered.
264 * These fields are adjacent in the structure so
265 * we can copy them at the same time.
266 */
267 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
268 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
269 sizeof(tinfo.tidcnt) +
270 sizeof(tinfo.length)))
271 ret = -EFAULT;
272 }
273 break;
274
275 case HFI1_IOCTL_TID_FREE:
276 if (copy_from_user(&tinfo,
277 (struct hfi11_tid_info __user *)arg,
278 sizeof(tinfo)))
279 return -EFAULT;
280
281 ret = hfi1_user_exp_rcv_clear(fp, &tinfo);
282 if (ret)
283 break;
284 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
285 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
286 sizeof(tinfo.tidcnt)))
287 ret = -EFAULT;
288 break;
289
290 case HFI1_IOCTL_TID_INVAL_READ:
291 if (copy_from_user(&tinfo,
292 (struct hfi11_tid_info __user *)arg,
293 sizeof(tinfo)))
294 return -EFAULT;
295
296 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo);
297 if (ret)
298 break;
299 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
300 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
301 sizeof(tinfo.tidcnt)))
302 ret = -EFAULT;
303 break;
304
305 case HFI1_IOCTL_RECV_CTRL:
306 ret = get_user(uval, (int __user *)arg);
307 if (ret != 0)
308 return -EFAULT;
309 ret = manage_rcvq(uctxt, fd->subctxt, uval);
310 break;
311
312 case HFI1_IOCTL_POLL_TYPE:
313 ret = get_user(uval, (int __user *)arg);
314 if (ret != 0)
315 return -EFAULT;
316 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
317 break;
318
319 case HFI1_IOCTL_ACK_EVENT:
320 ret = get_user(ul_uval, (unsigned long __user *)arg);
321 if (ret != 0)
322 return -EFAULT;
323 ret = user_event_ack(uctxt, fd->subctxt, ul_uval);
324 break;
325
326 case HFI1_IOCTL_SET_PKEY:
327 ret = get_user(uval16, (u16 __user *)arg);
328 if (ret != 0)
329 return -EFAULT;
330 if (HFI1_CAP_IS_USET(PKEY_CHECK))
331 ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16);
332 else
333 return -EPERM;
334 break;
335
336 case HFI1_IOCTL_CTXT_RESET: {
337 struct send_context *sc;
338 struct hfi1_devdata *dd;
339
340 if (!uctxt || !uctxt->dd || !uctxt->sc)
341 return -EINVAL;
342
343 /*
344 * There is no protection here. User level has to
345 * guarantee that no one will be writing to the send
346 * context while it is being re-initialized.
347 * If user level breaks that guarantee, it will break
348 * it's own context and no one else's.
349 */
350 dd = uctxt->dd;
351 sc = uctxt->sc;
352 /*
353 * Wait until the interrupt handler has marked the
354 * context as halted or frozen. Report error if we time
355 * out.
356 */
357 wait_event_interruptible_timeout(
358 sc->halt_wait, (sc->flags & SCF_HALTED),
359 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
360 if (!(sc->flags & SCF_HALTED))
361 return -ENOLCK;
362
363 /*
364 * If the send context was halted due to a Freeze,
365 * wait until the device has been "unfrozen" before
366 * resetting the context.
367 */
368 if (sc->flags & SCF_FROZEN) {
369 wait_event_interruptible_timeout(
370 dd->event_queue,
371 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN),
372 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
373 if (dd->flags & HFI1_FROZEN)
374 return -ENOLCK;
375
376 if (dd->flags & HFI1_FORCED_FREEZE)
377 /*
378 * Don't allow context reset if we are into
379 * forced freeze
380 */
381 return -ENODEV;
382
383 sc_disable(sc);
384 ret = sc_enable(sc);
385 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB,
386 uctxt->ctxt);
387 } else {
388 ret = sc_restart(sc);
389 }
390 if (!ret)
391 sc_return_credits(sc);
392 break;
393 }
394
395 case HFI1_IOCTL_GET_VERS:
396 uval = HFI1_USER_SWVERSION;
397 if (put_user(uval, (int __user *)arg))
398 return -EFAULT;
399 break;
400
401 default:
402 return -EINVAL;
403 }
404
405 return ret;
406 }
407
408 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
409 {
410 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
411 struct hfi1_user_sdma_pkt_q *pq = fd->pq;
412 struct hfi1_user_sdma_comp_q *cq = fd->cq;
413 int done = 0, reqs = 0;
414 unsigned long dim = from->nr_segs;
415
416 if (!cq || !pq)
417 return -EIO;
418
419 if (!iter_is_iovec(from) || !dim)
420 return -EINVAL;
421
422 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)",
423 fd->uctxt->ctxt, fd->subctxt, dim);
424
425 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs)
426 return -ENOSPC;
427
428 while (dim) {
429 int ret;
430 unsigned long count = 0;
431
432 ret = hfi1_user_sdma_process_request(
433 kiocb->ki_filp, (struct iovec *)(from->iov + done),
434 dim, &count);
435 if (ret) {
436 reqs = ret;
437 break;
438 }
439 dim -= count;
440 done += count;
441 reqs++;
442 }
443
444 return reqs;
445 }
446
447 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
448 {
449 struct hfi1_filedata *fd = fp->private_data;
450 struct hfi1_ctxtdata *uctxt = fd->uctxt;
451 struct hfi1_devdata *dd;
452 unsigned long flags;
453 u64 token = vma->vm_pgoff << PAGE_SHIFT,
454 memaddr = 0;
455 void *memvirt = NULL;
456 u8 subctxt, mapio = 0, vmf = 0, type;
457 ssize_t memlen = 0;
458 int ret = 0;
459 u16 ctxt;
460
461 if (!is_valid_mmap(token) || !uctxt ||
462 !(vma->vm_flags & VM_SHARED)) {
463 ret = -EINVAL;
464 goto done;
465 }
466 dd = uctxt->dd;
467 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
468 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
469 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
470 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
471 ret = -EINVAL;
472 goto done;
473 }
474
475 flags = vma->vm_flags;
476
477 switch (type) {
478 case PIO_BUFS:
479 case PIO_BUFS_SOP:
480 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
481 /* chip pio base */
482 (uctxt->sc->hw_context * BIT(16))) +
483 /* 64K PIO space / ctxt */
484 (type == PIO_BUFS_SOP ?
485 (TXE_PIO_SIZE / 2) : 0); /* sop? */
486 /*
487 * Map only the amount allocated to the context, not the
488 * entire available context's PIO space.
489 */
490 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
491 flags &= ~VM_MAYREAD;
492 flags |= VM_DONTCOPY | VM_DONTEXPAND;
493 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
494 mapio = 1;
495 break;
496 case PIO_CRED:
497 if (flags & VM_WRITE) {
498 ret = -EPERM;
499 goto done;
500 }
501 /*
502 * The credit return location for this context could be on the
503 * second or third page allocated for credit returns (if number
504 * of enabled contexts > 64 and 128 respectively).
505 */
506 memvirt = dd->cr_base[uctxt->numa_id].va;
507 memaddr = virt_to_phys(memvirt) +
508 (((u64)uctxt->sc->hw_free -
509 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
510 memlen = PAGE_SIZE;
511 flags &= ~VM_MAYWRITE;
512 flags |= VM_DONTCOPY | VM_DONTEXPAND;
513 /*
514 * The driver has already allocated memory for credit
515 * returns and programmed it into the chip. Has that
516 * memory been flagged as non-cached?
517 */
518 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
519 mapio = 1;
520 break;
521 case RCV_HDRQ:
522 memlen = uctxt->rcvhdrq_size;
523 memvirt = uctxt->rcvhdrq;
524 break;
525 case RCV_EGRBUF: {
526 unsigned long addr;
527 int i;
528 /*
529 * The RcvEgr buffer need to be handled differently
530 * as multiple non-contiguous pages need to be mapped
531 * into the user process.
532 */
533 memlen = uctxt->egrbufs.size;
534 if ((vma->vm_end - vma->vm_start) != memlen) {
535 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
536 (vma->vm_end - vma->vm_start), memlen);
537 ret = -EINVAL;
538 goto done;
539 }
540 if (vma->vm_flags & VM_WRITE) {
541 ret = -EPERM;
542 goto done;
543 }
544 vma->vm_flags &= ~VM_MAYWRITE;
545 addr = vma->vm_start;
546 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
547 memlen = uctxt->egrbufs.buffers[i].len;
548 memvirt = uctxt->egrbufs.buffers[i].addr;
549 ret = remap_pfn_range(
550 vma, addr,
551 /*
552 * virt_to_pfn() does the same, but
553 * it's not available on x86_64
554 * when CONFIG_MMU is enabled.
555 */
556 PFN_DOWN(__pa(memvirt)),
557 memlen,
558 vma->vm_page_prot);
559 if (ret < 0)
560 goto done;
561 addr += memlen;
562 }
563 ret = 0;
564 goto done;
565 }
566 case UREGS:
567 /*
568 * Map only the page that contains this context's user
569 * registers.
570 */
571 memaddr = (unsigned long)
572 (dd->physaddr + RXE_PER_CONTEXT_USER)
573 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
574 /*
575 * TidFlow table is on the same page as the rest of the
576 * user registers.
577 */
578 memlen = PAGE_SIZE;
579 flags |= VM_DONTCOPY | VM_DONTEXPAND;
580 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
581 mapio = 1;
582 break;
583 case EVENTS:
584 /*
585 * Use the page where this context's flags are. User level
586 * knows where it's own bitmap is within the page.
587 */
588 memaddr = (unsigned long)(dd->events +
589 ((uctxt->ctxt - dd->first_user_ctxt) *
590 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK;
591 memlen = PAGE_SIZE;
592 /*
593 * v3.7 removes VM_RESERVED but the effect is kept by
594 * using VM_IO.
595 */
596 flags |= VM_IO | VM_DONTEXPAND;
597 vmf = 1;
598 break;
599 case STATUS:
600 memaddr = kvirt_to_phys((void *)dd->status);
601 memlen = PAGE_SIZE;
602 flags |= VM_IO | VM_DONTEXPAND;
603 break;
604 case RTAIL:
605 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
606 /*
607 * If the memory allocation failed, the context alloc
608 * also would have failed, so we would never get here
609 */
610 ret = -EINVAL;
611 goto done;
612 }
613 if (flags & VM_WRITE) {
614 ret = -EPERM;
615 goto done;
616 }
617 memlen = PAGE_SIZE;
618 memvirt = (void *)uctxt->rcvhdrtail_kvaddr;
619 flags &= ~VM_MAYWRITE;
620 break;
621 case SUBCTXT_UREGS:
622 memaddr = (u64)uctxt->subctxt_uregbase;
623 memlen = PAGE_SIZE;
624 flags |= VM_IO | VM_DONTEXPAND;
625 vmf = 1;
626 break;
627 case SUBCTXT_RCV_HDRQ:
628 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
629 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt;
630 flags |= VM_IO | VM_DONTEXPAND;
631 vmf = 1;
632 break;
633 case SUBCTXT_EGRBUF:
634 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
635 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
636 flags |= VM_IO | VM_DONTEXPAND;
637 flags &= ~VM_MAYWRITE;
638 vmf = 1;
639 break;
640 case SDMA_COMP: {
641 struct hfi1_user_sdma_comp_q *cq = fd->cq;
642
643 if (!cq) {
644 ret = -EFAULT;
645 goto done;
646 }
647 memaddr = (u64)cq->comps;
648 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
649 flags |= VM_IO | VM_DONTEXPAND;
650 vmf = 1;
651 break;
652 }
653 default:
654 ret = -EINVAL;
655 break;
656 }
657
658 if ((vma->vm_end - vma->vm_start) != memlen) {
659 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
660 uctxt->ctxt, fd->subctxt,
661 (vma->vm_end - vma->vm_start), memlen);
662 ret = -EINVAL;
663 goto done;
664 }
665
666 vma->vm_flags = flags;
667 hfi1_cdbg(PROC,
668 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
669 ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
670 vma->vm_end - vma->vm_start, vma->vm_flags);
671 if (vmf) {
672 vma->vm_pgoff = PFN_DOWN(memaddr);
673 vma->vm_ops = &vm_ops;
674 ret = 0;
675 } else if (mapio) {
676 ret = io_remap_pfn_range(vma, vma->vm_start,
677 PFN_DOWN(memaddr),
678 memlen,
679 vma->vm_page_prot);
680 } else if (memvirt) {
681 ret = remap_pfn_range(vma, vma->vm_start,
682 PFN_DOWN(__pa(memvirt)),
683 memlen,
684 vma->vm_page_prot);
685 } else {
686 ret = remap_pfn_range(vma, vma->vm_start,
687 PFN_DOWN(memaddr),
688 memlen,
689 vma->vm_page_prot);
690 }
691 done:
692 return ret;
693 }
694
695 /*
696 * Local (non-chip) user memory is not mapped right away but as it is
697 * accessed by the user-level code.
698 */
699 static int vma_fault(struct vm_fault *vmf)
700 {
701 struct page *page;
702
703 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
704 if (!page)
705 return VM_FAULT_SIGBUS;
706
707 get_page(page);
708 vmf->page = page;
709
710 return 0;
711 }
712
713 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt)
714 {
715 struct hfi1_ctxtdata *uctxt;
716 unsigned pollflag;
717
718 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
719 if (!uctxt)
720 pollflag = POLLERR;
721 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
722 pollflag = poll_urgent(fp, pt);
723 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
724 pollflag = poll_next(fp, pt);
725 else /* invalid */
726 pollflag = POLLERR;
727
728 return pollflag;
729 }
730
731 static int hfi1_file_close(struct inode *inode, struct file *fp)
732 {
733 struct hfi1_filedata *fdata = fp->private_data;
734 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
735 struct hfi1_devdata *dd = container_of(inode->i_cdev,
736 struct hfi1_devdata,
737 user_cdev);
738 unsigned long flags, *ev;
739
740 fp->private_data = NULL;
741
742 if (!uctxt)
743 goto done;
744
745 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
746 mutex_lock(&hfi1_mutex);
747
748 flush_wc();
749 /* drain user sdma queue */
750 hfi1_user_sdma_free_queues(fdata);
751
752 /* release the cpu */
753 hfi1_put_proc_affinity(fdata->rec_cpu_num);
754
755 /*
756 * Clear any left over, unhandled events so the next process that
757 * gets this context doesn't get confused.
758 */
759 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
760 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt;
761 *ev = 0;
762
763 if (--uctxt->cnt) {
764 uctxt->active_slaves &= ~(1 << fdata->subctxt);
765 mutex_unlock(&hfi1_mutex);
766 goto done;
767 }
768
769 spin_lock_irqsave(&dd->uctxt_lock, flags);
770 /*
771 * Disable receive context and interrupt available, reset all
772 * RcvCtxtCtrl bits to default values.
773 */
774 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
775 HFI1_RCVCTRL_TIDFLOW_DIS |
776 HFI1_RCVCTRL_INTRAVAIL_DIS |
777 HFI1_RCVCTRL_TAILUPD_DIS |
778 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
779 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
780 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt);
781 /* Clear the context's J_KEY */
782 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt);
783 /*
784 * Reset context integrity checks to default.
785 * (writes to CSRs probably belong in chip.c)
786 */
787 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE,
788 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type));
789 sc_disable(uctxt->sc);
790 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
791
792 dd->rcd[uctxt->ctxt] = NULL;
793
794 hfi1_user_exp_rcv_free(fdata);
795 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt);
796
797 uctxt->rcvwait_to = 0;
798 uctxt->piowait_to = 0;
799 uctxt->rcvnowait = 0;
800 uctxt->pionowait = 0;
801 uctxt->event_flags = 0;
802
803 hfi1_stats.sps_ctxts--;
804 if (++dd->freectxts == dd->num_user_contexts)
805 aspm_enable_all(dd);
806 mutex_unlock(&hfi1_mutex);
807 hfi1_free_ctxtdata(dd, uctxt);
808 done:
809 mmdrop(fdata->mm);
810 kobject_put(&dd->kobj);
811
812 if (atomic_dec_and_test(&dd->user_refcount))
813 complete(&dd->user_comp);
814
815 kfree(fdata);
816 return 0;
817 }
818
819 /*
820 * Convert kernel *virtual* addresses to physical addresses.
821 * This is used to vmalloc'ed addresses.
822 */
823 static u64 kvirt_to_phys(void *addr)
824 {
825 struct page *page;
826 u64 paddr = 0;
827
828 page = vmalloc_to_page(addr);
829 if (page)
830 paddr = page_to_pfn(page) << PAGE_SHIFT;
831
832 return paddr;
833 }
834
835 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo)
836 {
837 int i_minor, ret = 0;
838 unsigned int swmajor, swminor;
839
840 swmajor = uinfo->userversion >> 16;
841 if (swmajor != HFI1_USER_SWMAJOR) {
842 ret = -ENODEV;
843 goto done;
844 }
845
846 swminor = uinfo->userversion & 0xffff;
847
848 mutex_lock(&hfi1_mutex);
849 /* First, lets check if we need to setup a shared context? */
850 if (uinfo->subctxt_cnt) {
851 struct hfi1_filedata *fd = fp->private_data;
852
853 ret = find_shared_ctxt(fp, uinfo);
854 if (ret < 0)
855 goto done_unlock;
856 if (ret) {
857 fd->rec_cpu_num =
858 hfi1_get_proc_affinity(fd->uctxt->numa_id);
859 }
860 }
861
862 /*
863 * We execute the following block if we couldn't find a
864 * shared context or if context sharing is not required.
865 */
866 if (!ret) {
867 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE;
868 ret = get_user_context(fp, uinfo, i_minor);
869 }
870 done_unlock:
871 mutex_unlock(&hfi1_mutex);
872 done:
873 return ret;
874 }
875
876 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo,
877 int devno)
878 {
879 struct hfi1_devdata *dd = NULL;
880 int devmax, npresent, nup;
881
882 devmax = hfi1_count_units(&npresent, &nup);
883 if (!npresent)
884 return -ENXIO;
885
886 if (!nup)
887 return -ENETDOWN;
888
889 dd = hfi1_lookup(devno);
890 if (!dd)
891 return -ENODEV;
892 else if (!dd->freectxts)
893 return -EBUSY;
894
895 return allocate_ctxt(fp, dd, uinfo);
896 }
897
898 static int find_shared_ctxt(struct file *fp,
899 const struct hfi1_user_info *uinfo)
900 {
901 int devmax, ndev, i;
902 int ret = 0;
903 struct hfi1_filedata *fd = fp->private_data;
904
905 devmax = hfi1_count_units(NULL, NULL);
906
907 for (ndev = 0; ndev < devmax; ndev++) {
908 struct hfi1_devdata *dd = hfi1_lookup(ndev);
909
910 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase))
911 continue;
912 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
913 struct hfi1_ctxtdata *uctxt = dd->rcd[i];
914
915 /* Skip ctxts which are not yet open */
916 if (!uctxt || !uctxt->cnt)
917 continue;
918 /* Skip ctxt if it doesn't match the requested one */
919 if (memcmp(uctxt->uuid, uinfo->uuid,
920 sizeof(uctxt->uuid)) ||
921 uctxt->jkey != generate_jkey(current_uid()) ||
922 uctxt->subctxt_id != uinfo->subctxt_id ||
923 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
924 continue;
925
926 /* Verify the sharing process matches the master */
927 if (uctxt->userversion != uinfo->userversion ||
928 uctxt->cnt >= uctxt->subctxt_cnt) {
929 ret = -EINVAL;
930 goto done;
931 }
932 fd->uctxt = uctxt;
933 fd->subctxt = uctxt->cnt++;
934 uctxt->active_slaves |= 1 << fd->subctxt;
935 ret = 1;
936 goto done;
937 }
938 }
939
940 done:
941 return ret;
942 }
943
944 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd,
945 struct hfi1_user_info *uinfo)
946 {
947 struct hfi1_filedata *fd = fp->private_data;
948 struct hfi1_ctxtdata *uctxt;
949 unsigned ctxt;
950 int ret, numa;
951
952 if (dd->flags & HFI1_FROZEN) {
953 /*
954 * Pick an error that is unique from all other errors
955 * that are returned so the user process knows that
956 * it tried to allocate while the SPC was frozen. It
957 * it should be able to retry with success in a short
958 * while.
959 */
960 return -EIO;
961 }
962
963 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++)
964 if (!dd->rcd[ctxt])
965 break;
966
967 if (ctxt == dd->num_rcv_contexts)
968 return -EBUSY;
969
970 /*
971 * If we don't have a NUMA node requested, preference is towards
972 * device NUMA node.
973 */
974 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
975 if (fd->rec_cpu_num != -1)
976 numa = cpu_to_node(fd->rec_cpu_num);
977 else
978 numa = numa_node_id();
979 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa);
980 if (!uctxt) {
981 dd_dev_err(dd,
982 "Unable to allocate ctxtdata memory, failing open\n");
983 return -ENOMEM;
984 }
985 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
986 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
987 uctxt->numa_id);
988
989 /*
990 * Allocate and enable a PIO send context.
991 */
992 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize,
993 uctxt->dd->node);
994 if (!uctxt->sc) {
995 ret = -ENOMEM;
996 goto ctxdata_free;
997 }
998 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
999 uctxt->sc->hw_context);
1000 ret = sc_enable(uctxt->sc);
1001 if (ret)
1002 goto ctxdata_free;
1003
1004 /*
1005 * Setup shared context resources if the user-level has requested
1006 * shared contexts and this is the 'master' process.
1007 * This has to be done here so the rest of the sub-contexts find the
1008 * proper master.
1009 */
1010 if (uinfo->subctxt_cnt && !fd->subctxt) {
1011 ret = init_subctxts(uctxt, uinfo);
1012 /*
1013 * On error, we don't need to disable and de-allocate the
1014 * send context because it will be done during file close
1015 */
1016 if (ret)
1017 goto ctxdata_free;
1018 }
1019 uctxt->userversion = uinfo->userversion;
1020 uctxt->flags = hfi1_cap_mask; /* save current flag state */
1021 init_waitqueue_head(&uctxt->wait);
1022 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1023 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1024 uctxt->jkey = generate_jkey(current_uid());
1025 INIT_LIST_HEAD(&uctxt->sdma_queues);
1026 spin_lock_init(&uctxt->sdma_qlock);
1027 hfi1_stats.sps_ctxts++;
1028 /*
1029 * Disable ASPM when there are open user/PSM contexts to avoid
1030 * issues with ASPM L1 exit latency
1031 */
1032 if (dd->freectxts-- == dd->num_user_contexts)
1033 aspm_disable_all(dd);
1034 fd->uctxt = uctxt;
1035
1036 return 0;
1037
1038 ctxdata_free:
1039 dd->rcd[ctxt] = NULL;
1040 hfi1_free_ctxtdata(dd, uctxt);
1041 return ret;
1042 }
1043
1044 static int init_subctxts(struct hfi1_ctxtdata *uctxt,
1045 const struct hfi1_user_info *uinfo)
1046 {
1047 unsigned num_subctxts;
1048
1049 num_subctxts = uinfo->subctxt_cnt;
1050 if (num_subctxts > HFI1_MAX_SHARED_CTXTS)
1051 return -EINVAL;
1052
1053 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1054 uctxt->subctxt_id = uinfo->subctxt_id;
1055 uctxt->active_slaves = 1;
1056 uctxt->redirect_seq_cnt = 1;
1057 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1058
1059 return 0;
1060 }
1061
1062 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1063 {
1064 int ret = 0;
1065 unsigned num_subctxts = uctxt->subctxt_cnt;
1066
1067 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1068 if (!uctxt->subctxt_uregbase) {
1069 ret = -ENOMEM;
1070 goto bail;
1071 }
1072 /* We can take the size of the RcvHdr Queue from the master */
1073 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size *
1074 num_subctxts);
1075 if (!uctxt->subctxt_rcvhdr_base) {
1076 ret = -ENOMEM;
1077 goto bail_ureg;
1078 }
1079
1080 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1081 num_subctxts);
1082 if (!uctxt->subctxt_rcvegrbuf) {
1083 ret = -ENOMEM;
1084 goto bail_rhdr;
1085 }
1086 goto bail;
1087 bail_rhdr:
1088 vfree(uctxt->subctxt_rcvhdr_base);
1089 bail_ureg:
1090 vfree(uctxt->subctxt_uregbase);
1091 uctxt->subctxt_uregbase = NULL;
1092 bail:
1093 return ret;
1094 }
1095
1096 static int user_init(struct file *fp)
1097 {
1098 unsigned int rcvctrl_ops = 0;
1099 struct hfi1_filedata *fd = fp->private_data;
1100 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1101
1102 /* make sure that the context has already been setup */
1103 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
1104 return -EFAULT;
1105
1106 /* initialize poll variables... */
1107 uctxt->urgent = 0;
1108 uctxt->urgent_poll = 0;
1109
1110 /*
1111 * Now enable the ctxt for receive.
1112 * For chips that are set to DMA the tail register to memory
1113 * when they change (and when the update bit transitions from
1114 * 0 to 1. So for those chips, we turn it off and then back on.
1115 * This will (very briefly) affect any other open ctxts, but the
1116 * duration is very short, and therefore isn't an issue. We
1117 * explicitly set the in-memory tail copy to 0 beforehand, so we
1118 * don't have to wait to be sure the DMA update has happened
1119 * (chip resets head/tail to 0 on transition to enable).
1120 */
1121 if (uctxt->rcvhdrtail_kvaddr)
1122 clear_rcvhdrtail(uctxt);
1123
1124 /* Setup J_KEY before enabling the context */
1125 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey);
1126
1127 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1128 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1129 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1130 /*
1131 * Ignore the bit in the flags for now until proper
1132 * support for multiple packet per rcv array entry is
1133 * added.
1134 */
1135 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1136 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1137 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1138 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1139 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1140 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1141 /*
1142 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1143 * We can't rely on the correct value to be set from prior
1144 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1145 * for both cases.
1146 */
1147 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1148 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1149 else
1150 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1151 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt);
1152
1153 /* Notify any waiting slaves */
1154 if (uctxt->subctxt_cnt) {
1155 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1156 wake_up(&uctxt->wait);
1157 }
1158
1159 return 0;
1160 }
1161
1162 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len)
1163 {
1164 struct hfi1_ctxt_info cinfo;
1165 struct hfi1_filedata *fd = fp->private_data;
1166 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1167 int ret = 0;
1168
1169 memset(&cinfo, 0, sizeof(cinfo));
1170 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1171 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1172 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1173 HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1174 /* adjust flag if this fd is not able to cache */
1175 if (!fd->handler)
1176 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1177
1178 cinfo.num_active = hfi1_count_active_units();
1179 cinfo.unit = uctxt->dd->unit;
1180 cinfo.ctxt = uctxt->ctxt;
1181 cinfo.subctxt = fd->subctxt;
1182 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1183 uctxt->dd->rcv_entries.group_size) +
1184 uctxt->expected_count;
1185 cinfo.credits = uctxt->sc->credits;
1186 cinfo.numa_node = uctxt->numa_id;
1187 cinfo.rec_cpu = fd->rec_cpu_num;
1188 cinfo.send_ctxt = uctxt->sc->hw_context;
1189
1190 cinfo.egrtids = uctxt->egrbufs.alloced;
1191 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
1192 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
1193 cinfo.sdma_ring_size = fd->cq->nentries;
1194 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1195
1196 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo);
1197 if (copy_to_user(ubase, &cinfo, sizeof(cinfo)))
1198 ret = -EFAULT;
1199
1200 return ret;
1201 }
1202
1203 static int setup_ctxt(struct file *fp)
1204 {
1205 struct hfi1_filedata *fd = fp->private_data;
1206 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1207 struct hfi1_devdata *dd = uctxt->dd;
1208 int ret = 0;
1209
1210 /*
1211 * Context should be set up only once, including allocation and
1212 * programming of eager buffers. This is done if context sharing
1213 * is not requested or by the master process.
1214 */
1215 if (!uctxt->subctxt_cnt || !fd->subctxt) {
1216 ret = hfi1_init_ctxt(uctxt->sc);
1217 if (ret)
1218 goto done;
1219
1220 /* Now allocate the RcvHdr queue and eager buffers. */
1221 ret = hfi1_create_rcvhdrq(dd, uctxt);
1222 if (ret)
1223 goto done;
1224 ret = hfi1_setup_eagerbufs(uctxt);
1225 if (ret)
1226 goto done;
1227 if (uctxt->subctxt_cnt && !fd->subctxt) {
1228 ret = setup_subctxt(uctxt);
1229 if (ret)
1230 goto done;
1231 }
1232 } else {
1233 ret = wait_event_interruptible(uctxt->wait, !test_bit(
1234 HFI1_CTXT_MASTER_UNINIT,
1235 &uctxt->event_flags));
1236 if (ret)
1237 goto done;
1238 }
1239
1240 ret = hfi1_user_sdma_alloc_queues(uctxt, fp);
1241 if (ret)
1242 goto done;
1243 /*
1244 * Expected receive has to be setup for all processes (including
1245 * shared contexts). However, it has to be done after the master
1246 * context has been fully configured as it depends on the
1247 * eager/expected split of the RcvArray entries.
1248 * Setting it up here ensures that the subcontexts will be waiting
1249 * (due to the above wait_event_interruptible() until the master
1250 * is setup.
1251 */
1252 ret = hfi1_user_exp_rcv_init(fp);
1253 if (ret)
1254 goto done;
1255
1256 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags);
1257 done:
1258 return ret;
1259 }
1260
1261 static int get_base_info(struct file *fp, void __user *ubase, __u32 len)
1262 {
1263 struct hfi1_base_info binfo;
1264 struct hfi1_filedata *fd = fp->private_data;
1265 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1266 struct hfi1_devdata *dd = uctxt->dd;
1267 ssize_t sz;
1268 unsigned offset;
1269 int ret = 0;
1270
1271 trace_hfi1_uctxtdata(uctxt->dd, uctxt);
1272
1273 memset(&binfo, 0, sizeof(binfo));
1274 binfo.hw_version = dd->revision;
1275 binfo.sw_version = HFI1_KERN_SWVERSION;
1276 binfo.bthqp = kdeth_qp;
1277 binfo.jkey = uctxt->jkey;
1278 /*
1279 * If more than 64 contexts are enabled the allocated credit
1280 * return will span two or three contiguous pages. Since we only
1281 * map the page containing the context's credit return address,
1282 * we need to calculate the offset in the proper page.
1283 */
1284 offset = ((u64)uctxt->sc->hw_free -
1285 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1286 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1287 fd->subctxt, offset);
1288 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1289 fd->subctxt,
1290 uctxt->sc->base_addr);
1291 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1292 uctxt->ctxt,
1293 fd->subctxt,
1294 uctxt->sc->base_addr);
1295 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1296 fd->subctxt,
1297 uctxt->rcvhdrq);
1298 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1299 fd->subctxt,
1300 uctxt->egrbufs.rcvtids[0].dma);
1301 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1302 fd->subctxt, 0);
1303 /*
1304 * user regs are at
1305 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1306 */
1307 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1308 fd->subctxt, 0);
1309 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) *
1310 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) *
1311 sizeof(*dd->events));
1312 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1313 fd->subctxt,
1314 offset);
1315 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1316 fd->subctxt,
1317 dd->status);
1318 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1319 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1320 fd->subctxt, 0);
1321 if (uctxt->subctxt_cnt) {
1322 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1323 uctxt->ctxt,
1324 fd->subctxt, 0);
1325 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1326 uctxt->ctxt,
1327 fd->subctxt, 0);
1328 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1329 uctxt->ctxt,
1330 fd->subctxt, 0);
1331 }
1332 sz = (len < sizeof(binfo)) ? len : sizeof(binfo);
1333 if (copy_to_user(ubase, &binfo, sz))
1334 ret = -EFAULT;
1335 return ret;
1336 }
1337
1338 static unsigned int poll_urgent(struct file *fp,
1339 struct poll_table_struct *pt)
1340 {
1341 struct hfi1_filedata *fd = fp->private_data;
1342 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1343 struct hfi1_devdata *dd = uctxt->dd;
1344 unsigned pollflag;
1345
1346 poll_wait(fp, &uctxt->wait, pt);
1347
1348 spin_lock_irq(&dd->uctxt_lock);
1349 if (uctxt->urgent != uctxt->urgent_poll) {
1350 pollflag = POLLIN | POLLRDNORM;
1351 uctxt->urgent_poll = uctxt->urgent;
1352 } else {
1353 pollflag = 0;
1354 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1355 }
1356 spin_unlock_irq(&dd->uctxt_lock);
1357
1358 return pollflag;
1359 }
1360
1361 static unsigned int poll_next(struct file *fp,
1362 struct poll_table_struct *pt)
1363 {
1364 struct hfi1_filedata *fd = fp->private_data;
1365 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1366 struct hfi1_devdata *dd = uctxt->dd;
1367 unsigned pollflag;
1368
1369 poll_wait(fp, &uctxt->wait, pt);
1370
1371 spin_lock_irq(&dd->uctxt_lock);
1372 if (hdrqempty(uctxt)) {
1373 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1374 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt);
1375 pollflag = 0;
1376 } else {
1377 pollflag = POLLIN | POLLRDNORM;
1378 }
1379 spin_unlock_irq(&dd->uctxt_lock);
1380
1381 return pollflag;
1382 }
1383
1384 /*
1385 * Find all user contexts in use, and set the specified bit in their
1386 * event mask.
1387 * See also find_ctxt() for a similar use, that is specific to send buffers.
1388 */
1389 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1390 {
1391 struct hfi1_ctxtdata *uctxt;
1392 struct hfi1_devdata *dd = ppd->dd;
1393 unsigned ctxt;
1394 int ret = 0;
1395 unsigned long flags;
1396
1397 if (!dd->events) {
1398 ret = -EINVAL;
1399 goto done;
1400 }
1401
1402 spin_lock_irqsave(&dd->uctxt_lock, flags);
1403 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts;
1404 ctxt++) {
1405 uctxt = dd->rcd[ctxt];
1406 if (uctxt) {
1407 unsigned long *evs = dd->events +
1408 (uctxt->ctxt - dd->first_user_ctxt) *
1409 HFI1_MAX_SHARED_CTXTS;
1410 int i;
1411 /*
1412 * subctxt_cnt is 0 if not shared, so do base
1413 * separately, first, then remaining subctxt, if any
1414 */
1415 set_bit(evtbit, evs);
1416 for (i = 1; i < uctxt->subctxt_cnt; i++)
1417 set_bit(evtbit, evs + i);
1418 }
1419 }
1420 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1421 done:
1422 return ret;
1423 }
1424
1425 /**
1426 * manage_rcvq - manage a context's receive queue
1427 * @uctxt: the context
1428 * @subctxt: the sub-context
1429 * @start_stop: action to carry out
1430 *
1431 * start_stop == 0 disables receive on the context, for use in queue
1432 * overflow conditions. start_stop==1 re-enables, to be used to
1433 * re-init the software copy of the head register
1434 */
1435 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1436 int start_stop)
1437 {
1438 struct hfi1_devdata *dd = uctxt->dd;
1439 unsigned int rcvctrl_op;
1440
1441 if (subctxt)
1442 goto bail;
1443 /* atomically clear receive enable ctxt. */
1444 if (start_stop) {
1445 /*
1446 * On enable, force in-memory copy of the tail register to
1447 * 0, so that protocol code doesn't have to worry about
1448 * whether or not the chip has yet updated the in-memory
1449 * copy or not on return from the system call. The chip
1450 * always resets it's tail register back to 0 on a
1451 * transition from disabled to enabled.
1452 */
1453 if (uctxt->rcvhdrtail_kvaddr)
1454 clear_rcvhdrtail(uctxt);
1455 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1456 } else {
1457 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1458 }
1459 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt);
1460 /* always; new head should be equal to new tail; see above */
1461 bail:
1462 return 0;
1463 }
1464
1465 /*
1466 * clear the event notifier events for this context.
1467 * User process then performs actions appropriate to bit having been
1468 * set, if desired, and checks again in future.
1469 */
1470 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt,
1471 unsigned long events)
1472 {
1473 int i;
1474 struct hfi1_devdata *dd = uctxt->dd;
1475 unsigned long *evs;
1476
1477 if (!dd->events)
1478 return 0;
1479
1480 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
1481 HFI1_MAX_SHARED_CTXTS) + subctxt;
1482
1483 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1484 if (!test_bit(i, &events))
1485 continue;
1486 clear_bit(i, evs);
1487 }
1488 return 0;
1489 }
1490
1491 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1492 u16 pkey)
1493 {
1494 int ret = -ENOENT, i, intable = 0;
1495 struct hfi1_pportdata *ppd = uctxt->ppd;
1496 struct hfi1_devdata *dd = uctxt->dd;
1497
1498 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) {
1499 ret = -EINVAL;
1500 goto done;
1501 }
1502
1503 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1504 if (pkey == ppd->pkeys[i]) {
1505 intable = 1;
1506 break;
1507 }
1508
1509 if (intable)
1510 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey);
1511 done:
1512 return ret;
1513 }
1514
1515 static void user_remove(struct hfi1_devdata *dd)
1516 {
1517
1518 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1519 }
1520
1521 static int user_add(struct hfi1_devdata *dd)
1522 {
1523 char name[10];
1524 int ret;
1525
1526 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1527 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1528 &dd->user_cdev, &dd->user_device,
1529 true, &dd->kobj);
1530 if (ret)
1531 user_remove(dd);
1532
1533 return ret;
1534 }
1535
1536 /*
1537 * Create per-unit files in /dev
1538 */
1539 int hfi1_device_create(struct hfi1_devdata *dd)
1540 {
1541 return user_add(dd);
1542 }
1543
1544 /*
1545 * Remove per-unit files in /dev
1546 * void, core kernel returns no errors for this stuff
1547 */
1548 void hfi1_device_remove(struct hfi1_devdata *dd)
1549 {
1550 user_remove(dd);
1551 }