]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/infiniband/hw/hfi1/hfi.h
IB/hfi1: Close window for pq and request coliding
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / hw / hfi1 / hfi.h
1 #ifndef _HFI1_KERNEL_H
2 #define _HFI1_KERNEL_H
3 /*
4 * Copyright(c) 2015-2017 Intel Corporation.
5 *
6 * This file is provided under a dual BSD/GPLv2 license. When using or
7 * redistributing this file, you may do so under either license.
8 *
9 * GPL LICENSE SUMMARY
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * BSD LICENSE
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 *
26 * - Redistributions of source code must retain the above copyright
27 * notice, this list of conditions and the following disclaimer.
28 * - Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in
30 * the documentation and/or other materials provided with the
31 * distribution.
32 * - Neither the name of Intel Corporation nor the names of its
33 * contributors may be used to endorse or promote products derived
34 * from this software without specific prior written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 *
48 */
49
50 #include <linux/interrupt.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/mutex.h>
54 #include <linux/list.h>
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/idr.h>
58 #include <linux/io.h>
59 #include <linux/fs.h>
60 #include <linux/completion.h>
61 #include <linux/kref.h>
62 #include <linux/sched.h>
63 #include <linux/cdev.h>
64 #include <linux/delay.h>
65 #include <linux/kthread.h>
66 #include <linux/i2c.h>
67 #include <linux/i2c-algo-bit.h>
68 #include <rdma/ib_hdrs.h>
69 #include <rdma/opa_addr.h>
70 #include <linux/rhashtable.h>
71 #include <linux/netdevice.h>
72 #include <rdma/rdma_vt.h>
73 #include <rdma/opa_addr.h>
74
75 #include "chip_registers.h"
76 #include "common.h"
77 #include "verbs.h"
78 #include "pio.h"
79 #include "chip.h"
80 #include "mad.h"
81 #include "qsfp.h"
82 #include "platform.h"
83 #include "affinity.h"
84
85 /* bumped 1 from s/w major version of TrueScale */
86 #define HFI1_CHIP_VERS_MAJ 3U
87
88 /* don't care about this except printing */
89 #define HFI1_CHIP_VERS_MIN 0U
90
91 /* The Organization Unique Identifier (Mfg code), and its position in GUID */
92 #define HFI1_OUI 0x001175
93 #define HFI1_OUI_LSB 40
94
95 #define DROP_PACKET_OFF 0
96 #define DROP_PACKET_ON 1
97
98 #define NEIGHBOR_TYPE_HFI 0
99 #define NEIGHBOR_TYPE_SWITCH 1
100
101 extern unsigned long hfi1_cap_mask;
102 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
103 #define HFI1_CAP_UGET_MASK(mask, cap) \
104 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
105 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
106 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
107 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
108 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
109 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
110 HFI1_CAP_MISC_MASK)
111 /* Offline Disabled Reason is 4-bits */
112 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
113
114 /*
115 * Control context is always 0 and handles the error packets.
116 * It also handles the VL15 and multicast packets.
117 */
118 #define HFI1_CTRL_CTXT 0
119
120 /*
121 * Driver context will store software counters for each of the events
122 * associated with these status registers
123 */
124 #define NUM_CCE_ERR_STATUS_COUNTERS 41
125 #define NUM_RCV_ERR_STATUS_COUNTERS 64
126 #define NUM_MISC_ERR_STATUS_COUNTERS 13
127 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
128 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
129 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
130 #define NUM_SEND_ERR_STATUS_COUNTERS 3
131 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
132 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
133
134 /*
135 * per driver stats, either not device nor port-specific, or
136 * summed over all of the devices and ports.
137 * They are described by name via ipathfs filesystem, so layout
138 * and number of elements can change without breaking compatibility.
139 * If members are added or deleted hfi1_statnames[] in debugfs.c must
140 * change to match.
141 */
142 struct hfi1_ib_stats {
143 __u64 sps_ints; /* number of interrupts handled */
144 __u64 sps_errints; /* number of error interrupts */
145 __u64 sps_txerrs; /* tx-related packet errors */
146 __u64 sps_rcverrs; /* non-crc rcv packet errors */
147 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
148 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */
149 __u64 sps_ctxts; /* number of contexts currently open */
150 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
151 __u64 sps_buffull;
152 __u64 sps_hdrfull;
153 };
154
155 extern struct hfi1_ib_stats hfi1_stats;
156 extern const struct pci_error_handlers hfi1_pci_err_handler;
157
158 extern int num_driver_cntrs;
159
160 /*
161 * First-cut criterion for "device is active" is
162 * two thousand dwords combined Tx, Rx traffic per
163 * 5-second interval. SMA packets are 64 dwords,
164 * and occur "a few per second", presumably each way.
165 */
166 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
167
168 /*
169 * Below contains all data related to a single context (formerly called port).
170 */
171
172 struct hfi1_opcode_stats_perctx;
173
174 struct ctxt_eager_bufs {
175 ssize_t size; /* total size of eager buffers */
176 u32 count; /* size of buffers array */
177 u32 numbufs; /* number of buffers allocated */
178 u32 alloced; /* number of rcvarray entries used */
179 u32 rcvtid_size; /* size of each eager rcv tid */
180 u32 threshold; /* head update threshold */
181 struct eager_buffer {
182 void *addr;
183 dma_addr_t dma;
184 ssize_t len;
185 } *buffers;
186 struct {
187 void *addr;
188 dma_addr_t dma;
189 } *rcvtids;
190 };
191
192 struct exp_tid_set {
193 struct list_head list;
194 u32 count;
195 };
196
197 struct hfi1_ctxtdata {
198 /* shadow the ctxt's RcvCtrl register */
199 u64 rcvctrl;
200 /* rcvhdrq base, needs mmap before useful */
201 void *rcvhdrq;
202 /* kernel virtual address where hdrqtail is updated */
203 volatile __le64 *rcvhdrtail_kvaddr;
204 /* when waiting for rcv or pioavail */
205 wait_queue_head_t wait;
206 /* rcvhdrq size (for freeing) */
207 size_t rcvhdrq_size;
208 /* number of rcvhdrq entries */
209 u16 rcvhdrq_cnt;
210 /* size of each of the rcvhdrq entries */
211 u16 rcvhdrqentsize;
212 /* mmap of hdrq, must fit in 44 bits */
213 dma_addr_t rcvhdrq_dma;
214 dma_addr_t rcvhdrqtailaddr_dma;
215 struct ctxt_eager_bufs egrbufs;
216 /* this receive context's assigned PIO ACK send context */
217 struct send_context *sc;
218
219 /* dynamic receive available interrupt timeout */
220 u32 rcvavail_timeout;
221 /* Reference count the base context usage */
222 struct kref kref;
223
224 /* Device context index */
225 u16 ctxt;
226 /*
227 * non-zero if ctxt can be shared, and defines the maximum number of
228 * sub-contexts for this device context.
229 */
230 u16 subctxt_cnt;
231 /* non-zero if ctxt is being shared. */
232 u16 subctxt_id;
233 u8 uuid[16];
234 /* job key */
235 u16 jkey;
236 /* number of RcvArray groups for this context. */
237 u32 rcv_array_groups;
238 /* index of first eager TID entry. */
239 u32 eager_base;
240 /* number of expected TID entries */
241 u32 expected_count;
242 /* index of first expected TID entry. */
243 u32 expected_base;
244
245 struct exp_tid_set tid_group_list;
246 struct exp_tid_set tid_used_list;
247 struct exp_tid_set tid_full_list;
248
249 /* lock protecting all Expected TID data */
250 struct mutex exp_lock;
251 /* per-context configuration flags */
252 unsigned long flags;
253 /* per-context event flags for fileops/intr communication */
254 unsigned long event_flags;
255 /* total number of polled urgent packets */
256 u32 urgent;
257 /* saved total number of polled urgent packets for poll edge trigger */
258 u32 urgent_poll;
259 /* same size as task_struct .comm[], command that opened context */
260 char comm[TASK_COMM_LEN];
261 /* so file ops can get at unit */
262 struct hfi1_devdata *dd;
263 /* so functions that need physical port can get it easily */
264 struct hfi1_pportdata *ppd;
265 /* associated msix interrupt */
266 u32 msix_intr;
267 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
268 void *subctxt_uregbase;
269 /* An array of pages for the eager receive buffers * N */
270 void *subctxt_rcvegrbuf;
271 /* An array of pages for the eager header queue entries * N */
272 void *subctxt_rcvhdr_base;
273 /* Bitmask of in use context(s) */
274 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
275 /* The version of the library which opened this ctxt */
276 u32 userversion;
277 /* Type of packets or conditions we want to poll for */
278 u16 poll_type;
279 /* receive packet sequence counter */
280 u8 seq_cnt;
281 /* ctxt rcvhdrq head offset */
282 u32 head;
283 /* QPs waiting for context processing */
284 struct list_head qp_wait_list;
285 /* interrupt handling */
286 u64 imask; /* clear interrupt mask */
287 int ireg; /* clear interrupt register */
288 unsigned numa_id; /* numa node of this context */
289 /* verbs rx_stats per rcd */
290 struct hfi1_opcode_stats_perctx *opstats;
291
292 /* Is ASPM interrupt supported for this context */
293 bool aspm_intr_supported;
294 /* ASPM state (enabled/disabled) for this context */
295 bool aspm_enabled;
296 /* Timer for re-enabling ASPM if interrupt activity quietens down */
297 struct timer_list aspm_timer;
298 /* Lock to serialize between intr, timer intr and user threads */
299 spinlock_t aspm_lock;
300 /* Is ASPM processing enabled for this context (in intr context) */
301 bool aspm_intr_enable;
302 /* Last interrupt timestamp */
303 ktime_t aspm_ts_last_intr;
304 /* Last timestamp at which we scheduled a timer for this context */
305 ktime_t aspm_ts_timer_sched;
306
307 /*
308 * The interrupt handler for a particular receive context can vary
309 * throughout it's lifetime. This is not a lock protected data member so
310 * it must be updated atomically and the prev and new value must always
311 * be valid. Worst case is we process an extra interrupt and up to 64
312 * packets with the wrong interrupt handler.
313 */
314 int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded);
315
316 /* Indicates that this is vnic context */
317 bool is_vnic;
318
319 /* vnic queue index this context is mapped to */
320 u8 vnic_q_idx;
321 };
322
323 /*
324 * Represents a single packet at a high level. Put commonly computed things in
325 * here so we do not have to keep doing them over and over. The rule of thumb is
326 * if something is used one time to derive some value, store that something in
327 * here. If it is used multiple times, then store the result of that derivation
328 * in here.
329 */
330 struct hfi1_packet {
331 void *ebuf;
332 void *hdr;
333 void *payload;
334 struct hfi1_ctxtdata *rcd;
335 __le32 *rhf_addr;
336 struct rvt_qp *qp;
337 struct ib_other_headers *ohdr;
338 struct ib_grh *grh;
339 u64 rhf;
340 u32 maxcnt;
341 u32 rhqoff;
342 u32 dlid;
343 u32 slid;
344 u16 tlen;
345 s16 etail;
346 u8 hlen;
347 u8 numpkt;
348 u8 rsize;
349 u8 updegr;
350 u8 etype;
351 u8 extra_byte;
352 u8 pad;
353 u8 sc;
354 u8 sl;
355 u8 opcode;
356 bool becn;
357 bool fecn;
358 };
359
360 /* Packet types */
361 #define HFI1_PKT_TYPE_9B 0
362 #define HFI1_PKT_TYPE_16B 1
363
364 /*
365 * OPA 16B Header
366 */
367 #define OPA_16B_L4_MASK 0xFFull
368 #define OPA_16B_SC_MASK 0x1F00000ull
369 #define OPA_16B_SC_SHIFT 20
370 #define OPA_16B_LID_MASK 0xFFFFFull
371 #define OPA_16B_DLID_MASK 0xF000ull
372 #define OPA_16B_DLID_SHIFT 20
373 #define OPA_16B_DLID_HIGH_SHIFT 12
374 #define OPA_16B_SLID_MASK 0xF00ull
375 #define OPA_16B_SLID_SHIFT 20
376 #define OPA_16B_SLID_HIGH_SHIFT 8
377 #define OPA_16B_BECN_MASK 0x80000000ull
378 #define OPA_16B_BECN_SHIFT 31
379 #define OPA_16B_FECN_MASK 0x10000000ull
380 #define OPA_16B_FECN_SHIFT 28
381 #define OPA_16B_L2_MASK 0x60000000ull
382 #define OPA_16B_L2_SHIFT 29
383 #define OPA_16B_PKEY_MASK 0xFFFF0000ull
384 #define OPA_16B_PKEY_SHIFT 16
385 #define OPA_16B_LEN_MASK 0x7FF00000ull
386 #define OPA_16B_LEN_SHIFT 20
387 #define OPA_16B_RC_MASK 0xE000000ull
388 #define OPA_16B_RC_SHIFT 25
389 #define OPA_16B_AGE_MASK 0xFF0000ull
390 #define OPA_16B_AGE_SHIFT 16
391 #define OPA_16B_ENTROPY_MASK 0xFFFFull
392
393 /*
394 * OPA 16B L2/L4 Encodings
395 */
396 #define OPA_16B_L4_9B 0x00
397 #define OPA_16B_L2_TYPE 0x02
398 #define OPA_16B_L4_IB_LOCAL 0x09
399 #define OPA_16B_L4_IB_GLOBAL 0x0A
400 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR
401
402 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
403 {
404 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
405 }
406
407 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
408 {
409 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
410 }
411
412 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
413 {
414 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
415 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
416 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
417 }
418
419 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
420 {
421 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
422 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
423 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
424 }
425
426 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
427 {
428 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
429 }
430
431 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
432 {
433 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
434 }
435
436 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
437 {
438 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
439 }
440
441 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
442 {
443 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
444 }
445
446 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
447 {
448 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
449 }
450
451 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
452 {
453 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
454 }
455
456 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
457 {
458 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
459 }
460
461 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
462 {
463 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
464 }
465
466 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
467
468 /*
469 * BTH
470 */
471 #define OPA_16B_BTH_PAD_MASK 7
472 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
473 {
474 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
475 OPA_16B_BTH_PAD_MASK);
476 }
477
478 struct rvt_sge_state;
479
480 /*
481 * Get/Set IB link-level config parameters for f_get/set_ib_cfg()
482 * Mostly for MADs that set or query link parameters, also ipath
483 * config interfaces
484 */
485 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
486 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
487 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
488 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
489 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
490 #define HFI1_IB_CFG_SPD 5 /* current Link spd */
491 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
492 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
493 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
494 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
495 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
496 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
497 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
498 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
499 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
500 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
501 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
502 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
503 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19
504 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
505 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
506
507 /*
508 * HFI or Host Link States
509 *
510 * These describe the states the driver thinks the logical and physical
511 * states are in. Used as an argument to set_link_state(). Implemented
512 * as bits for easy multi-state checking. The actual state can only be
513 * one.
514 */
515 #define __HLS_UP_INIT_BP 0
516 #define __HLS_UP_ARMED_BP 1
517 #define __HLS_UP_ACTIVE_BP 2
518 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */
519 #define __HLS_DN_POLL_BP 4
520 #define __HLS_DN_DISABLE_BP 5
521 #define __HLS_DN_OFFLINE_BP 6
522 #define __HLS_VERIFY_CAP_BP 7
523 #define __HLS_GOING_UP_BP 8
524 #define __HLS_GOING_OFFLINE_BP 9
525 #define __HLS_LINK_COOLDOWN_BP 10
526
527 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP)
528 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP)
529 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP)
530 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
531 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP)
532 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP)
533 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP)
534 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP)
535 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP)
536 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
537 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
538
539 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
540 #define HLS_DOWN ~(HLS_UP)
541
542 #define HLS_DEFAULT HLS_DN_POLL
543
544 /* use this MTU size if none other is given */
545 #define HFI1_DEFAULT_ACTIVE_MTU 10240
546 /* use this MTU size as the default maximum */
547 #define HFI1_DEFAULT_MAX_MTU 10240
548 /* default partition key */
549 #define DEFAULT_PKEY 0xffff
550
551 /*
552 * Possible fabric manager config parameters for fm_{get,set}_table()
553 */
554 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */
555 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */
556 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */
557 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */
558 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */
559 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */
560
561 /*
562 * Possible "operations" for f_rcvctrl(ppd, op, ctxt)
563 * these are bits so they can be combined, e.g.
564 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
565 */
566 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01
567 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02
568 #define HFI1_RCVCTRL_CTXT_ENB 0x04
569 #define HFI1_RCVCTRL_CTXT_DIS 0x08
570 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
571 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
572 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */
573 #define HFI1_RCVCTRL_PKEY_DIS 0x80
574 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
575 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
576 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
577 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
578 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
579 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
580 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
581 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
582
583 /* partition enforcement flags */
584 #define HFI1_PART_ENFORCE_IN 0x1
585 #define HFI1_PART_ENFORCE_OUT 0x2
586
587 /* how often we check for synthetic counter wrap around */
588 #define SYNTH_CNT_TIME 3
589
590 /* Counter flags */
591 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */
592 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */
593 #define CNTR_DISABLED 0x2 /* Disable this counter */
594 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */
595 #define CNTR_VL 0x8 /* Per VL counter */
596 #define CNTR_SDMA 0x10
597 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */
598 #define CNTR_MODE_W 0x0
599 #define CNTR_MODE_R 0x1
600
601 /* VLs Supported/Operational */
602 #define HFI1_MIN_VLS_SUPPORTED 1
603 #define HFI1_MAX_VLS_SUPPORTED 8
604
605 #define HFI1_GUIDS_PER_PORT 5
606 #define HFI1_PORT_GUID_INDEX 0
607
608 static inline void incr_cntr64(u64 *cntr)
609 {
610 if (*cntr < (u64)-1LL)
611 (*cntr)++;
612 }
613
614 static inline void incr_cntr32(u32 *cntr)
615 {
616 if (*cntr < (u32)-1LL)
617 (*cntr)++;
618 }
619
620 #define MAX_NAME_SIZE 64
621 struct hfi1_msix_entry {
622 enum irq_type type;
623 int irq;
624 void *arg;
625 cpumask_t mask;
626 struct irq_affinity_notify notify;
627 };
628
629 /* per-SL CCA information */
630 struct cca_timer {
631 struct hrtimer hrtimer;
632 struct hfi1_pportdata *ppd; /* read-only */
633 int sl; /* read-only */
634 u16 ccti; /* read/write - current value of CCTI */
635 };
636
637 struct link_down_reason {
638 /*
639 * SMA-facing value. Should be set from .latest when
640 * HLS_UP_* -> HLS_DN_* transition actually occurs.
641 */
642 u8 sma;
643 u8 latest;
644 };
645
646 enum {
647 LO_PRIO_TABLE,
648 HI_PRIO_TABLE,
649 MAX_PRIO_TABLE
650 };
651
652 struct vl_arb_cache {
653 /* protect vl arb cache */
654 spinlock_t lock;
655 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
656 };
657
658 /*
659 * The structure below encapsulates data relevant to a physical IB Port.
660 * Current chips support only one such port, but the separation
661 * clarifies things a bit. Note that to conform to IB conventions,
662 * port-numbers are one-based. The first or only port is port1.
663 */
664 struct hfi1_pportdata {
665 struct hfi1_ibport ibport_data;
666
667 struct hfi1_devdata *dd;
668 struct kobject pport_cc_kobj;
669 struct kobject sc2vl_kobj;
670 struct kobject sl2sc_kobj;
671 struct kobject vl2mtu_kobj;
672
673 /* PHY support */
674 struct qsfp_data qsfp_info;
675 /* Values for SI tuning of SerDes */
676 u32 port_type;
677 u32 tx_preset_eq;
678 u32 tx_preset_noeq;
679 u32 rx_preset;
680 u8 local_atten;
681 u8 remote_atten;
682 u8 default_atten;
683 u8 max_power_class;
684
685 /* did we read platform config from scratch registers? */
686 bool config_from_scratch;
687
688 /* GUIDs for this interface, in host order, guids[0] is a port guid */
689 u64 guids[HFI1_GUIDS_PER_PORT];
690
691 /* GUID for peer interface, in host order */
692 u64 neighbor_guid;
693
694 /* up or down physical link state */
695 u32 linkup;
696
697 /*
698 * this address is mapped read-only into user processes so they can
699 * get status cheaply, whenever they want. One qword of status per port
700 */
701 u64 *statusp;
702
703 /* SendDMA related entries */
704
705 struct workqueue_struct *hfi1_wq;
706 struct workqueue_struct *link_wq;
707
708 /* move out of interrupt context */
709 struct work_struct link_vc_work;
710 struct work_struct link_up_work;
711 struct work_struct link_down_work;
712 struct work_struct sma_message_work;
713 struct work_struct freeze_work;
714 struct work_struct link_downgrade_work;
715 struct work_struct link_bounce_work;
716 struct delayed_work start_link_work;
717 /* host link state variables */
718 struct mutex hls_lock;
719 u32 host_link_state;
720
721 /* these are the "32 bit" regs */
722
723 u32 ibmtu; /* The MTU programmed for this unit */
724 /*
725 * Current max size IB packet (in bytes) including IB headers, that
726 * we can send. Changes when ibmtu changes.
727 */
728 u32 ibmaxlen;
729 u32 current_egress_rate; /* units [10^6 bits/sec] */
730 /* LID programmed for this instance */
731 u32 lid;
732 /* list of pkeys programmed; 0 if not set */
733 u16 pkeys[MAX_PKEY_VALUES];
734 u16 link_width_supported;
735 u16 link_width_downgrade_supported;
736 u16 link_speed_supported;
737 u16 link_width_enabled;
738 u16 link_width_downgrade_enabled;
739 u16 link_speed_enabled;
740 u16 link_width_active;
741 u16 link_width_downgrade_tx_active;
742 u16 link_width_downgrade_rx_active;
743 u16 link_speed_active;
744 u8 vls_supported;
745 u8 vls_operational;
746 u8 actual_vls_operational;
747 /* LID mask control */
748 u8 lmc;
749 /* Rx Polarity inversion (compensate for ~tx on partner) */
750 u8 rx_pol_inv;
751
752 u8 hw_pidx; /* physical port index */
753 u8 port; /* IB port number and index into dd->pports - 1 */
754 /* type of neighbor node */
755 u8 neighbor_type;
756 u8 neighbor_normal;
757 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
758 u8 neighbor_port_number;
759 u8 is_sm_config_started;
760 u8 offline_disabled_reason;
761 u8 is_active_optimize_enabled;
762 u8 driver_link_ready; /* driver ready for active link */
763 u8 link_enabled; /* link enabled? */
764 u8 linkinit_reason;
765 u8 local_tx_rate; /* rate given to 8051 firmware */
766 u8 qsfp_retry_count;
767
768 /* placeholders for IB MAD packet settings */
769 u8 overrun_threshold;
770 u8 phy_error_threshold;
771 unsigned int is_link_down_queued;
772
773 /* Used to override LED behavior for things like maintenance beaconing*/
774 /*
775 * Alternates per phase of blink
776 * [0] holds LED off duration, [1] holds LED on duration
777 */
778 unsigned long led_override_vals[2];
779 u8 led_override_phase; /* LSB picks from vals[] */
780 atomic_t led_override_timer_active;
781 /* Used to flash LEDs in override mode */
782 struct timer_list led_override_timer;
783
784 u32 sm_trap_qp;
785 u32 sa_qp;
786
787 /*
788 * cca_timer_lock protects access to the per-SL cca_timer
789 * structures (specifically the ccti member).
790 */
791 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
792 struct cca_timer cca_timer[OPA_MAX_SLS];
793
794 /* List of congestion control table entries */
795 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
796
797 /* congestion entries, each entry corresponding to a SL */
798 struct opa_congestion_setting_entry_shadow
799 congestion_entries[OPA_MAX_SLS];
800
801 /*
802 * cc_state_lock protects (write) access to the per-port
803 * struct cc_state.
804 */
805 spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
806
807 struct cc_state __rcu *cc_state;
808
809 /* Total number of congestion control table entries */
810 u16 total_cct_entry;
811
812 /* Bit map identifying service level */
813 u32 cc_sl_control_map;
814
815 /* CA's max number of 64 entry units in the congestion control table */
816 u8 cc_max_table_entries;
817
818 /*
819 * begin congestion log related entries
820 * cc_log_lock protects all congestion log related data
821 */
822 spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
823 u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
824 u16 threshold_event_counter;
825 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
826 int cc_log_idx; /* index for logging events */
827 int cc_mad_idx; /* index for reporting events */
828 /* end congestion log related entries */
829
830 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
831
832 /* port relative counter buffer */
833 u64 *cntrs;
834 /* port relative synthetic counter buffer */
835 u64 *scntrs;
836 /* port_xmit_discards are synthesized from different egress errors */
837 u64 port_xmit_discards;
838 u64 port_xmit_discards_vl[C_VL_COUNT];
839 u64 port_xmit_constraint_errors;
840 u64 port_rcv_constraint_errors;
841 /* count of 'link_err' interrupts from DC */
842 u64 link_downed;
843 /* number of times link retrained successfully */
844 u64 link_up;
845 /* number of times a link unknown frame was reported */
846 u64 unknown_frame_count;
847 /* port_ltp_crc_mode is returned in 'portinfo' MADs */
848 u16 port_ltp_crc_mode;
849 /* port_crc_mode_enabled is the crc we support */
850 u8 port_crc_mode_enabled;
851 /* mgmt_allowed is also returned in 'portinfo' MADs */
852 u8 mgmt_allowed;
853 u8 part_enforce; /* partition enforcement flags */
854 struct link_down_reason local_link_down_reason;
855 struct link_down_reason neigh_link_down_reason;
856 /* Value to be sent to link peer on LinkDown .*/
857 u8 remote_link_down_reason;
858 /* Error events that will cause a port bounce. */
859 u32 port_error_action;
860 struct work_struct linkstate_active_work;
861 /* Does this port need to prescan for FECNs */
862 bool cc_prescan;
863 };
864
865 typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
866
867 typedef void (*opcode_handler)(struct hfi1_packet *packet);
868 typedef void (*hfi1_make_req)(struct rvt_qp *qp,
869 struct hfi1_pkt_state *ps,
870 struct rvt_swqe *wqe);
871
872
873 /* return values for the RHF receive functions */
874 #define RHF_RCV_CONTINUE 0 /* keep going */
875 #define RHF_RCV_DONE 1 /* stop, this packet processed */
876 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */
877
878 struct rcv_array_data {
879 u8 group_size;
880 u16 ngroups;
881 u16 nctxt_extra;
882 };
883
884 struct per_vl_data {
885 u16 mtu;
886 struct send_context *sc;
887 };
888
889 /* 16 to directly index */
890 #define PER_VL_SEND_CONTEXTS 16
891
892 struct err_info_rcvport {
893 u8 status_and_code;
894 u64 packet_flit1;
895 u64 packet_flit2;
896 };
897
898 struct err_info_constraint {
899 u8 status;
900 u16 pkey;
901 u32 slid;
902 };
903
904 struct hfi1_temp {
905 unsigned int curr; /* current temperature */
906 unsigned int lo_lim; /* low temperature limit */
907 unsigned int hi_lim; /* high temperature limit */
908 unsigned int crit_lim; /* critical temperature limit */
909 u8 triggers; /* temperature triggers */
910 };
911
912 struct hfi1_i2c_bus {
913 struct hfi1_devdata *controlling_dd; /* current controlling device */
914 struct i2c_adapter adapter; /* bus details */
915 struct i2c_algo_bit_data algo; /* bus algorithm details */
916 int num; /* bus number, 0 or 1 */
917 };
918
919 /* common data between shared ASIC HFIs */
920 struct hfi1_asic_data {
921 struct hfi1_devdata *dds[2]; /* back pointers */
922 struct mutex asic_resource_mutex;
923 struct hfi1_i2c_bus *i2c_bus0;
924 struct hfi1_i2c_bus *i2c_bus1;
925 };
926
927 /* sizes for both the QP and RSM map tables */
928 #define NUM_MAP_ENTRIES 256
929 #define NUM_MAP_REGS 32
930
931 /*
932 * Number of VNIC contexts used. Ensure it is less than or equal to
933 * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE).
934 */
935 #define HFI1_NUM_VNIC_CTXT 8
936
937 /* Number of VNIC RSM entries */
938 #define NUM_VNIC_MAP_ENTRIES 8
939
940 /* Virtual NIC information */
941 struct hfi1_vnic_data {
942 struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT];
943 struct kmem_cache *txreq_cache;
944 u8 num_vports;
945 struct idr vesw_idr;
946 u8 rmt_start;
947 u8 num_ctxt;
948 u32 msix_idx;
949 };
950
951 struct hfi1_vnic_vport_info;
952
953 /* device data struct now contains only "general per-device" info.
954 * fields related to a physical IB port are in a hfi1_pportdata struct.
955 */
956 struct sdma_engine;
957 struct sdma_vl_map;
958
959 #define BOARD_VERS_MAX 96 /* how long the version string can be */
960 #define SERIAL_MAX 16 /* length of the serial number */
961
962 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
963 struct hfi1_devdata {
964 struct hfi1_ibdev verbs_dev; /* must be first */
965 struct list_head list;
966 /* pointers to related structs for this device */
967 /* pci access data structure */
968 struct pci_dev *pcidev;
969 struct cdev user_cdev;
970 struct cdev diag_cdev;
971 struct cdev ui_cdev;
972 struct device *user_device;
973 struct device *diag_device;
974 struct device *ui_device;
975
976 /* first mapping up to RcvArray */
977 u8 __iomem *kregbase1;
978 resource_size_t physaddr;
979
980 /* second uncached mapping from RcvArray to pio send buffers */
981 u8 __iomem *kregbase2;
982 /* for detecting offset above kregbase2 address */
983 u32 base2_start;
984
985 /* Per VL data. Enough for all VLs but not all elements are set/used. */
986 struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
987 /* send context data */
988 struct send_context_info *send_contexts;
989 /* map hardware send contexts to software index */
990 u8 *hw_to_sw;
991 /* spinlock for allocating and releasing send context resources */
992 spinlock_t sc_lock;
993 /* lock for pio_map */
994 spinlock_t pio_map_lock;
995 /* Send Context initialization lock. */
996 spinlock_t sc_init_lock;
997 /* lock for sdma_map */
998 spinlock_t sde_map_lock;
999 /* array of kernel send contexts */
1000 struct send_context **kernel_send_context;
1001 /* array of vl maps */
1002 struct pio_vl_map __rcu *pio_map;
1003 /* default flags to last descriptor */
1004 u64 default_desc1;
1005
1006 /* fields common to all SDMA engines */
1007
1008 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */
1009 dma_addr_t sdma_heads_phys;
1010 void *sdma_pad_dma; /* DMA'ed by chip */
1011 dma_addr_t sdma_pad_phys;
1012 /* for deallocation */
1013 size_t sdma_heads_size;
1014 /* number from the chip */
1015 u32 chip_sdma_engines;
1016 /* num used */
1017 u32 num_sdma;
1018 /* array of engines sized by num_sdma */
1019 struct sdma_engine *per_sdma;
1020 /* array of vl maps */
1021 struct sdma_vl_map __rcu *sdma_map;
1022 /* SPC freeze waitqueue and variable */
1023 wait_queue_head_t sdma_unfreeze_wq;
1024 atomic_t sdma_unfreeze_count;
1025
1026 u32 lcb_access_count; /* count of LCB users */
1027
1028 /* common data between shared ASIC HFIs in this OS */
1029 struct hfi1_asic_data *asic_data;
1030
1031 /* mem-mapped pointer to base of PIO buffers */
1032 void __iomem *piobase;
1033 /*
1034 * write-combining mem-mapped pointer to base of RcvArray
1035 * memory.
1036 */
1037 void __iomem *rcvarray_wc;
1038 /*
1039 * credit return base - a per-NUMA range of DMA address that
1040 * the chip will use to update the per-context free counter
1041 */
1042 struct credit_return_base *cr_base;
1043
1044 /* send context numbers and sizes for each type */
1045 struct sc_config_sizes sc_sizes[SC_MAX];
1046
1047 char *boardname; /* human readable board info */
1048
1049 /* reset value */
1050 u64 z_int_counter;
1051 u64 z_rcv_limit;
1052 u64 z_send_schedule;
1053
1054 u64 __percpu *send_schedule;
1055 /* number of reserved contexts for VNIC usage */
1056 u16 num_vnic_contexts;
1057 /* number of receive contexts in use by the driver */
1058 u32 num_rcv_contexts;
1059 /* number of pio send contexts in use by the driver */
1060 u32 num_send_contexts;
1061 /*
1062 * number of ctxts available for PSM open
1063 */
1064 u32 freectxts;
1065 /* total number of available user/PSM contexts */
1066 u32 num_user_contexts;
1067 /* base receive interrupt timeout, in CSR units */
1068 u32 rcv_intr_timeout_csr;
1069
1070 u32 freezelen; /* max length of freezemsg */
1071 u64 __iomem *egrtidbase;
1072 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
1073 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
1074 spinlock_t uctxt_lock; /* protect rcd changes */
1075 struct mutex dc8051_lock; /* exclusive access to 8051 */
1076 struct workqueue_struct *update_cntr_wq;
1077 struct work_struct update_cntr_work;
1078 /* exclusive access to 8051 memory */
1079 spinlock_t dc8051_memlock;
1080 int dc8051_timed_out; /* remember if the 8051 timed out */
1081 /*
1082 * A page that will hold event notification bitmaps for all
1083 * contexts. This page will be mapped into all processes.
1084 */
1085 unsigned long *events;
1086 /*
1087 * per unit status, see also portdata statusp
1088 * mapped read-only into user processes so they can get unit and
1089 * IB link status cheaply
1090 */
1091 struct hfi1_status *status;
1092
1093 /* revision register shadow */
1094 u64 revision;
1095 /* Base GUID for device (network order) */
1096 u64 base_guid;
1097
1098 /* these are the "32 bit" regs */
1099
1100 /* value we put in kr_rcvhdrsize */
1101 u32 rcvhdrsize;
1102 /* number of receive contexts the chip supports */
1103 u32 chip_rcv_contexts;
1104 /* number of receive array entries */
1105 u32 chip_rcv_array_count;
1106 /* number of PIO send contexts the chip supports */
1107 u32 chip_send_contexts;
1108 /* number of bytes in the PIO memory buffer */
1109 u32 chip_pio_mem_size;
1110 /* number of bytes in the SDMA memory buffer */
1111 u32 chip_sdma_mem_size;
1112
1113 /* size of each rcvegrbuffer */
1114 u32 rcvegrbufsize;
1115 /* log2 of above */
1116 u16 rcvegrbufsize_shift;
1117 /* both sides of the PCIe link are gen3 capable */
1118 u8 link_gen3_capable;
1119 u8 dc_shutdown;
1120 /* localbus width (1, 2,4,8,16,32) from config space */
1121 u32 lbus_width;
1122 /* localbus speed in MHz */
1123 u32 lbus_speed;
1124 int unit; /* unit # of this chip */
1125 int node; /* home node of this chip */
1126
1127 /* save these PCI fields to restore after a reset */
1128 u32 pcibar0;
1129 u32 pcibar1;
1130 u32 pci_rom;
1131 u16 pci_command;
1132 u16 pcie_devctl;
1133 u16 pcie_lnkctl;
1134 u16 pcie_devctl2;
1135 u32 pci_msix0;
1136 u32 pci_tph2;
1137
1138 /*
1139 * ASCII serial number, from flash, large enough for original
1140 * all digit strings, and longer serial number format
1141 */
1142 u8 serial[SERIAL_MAX];
1143 /* human readable board version */
1144 u8 boardversion[BOARD_VERS_MAX];
1145 u8 lbus_info[32]; /* human readable localbus info */
1146 /* chip major rev, from CceRevision */
1147 u8 majrev;
1148 /* chip minor rev, from CceRevision */
1149 u8 minrev;
1150 /* hardware ID */
1151 u8 hfi1_id;
1152 /* implementation code */
1153 u8 icode;
1154 /* vAU of this device */
1155 u8 vau;
1156 /* vCU of this device */
1157 u8 vcu;
1158 /* link credits of this device */
1159 u16 link_credits;
1160 /* initial vl15 credits to use */
1161 u16 vl15_init;
1162
1163 /*
1164 * Cached value for vl15buf, read during verify cap interrupt. VL15
1165 * credits are to be kept at 0 and set when handling the link-up
1166 * interrupt. This removes the possibility of receiving VL15 MAD
1167 * packets before this HFI is ready.
1168 */
1169 u16 vl15buf_cached;
1170
1171 /* Misc small ints */
1172 u8 n_krcv_queues;
1173 u8 qos_shift;
1174
1175 u16 irev; /* implementation revision */
1176 u32 dc8051_ver; /* 8051 firmware version */
1177
1178 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
1179 struct platform_config platform_config;
1180 struct platform_config_cache pcfg_cache;
1181
1182 struct diag_client *diag_client;
1183
1184 /* MSI-X information */
1185 struct hfi1_msix_entry *msix_entries;
1186 u32 num_msix_entries;
1187 u32 first_dyn_msix_idx;
1188
1189 /* INTx information */
1190 u32 requested_intx_irq; /* did we request one? */
1191
1192 /* general interrupt: mask of handled interrupts */
1193 u64 gi_mask[CCE_NUM_INT_CSRS];
1194
1195 struct rcv_array_data rcv_entries;
1196
1197 /* cycle length of PS* counters in HW (in picoseconds) */
1198 u16 psxmitwait_check_rate;
1199
1200 /*
1201 * 64 bit synthetic counters
1202 */
1203 struct timer_list synth_stats_timer;
1204
1205 /*
1206 * device counters
1207 */
1208 char *cntrnames;
1209 size_t cntrnameslen;
1210 size_t ndevcntrs;
1211 u64 *cntrs;
1212 u64 *scntrs;
1213
1214 /*
1215 * remembered values for synthetic counters
1216 */
1217 u64 last_tx;
1218 u64 last_rx;
1219
1220 /*
1221 * per-port counters
1222 */
1223 size_t nportcntrs;
1224 char *portcntrnames;
1225 size_t portcntrnameslen;
1226
1227 struct err_info_rcvport err_info_rcvport;
1228 struct err_info_constraint err_info_rcv_constraint;
1229 struct err_info_constraint err_info_xmit_constraint;
1230
1231 atomic_t drop_packet;
1232 u8 do_drop;
1233 u8 err_info_uncorrectable;
1234 u8 err_info_fmconfig;
1235
1236 /*
1237 * Software counters for the status bits defined by the
1238 * associated error status registers
1239 */
1240 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
1241 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
1242 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
1243 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
1244 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
1245 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
1246 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
1247
1248 /* Software counter that spans all contexts */
1249 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
1250 /* Software counter that spans all DMA engines */
1251 u64 sw_send_dma_eng_err_status_cnt[
1252 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
1253 /* Software counter that aggregates all cce_err_status errors */
1254 u64 sw_cce_err_status_aggregate;
1255 /* Software counter that aggregates all bypass packet rcv errors */
1256 u64 sw_rcv_bypass_packet_errors;
1257 /* receive interrupt function */
1258 rhf_rcv_function_ptr normal_rhf_rcv_functions[8];
1259
1260 /* Save the enabled LCB error bits */
1261 u64 lcb_err_en;
1262
1263 /*
1264 * Capability to have different send engines simply by changing a
1265 * pointer value.
1266 */
1267 send_routine process_pio_send ____cacheline_aligned_in_smp;
1268 send_routine process_dma_send;
1269 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
1270 u64 pbc, const void *from, size_t count);
1271 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
1272 struct hfi1_vnic_vport_info *vinfo,
1273 struct sk_buff *skb, u64 pbc, u8 plen);
1274 /* hfi1_pportdata, points to array of (physical) port-specific
1275 * data structs, indexed by pidx (0..n-1)
1276 */
1277 struct hfi1_pportdata *pport;
1278 /* receive context data */
1279 struct hfi1_ctxtdata **rcd;
1280 u64 __percpu *int_counter;
1281 /* verbs tx opcode stats */
1282 struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
1283 /* device (not port) flags, basically device capabilities */
1284 u16 flags;
1285 /* Number of physical ports available */
1286 u8 num_pports;
1287 /* Lowest context number which can be used by user processes or VNIC */
1288 u8 first_dyn_alloc_ctxt;
1289 /* adding a new field here would make it part of this cacheline */
1290
1291 /* seqlock for sc2vl */
1292 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
1293 u64 sc2vl[4];
1294 /* receive interrupt functions */
1295 rhf_rcv_function_ptr *rhf_rcv_function_map;
1296 u64 __percpu *rcv_limit;
1297 u16 rhf_offset; /* offset of RHF within receive header entry */
1298 /* adding a new field here would make it part of this cacheline */
1299
1300 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */
1301 u8 oui1;
1302 u8 oui2;
1303 u8 oui3;
1304
1305 /* Timer and counter used to detect RcvBufOvflCnt changes */
1306 struct timer_list rcverr_timer;
1307
1308 wait_queue_head_t event_queue;
1309
1310 /* receive context tail dummy address */
1311 __le64 *rcvhdrtail_dummy_kvaddr;
1312 dma_addr_t rcvhdrtail_dummy_dma;
1313
1314 u32 rcv_ovfl_cnt;
1315 /* Serialize ASPM enable/disable between multiple verbs contexts */
1316 spinlock_t aspm_lock;
1317 /* Number of verbs contexts which have disabled ASPM */
1318 atomic_t aspm_disabled_cnt;
1319 /* Keeps track of user space clients */
1320 atomic_t user_refcount;
1321 /* Used to wait for outstanding user space clients before dev removal */
1322 struct completion user_comp;
1323
1324 bool eprom_available; /* true if EPROM is available for this device */
1325 bool aspm_supported; /* Does HW support ASPM */
1326 bool aspm_enabled; /* ASPM state: enabled/disabled */
1327 struct rhashtable *sdma_rht;
1328
1329 struct kobject kobj;
1330
1331 /* vnic data */
1332 struct hfi1_vnic_data vnic;
1333 };
1334
1335 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare)
1336 {
1337 return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES;
1338 }
1339
1340 /* 8051 firmware version helper */
1341 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
1342 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
1343 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
1344 #define dc8051_ver_patch(a) ((a) & 0x0000ff)
1345
1346 /* f_put_tid types */
1347 #define PT_EXPECTED 0
1348 #define PT_EAGER 1
1349 #define PT_INVALID_FLUSH 2
1350 #define PT_INVALID 3
1351
1352 struct tid_rb_node;
1353 struct mmu_rb_node;
1354 struct mmu_rb_handler;
1355
1356 /* Private data for file operations */
1357 struct hfi1_filedata {
1358 struct srcu_struct pq_srcu;
1359 struct hfi1_devdata *dd;
1360 struct hfi1_ctxtdata *uctxt;
1361 struct hfi1_user_sdma_comp_q *cq;
1362 /* update side lock for SRCU */
1363 spinlock_t pq_rcu_lock;
1364 struct hfi1_user_sdma_pkt_q __rcu *pq;
1365 u16 subctxt;
1366 /* for cpu affinity; -1 if none */
1367 int rec_cpu_num;
1368 u32 tid_n_pinned;
1369 struct mmu_rb_handler *handler;
1370 struct tid_rb_node **entry_to_rb;
1371 spinlock_t tid_lock; /* protect tid_[limit,used] counters */
1372 u32 tid_limit;
1373 u32 tid_used;
1374 u32 *invalid_tids;
1375 u32 invalid_tid_idx;
1376 /* protect invalid_tids array and invalid_tid_idx */
1377 spinlock_t invalid_lock;
1378 struct mm_struct *mm;
1379 };
1380
1381 extern struct list_head hfi1_dev_list;
1382 extern spinlock_t hfi1_devs_lock;
1383 struct hfi1_devdata *hfi1_lookup(int unit);
1384
1385 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
1386 {
1387 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
1388 HFI1_MAX_SHARED_CTXTS;
1389 }
1390
1391 int hfi1_init(struct hfi1_devdata *dd, int reinit);
1392 int hfi1_count_active_units(void);
1393
1394 int hfi1_diag_add(struct hfi1_devdata *dd);
1395 void hfi1_diag_remove(struct hfi1_devdata *dd);
1396 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
1397
1398 void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
1399
1400 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1401 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
1402 int hfi1_create_kctxts(struct hfi1_devdata *dd);
1403 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
1404 struct hfi1_ctxtdata **rcd);
1405 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
1406 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
1407 struct hfi1_devdata *dd, u8 hw_pidx, u8 port);
1408 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1409 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
1410 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
1411 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
1412 u16 ctxt);
1413 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
1414 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
1415 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1416 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1417 void set_all_slowpath(struct hfi1_devdata *dd);
1418 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd);
1419 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd);
1420 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd);
1421
1422 extern const struct pci_device_id hfi1_pci_tbl[];
1423 void hfi1_make_ud_req_9B(struct rvt_qp *qp,
1424 struct hfi1_pkt_state *ps,
1425 struct rvt_swqe *wqe);
1426
1427 void hfi1_make_ud_req_16B(struct rvt_qp *qp,
1428 struct hfi1_pkt_state *ps,
1429 struct rvt_swqe *wqe);
1430
1431 /* receive packet handler dispositions */
1432 #define RCV_PKT_OK 0x0 /* keep going */
1433 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */
1434 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */
1435
1436 /* calculate the current RHF address */
1437 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
1438 {
1439 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->dd->rhf_offset;
1440 }
1441
1442 int hfi1_reset_device(int);
1443
1444 void receive_interrupt_work(struct work_struct *work);
1445
1446 /* extract service channel from header and rhf */
1447 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
1448 {
1449 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
1450 }
1451
1452 #define HFI1_JKEY_WIDTH 16
1453 #define HFI1_JKEY_MASK (BIT(16) - 1)
1454 #define HFI1_ADMIN_JKEY_RANGE 32
1455
1456 /*
1457 * J_KEYs are split and allocated in the following groups:
1458 * 0 - 31 - users with administrator privileges
1459 * 32 - 63 - kernel protocols using KDETH packets
1460 * 64 - 65535 - all other users using KDETH packets
1461 */
1462 static inline u16 generate_jkey(kuid_t uid)
1463 {
1464 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
1465
1466 if (capable(CAP_SYS_ADMIN))
1467 jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
1468 else if (jkey < 64)
1469 jkey |= BIT(HFI1_JKEY_WIDTH - 1);
1470
1471 return jkey;
1472 }
1473
1474 /*
1475 * active_egress_rate
1476 *
1477 * returns the active egress rate in units of [10^6 bits/sec]
1478 */
1479 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
1480 {
1481 u16 link_speed = ppd->link_speed_active;
1482 u16 link_width = ppd->link_width_active;
1483 u32 egress_rate;
1484
1485 if (link_speed == OPA_LINK_SPEED_25G)
1486 egress_rate = 25000;
1487 else /* assume OPA_LINK_SPEED_12_5G */
1488 egress_rate = 12500;
1489
1490 switch (link_width) {
1491 case OPA_LINK_WIDTH_4X:
1492 egress_rate *= 4;
1493 break;
1494 case OPA_LINK_WIDTH_3X:
1495 egress_rate *= 3;
1496 break;
1497 case OPA_LINK_WIDTH_2X:
1498 egress_rate *= 2;
1499 break;
1500 default:
1501 /* assume IB_WIDTH_1X */
1502 break;
1503 }
1504
1505 return egress_rate;
1506 }
1507
1508 /*
1509 * egress_cycles
1510 *
1511 * Returns the number of 'fabric clock cycles' to egress a packet
1512 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
1513 * rate is (approximately) 805 MHz, the units of the returned value
1514 * are (1/805 MHz).
1515 */
1516 static inline u32 egress_cycles(u32 len, u32 rate)
1517 {
1518 u32 cycles;
1519
1520 /*
1521 * cycles is:
1522 *
1523 * (length) [bits] / (rate) [bits/sec]
1524 * ---------------------------------------------------
1525 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
1526 */
1527
1528 cycles = len * 8; /* bits */
1529 cycles *= 805;
1530 cycles /= rate;
1531
1532 return cycles;
1533 }
1534
1535 void set_link_ipg(struct hfi1_pportdata *ppd);
1536 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
1537 u32 rqpn, u8 svc_type);
1538 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
1539 u16 pkey, u32 slid, u32 dlid, u8 sc5,
1540 const struct ib_grh *old_grh);
1541 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1542 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1543 u8 sc5, const struct ib_grh *old_grh);
1544 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1545 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1546 u8 sc5, const struct ib_grh *old_grh);
1547
1548 #define PKEY_CHECK_INVALID -1
1549 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1550 u8 sc5, int8_t s_pkey_index);
1551
1552 #define PACKET_EGRESS_TIMEOUT 350
1553 static inline void pause_for_credit_return(struct hfi1_devdata *dd)
1554 {
1555 /* Pause at least 1us, to ensure chip returns all credits */
1556 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
1557
1558 udelay(usec ? usec : 1);
1559 }
1560
1561 /**
1562 * sc_to_vlt() reverse lookup sc to vl
1563 * @dd - devdata
1564 * @sc5 - 5 bit sc
1565 */
1566 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
1567 {
1568 unsigned seq;
1569 u8 rval;
1570
1571 if (sc5 >= OPA_MAX_SCS)
1572 return (u8)(0xff);
1573
1574 do {
1575 seq = read_seqbegin(&dd->sc2vl_lock);
1576 rval = *(((u8 *)dd->sc2vl) + sc5);
1577 } while (read_seqretry(&dd->sc2vl_lock, seq));
1578
1579 return rval;
1580 }
1581
1582 #define PKEY_MEMBER_MASK 0x8000
1583 #define PKEY_LOW_15_MASK 0x7fff
1584
1585 /*
1586 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1587 * being an entry from the ingress partition key table), return 0
1588 * otherwise. Use the matching criteria for ingress partition keys
1589 * specified in the OPAv1 spec., section 9.10.14.
1590 */
1591 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
1592 {
1593 u16 mkey = pkey & PKEY_LOW_15_MASK;
1594 u16 ment = ent & PKEY_LOW_15_MASK;
1595
1596 if (mkey == ment) {
1597 /*
1598 * If pkey[15] is clear (limited partition member),
1599 * is bit 15 in the corresponding table element
1600 * clear (limited member)?
1601 */
1602 if (!(pkey & PKEY_MEMBER_MASK))
1603 return !!(ent & PKEY_MEMBER_MASK);
1604 return 1;
1605 }
1606 return 0;
1607 }
1608
1609 /*
1610 * ingress_pkey_table_search - search the entire pkey table for
1611 * an entry which matches 'pkey'. return 0 if a match is found,
1612 * and 1 otherwise.
1613 */
1614 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
1615 {
1616 int i;
1617
1618 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1619 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1620 return 0;
1621 }
1622 return 1;
1623 }
1624
1625 /*
1626 * ingress_pkey_table_fail - record a failure of ingress pkey validation,
1627 * i.e., increment port_rcv_constraint_errors for the port, and record
1628 * the 'error info' for this failure.
1629 */
1630 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
1631 u16 slid)
1632 {
1633 struct hfi1_devdata *dd = ppd->dd;
1634
1635 incr_cntr64(&ppd->port_rcv_constraint_errors);
1636 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
1637 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
1638 dd->err_info_rcv_constraint.slid = slid;
1639 dd->err_info_rcv_constraint.pkey = pkey;
1640 }
1641 }
1642
1643 /*
1644 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
1645 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
1646 * is a hint as to the best place in the partition key table to begin
1647 * searching. This function should not be called on the data path because
1648 * of performance reasons. On datapath pkey check is expected to be done
1649 * by HW and rcv_pkey_check function should be called instead.
1650 */
1651 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1652 u8 sc5, u8 idx, u32 slid, bool force)
1653 {
1654 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1655 return 0;
1656
1657 /* If SC15, pkey[0:14] must be 0x7fff */
1658 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1659 goto bad;
1660
1661 /* Is the pkey = 0x0, or 0x8000? */
1662 if ((pkey & PKEY_LOW_15_MASK) == 0)
1663 goto bad;
1664
1665 /* The most likely matching pkey has index 'idx' */
1666 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
1667 return 0;
1668
1669 /* no match - try the whole table */
1670 if (!ingress_pkey_table_search(ppd, pkey))
1671 return 0;
1672
1673 bad:
1674 ingress_pkey_table_fail(ppd, pkey, slid);
1675 return 1;
1676 }
1677
1678 /*
1679 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
1680 * otherwise. It only ensures pkey is vlid for QP0. This function
1681 * should be called on the data path instead of ingress_pkey_check
1682 * as on data path, pkey check is done by HW (except for QP0).
1683 */
1684 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1685 u8 sc5, u16 slid)
1686 {
1687 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1688 return 0;
1689
1690 /* If SC15, pkey[0:14] must be 0x7fff */
1691 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1692 goto bad;
1693
1694 return 0;
1695 bad:
1696 ingress_pkey_table_fail(ppd, pkey, slid);
1697 return 1;
1698 }
1699
1700 /* MTU handling */
1701
1702 /* MTU enumeration, 256-4k match IB */
1703 #define OPA_MTU_0 0
1704 #define OPA_MTU_256 1
1705 #define OPA_MTU_512 2
1706 #define OPA_MTU_1024 3
1707 #define OPA_MTU_2048 4
1708 #define OPA_MTU_4096 5
1709
1710 u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
1711 int mtu_to_enum(u32 mtu, int default_if_bad);
1712 u16 enum_to_mtu(int mtu);
1713 static inline int valid_ib_mtu(unsigned int mtu)
1714 {
1715 return mtu == 256 || mtu == 512 ||
1716 mtu == 1024 || mtu == 2048 ||
1717 mtu == 4096;
1718 }
1719
1720 static inline int valid_opa_max_mtu(unsigned int mtu)
1721 {
1722 return mtu >= 2048 &&
1723 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
1724 }
1725
1726 int set_mtu(struct hfi1_pportdata *ppd);
1727
1728 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
1729 void hfi1_disable_after_error(struct hfi1_devdata *dd);
1730 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
1731 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
1732
1733 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
1734 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
1735
1736 void set_up_vau(struct hfi1_devdata *dd, u8 vau);
1737 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
1738 void reset_link_credits(struct hfi1_devdata *dd);
1739 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
1740
1741 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
1742
1743 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
1744 {
1745 return ppd->dd;
1746 }
1747
1748 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
1749 {
1750 return container_of(dev, struct hfi1_devdata, verbs_dev);
1751 }
1752
1753 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
1754 {
1755 return dd_from_dev(to_idev(ibdev));
1756 }
1757
1758 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
1759 {
1760 return container_of(ibp, struct hfi1_pportdata, ibport_data);
1761 }
1762
1763 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
1764 {
1765 return container_of(rdi, struct hfi1_ibdev, rdi);
1766 }
1767
1768 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port)
1769 {
1770 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1771 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */
1772
1773 WARN_ON(pidx >= dd->num_pports);
1774 return &dd->pport[pidx].ibport_data;
1775 }
1776
1777 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
1778 {
1779 return &rcd->ppd->ibport_data;
1780 }
1781
1782 /**
1783 * hfi1_may_ecn - Check whether FECN or BECN processing should be done
1784 * @pkt: the packet to be evaluated
1785 *
1786 * Check whether the FECN or BECN bits in the packet's header are
1787 * enabled, depending on packet type.
1788 *
1789 * This function only checks for FECN and BECN bits. Additional checks
1790 * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to
1791 * ensure correct handling.
1792 */
1793 static inline bool hfi1_may_ecn(struct hfi1_packet *pkt)
1794 {
1795 struct ib_other_headers *ohdr = pkt->ohdr;
1796
1797 u32 bth1;
1798 bool fecn, becn;
1799
1800 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
1801 fecn = hfi1_16B_get_fecn(pkt->hdr);
1802 becn = hfi1_16B_get_becn(pkt->hdr);
1803 } else {
1804 bth1 = be32_to_cpu(ohdr->bth[1]);
1805 fecn = bth1 & IB_FECN_SMASK;
1806 becn = bth1 & IB_BECN_SMASK;
1807 }
1808 return fecn || becn;
1809 }
1810
1811 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
1812 bool prescan);
1813 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt)
1814 {
1815 bool do_work;
1816
1817 do_work = hfi1_may_ecn(pkt);
1818 if (unlikely(do_work))
1819 return hfi1_process_ecn_slowpath(qp, pkt, false);
1820 return false;
1821 }
1822
1823 /*
1824 * Return the indexed PKEY from the port PKEY table.
1825 */
1826 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
1827 {
1828 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1829 u16 ret;
1830
1831 if (index >= ARRAY_SIZE(ppd->pkeys))
1832 ret = 0;
1833 else
1834 ret = ppd->pkeys[index];
1835
1836 return ret;
1837 }
1838
1839 /*
1840 * Return the indexed GUID from the port GUIDs table.
1841 */
1842 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
1843 {
1844 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1845
1846 WARN_ON(index >= HFI1_GUIDS_PER_PORT);
1847 return cpu_to_be64(ppd->guids[index]);
1848 }
1849
1850 /*
1851 * Called by readers of cc_state only, must call under rcu_read_lock().
1852 */
1853 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
1854 {
1855 return rcu_dereference(ppd->cc_state);
1856 }
1857
1858 /*
1859 * Called by writers of cc_state only, must call under cc_state_lock.
1860 */
1861 static inline
1862 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
1863 {
1864 return rcu_dereference_protected(ppd->cc_state,
1865 lockdep_is_held(&ppd->cc_state_lock));
1866 }
1867
1868 /*
1869 * values for dd->flags (_device_ related flags)
1870 */
1871 #define HFI1_INITTED 0x1 /* chip and driver up and initted */
1872 #define HFI1_PRESENT 0x2 /* chip accesses can be done */
1873 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */
1874 #define HFI1_HAS_SDMA_TIMEOUT 0x8
1875 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */
1876 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */
1877 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */
1878
1879 /* IB dword length mask in PBC (lower 11 bits); same for all chips */
1880 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1)
1881
1882 /* ctxt_flag bit offsets */
1883 /* base context has not finished initializing */
1884 #define HFI1_CTXT_BASE_UNINIT 1
1885 /* base context initaliation failed */
1886 #define HFI1_CTXT_BASE_FAILED 2
1887 /* waiting for a packet to arrive */
1888 #define HFI1_CTXT_WAITING_RCV 3
1889 /* waiting for an urgent packet to arrive */
1890 #define HFI1_CTXT_WAITING_URG 4
1891
1892 /* free up any allocated data at closes */
1893 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
1894 const struct pci_device_id *ent);
1895 void hfi1_free_devdata(struct hfi1_devdata *dd);
1896 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra);
1897
1898 /* LED beaconing functions */
1899 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1900 unsigned int timeoff);
1901 void shutdown_led_override(struct hfi1_pportdata *ppd);
1902
1903 #define HFI1_CREDIT_RETURN_RATE (100)
1904
1905 /*
1906 * The number of words for the KDETH protocol field. If this is
1907 * larger then the actual field used, then part of the payload
1908 * will be in the header.
1909 *
1910 * Optimally, we want this sized so that a typical case will
1911 * use full cache lines. The typical local KDETH header would
1912 * be:
1913 *
1914 * Bytes Field
1915 * 8 LRH
1916 * 12 BHT
1917 * ?? KDETH
1918 * 8 RHF
1919 * ---
1920 * 28 + KDETH
1921 *
1922 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
1923 */
1924 #define DEFAULT_RCVHDRSIZE 9
1925
1926 /*
1927 * Maximal header byte count:
1928 *
1929 * Bytes Field
1930 * 8 LRH
1931 * 40 GRH (optional)
1932 * 12 BTH
1933 * ?? KDETH
1934 * 8 RHF
1935 * ---
1936 * 68 + KDETH
1937 *
1938 * We also want to maintain a cache line alignment to assist DMA'ing
1939 * of the header bytes. Round up to a good size.
1940 */
1941 #define DEFAULT_RCVHDR_ENTSIZE 32
1942
1943 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
1944 u32 nlocked, u32 npages);
1945 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
1946 size_t npages, bool writable, struct page **pages);
1947 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
1948 size_t npages, bool dirty);
1949
1950 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
1951 {
1952 *((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL;
1953 }
1954
1955 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
1956 {
1957 /*
1958 * volatile because it's a DMA target from the chip, routine is
1959 * inlined, and don't want register caching or reordering.
1960 */
1961 return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr);
1962 }
1963
1964 /*
1965 * sysfs interface.
1966 */
1967
1968 extern const char ib_hfi1_version[];
1969
1970 int hfi1_device_create(struct hfi1_devdata *dd);
1971 void hfi1_device_remove(struct hfi1_devdata *dd);
1972
1973 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num,
1974 struct kobject *kobj);
1975 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
1976 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
1977 /* Hook for sysfs read of QSFP */
1978 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
1979
1980 int hfi1_pcie_init(struct pci_dev *pdev, const struct pci_device_id *ent);
1981 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd);
1982 void hfi1_pcie_cleanup(struct pci_dev *pdev);
1983 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
1984 void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
1985 int pcie_speeds(struct hfi1_devdata *dd);
1986 int request_msix(struct hfi1_devdata *dd, u32 msireq);
1987 int restore_pci_variables(struct hfi1_devdata *dd);
1988 int save_pci_variables(struct hfi1_devdata *dd);
1989 int do_pcie_gen3_transition(struct hfi1_devdata *dd);
1990 int parse_platform_config(struct hfi1_devdata *dd);
1991 int get_platform_config_field(struct hfi1_devdata *dd,
1992 enum platform_config_table_type_encoding
1993 table_type, int table_index, int field_index,
1994 u32 *data, u32 len);
1995
1996 const char *get_unit_name(int unit);
1997 const char *get_card_name(struct rvt_dev_info *rdi);
1998 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
1999
2000 /*
2001 * Flush write combining store buffers (if present) and perform a write
2002 * barrier.
2003 */
2004 static inline void flush_wc(void)
2005 {
2006 asm volatile("sfence" : : : "memory");
2007 }
2008
2009 void handle_eflags(struct hfi1_packet *packet);
2010 int process_receive_ib(struct hfi1_packet *packet);
2011 int process_receive_bypass(struct hfi1_packet *packet);
2012 int process_receive_error(struct hfi1_packet *packet);
2013 int kdeth_process_expected(struct hfi1_packet *packet);
2014 int kdeth_process_eager(struct hfi1_packet *packet);
2015 int process_receive_invalid(struct hfi1_packet *packet);
2016 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
2017
2018 /* global module parameter variables */
2019 extern unsigned int hfi1_max_mtu;
2020 extern unsigned int hfi1_cu;
2021 extern unsigned int user_credit_return_threshold;
2022 extern int num_user_contexts;
2023 extern unsigned long n_krcvqs;
2024 extern uint krcvqs[];
2025 extern int krcvqsset;
2026 extern uint kdeth_qp;
2027 extern uint loopback;
2028 extern uint quick_linkup;
2029 extern uint rcv_intr_timeout;
2030 extern uint rcv_intr_count;
2031 extern uint rcv_intr_dynamic;
2032 extern ushort link_crc_mask;
2033
2034 extern struct mutex hfi1_mutex;
2035
2036 /* Number of seconds before our card status check... */
2037 #define STATUS_TIMEOUT 60
2038
2039 #define DRIVER_NAME "hfi1"
2040 #define HFI1_USER_MINOR_BASE 0
2041 #define HFI1_TRACE_MINOR 127
2042 #define HFI1_NMINORS 255
2043
2044 #define PCI_VENDOR_ID_INTEL 0x8086
2045 #define PCI_DEVICE_ID_INTEL0 0x24f0
2046 #define PCI_DEVICE_ID_INTEL1 0x24f1
2047
2048 #define HFI1_PKT_USER_SC_INTEGRITY \
2049 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \
2050 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \
2051 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \
2052 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
2053
2054 #define HFI1_PKT_KERNEL_SC_INTEGRITY \
2055 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
2056
2057 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
2058 u16 ctxt_type)
2059 {
2060 u64 base_sc_integrity;
2061
2062 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2063 if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2064 return 0;
2065
2066 base_sc_integrity =
2067 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2068 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
2069 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2070 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2071 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2072 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
2073 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2074 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2075 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2076 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
2077 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2078 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2079 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
2080 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
2081 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
2082 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2083
2084 if (ctxt_type == SC_USER)
2085 base_sc_integrity |= HFI1_PKT_USER_SC_INTEGRITY;
2086 else
2087 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
2088
2089 /* turn on send-side job key checks if !A0 */
2090 if (!is_ax(dd))
2091 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2092
2093 return base_sc_integrity;
2094 }
2095
2096 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
2097 {
2098 u64 base_sdma_integrity;
2099
2100 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2101 if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2102 return 0;
2103
2104 base_sdma_integrity =
2105 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2106 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2107 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2108 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2109 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2110 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2111 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2112 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
2113 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2114 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2115 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
2116 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
2117 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
2118 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2119
2120 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2121 base_sdma_integrity |=
2122 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
2123
2124 /* turn on send-side job key checks if !A0 */
2125 if (!is_ax(dd))
2126 base_sdma_integrity |=
2127 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2128
2129 return base_sdma_integrity;
2130 }
2131
2132 /*
2133 * hfi1_early_err is used (only!) to print early errors before devdata is
2134 * allocated, or when dd->pcidev may not be valid, and at the tail end of
2135 * cleanup when devdata may have been freed, etc. hfi1_dev_porterr is
2136 * the same as dd_dev_err, but is used when the message really needs
2137 * the IB port# to be definitive as to what's happening..
2138 */
2139 #define hfi1_early_err(dev, fmt, ...) \
2140 dev_err(dev, fmt, ##__VA_ARGS__)
2141
2142 #define hfi1_early_info(dev, fmt, ...) \
2143 dev_info(dev, fmt, ##__VA_ARGS__)
2144
2145 #define dd_dev_emerg(dd, fmt, ...) \
2146 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
2147 get_unit_name((dd)->unit), ##__VA_ARGS__)
2148
2149 #define dd_dev_err(dd, fmt, ...) \
2150 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
2151 get_unit_name((dd)->unit), ##__VA_ARGS__)
2152
2153 #define dd_dev_err_ratelimited(dd, fmt, ...) \
2154 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2155 get_unit_name((dd)->unit), ##__VA_ARGS__)
2156
2157 #define dd_dev_warn(dd, fmt, ...) \
2158 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
2159 get_unit_name((dd)->unit), ##__VA_ARGS__)
2160
2161 #define dd_dev_warn_ratelimited(dd, fmt, ...) \
2162 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2163 get_unit_name((dd)->unit), ##__VA_ARGS__)
2164
2165 #define dd_dev_info(dd, fmt, ...) \
2166 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
2167 get_unit_name((dd)->unit), ##__VA_ARGS__)
2168
2169 #define dd_dev_info_ratelimited(dd, fmt, ...) \
2170 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2171 get_unit_name((dd)->unit), ##__VA_ARGS__)
2172
2173 #define dd_dev_dbg(dd, fmt, ...) \
2174 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
2175 get_unit_name((dd)->unit), ##__VA_ARGS__)
2176
2177 #define hfi1_dev_porterr(dd, port, fmt, ...) \
2178 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
2179 get_unit_name((dd)->unit), (port), ##__VA_ARGS__)
2180
2181 /*
2182 * this is used for formatting hw error messages...
2183 */
2184 struct hfi1_hwerror_msgs {
2185 u64 mask;
2186 const char *msg;
2187 size_t sz;
2188 };
2189
2190 /* in intr.c... */
2191 void hfi1_format_hwerrors(u64 hwerrs,
2192 const struct hfi1_hwerror_msgs *hwerrmsgs,
2193 size_t nhwerrmsgs, char *msg, size_t lmsg);
2194
2195 #define USER_OPCODE_CHECK_VAL 0xC0
2196 #define USER_OPCODE_CHECK_MASK 0xC0
2197 #define OPCODE_CHECK_VAL_DISABLED 0x0
2198 #define OPCODE_CHECK_MASK_DISABLED 0x0
2199
2200 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
2201 {
2202 struct hfi1_pportdata *ppd;
2203 int i;
2204
2205 dd->z_int_counter = get_all_cpu_total(dd->int_counter);
2206 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
2207 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
2208
2209 ppd = (struct hfi1_pportdata *)(dd + 1);
2210 for (i = 0; i < dd->num_pports; i++, ppd++) {
2211 ppd->ibport_data.rvp.z_rc_acks =
2212 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
2213 ppd->ibport_data.rvp.z_rc_qacks =
2214 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
2215 }
2216 }
2217
2218 /* Control LED state */
2219 static inline void setextled(struct hfi1_devdata *dd, u32 on)
2220 {
2221 if (on)
2222 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
2223 else
2224 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
2225 }
2226
2227 /* return the i2c resource given the target */
2228 static inline u32 i2c_target(u32 target)
2229 {
2230 return target ? CR_I2C2 : CR_I2C1;
2231 }
2232
2233 /* return the i2c chain chip resource that this HFI uses for QSFP */
2234 static inline u32 qsfp_resource(struct hfi1_devdata *dd)
2235 {
2236 return i2c_target(dd->hfi1_id);
2237 }
2238
2239 /* Is this device integrated or discrete? */
2240 static inline bool is_integrated(struct hfi1_devdata *dd)
2241 {
2242 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
2243 }
2244
2245 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
2246
2247 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev))
2248 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev))
2249
2250 static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
2251 struct rdma_ah_attr *attr)
2252 {
2253 struct hfi1_pportdata *ppd;
2254 struct hfi1_ibport *ibp;
2255 u32 dlid = rdma_ah_get_dlid(attr);
2256
2257 /*
2258 * Kernel clients may not have setup GRH information
2259 * Set that here.
2260 */
2261 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
2262 ppd = ppd_from_ibp(ibp);
2263 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
2264 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
2265 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
2266 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2267 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
2268 (rdma_ah_get_make_grd(attr))) {
2269 rdma_ah_set_ah_flags(attr, IB_AH_GRH);
2270 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
2271 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
2272 }
2273 }
2274
2275 /*
2276 * hfi1_check_mcast- Check if the given lid is
2277 * in the OPA multicast range.
2278 *
2279 * The LID might either reside in ah.dlid or might be
2280 * in the GRH of the address handle as DGID if extended
2281 * addresses are in use.
2282 */
2283 static inline bool hfi1_check_mcast(u32 lid)
2284 {
2285 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
2286 (lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
2287 }
2288
2289 #define opa_get_lid(lid, format) \
2290 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
2291
2292 /* Convert a lid to a specific lid space */
2293 static inline u32 __opa_get_lid(u32 lid, u8 format)
2294 {
2295 bool is_mcast = hfi1_check_mcast(lid);
2296
2297 switch (format) {
2298 case OPA_PORT_PACKET_FORMAT_8B:
2299 case OPA_PORT_PACKET_FORMAT_10B:
2300 if (is_mcast)
2301 return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2302 0xF0000);
2303 return lid & 0xFFFFF;
2304 case OPA_PORT_PACKET_FORMAT_16B:
2305 if (is_mcast)
2306 return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2307 0xF00000);
2308 return lid & 0xFFFFFF;
2309 case OPA_PORT_PACKET_FORMAT_9B:
2310 if (is_mcast)
2311 return (lid -
2312 opa_get_mcast_base(OPA_MCAST_NR) +
2313 be16_to_cpu(IB_MULTICAST_LID_BASE));
2314 else
2315 return lid & 0xFFFF;
2316 default:
2317 return lid;
2318 }
2319 }
2320
2321 /* Return true if the given lid is the OPA 16B multicast range */
2322 static inline bool hfi1_is_16B_mcast(u32 lid)
2323 {
2324 return ((lid >=
2325 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
2326 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
2327 }
2328
2329 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
2330 {
2331 const struct ib_global_route *grh = rdma_ah_read_grh(attr);
2332 u32 dlid = rdma_ah_get_dlid(attr);
2333
2334 /* Modify ah_attr.dlid to be in the 32 bit LID space.
2335 * This is how the address will be laid out:
2336 * Assuming MCAST_NR to be 4,
2337 * 32 bit permissive LID = 0xFFFFFFFF
2338 * Multicast LID range = 0xFFFFFFFE to 0xF0000000
2339 * Unicast LID range = 0xEFFFFFFF to 1
2340 * Invalid LID = 0
2341 */
2342 if (ib_is_opa_gid(&grh->dgid))
2343 dlid = opa_get_lid_from_gid(&grh->dgid);
2344 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
2345 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2346 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
2347 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
2348 opa_get_mcast_base(OPA_MCAST_NR);
2349 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
2350 dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
2351
2352 rdma_ah_set_dlid(attr, dlid);
2353 }
2354
2355 static inline u8 hfi1_get_packet_type(u32 lid)
2356 {
2357 /* 9B if lid > 0xF0000000 */
2358 if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
2359 return HFI1_PKT_TYPE_9B;
2360
2361 /* 16B if lid > 0xC000 */
2362 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
2363 return HFI1_PKT_TYPE_16B;
2364
2365 return HFI1_PKT_TYPE_9B;
2366 }
2367
2368 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
2369 {
2370 /*
2371 * If there was an incoming 16B packet with permissive
2372 * LIDs, OPA GIDs would have been programmed when those
2373 * packets were received. A 16B packet will have to
2374 * be sent in response to that packet. Return a 16B
2375 * header type if that's the case.
2376 */
2377 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
2378 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
2379 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
2380
2381 /*
2382 * Return a 16B header type if either the the destination
2383 * or source lid is extended.
2384 */
2385 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
2386 return HFI1_PKT_TYPE_16B;
2387
2388 return hfi1_get_packet_type(lid);
2389 }
2390
2391 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
2392 struct ib_grh *grh, u32 slid,
2393 u32 dlid)
2394 {
2395 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2396 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2397
2398 if (!ibp)
2399 return;
2400
2401 grh->hop_limit = 1;
2402 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2403 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
2404 grh->sgid.global.interface_id =
2405 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
2406 else
2407 grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
2408
2409 /*
2410 * Upper layers (like mad) may compare the dgid in the
2411 * wc that is obtained here with the sgid_index in
2412 * the wr. Since sgid_index in wr is always 0 for
2413 * extended lids, set the dgid here to the default
2414 * IB gid.
2415 */
2416 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2417 grh->dgid.global.interface_id =
2418 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
2419 }
2420
2421 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
2422 {
2423 return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
2424 SIZE_OF_LT) & 0x7;
2425 }
2426
2427 static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
2428 u16 lrh0, u16 len,
2429 u16 dlid, u16 slid)
2430 {
2431 hdr->lrh[0] = cpu_to_be16(lrh0);
2432 hdr->lrh[1] = cpu_to_be16(dlid);
2433 hdr->lrh[2] = cpu_to_be16(len);
2434 hdr->lrh[3] = cpu_to_be16(slid);
2435 }
2436
2437 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
2438 u32 slid, u32 dlid,
2439 u16 len, u16 pkey,
2440 u8 becn, u8 fecn, u8 l4,
2441 u8 sc)
2442 {
2443 u32 lrh0 = 0;
2444 u32 lrh1 = 0x40000000;
2445 u32 lrh2 = 0;
2446 u32 lrh3 = 0;
2447
2448 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
2449 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
2450 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK);
2451 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
2452 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
2453 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
2454 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
2455 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
2456 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
2457 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
2458 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT);
2459 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
2460
2461 hdr->lrh[0] = lrh0;
2462 hdr->lrh[1] = lrh1;
2463 hdr->lrh[2] = lrh2;
2464 hdr->lrh[3] = lrh3;
2465 }
2466 #endif /* _HFI1_KERNEL_H */