]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/infiniband/hw/hfi1/init.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / drivers / infiniband / hw / hfi1 / init.c
1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <linux/numa.h>
58 #include <rdma/rdma_vt.h>
59
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68 #include "aspm.h"
69 #include "affinity.h"
70 #include "vnic.h"
71 #include "exp_rcv.h"
72
73 #undef pr_fmt
74 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
75
76 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
77 /*
78 * min buffers we want to have per context, after driver
79 */
80 #define HFI1_MIN_USER_CTXT_BUFCNT 7
81
82 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
83 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
84 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
85 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
86
87 #define NUM_IB_PORTS 1
88
89 /*
90 * Number of user receive contexts we are configured to use (to allow for more
91 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
92 */
93 int num_user_contexts = -1;
94 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
95 MODULE_PARM_DESC(
96 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
97
98 uint krcvqs[RXE_NUM_DATA_VL];
99 int krcvqsset;
100 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
101 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
102
103 /* computed based on above array */
104 unsigned long n_krcvqs;
105
106 static unsigned hfi1_rcvarr_split = 25;
107 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
108 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
109
110 static uint eager_buffer_size = (8 << 20); /* 8MB */
111 module_param(eager_buffer_size, uint, S_IRUGO);
112 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
113
114 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
115 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
116 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
117
118 static uint hfi1_hdrq_entsize = 32;
119 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
120 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
121
122 unsigned int user_credit_return_threshold = 33; /* default is 33% */
123 module_param(user_credit_return_threshold, uint, S_IRUGO);
124 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
125
126 static inline u64 encode_rcv_header_entry_size(u16 size);
127
128 static struct idr hfi1_unit_table;
129
130 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
131 struct hfi1_pportdata *ppd)
132 {
133 struct hfi1_ctxtdata *rcd;
134 int ret;
135
136 /* Control context has to be always 0 */
137 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
138
139 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
140 if (ret < 0) {
141 dd_dev_err(dd, "Kernel receive context allocation failed\n");
142 return ret;
143 }
144
145 /*
146 * Set up the kernel context flags here and now because they use
147 * default values for all receive side memories. User contexts will
148 * be handled as they are created.
149 */
150 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
151 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
152 HFI1_CAP_KGET(NODROP_EGR_FULL) |
153 HFI1_CAP_KGET(DMA_RTAIL);
154
155 /* Control context must use DMA_RTAIL */
156 if (rcd->ctxt == HFI1_CTRL_CTXT)
157 rcd->flags |= HFI1_CAP_DMA_RTAIL;
158 rcd->seq_cnt = 1;
159
160 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
161 if (!rcd->sc) {
162 dd_dev_err(dd, "Kernel send context allocation failed\n");
163 return -ENOMEM;
164 }
165 hfi1_init_ctxt(rcd->sc);
166
167 return 0;
168 }
169
170 /*
171 * Create the receive context array and one or more kernel contexts
172 */
173 int hfi1_create_kctxts(struct hfi1_devdata *dd)
174 {
175 u16 i;
176 int ret;
177
178 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
179 GFP_KERNEL, dd->node);
180 if (!dd->rcd)
181 return -ENOMEM;
182
183 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
184 ret = hfi1_create_kctxt(dd, dd->pport);
185 if (ret)
186 goto bail;
187 }
188
189 return 0;
190 bail:
191 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
192 hfi1_free_ctxt(dd->rcd[i]);
193
194 /* All the contexts should be freed, free the array */
195 kfree(dd->rcd);
196 dd->rcd = NULL;
197 return ret;
198 }
199
200 /*
201 * Helper routines for the receive context reference count (rcd and uctxt).
202 */
203 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
204 {
205 kref_init(&rcd->kref);
206 }
207
208 /**
209 * hfi1_rcd_free - When reference is zero clean up.
210 * @kref: pointer to an initialized rcd data structure
211 *
212 */
213 static void hfi1_rcd_free(struct kref *kref)
214 {
215 unsigned long flags;
216 struct hfi1_ctxtdata *rcd =
217 container_of(kref, struct hfi1_ctxtdata, kref);
218
219 hfi1_free_ctxtdata(rcd->dd, rcd);
220
221 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
222 rcd->dd->rcd[rcd->ctxt] = NULL;
223 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
224
225 kfree(rcd);
226 }
227
228 /**
229 * hfi1_rcd_put - decrement reference for rcd
230 * @rcd: pointer to an initialized rcd data structure
231 *
232 * Use this to put a reference after the init.
233 */
234 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
235 {
236 if (rcd)
237 return kref_put(&rcd->kref, hfi1_rcd_free);
238
239 return 0;
240 }
241
242 /**
243 * hfi1_rcd_get - increment reference for rcd
244 * @rcd: pointer to an initialized rcd data structure
245 *
246 * Use this to get a reference after the init.
247 */
248 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
249 {
250 kref_get(&rcd->kref);
251 }
252
253 /**
254 * allocate_rcd_index - allocate an rcd index from the rcd array
255 * @dd: pointer to a valid devdata structure
256 * @rcd: rcd data structure to assign
257 * @index: pointer to index that is allocated
258 *
259 * Find an empty index in the rcd array, and assign the given rcd to it.
260 * If the array is full, we are EBUSY.
261 *
262 */
263 static int allocate_rcd_index(struct hfi1_devdata *dd,
264 struct hfi1_ctxtdata *rcd, u16 *index)
265 {
266 unsigned long flags;
267 u16 ctxt;
268
269 spin_lock_irqsave(&dd->uctxt_lock, flags);
270 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
271 if (!dd->rcd[ctxt])
272 break;
273
274 if (ctxt < dd->num_rcv_contexts) {
275 rcd->ctxt = ctxt;
276 dd->rcd[ctxt] = rcd;
277 hfi1_rcd_init(rcd);
278 }
279 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
280
281 if (ctxt >= dd->num_rcv_contexts)
282 return -EBUSY;
283
284 *index = ctxt;
285
286 return 0;
287 }
288
289 /**
290 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
291 * array
292 * @dd: pointer to a valid devdata structure
293 * @ctxt: the index of an possilbe rcd
294 *
295 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
296 * ctxt index is valid.
297 *
298 * The caller is responsible for making the _put().
299 *
300 */
301 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
302 u16 ctxt)
303 {
304 if (ctxt < dd->num_rcv_contexts)
305 return hfi1_rcd_get_by_index(dd, ctxt);
306
307 return NULL;
308 }
309
310 /**
311 * hfi1_rcd_get_by_index
312 * @dd: pointer to a valid devdata structure
313 * @ctxt: the index of an possilbe rcd
314 *
315 * We need to protect access to the rcd array. If access is needed to
316 * one or more index, get the protecting spinlock and then increment the
317 * kref.
318 *
319 * The caller is responsible for making the _put().
320 *
321 */
322 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
323 {
324 unsigned long flags;
325 struct hfi1_ctxtdata *rcd = NULL;
326
327 spin_lock_irqsave(&dd->uctxt_lock, flags);
328 if (dd->rcd[ctxt]) {
329 rcd = dd->rcd[ctxt];
330 hfi1_rcd_get(rcd);
331 }
332 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
333
334 return rcd;
335 }
336
337 /*
338 * Common code for user and kernel context create and setup.
339 * NOTE: the initial kref is done here (hf1_rcd_init()).
340 */
341 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
342 struct hfi1_ctxtdata **context)
343 {
344 struct hfi1_devdata *dd = ppd->dd;
345 struct hfi1_ctxtdata *rcd;
346 unsigned kctxt_ngroups = 0;
347 u32 base;
348
349 if (dd->rcv_entries.nctxt_extra >
350 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
351 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
352 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
353 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
354 if (rcd) {
355 u32 rcvtids, max_entries;
356 u16 ctxt;
357 int ret;
358
359 ret = allocate_rcd_index(dd, rcd, &ctxt);
360 if (ret) {
361 *context = NULL;
362 kfree(rcd);
363 return ret;
364 }
365
366 INIT_LIST_HEAD(&rcd->qp_wait_list);
367 hfi1_exp_tid_group_init(rcd);
368 rcd->ppd = ppd;
369 rcd->dd = dd;
370 rcd->numa_id = numa;
371 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
372 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
373
374 mutex_init(&rcd->exp_mutex);
375
376 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
377
378 /*
379 * Calculate the context's RcvArray entry starting point.
380 * We do this here because we have to take into account all
381 * the RcvArray entries that previous context would have
382 * taken and we have to account for any extra groups assigned
383 * to the static (kernel) or dynamic (vnic/user) contexts.
384 */
385 if (ctxt < dd->first_dyn_alloc_ctxt) {
386 if (ctxt < kctxt_ngroups) {
387 base = ctxt * (dd->rcv_entries.ngroups + 1);
388 rcd->rcv_array_groups++;
389 } else {
390 base = kctxt_ngroups +
391 (ctxt * dd->rcv_entries.ngroups);
392 }
393 } else {
394 u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
395
396 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
397 kctxt_ngroups);
398 if (ct < dd->rcv_entries.nctxt_extra) {
399 base += ct * (dd->rcv_entries.ngroups + 1);
400 rcd->rcv_array_groups++;
401 } else {
402 base += dd->rcv_entries.nctxt_extra +
403 (ct * dd->rcv_entries.ngroups);
404 }
405 }
406 rcd->eager_base = base * dd->rcv_entries.group_size;
407
408 rcd->rcvhdrq_cnt = rcvhdrcnt;
409 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
410 rcd->rhf_offset =
411 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
412 /*
413 * Simple Eager buffer allocation: we have already pre-allocated
414 * the number of RcvArray entry groups. Each ctxtdata structure
415 * holds the number of groups for that context.
416 *
417 * To follow CSR requirements and maintain cacheline alignment,
418 * make sure all sizes and bases are multiples of group_size.
419 *
420 * The expected entry count is what is left after assigning
421 * eager.
422 */
423 max_entries = rcd->rcv_array_groups *
424 dd->rcv_entries.group_size;
425 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
426 rcd->egrbufs.count = round_down(rcvtids,
427 dd->rcv_entries.group_size);
428 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
429 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
430 rcd->ctxt);
431 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
432 }
433 hfi1_cdbg(PROC,
434 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
435 rcd->ctxt, rcd->egrbufs.count);
436
437 /*
438 * Allocate array that will hold the eager buffer accounting
439 * data.
440 * This will allocate the maximum possible buffer count based
441 * on the value of the RcvArray split parameter.
442 * The resulting value will be rounded down to the closest
443 * multiple of dd->rcv_entries.group_size.
444 */
445 rcd->egrbufs.buffers =
446 kcalloc_node(rcd->egrbufs.count,
447 sizeof(*rcd->egrbufs.buffers),
448 GFP_KERNEL, numa);
449 if (!rcd->egrbufs.buffers)
450 goto bail;
451 rcd->egrbufs.rcvtids =
452 kcalloc_node(rcd->egrbufs.count,
453 sizeof(*rcd->egrbufs.rcvtids),
454 GFP_KERNEL, numa);
455 if (!rcd->egrbufs.rcvtids)
456 goto bail;
457 rcd->egrbufs.size = eager_buffer_size;
458 /*
459 * The size of the buffers programmed into the RcvArray
460 * entries needs to be big enough to handle the highest
461 * MTU supported.
462 */
463 if (rcd->egrbufs.size < hfi1_max_mtu) {
464 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
465 hfi1_cdbg(PROC,
466 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
467 rcd->ctxt, rcd->egrbufs.size);
468 }
469 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
470
471 /* Applicable only for statically created kernel contexts */
472 if (ctxt < dd->first_dyn_alloc_ctxt) {
473 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
474 GFP_KERNEL, numa);
475 if (!rcd->opstats)
476 goto bail;
477 }
478
479 *context = rcd;
480 return 0;
481 }
482
483 bail:
484 *context = NULL;
485 hfi1_free_ctxt(rcd);
486 return -ENOMEM;
487 }
488
489 /**
490 * hfi1_free_ctxt
491 * @rcd: pointer to an initialized rcd data structure
492 *
493 * This wrapper is the free function that matches hfi1_create_ctxtdata().
494 * When a context is done being used (kernel or user), this function is called
495 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
496 * Other users of the context do a get/put sequence to make sure that the
497 * structure isn't removed while in use.
498 */
499 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
500 {
501 hfi1_rcd_put(rcd);
502 }
503
504 /*
505 * Convert a receive header entry size that to the encoding used in the CSR.
506 *
507 * Return a zero if the given size is invalid.
508 */
509 static inline u64 encode_rcv_header_entry_size(u16 size)
510 {
511 /* there are only 3 valid receive header entry sizes */
512 if (size == 2)
513 return 1;
514 if (size == 16)
515 return 2;
516 else if (size == 32)
517 return 4;
518 return 0; /* invalid */
519 }
520
521 /*
522 * Select the largest ccti value over all SLs to determine the intra-
523 * packet gap for the link.
524 *
525 * called with cca_timer_lock held (to protect access to cca_timer
526 * array), and rcu_read_lock() (to protect access to cc_state).
527 */
528 void set_link_ipg(struct hfi1_pportdata *ppd)
529 {
530 struct hfi1_devdata *dd = ppd->dd;
531 struct cc_state *cc_state;
532 int i;
533 u16 cce, ccti_limit, max_ccti = 0;
534 u16 shift, mult;
535 u64 src;
536 u32 current_egress_rate; /* Mbits /sec */
537 u32 max_pkt_time;
538 /*
539 * max_pkt_time is the maximum packet egress time in units
540 * of the fabric clock period 1/(805 MHz).
541 */
542
543 cc_state = get_cc_state(ppd);
544
545 if (!cc_state)
546 /*
547 * This should _never_ happen - rcu_read_lock() is held,
548 * and set_link_ipg() should not be called if cc_state
549 * is NULL.
550 */
551 return;
552
553 for (i = 0; i < OPA_MAX_SLS; i++) {
554 u16 ccti = ppd->cca_timer[i].ccti;
555
556 if (ccti > max_ccti)
557 max_ccti = ccti;
558 }
559
560 ccti_limit = cc_state->cct.ccti_limit;
561 if (max_ccti > ccti_limit)
562 max_ccti = ccti_limit;
563
564 cce = cc_state->cct.entries[max_ccti].entry;
565 shift = (cce & 0xc000) >> 14;
566 mult = (cce & 0x3fff);
567
568 current_egress_rate = active_egress_rate(ppd);
569
570 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
571
572 src = (max_pkt_time >> shift) * mult;
573
574 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
575 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
576
577 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
578 }
579
580 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
581 {
582 struct cca_timer *cca_timer;
583 struct hfi1_pportdata *ppd;
584 int sl;
585 u16 ccti_timer, ccti_min;
586 struct cc_state *cc_state;
587 unsigned long flags;
588 enum hrtimer_restart ret = HRTIMER_NORESTART;
589
590 cca_timer = container_of(t, struct cca_timer, hrtimer);
591 ppd = cca_timer->ppd;
592 sl = cca_timer->sl;
593
594 rcu_read_lock();
595
596 cc_state = get_cc_state(ppd);
597
598 if (!cc_state) {
599 rcu_read_unlock();
600 return HRTIMER_NORESTART;
601 }
602
603 /*
604 * 1) decrement ccti for SL
605 * 2) calculate IPG for link (set_link_ipg())
606 * 3) restart timer, unless ccti is at min value
607 */
608
609 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
610 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
611
612 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
613
614 if (cca_timer->ccti > ccti_min) {
615 cca_timer->ccti--;
616 set_link_ipg(ppd);
617 }
618
619 if (cca_timer->ccti > ccti_min) {
620 unsigned long nsec = 1024 * ccti_timer;
621 /* ccti_timer is in units of 1.024 usec */
622 hrtimer_forward_now(t, ns_to_ktime(nsec));
623 ret = HRTIMER_RESTART;
624 }
625
626 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
627 rcu_read_unlock();
628 return ret;
629 }
630
631 /*
632 * Common code for initializing the physical port structure.
633 */
634 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
635 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
636 {
637 int i;
638 uint default_pkey_idx;
639 struct cc_state *cc_state;
640
641 ppd->dd = dd;
642 ppd->hw_pidx = hw_pidx;
643 ppd->port = port; /* IB port number, not index */
644 ppd->prev_link_width = LINK_WIDTH_DEFAULT;
645 /*
646 * There are C_VL_COUNT number of PortVLXmitWait counters.
647 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
648 */
649 for (i = 0; i < C_VL_COUNT + 1; i++) {
650 ppd->port_vl_xmit_wait_last[i] = 0;
651 ppd->vl_xmit_flit_cnt[i] = 0;
652 }
653
654 default_pkey_idx = 1;
655
656 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
657 ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
658
659 if (loopback) {
660 dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
661 !default_pkey_idx);
662 ppd->pkeys[!default_pkey_idx] = 0x8001;
663 }
664
665 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
666 INIT_WORK(&ppd->link_up_work, handle_link_up);
667 INIT_WORK(&ppd->link_down_work, handle_link_down);
668 INIT_WORK(&ppd->freeze_work, handle_freeze);
669 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
670 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
671 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
672 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
673 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
674 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
675
676 mutex_init(&ppd->hls_lock);
677 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
678
679 ppd->qsfp_info.ppd = ppd;
680 ppd->sm_trap_qp = 0x0;
681 ppd->sa_qp = 0x1;
682
683 ppd->hfi1_wq = NULL;
684
685 spin_lock_init(&ppd->cca_timer_lock);
686
687 for (i = 0; i < OPA_MAX_SLS; i++) {
688 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
689 HRTIMER_MODE_REL);
690 ppd->cca_timer[i].ppd = ppd;
691 ppd->cca_timer[i].sl = i;
692 ppd->cca_timer[i].ccti = 0;
693 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
694 }
695
696 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
697
698 spin_lock_init(&ppd->cc_state_lock);
699 spin_lock_init(&ppd->cc_log_lock);
700 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
701 RCU_INIT_POINTER(ppd->cc_state, cc_state);
702 if (!cc_state)
703 goto bail;
704 return;
705
706 bail:
707 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
708 }
709
710 /*
711 * Do initialization for device that is only needed on
712 * first detect, not on resets.
713 */
714 static int loadtime_init(struct hfi1_devdata *dd)
715 {
716 return 0;
717 }
718
719 /**
720 * init_after_reset - re-initialize after a reset
721 * @dd: the hfi1_ib device
722 *
723 * sanity check at least some of the values after reset, and
724 * ensure no receive or transmit (explicitly, in case reset
725 * failed
726 */
727 static int init_after_reset(struct hfi1_devdata *dd)
728 {
729 int i;
730 struct hfi1_ctxtdata *rcd;
731 /*
732 * Ensure chip does no sends or receives, tail updates, or
733 * pioavail updates while we re-initialize. This is mostly
734 * for the driver data structures, not chip registers.
735 */
736 for (i = 0; i < dd->num_rcv_contexts; i++) {
737 rcd = hfi1_rcd_get_by_index(dd, i);
738 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
739 HFI1_RCVCTRL_INTRAVAIL_DIS |
740 HFI1_RCVCTRL_TAILUPD_DIS, rcd);
741 hfi1_rcd_put(rcd);
742 }
743 pio_send_control(dd, PSC_GLOBAL_DISABLE);
744 for (i = 0; i < dd->num_send_contexts; i++)
745 sc_disable(dd->send_contexts[i].sc);
746
747 return 0;
748 }
749
750 static void enable_chip(struct hfi1_devdata *dd)
751 {
752 struct hfi1_ctxtdata *rcd;
753 u32 rcvmask;
754 u16 i;
755
756 /* enable PIO send */
757 pio_send_control(dd, PSC_GLOBAL_ENABLE);
758
759 /*
760 * Enable kernel ctxts' receive and receive interrupt.
761 * Other ctxts done as user opens and initializes them.
762 */
763 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
764 rcd = hfi1_rcd_get_by_index(dd, i);
765 if (!rcd)
766 continue;
767 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
768 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
769 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
770 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
771 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
772 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
773 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
774 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
775 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
776 hfi1_rcvctrl(dd, rcvmask, rcd);
777 sc_enable(rcd->sc);
778 hfi1_rcd_put(rcd);
779 }
780 }
781
782 /**
783 * create_workqueues - create per port workqueues
784 * @dd: the hfi1_ib device
785 */
786 static int create_workqueues(struct hfi1_devdata *dd)
787 {
788 int pidx;
789 struct hfi1_pportdata *ppd;
790
791 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
792 ppd = dd->pport + pidx;
793 if (!ppd->hfi1_wq) {
794 ppd->hfi1_wq =
795 alloc_workqueue(
796 "hfi%d_%d",
797 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
798 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
799 dd->unit, pidx);
800 if (!ppd->hfi1_wq)
801 goto wq_error;
802 }
803 if (!ppd->link_wq) {
804 /*
805 * Make the link workqueue single-threaded to enforce
806 * serialization.
807 */
808 ppd->link_wq =
809 alloc_workqueue(
810 "hfi_link_%d_%d",
811 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
812 1, /* max_active */
813 dd->unit, pidx);
814 if (!ppd->link_wq)
815 goto wq_error;
816 }
817 }
818 return 0;
819 wq_error:
820 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
821 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
822 ppd = dd->pport + pidx;
823 if (ppd->hfi1_wq) {
824 destroy_workqueue(ppd->hfi1_wq);
825 ppd->hfi1_wq = NULL;
826 }
827 if (ppd->link_wq) {
828 destroy_workqueue(ppd->link_wq);
829 ppd->link_wq = NULL;
830 }
831 }
832 return -ENOMEM;
833 }
834
835 /**
836 * enable_general_intr() - Enable the IRQs that will be handled by the
837 * general interrupt handler.
838 * @dd: valid devdata
839 *
840 */
841 static void enable_general_intr(struct hfi1_devdata *dd)
842 {
843 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
844 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
845 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
846 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
847 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
848 set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
849 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
850 }
851
852 /**
853 * hfi1_init - do the actual initialization sequence on the chip
854 * @dd: the hfi1_ib device
855 * @reinit: re-initializing, so don't allocate new memory
856 *
857 * Do the actual initialization sequence on the chip. This is done
858 * both from the init routine called from the PCI infrastructure, and
859 * when we reset the chip, or detect that it was reset internally,
860 * or it's administratively re-enabled.
861 *
862 * Memory allocation here and in called routines is only done in
863 * the first case (reinit == 0). We have to be careful, because even
864 * without memory allocation, we need to re-write all the chip registers
865 * TIDs, etc. after the reset or enable has completed.
866 */
867 int hfi1_init(struct hfi1_devdata *dd, int reinit)
868 {
869 int ret = 0, pidx, lastfail = 0;
870 unsigned long len;
871 u16 i;
872 struct hfi1_ctxtdata *rcd;
873 struct hfi1_pportdata *ppd;
874
875 /* Set up send low level handlers */
876 dd->process_pio_send = hfi1_verbs_send_pio;
877 dd->process_dma_send = hfi1_verbs_send_dma;
878 dd->pio_inline_send = pio_copy;
879 dd->process_vnic_dma_send = hfi1_vnic_send_dma;
880
881 if (is_ax(dd)) {
882 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
883 dd->do_drop = 1;
884 } else {
885 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
886 dd->do_drop = 0;
887 }
888
889 /* make sure the link is not "up" */
890 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
891 ppd = dd->pport + pidx;
892 ppd->linkup = 0;
893 }
894
895 if (reinit)
896 ret = init_after_reset(dd);
897 else
898 ret = loadtime_init(dd);
899 if (ret)
900 goto done;
901
902 /* allocate dummy tail memory for all receive contexts */
903 dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
904 sizeof(u64),
905 &dd->rcvhdrtail_dummy_dma,
906 GFP_KERNEL);
907
908 if (!dd->rcvhdrtail_dummy_kvaddr) {
909 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
910 ret = -ENOMEM;
911 goto done;
912 }
913
914 /* dd->rcd can be NULL if early initialization failed */
915 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
916 /*
917 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
918 * re-init, the simplest way to handle this is to free
919 * existing, and re-allocate.
920 * Need to re-create rest of ctxt 0 ctxtdata as well.
921 */
922 rcd = hfi1_rcd_get_by_index(dd, i);
923 if (!rcd)
924 continue;
925
926 rcd->do_interrupt = &handle_receive_interrupt;
927
928 lastfail = hfi1_create_rcvhdrq(dd, rcd);
929 if (!lastfail)
930 lastfail = hfi1_setup_eagerbufs(rcd);
931 if (lastfail) {
932 dd_dev_err(dd,
933 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
934 ret = lastfail;
935 }
936 /* enable IRQ */
937 hfi1_rcd_put(rcd);
938 }
939
940 /* Allocate enough memory for user event notification. */
941 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
942 sizeof(*dd->events));
943 dd->events = vmalloc_user(len);
944 if (!dd->events)
945 dd_dev_err(dd, "Failed to allocate user events page\n");
946 /*
947 * Allocate a page for device and port status.
948 * Page will be shared amongst all user processes.
949 */
950 dd->status = vmalloc_user(PAGE_SIZE);
951 if (!dd->status)
952 dd_dev_err(dd, "Failed to allocate dev status page\n");
953 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
954 ppd = dd->pport + pidx;
955 if (dd->status)
956 /* Currently, we only have one port */
957 ppd->statusp = &dd->status->port;
958
959 set_mtu(ppd);
960 }
961
962 /* enable chip even if we have an error, so we can debug cause */
963 enable_chip(dd);
964
965 done:
966 /*
967 * Set status even if port serdes is not initialized
968 * so that diags will work.
969 */
970 if (dd->status)
971 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
972 HFI1_STATUS_INITTED;
973 if (!ret) {
974 /* enable all interrupts from the chip */
975 enable_general_intr(dd);
976 init_qsfp_int(dd);
977
978 /* chip is OK for user apps; mark it as initialized */
979 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
980 ppd = dd->pport + pidx;
981
982 /*
983 * start the serdes - must be after interrupts are
984 * enabled so we are notified when the link goes up
985 */
986 lastfail = bringup_serdes(ppd);
987 if (lastfail)
988 dd_dev_info(dd,
989 "Failed to bring up port %u\n",
990 ppd->port);
991
992 /*
993 * Set status even if port serdes is not initialized
994 * so that diags will work.
995 */
996 if (ppd->statusp)
997 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
998 HFI1_STATUS_INITTED;
999 if (!ppd->link_speed_enabled)
1000 continue;
1001 }
1002 }
1003
1004 /* if ret is non-zero, we probably should do some cleanup here... */
1005 return ret;
1006 }
1007
1008 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
1009 {
1010 return idr_find(&hfi1_unit_table, unit);
1011 }
1012
1013 struct hfi1_devdata *hfi1_lookup(int unit)
1014 {
1015 struct hfi1_devdata *dd;
1016 unsigned long flags;
1017
1018 spin_lock_irqsave(&hfi1_devs_lock, flags);
1019 dd = __hfi1_lookup(unit);
1020 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1021
1022 return dd;
1023 }
1024
1025 /*
1026 * Stop the timers during unit shutdown, or after an error late
1027 * in initialization.
1028 */
1029 static void stop_timers(struct hfi1_devdata *dd)
1030 {
1031 struct hfi1_pportdata *ppd;
1032 int pidx;
1033
1034 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1035 ppd = dd->pport + pidx;
1036 if (ppd->led_override_timer.function) {
1037 del_timer_sync(&ppd->led_override_timer);
1038 atomic_set(&ppd->led_override_timer_active, 0);
1039 }
1040 }
1041 }
1042
1043 /**
1044 * shutdown_device - shut down a device
1045 * @dd: the hfi1_ib device
1046 *
1047 * This is called to make the device quiet when we are about to
1048 * unload the driver, and also when the device is administratively
1049 * disabled. It does not free any data structures.
1050 * Everything it does has to be setup again by hfi1_init(dd, 1)
1051 */
1052 static void shutdown_device(struct hfi1_devdata *dd)
1053 {
1054 struct hfi1_pportdata *ppd;
1055 struct hfi1_ctxtdata *rcd;
1056 unsigned pidx;
1057 int i;
1058
1059 if (dd->flags & HFI1_SHUTDOWN)
1060 return;
1061 dd->flags |= HFI1_SHUTDOWN;
1062
1063 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1064 ppd = dd->pport + pidx;
1065
1066 ppd->linkup = 0;
1067 if (ppd->statusp)
1068 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1069 HFI1_STATUS_IB_READY);
1070 }
1071 dd->flags &= ~HFI1_INITTED;
1072
1073 /* mask and clean up interrupts */
1074 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1075 msix_clean_up_interrupts(dd);
1076
1077 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1078 ppd = dd->pport + pidx;
1079 for (i = 0; i < dd->num_rcv_contexts; i++) {
1080 rcd = hfi1_rcd_get_by_index(dd, i);
1081 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1082 HFI1_RCVCTRL_CTXT_DIS |
1083 HFI1_RCVCTRL_INTRAVAIL_DIS |
1084 HFI1_RCVCTRL_PKEY_DIS |
1085 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1086 hfi1_rcd_put(rcd);
1087 }
1088 /*
1089 * Gracefully stop all sends allowing any in progress to
1090 * trickle out first.
1091 */
1092 for (i = 0; i < dd->num_send_contexts; i++)
1093 sc_flush(dd->send_contexts[i].sc);
1094 }
1095
1096 /*
1097 * Enough for anything that's going to trickle out to have actually
1098 * done so.
1099 */
1100 udelay(20);
1101
1102 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1103 ppd = dd->pport + pidx;
1104
1105 /* disable all contexts */
1106 for (i = 0; i < dd->num_send_contexts; i++)
1107 sc_disable(dd->send_contexts[i].sc);
1108 /* disable the send device */
1109 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1110
1111 shutdown_led_override(ppd);
1112
1113 /*
1114 * Clear SerdesEnable.
1115 * We can't count on interrupts since we are stopping.
1116 */
1117 hfi1_quiet_serdes(ppd);
1118
1119 if (ppd->hfi1_wq) {
1120 destroy_workqueue(ppd->hfi1_wq);
1121 ppd->hfi1_wq = NULL;
1122 }
1123 if (ppd->link_wq) {
1124 destroy_workqueue(ppd->link_wq);
1125 ppd->link_wq = NULL;
1126 }
1127 }
1128 sdma_exit(dd);
1129 }
1130
1131 /**
1132 * hfi1_free_ctxtdata - free a context's allocated data
1133 * @dd: the hfi1_ib device
1134 * @rcd: the ctxtdata structure
1135 *
1136 * free up any allocated data for a context
1137 * It should never change any chip state, or global driver state.
1138 */
1139 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1140 {
1141 u32 e;
1142
1143 if (!rcd)
1144 return;
1145
1146 if (rcd->rcvhdrq) {
1147 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1148 rcd->rcvhdrq, rcd->rcvhdrq_dma);
1149 rcd->rcvhdrq = NULL;
1150 if (rcd->rcvhdrtail_kvaddr) {
1151 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1152 (void *)rcd->rcvhdrtail_kvaddr,
1153 rcd->rcvhdrqtailaddr_dma);
1154 rcd->rcvhdrtail_kvaddr = NULL;
1155 }
1156 }
1157
1158 /* all the RcvArray entries should have been cleared by now */
1159 kfree(rcd->egrbufs.rcvtids);
1160 rcd->egrbufs.rcvtids = NULL;
1161
1162 for (e = 0; e < rcd->egrbufs.alloced; e++) {
1163 if (rcd->egrbufs.buffers[e].dma)
1164 dma_free_coherent(&dd->pcidev->dev,
1165 rcd->egrbufs.buffers[e].len,
1166 rcd->egrbufs.buffers[e].addr,
1167 rcd->egrbufs.buffers[e].dma);
1168 }
1169 kfree(rcd->egrbufs.buffers);
1170 rcd->egrbufs.alloced = 0;
1171 rcd->egrbufs.buffers = NULL;
1172
1173 sc_free(rcd->sc);
1174 rcd->sc = NULL;
1175
1176 vfree(rcd->subctxt_uregbase);
1177 vfree(rcd->subctxt_rcvegrbuf);
1178 vfree(rcd->subctxt_rcvhdr_base);
1179 kfree(rcd->opstats);
1180
1181 rcd->subctxt_uregbase = NULL;
1182 rcd->subctxt_rcvegrbuf = NULL;
1183 rcd->subctxt_rcvhdr_base = NULL;
1184 rcd->opstats = NULL;
1185 }
1186
1187 /*
1188 * Release our hold on the shared asic data. If we are the last one,
1189 * return the structure to be finalized outside the lock. Must be
1190 * holding hfi1_devs_lock.
1191 */
1192 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1193 {
1194 struct hfi1_asic_data *ad;
1195 int other;
1196
1197 if (!dd->asic_data)
1198 return NULL;
1199 dd->asic_data->dds[dd->hfi1_id] = NULL;
1200 other = dd->hfi1_id ? 0 : 1;
1201 ad = dd->asic_data;
1202 dd->asic_data = NULL;
1203 /* return NULL if the other dd still has a link */
1204 return ad->dds[other] ? NULL : ad;
1205 }
1206
1207 static void finalize_asic_data(struct hfi1_devdata *dd,
1208 struct hfi1_asic_data *ad)
1209 {
1210 clean_up_i2c(dd, ad);
1211 kfree(ad);
1212 }
1213
1214 /**
1215 * hfi1_clean_devdata - cleans up per-unit data structure
1216 * @dd: pointer to a valid devdata structure
1217 *
1218 * It cleans up all data structures set up by
1219 * by hfi1_alloc_devdata().
1220 */
1221 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1222 {
1223 struct hfi1_asic_data *ad;
1224 unsigned long flags;
1225
1226 spin_lock_irqsave(&hfi1_devs_lock, flags);
1227 if (!list_empty(&dd->list)) {
1228 idr_remove(&hfi1_unit_table, dd->unit);
1229 list_del_init(&dd->list);
1230 }
1231 ad = release_asic_data(dd);
1232 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1233
1234 finalize_asic_data(dd, ad);
1235 free_platform_config(dd);
1236 rcu_barrier(); /* wait for rcu callbacks to complete */
1237 free_percpu(dd->int_counter);
1238 free_percpu(dd->rcv_limit);
1239 free_percpu(dd->send_schedule);
1240 free_percpu(dd->tx_opstats);
1241 dd->int_counter = NULL;
1242 dd->rcv_limit = NULL;
1243 dd->send_schedule = NULL;
1244 dd->tx_opstats = NULL;
1245 kfree(dd->comp_vect);
1246 dd->comp_vect = NULL;
1247 sdma_clean(dd, dd->num_sdma);
1248 rvt_dealloc_device(&dd->verbs_dev.rdi);
1249 }
1250
1251 static void __hfi1_free_devdata(struct kobject *kobj)
1252 {
1253 struct hfi1_devdata *dd =
1254 container_of(kobj, struct hfi1_devdata, kobj);
1255
1256 hfi1_clean_devdata(dd);
1257 }
1258
1259 static struct kobj_type hfi1_devdata_type = {
1260 .release = __hfi1_free_devdata,
1261 };
1262
1263 void hfi1_free_devdata(struct hfi1_devdata *dd)
1264 {
1265 kobject_put(&dd->kobj);
1266 }
1267
1268 /**
1269 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1270 * @pdev: Valid PCI device
1271 * @extra: How many bytes to alloc past the default
1272 *
1273 * Must be done via verbs allocator, because the verbs cleanup process
1274 * both does cleanup and free of the data structure.
1275 * "extra" is for chip-specific data.
1276 *
1277 * Use the idr mechanism to get a unit number for this unit.
1278 */
1279 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1280 size_t extra)
1281 {
1282 unsigned long flags;
1283 struct hfi1_devdata *dd;
1284 int ret, nports;
1285
1286 /* extra is * number of ports */
1287 nports = extra / sizeof(struct hfi1_pportdata);
1288
1289 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1290 nports);
1291 if (!dd)
1292 return ERR_PTR(-ENOMEM);
1293 dd->num_pports = nports;
1294 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1295 dd->pcidev = pdev;
1296 pci_set_drvdata(pdev, dd);
1297
1298 INIT_LIST_HEAD(&dd->list);
1299 idr_preload(GFP_KERNEL);
1300 spin_lock_irqsave(&hfi1_devs_lock, flags);
1301
1302 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1303 if (ret >= 0) {
1304 dd->unit = ret;
1305 list_add(&dd->list, &hfi1_dev_list);
1306 }
1307 dd->node = NUMA_NO_NODE;
1308
1309 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1310 idr_preload_end();
1311
1312 if (ret < 0) {
1313 dev_err(&pdev->dev,
1314 "Could not allocate unit ID: error %d\n", -ret);
1315 goto bail;
1316 }
1317 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1318
1319 /*
1320 * Initialize all locks for the device. This needs to be as early as
1321 * possible so locks are usable.
1322 */
1323 spin_lock_init(&dd->sc_lock);
1324 spin_lock_init(&dd->sendctrl_lock);
1325 spin_lock_init(&dd->rcvctrl_lock);
1326 spin_lock_init(&dd->uctxt_lock);
1327 spin_lock_init(&dd->hfi1_diag_trans_lock);
1328 spin_lock_init(&dd->sc_init_lock);
1329 spin_lock_init(&dd->dc8051_memlock);
1330 seqlock_init(&dd->sc2vl_lock);
1331 spin_lock_init(&dd->sde_map_lock);
1332 spin_lock_init(&dd->pio_map_lock);
1333 mutex_init(&dd->dc8051_lock);
1334 init_waitqueue_head(&dd->event_queue);
1335 spin_lock_init(&dd->irq_src_lock);
1336
1337 dd->int_counter = alloc_percpu(u64);
1338 if (!dd->int_counter) {
1339 ret = -ENOMEM;
1340 goto bail;
1341 }
1342
1343 dd->rcv_limit = alloc_percpu(u64);
1344 if (!dd->rcv_limit) {
1345 ret = -ENOMEM;
1346 goto bail;
1347 }
1348
1349 dd->send_schedule = alloc_percpu(u64);
1350 if (!dd->send_schedule) {
1351 ret = -ENOMEM;
1352 goto bail;
1353 }
1354
1355 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1356 if (!dd->tx_opstats) {
1357 ret = -ENOMEM;
1358 goto bail;
1359 }
1360
1361 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1362 if (!dd->comp_vect) {
1363 ret = -ENOMEM;
1364 goto bail;
1365 }
1366
1367 kobject_init(&dd->kobj, &hfi1_devdata_type);
1368 return dd;
1369
1370 bail:
1371 hfi1_clean_devdata(dd);
1372 return ERR_PTR(ret);
1373 }
1374
1375 /*
1376 * Called from freeze mode handlers, and from PCI error
1377 * reporting code. Should be paranoid about state of
1378 * system and data structures.
1379 */
1380 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1381 {
1382 if (dd->flags & HFI1_INITTED) {
1383 u32 pidx;
1384
1385 dd->flags &= ~HFI1_INITTED;
1386 if (dd->pport)
1387 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1388 struct hfi1_pportdata *ppd;
1389
1390 ppd = dd->pport + pidx;
1391 if (dd->flags & HFI1_PRESENT)
1392 set_link_state(ppd, HLS_DN_DISABLE);
1393
1394 if (ppd->statusp)
1395 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1396 }
1397 }
1398
1399 /*
1400 * Mark as having had an error for driver, and also
1401 * for /sys and status word mapped to user programs.
1402 * This marks unit as not usable, until reset.
1403 */
1404 if (dd->status)
1405 dd->status->dev |= HFI1_STATUS_HWERROR;
1406 }
1407
1408 static void remove_one(struct pci_dev *);
1409 static int init_one(struct pci_dev *, const struct pci_device_id *);
1410 static void shutdown_one(struct pci_dev *);
1411
1412 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1413 #define PFX DRIVER_NAME ": "
1414
1415 const struct pci_device_id hfi1_pci_tbl[] = {
1416 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1417 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1418 { 0, }
1419 };
1420
1421 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1422
1423 static struct pci_driver hfi1_pci_driver = {
1424 .name = DRIVER_NAME,
1425 .probe = init_one,
1426 .remove = remove_one,
1427 .shutdown = shutdown_one,
1428 .id_table = hfi1_pci_tbl,
1429 .err_handler = &hfi1_pci_err_handler,
1430 };
1431
1432 static void __init compute_krcvqs(void)
1433 {
1434 int i;
1435
1436 for (i = 0; i < krcvqsset; i++)
1437 n_krcvqs += krcvqs[i];
1438 }
1439
1440 /*
1441 * Do all the generic driver unit- and chip-independent memory
1442 * allocation and initialization.
1443 */
1444 static int __init hfi1_mod_init(void)
1445 {
1446 int ret;
1447
1448 ret = dev_init();
1449 if (ret)
1450 goto bail;
1451
1452 ret = node_affinity_init();
1453 if (ret)
1454 goto bail;
1455
1456 /* validate max MTU before any devices start */
1457 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1458 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1459 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1460 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1461 }
1462 /* valid CUs run from 1-128 in powers of 2 */
1463 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1464 hfi1_cu = 1;
1465 /* valid credit return threshold is 0-100, variable is unsigned */
1466 if (user_credit_return_threshold > 100)
1467 user_credit_return_threshold = 100;
1468
1469 compute_krcvqs();
1470 /*
1471 * sanitize receive interrupt count, time must wait until after
1472 * the hardware type is known
1473 */
1474 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1475 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1476 /* reject invalid combinations */
1477 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1478 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1479 rcv_intr_count = 1;
1480 }
1481 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1482 /*
1483 * Avoid indefinite packet delivery by requiring a timeout
1484 * if count is > 1.
1485 */
1486 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1487 rcv_intr_timeout = 1;
1488 }
1489 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1490 /*
1491 * The dynamic algorithm expects a non-zero timeout
1492 * and a count > 1.
1493 */
1494 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1495 rcv_intr_dynamic = 0;
1496 }
1497
1498 /* sanitize link CRC options */
1499 link_crc_mask &= SUPPORTED_CRCS;
1500
1501 /*
1502 * These must be called before the driver is registered with
1503 * the PCI subsystem.
1504 */
1505 idr_init(&hfi1_unit_table);
1506
1507 hfi1_dbg_init();
1508 ret = pci_register_driver(&hfi1_pci_driver);
1509 if (ret < 0) {
1510 pr_err("Unable to register driver: error %d\n", -ret);
1511 goto bail_dev;
1512 }
1513 goto bail; /* all OK */
1514
1515 bail_dev:
1516 hfi1_dbg_exit();
1517 idr_destroy(&hfi1_unit_table);
1518 dev_cleanup();
1519 bail:
1520 return ret;
1521 }
1522
1523 module_init(hfi1_mod_init);
1524
1525 /*
1526 * Do the non-unit driver cleanup, memory free, etc. at unload.
1527 */
1528 static void __exit hfi1_mod_cleanup(void)
1529 {
1530 pci_unregister_driver(&hfi1_pci_driver);
1531 node_affinity_destroy_all();
1532 hfi1_dbg_exit();
1533
1534 idr_destroy(&hfi1_unit_table);
1535 dispose_firmware(); /* asymmetric with obtain_firmware() */
1536 dev_cleanup();
1537 }
1538
1539 module_exit(hfi1_mod_cleanup);
1540
1541 /* this can only be called after a successful initialization */
1542 static void cleanup_device_data(struct hfi1_devdata *dd)
1543 {
1544 int ctxt;
1545 int pidx;
1546
1547 /* users can't do anything more with chip */
1548 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1549 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1550 struct cc_state *cc_state;
1551 int i;
1552
1553 if (ppd->statusp)
1554 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1555
1556 for (i = 0; i < OPA_MAX_SLS; i++)
1557 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1558
1559 spin_lock(&ppd->cc_state_lock);
1560 cc_state = get_cc_state_protected(ppd);
1561 RCU_INIT_POINTER(ppd->cc_state, NULL);
1562 spin_unlock(&ppd->cc_state_lock);
1563
1564 if (cc_state)
1565 kfree_rcu(cc_state, rcu);
1566 }
1567
1568 free_credit_return(dd);
1569
1570 if (dd->rcvhdrtail_dummy_kvaddr) {
1571 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1572 (void *)dd->rcvhdrtail_dummy_kvaddr,
1573 dd->rcvhdrtail_dummy_dma);
1574 dd->rcvhdrtail_dummy_kvaddr = NULL;
1575 }
1576
1577 /*
1578 * Free any resources still in use (usually just kernel contexts)
1579 * at unload; we do for ctxtcnt, because that's what we allocate.
1580 */
1581 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1582 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1583
1584 if (rcd) {
1585 hfi1_clear_tids(rcd);
1586 hfi1_free_ctxt(rcd);
1587 }
1588 }
1589
1590 kfree(dd->rcd);
1591 dd->rcd = NULL;
1592
1593 free_pio_map(dd);
1594 /* must follow rcv context free - need to remove rcv's hooks */
1595 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1596 sc_free(dd->send_contexts[ctxt].sc);
1597 dd->num_send_contexts = 0;
1598 kfree(dd->send_contexts);
1599 dd->send_contexts = NULL;
1600 kfree(dd->hw_to_sw);
1601 dd->hw_to_sw = NULL;
1602 kfree(dd->boardname);
1603 vfree(dd->events);
1604 vfree(dd->status);
1605 }
1606
1607 /*
1608 * Clean up on unit shutdown, or error during unit load after
1609 * successful initialization.
1610 */
1611 static void postinit_cleanup(struct hfi1_devdata *dd)
1612 {
1613 hfi1_start_cleanup(dd);
1614 hfi1_comp_vectors_clean_up(dd);
1615 hfi1_dev_affinity_clean_up(dd);
1616
1617 hfi1_pcie_ddcleanup(dd);
1618 hfi1_pcie_cleanup(dd->pcidev);
1619
1620 cleanup_device_data(dd);
1621
1622 hfi1_free_devdata(dd);
1623 }
1624
1625 static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
1626 {
1627 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1628 dd_dev_err(dd, "Receive header queue count too small\n");
1629 return -EINVAL;
1630 }
1631
1632 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1633 dd_dev_err(dd,
1634 "Receive header queue count cannot be greater than %u\n",
1635 HFI1_MAX_HDRQ_EGRBUF_CNT);
1636 return -EINVAL;
1637 }
1638
1639 if (thecnt % HDRQ_INCREMENT) {
1640 dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
1641 thecnt, HDRQ_INCREMENT);
1642 return -EINVAL;
1643 }
1644
1645 return 0;
1646 }
1647
1648 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1649 {
1650 int ret = 0, j, pidx, initfail;
1651 struct hfi1_devdata *dd;
1652 struct hfi1_pportdata *ppd;
1653
1654 /* First, lock the non-writable module parameters */
1655 HFI1_CAP_LOCK();
1656
1657 /* Validate dev ids */
1658 if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1659 ent->device == PCI_DEVICE_ID_INTEL1)) {
1660 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1661 ent->device);
1662 ret = -ENODEV;
1663 goto bail;
1664 }
1665
1666 /* Allocate the dd so we can get to work */
1667 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1668 sizeof(struct hfi1_pportdata));
1669 if (IS_ERR(dd)) {
1670 ret = PTR_ERR(dd);
1671 goto bail;
1672 }
1673
1674 /* Validate some global module parameters */
1675 ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt);
1676 if (ret)
1677 goto bail;
1678
1679 /* use the encoding function as a sanitization check */
1680 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1681 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1682 hfi1_hdrq_entsize);
1683 ret = -EINVAL;
1684 goto bail;
1685 }
1686
1687 /* The receive eager buffer size must be set before the receive
1688 * contexts are created.
1689 *
1690 * Set the eager buffer size. Validate that it falls in a range
1691 * allowed by the hardware - all powers of 2 between the min and
1692 * max. The maximum valid MTU is within the eager buffer range
1693 * so we do not need to cap the max_mtu by an eager buffer size
1694 * setting.
1695 */
1696 if (eager_buffer_size) {
1697 if (!is_power_of_2(eager_buffer_size))
1698 eager_buffer_size =
1699 roundup_pow_of_two(eager_buffer_size);
1700 eager_buffer_size =
1701 clamp_val(eager_buffer_size,
1702 MIN_EAGER_BUFFER * 8,
1703 MAX_EAGER_BUFFER_TOTAL);
1704 dd_dev_info(dd, "Eager buffer size %u\n",
1705 eager_buffer_size);
1706 } else {
1707 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1708 ret = -EINVAL;
1709 goto bail;
1710 }
1711
1712 /* restrict value of hfi1_rcvarr_split */
1713 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1714
1715 ret = hfi1_pcie_init(dd);
1716 if (ret)
1717 goto bail;
1718
1719 /*
1720 * Do device-specific initialization, function table setup, dd
1721 * allocation, etc.
1722 */
1723 ret = hfi1_init_dd(dd);
1724 if (ret)
1725 goto clean_bail; /* error already printed */
1726
1727 ret = create_workqueues(dd);
1728 if (ret)
1729 goto clean_bail;
1730
1731 /* do the generic initialization */
1732 initfail = hfi1_init(dd, 0);
1733
1734 /* setup vnic */
1735 hfi1_vnic_setup(dd);
1736
1737 ret = hfi1_register_ib_device(dd);
1738
1739 /*
1740 * Now ready for use. this should be cleared whenever we
1741 * detect a reset, or initiate one. If earlier failure,
1742 * we still create devices, so diags, etc. can be used
1743 * to determine cause of problem.
1744 */
1745 if (!initfail && !ret) {
1746 dd->flags |= HFI1_INITTED;
1747 /* create debufs files after init and ib register */
1748 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1749 }
1750
1751 j = hfi1_device_create(dd);
1752 if (j)
1753 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1754
1755 if (initfail || ret) {
1756 msix_clean_up_interrupts(dd);
1757 stop_timers(dd);
1758 flush_workqueue(ib_wq);
1759 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1760 hfi1_quiet_serdes(dd->pport + pidx);
1761 ppd = dd->pport + pidx;
1762 if (ppd->hfi1_wq) {
1763 destroy_workqueue(ppd->hfi1_wq);
1764 ppd->hfi1_wq = NULL;
1765 }
1766 if (ppd->link_wq) {
1767 destroy_workqueue(ppd->link_wq);
1768 ppd->link_wq = NULL;
1769 }
1770 }
1771 if (!j)
1772 hfi1_device_remove(dd);
1773 if (!ret)
1774 hfi1_unregister_ib_device(dd);
1775 hfi1_vnic_cleanup(dd);
1776 postinit_cleanup(dd);
1777 if (initfail)
1778 ret = initfail;
1779 goto bail; /* everything already cleaned */
1780 }
1781
1782 sdma_start(dd);
1783
1784 return 0;
1785
1786 clean_bail:
1787 hfi1_pcie_cleanup(pdev);
1788 bail:
1789 return ret;
1790 }
1791
1792 static void wait_for_clients(struct hfi1_devdata *dd)
1793 {
1794 /*
1795 * Remove the device init value and complete the device if there is
1796 * no clients or wait for active clients to finish.
1797 */
1798 if (atomic_dec_and_test(&dd->user_refcount))
1799 complete(&dd->user_comp);
1800
1801 wait_for_completion(&dd->user_comp);
1802 }
1803
1804 static void remove_one(struct pci_dev *pdev)
1805 {
1806 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1807
1808 /* close debugfs files before ib unregister */
1809 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1810
1811 /* remove the /dev hfi1 interface */
1812 hfi1_device_remove(dd);
1813
1814 /* wait for existing user space clients to finish */
1815 wait_for_clients(dd);
1816
1817 /* unregister from IB core */
1818 hfi1_unregister_ib_device(dd);
1819
1820 /* cleanup vnic */
1821 hfi1_vnic_cleanup(dd);
1822
1823 /*
1824 * Disable the IB link, disable interrupts on the device,
1825 * clear dma engines, etc.
1826 */
1827 shutdown_device(dd);
1828
1829 stop_timers(dd);
1830
1831 /* wait until all of our (qsfp) queue_work() calls complete */
1832 flush_workqueue(ib_wq);
1833
1834 postinit_cleanup(dd);
1835 }
1836
1837 static void shutdown_one(struct pci_dev *pdev)
1838 {
1839 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1840
1841 shutdown_device(dd);
1842 }
1843
1844 /**
1845 * hfi1_create_rcvhdrq - create a receive header queue
1846 * @dd: the hfi1_ib device
1847 * @rcd: the context data
1848 *
1849 * This must be contiguous memory (from an i/o perspective), and must be
1850 * DMA'able (which means for some systems, it will go through an IOMMU,
1851 * or be forced into a low address range).
1852 */
1853 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1854 {
1855 unsigned amt;
1856 u64 reg;
1857
1858 if (!rcd->rcvhdrq) {
1859 gfp_t gfp_flags;
1860
1861 amt = rcvhdrq_size(rcd);
1862
1863 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1864 gfp_flags = GFP_KERNEL;
1865 else
1866 gfp_flags = GFP_USER;
1867 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1868 &rcd->rcvhdrq_dma,
1869 gfp_flags | __GFP_COMP);
1870
1871 if (!rcd->rcvhdrq) {
1872 dd_dev_err(dd,
1873 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1874 amt, rcd->ctxt);
1875 goto bail;
1876 }
1877
1878 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1879 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1880 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1881 PAGE_SIZE,
1882 &rcd->rcvhdrqtailaddr_dma,
1883 gfp_flags);
1884 if (!rcd->rcvhdrtail_kvaddr)
1885 goto bail_free;
1886 }
1887 }
1888 /*
1889 * These values are per-context:
1890 * RcvHdrCnt
1891 * RcvHdrEntSize
1892 * RcvHdrSize
1893 */
1894 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1895 & RCV_HDR_CNT_CNT_MASK)
1896 << RCV_HDR_CNT_CNT_SHIFT;
1897 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1898 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1899 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1900 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1901 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1902 reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1903 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1904 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1905
1906 /*
1907 * Program dummy tail address for every receive context
1908 * before enabling any receive context
1909 */
1910 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1911 dd->rcvhdrtail_dummy_dma);
1912
1913 return 0;
1914
1915 bail_free:
1916 dd_dev_err(dd,
1917 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1918 rcd->ctxt);
1919 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1920 rcd->rcvhdrq_dma);
1921 rcd->rcvhdrq = NULL;
1922 bail:
1923 return -ENOMEM;
1924 }
1925
1926 /**
1927 * allocate eager buffers, both kernel and user contexts.
1928 * @rcd: the context we are setting up.
1929 *
1930 * Allocate the eager TID buffers and program them into hip.
1931 * They are no longer completely contiguous, we do multiple allocation
1932 * calls. Otherwise we get the OOM code involved, by asking for too
1933 * much per call, with disastrous results on some kernels.
1934 */
1935 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1936 {
1937 struct hfi1_devdata *dd = rcd->dd;
1938 u32 max_entries, egrtop, alloced_bytes = 0;
1939 gfp_t gfp_flags;
1940 u16 order, idx = 0;
1941 int ret = 0;
1942 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1943
1944 /*
1945 * GFP_USER, but without GFP_FS, so buffer cache can be
1946 * coalesced (we hope); otherwise, even at order 4,
1947 * heavy filesystem activity makes these fail, and we can
1948 * use compound pages.
1949 */
1950 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1951
1952 /*
1953 * The minimum size of the eager buffers is a groups of MTU-sized
1954 * buffers.
1955 * The global eager_buffer_size parameter is checked against the
1956 * theoretical lower limit of the value. Here, we check against the
1957 * MTU.
1958 */
1959 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1960 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1961 /*
1962 * If using one-pkt-per-egr-buffer, lower the eager buffer
1963 * size to the max MTU (page-aligned).
1964 */
1965 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1966 rcd->egrbufs.rcvtid_size = round_mtu;
1967
1968 /*
1969 * Eager buffers sizes of 1MB or less require smaller TID sizes
1970 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1971 */
1972 if (rcd->egrbufs.size <= (1 << 20))
1973 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1974 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1975
1976 while (alloced_bytes < rcd->egrbufs.size &&
1977 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1978 rcd->egrbufs.buffers[idx].addr =
1979 dma_alloc_coherent(&dd->pcidev->dev,
1980 rcd->egrbufs.rcvtid_size,
1981 &rcd->egrbufs.buffers[idx].dma,
1982 gfp_flags);
1983 if (rcd->egrbufs.buffers[idx].addr) {
1984 rcd->egrbufs.buffers[idx].len =
1985 rcd->egrbufs.rcvtid_size;
1986 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1987 rcd->egrbufs.buffers[idx].addr;
1988 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1989 rcd->egrbufs.buffers[idx].dma;
1990 rcd->egrbufs.alloced++;
1991 alloced_bytes += rcd->egrbufs.rcvtid_size;
1992 idx++;
1993 } else {
1994 u32 new_size, i, j;
1995 u64 offset = 0;
1996
1997 /*
1998 * Fail the eager buffer allocation if:
1999 * - we are already using the lowest acceptable size
2000 * - we are using one-pkt-per-egr-buffer (this implies
2001 * that we are accepting only one size)
2002 */
2003 if (rcd->egrbufs.rcvtid_size == round_mtu ||
2004 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
2005 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
2006 rcd->ctxt);
2007 ret = -ENOMEM;
2008 goto bail_rcvegrbuf_phys;
2009 }
2010
2011 new_size = rcd->egrbufs.rcvtid_size / 2;
2012
2013 /*
2014 * If the first attempt to allocate memory failed, don't
2015 * fail everything but continue with the next lower
2016 * size.
2017 */
2018 if (idx == 0) {
2019 rcd->egrbufs.rcvtid_size = new_size;
2020 continue;
2021 }
2022
2023 /*
2024 * Re-partition already allocated buffers to a smaller
2025 * size.
2026 */
2027 rcd->egrbufs.alloced = 0;
2028 for (i = 0, j = 0, offset = 0; j < idx; i++) {
2029 if (i >= rcd->egrbufs.count)
2030 break;
2031 rcd->egrbufs.rcvtids[i].dma =
2032 rcd->egrbufs.buffers[j].dma + offset;
2033 rcd->egrbufs.rcvtids[i].addr =
2034 rcd->egrbufs.buffers[j].addr + offset;
2035 rcd->egrbufs.alloced++;
2036 if ((rcd->egrbufs.buffers[j].dma + offset +
2037 new_size) ==
2038 (rcd->egrbufs.buffers[j].dma +
2039 rcd->egrbufs.buffers[j].len)) {
2040 j++;
2041 offset = 0;
2042 } else {
2043 offset += new_size;
2044 }
2045 }
2046 rcd->egrbufs.rcvtid_size = new_size;
2047 }
2048 }
2049 rcd->egrbufs.numbufs = idx;
2050 rcd->egrbufs.size = alloced_bytes;
2051
2052 hfi1_cdbg(PROC,
2053 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2054 rcd->ctxt, rcd->egrbufs.alloced,
2055 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2056
2057 /*
2058 * Set the contexts rcv array head update threshold to the closest
2059 * power of 2 (so we can use a mask instead of modulo) below half
2060 * the allocated entries.
2061 */
2062 rcd->egrbufs.threshold =
2063 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2064 /*
2065 * Compute the expected RcvArray entry base. This is done after
2066 * allocating the eager buffers in order to maximize the
2067 * expected RcvArray entries for the context.
2068 */
2069 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2070 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2071 rcd->expected_count = max_entries - egrtop;
2072 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2073 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2074
2075 rcd->expected_base = rcd->eager_base + egrtop;
2076 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2077 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2078 rcd->eager_base, rcd->expected_base);
2079
2080 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2081 hfi1_cdbg(PROC,
2082 "ctxt%u: current Eager buffer size is invalid %u\n",
2083 rcd->ctxt, rcd->egrbufs.rcvtid_size);
2084 ret = -EINVAL;
2085 goto bail_rcvegrbuf_phys;
2086 }
2087
2088 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2089 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2090 rcd->egrbufs.rcvtids[idx].dma, order);
2091 cond_resched();
2092 }
2093
2094 return 0;
2095
2096 bail_rcvegrbuf_phys:
2097 for (idx = 0; idx < rcd->egrbufs.alloced &&
2098 rcd->egrbufs.buffers[idx].addr;
2099 idx++) {
2100 dma_free_coherent(&dd->pcidev->dev,
2101 rcd->egrbufs.buffers[idx].len,
2102 rcd->egrbufs.buffers[idx].addr,
2103 rcd->egrbufs.buffers[idx].dma);
2104 rcd->egrbufs.buffers[idx].addr = NULL;
2105 rcd->egrbufs.buffers[idx].dma = 0;
2106 rcd->egrbufs.buffers[idx].len = 0;
2107 }
2108
2109 return ret;
2110 }