]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/hw/hfi1/pio.c
Merge branch 'linux-4.10' of git://github.com/skeggsb/linux into drm-next
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / hw / hfi1 / pio.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/delay.h>
49 #include "hfi.h"
50 #include "qp.h"
51 #include "trace.h"
52
53 #define SC_CTXT_PACKET_EGRESS_TIMEOUT 350 /* in chip cycles */
54
55 #define SC(name) SEND_CTXT_##name
56 /*
57 * Send Context functions
58 */
59 static void sc_wait_for_packet_egress(struct send_context *sc, int pause);
60
61 /*
62 * Set the CM reset bit and wait for it to clear. Use the provided
63 * sendctrl register. This routine has no locking.
64 */
65 void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl)
66 {
67 write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK);
68 while (1) {
69 udelay(1);
70 sendctrl = read_csr(dd, SEND_CTRL);
71 if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0)
72 break;
73 }
74 }
75
76 /* defined in header release 48 and higher */
77 #ifndef SEND_CTRL_UNSUPPORTED_VL_SHIFT
78 #define SEND_CTRL_UNSUPPORTED_VL_SHIFT 3
79 #define SEND_CTRL_UNSUPPORTED_VL_MASK 0xffull
80 #define SEND_CTRL_UNSUPPORTED_VL_SMASK (SEND_CTRL_UNSUPPORTED_VL_MASK \
81 << SEND_CTRL_UNSUPPORTED_VL_SHIFT)
82 #endif
83
84 /* global control of PIO send */
85 void pio_send_control(struct hfi1_devdata *dd, int op)
86 {
87 u64 reg, mask;
88 unsigned long flags;
89 int write = 1; /* write sendctrl back */
90 int flush = 0; /* re-read sendctrl to make sure it is flushed */
91
92 spin_lock_irqsave(&dd->sendctrl_lock, flags);
93
94 reg = read_csr(dd, SEND_CTRL);
95 switch (op) {
96 case PSC_GLOBAL_ENABLE:
97 reg |= SEND_CTRL_SEND_ENABLE_SMASK;
98 /* Fall through */
99 case PSC_DATA_VL_ENABLE:
100 /* Disallow sending on VLs not enabled */
101 mask = (((~0ull) << num_vls) & SEND_CTRL_UNSUPPORTED_VL_MASK) <<
102 SEND_CTRL_UNSUPPORTED_VL_SHIFT;
103 reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask;
104 break;
105 case PSC_GLOBAL_DISABLE:
106 reg &= ~SEND_CTRL_SEND_ENABLE_SMASK;
107 break;
108 case PSC_GLOBAL_VLARB_ENABLE:
109 reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
110 break;
111 case PSC_GLOBAL_VLARB_DISABLE:
112 reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
113 break;
114 case PSC_CM_RESET:
115 __cm_reset(dd, reg);
116 write = 0; /* CSR already written (and flushed) */
117 break;
118 case PSC_DATA_VL_DISABLE:
119 reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK;
120 flush = 1;
121 break;
122 default:
123 dd_dev_err(dd, "%s: invalid control %d\n", __func__, op);
124 break;
125 }
126
127 if (write) {
128 write_csr(dd, SEND_CTRL, reg);
129 if (flush)
130 (void)read_csr(dd, SEND_CTRL); /* flush write */
131 }
132
133 spin_unlock_irqrestore(&dd->sendctrl_lock, flags);
134 }
135
136 /* number of send context memory pools */
137 #define NUM_SC_POOLS 2
138
139 /* Send Context Size (SCS) wildcards */
140 #define SCS_POOL_0 -1
141 #define SCS_POOL_1 -2
142
143 /* Send Context Count (SCC) wildcards */
144 #define SCC_PER_VL -1
145 #define SCC_PER_CPU -2
146 #define SCC_PER_KRCVQ -3
147
148 /* Send Context Size (SCS) constants */
149 #define SCS_ACK_CREDITS 32
150 #define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */
151
152 #define PIO_THRESHOLD_CEILING 4096
153
154 #define PIO_WAIT_BATCH_SIZE 5
155
156 /* default send context sizes */
157 static struct sc_config_sizes sc_config_sizes[SC_MAX] = {
158 [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */
159 .count = SCC_PER_VL }, /* one per NUMA */
160 [SC_ACK] = { .size = SCS_ACK_CREDITS,
161 .count = SCC_PER_KRCVQ },
162 [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */
163 .count = SCC_PER_CPU }, /* one per CPU */
164 [SC_VL15] = { .size = SCS_VL15_CREDITS,
165 .count = 1 },
166
167 };
168
169 /* send context memory pool configuration */
170 struct mem_pool_config {
171 int centipercent; /* % of memory, in 100ths of 1% */
172 int absolute_blocks; /* absolute block count */
173 };
174
175 /* default memory pool configuration: 100% in pool 0 */
176 static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = {
177 /* centi%, abs blocks */
178 { 10000, -1 }, /* pool 0 */
179 { 0, -1 }, /* pool 1 */
180 };
181
182 /* memory pool information, used when calculating final sizes */
183 struct mem_pool_info {
184 int centipercent; /*
185 * 100th of 1% of memory to use, -1 if blocks
186 * already set
187 */
188 int count; /* count of contexts in the pool */
189 int blocks; /* block size of the pool */
190 int size; /* context size, in blocks */
191 };
192
193 /*
194 * Convert a pool wildcard to a valid pool index. The wildcards
195 * start at -1 and increase negatively. Map them as:
196 * -1 => 0
197 * -2 => 1
198 * etc.
199 *
200 * Return -1 on non-wildcard input, otherwise convert to a pool number.
201 */
202 static int wildcard_to_pool(int wc)
203 {
204 if (wc >= 0)
205 return -1; /* non-wildcard */
206 return -wc - 1;
207 }
208
209 static const char *sc_type_names[SC_MAX] = {
210 "kernel",
211 "ack",
212 "user",
213 "vl15"
214 };
215
216 static const char *sc_type_name(int index)
217 {
218 if (index < 0 || index >= SC_MAX)
219 return "unknown";
220 return sc_type_names[index];
221 }
222
223 /*
224 * Read the send context memory pool configuration and send context
225 * size configuration. Replace any wildcards and come up with final
226 * counts and sizes for the send context types.
227 */
228 int init_sc_pools_and_sizes(struct hfi1_devdata *dd)
229 {
230 struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } };
231 int total_blocks = (dd->chip_pio_mem_size / PIO_BLOCK_SIZE) - 1;
232 int total_contexts = 0;
233 int fixed_blocks;
234 int pool_blocks;
235 int used_blocks;
236 int cp_total; /* centipercent total */
237 int ab_total; /* absolute block total */
238 int extra;
239 int i;
240
241 /*
242 * When SDMA is enabled, kernel context pio packet size is capped by
243 * "piothreshold". Reduce pio buffer allocation for kernel context by
244 * setting it to a fixed size. The allocation allows 3-deep buffering
245 * of the largest pio packets plus up to 128 bytes header, sufficient
246 * to maintain verbs performance.
247 *
248 * When SDMA is disabled, keep the default pooling allocation.
249 */
250 if (HFI1_CAP_IS_KSET(SDMA)) {
251 u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ?
252 piothreshold : PIO_THRESHOLD_CEILING;
253 sc_config_sizes[SC_KERNEL].size =
254 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE;
255 }
256
257 /*
258 * Step 0:
259 * - copy the centipercents/absolute sizes from the pool config
260 * - sanity check these values
261 * - add up centipercents, then later check for full value
262 * - add up absolute blocks, then later check for over-commit
263 */
264 cp_total = 0;
265 ab_total = 0;
266 for (i = 0; i < NUM_SC_POOLS; i++) {
267 int cp = sc_mem_pool_config[i].centipercent;
268 int ab = sc_mem_pool_config[i].absolute_blocks;
269
270 /*
271 * A negative value is "unused" or "invalid". Both *can*
272 * be valid, but centipercent wins, so check that first
273 */
274 if (cp >= 0) { /* centipercent valid */
275 cp_total += cp;
276 } else if (ab >= 0) { /* absolute blocks valid */
277 ab_total += ab;
278 } else { /* neither valid */
279 dd_dev_err(
280 dd,
281 "Send context memory pool %d: both the block count and centipercent are invalid\n",
282 i);
283 return -EINVAL;
284 }
285
286 mem_pool_info[i].centipercent = cp;
287 mem_pool_info[i].blocks = ab;
288 }
289
290 /* do not use both % and absolute blocks for different pools */
291 if (cp_total != 0 && ab_total != 0) {
292 dd_dev_err(
293 dd,
294 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
295 return -EINVAL;
296 }
297
298 /* if any percentages are present, they must add up to 100% x 100 */
299 if (cp_total != 0 && cp_total != 10000) {
300 dd_dev_err(
301 dd,
302 "Send context memory pool centipercent is %d, expecting 10000\n",
303 cp_total);
304 return -EINVAL;
305 }
306
307 /* the absolute pool total cannot be more than the mem total */
308 if (ab_total > total_blocks) {
309 dd_dev_err(
310 dd,
311 "Send context memory pool absolute block count %d is larger than the memory size %d\n",
312 ab_total, total_blocks);
313 return -EINVAL;
314 }
315
316 /*
317 * Step 2:
318 * - copy from the context size config
319 * - replace context type wildcard counts with real values
320 * - add up non-memory pool block sizes
321 * - add up memory pool user counts
322 */
323 fixed_blocks = 0;
324 for (i = 0; i < SC_MAX; i++) {
325 int count = sc_config_sizes[i].count;
326 int size = sc_config_sizes[i].size;
327 int pool;
328
329 /*
330 * Sanity check count: Either a positive value or
331 * one of the expected wildcards is valid. The positive
332 * value is checked later when we compare against total
333 * memory available.
334 */
335 if (i == SC_ACK) {
336 count = dd->n_krcv_queues;
337 } else if (i == SC_KERNEL) {
338 count = INIT_SC_PER_VL * num_vls;
339 } else if (count == SCC_PER_CPU) {
340 count = dd->num_rcv_contexts - dd->n_krcv_queues;
341 } else if (count < 0) {
342 dd_dev_err(
343 dd,
344 "%s send context invalid count wildcard %d\n",
345 sc_type_name(i), count);
346 return -EINVAL;
347 }
348 if (total_contexts + count > dd->chip_send_contexts)
349 count = dd->chip_send_contexts - total_contexts;
350
351 total_contexts += count;
352
353 /*
354 * Sanity check pool: The conversion will return a pool
355 * number or -1 if a fixed (non-negative) value. The fixed
356 * value is checked later when we compare against
357 * total memory available.
358 */
359 pool = wildcard_to_pool(size);
360 if (pool == -1) { /* non-wildcard */
361 fixed_blocks += size * count;
362 } else if (pool < NUM_SC_POOLS) { /* valid wildcard */
363 mem_pool_info[pool].count += count;
364 } else { /* invalid wildcard */
365 dd_dev_err(
366 dd,
367 "%s send context invalid pool wildcard %d\n",
368 sc_type_name(i), size);
369 return -EINVAL;
370 }
371
372 dd->sc_sizes[i].count = count;
373 dd->sc_sizes[i].size = size;
374 }
375 if (fixed_blocks > total_blocks) {
376 dd_dev_err(
377 dd,
378 "Send context fixed block count, %u, larger than total block count %u\n",
379 fixed_blocks, total_blocks);
380 return -EINVAL;
381 }
382
383 /* step 3: calculate the blocks in the pools, and pool context sizes */
384 pool_blocks = total_blocks - fixed_blocks;
385 if (ab_total > pool_blocks) {
386 dd_dev_err(
387 dd,
388 "Send context fixed pool sizes, %u, larger than pool block count %u\n",
389 ab_total, pool_blocks);
390 return -EINVAL;
391 }
392 /* subtract off the fixed pool blocks */
393 pool_blocks -= ab_total;
394
395 for (i = 0; i < NUM_SC_POOLS; i++) {
396 struct mem_pool_info *pi = &mem_pool_info[i];
397
398 /* % beats absolute blocks */
399 if (pi->centipercent >= 0)
400 pi->blocks = (pool_blocks * pi->centipercent) / 10000;
401
402 if (pi->blocks == 0 && pi->count != 0) {
403 dd_dev_err(
404 dd,
405 "Send context memory pool %d has %u contexts, but no blocks\n",
406 i, pi->count);
407 return -EINVAL;
408 }
409 if (pi->count == 0) {
410 /* warn about wasted blocks */
411 if (pi->blocks != 0)
412 dd_dev_err(
413 dd,
414 "Send context memory pool %d has %u blocks, but zero contexts\n",
415 i, pi->blocks);
416 pi->size = 0;
417 } else {
418 pi->size = pi->blocks / pi->count;
419 }
420 }
421
422 /* step 4: fill in the context type sizes from the pool sizes */
423 used_blocks = 0;
424 for (i = 0; i < SC_MAX; i++) {
425 if (dd->sc_sizes[i].size < 0) {
426 unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size);
427
428 WARN_ON_ONCE(pool >= NUM_SC_POOLS);
429 dd->sc_sizes[i].size = mem_pool_info[pool].size;
430 }
431 /* make sure we are not larger than what is allowed by the HW */
432 #define PIO_MAX_BLOCKS 1024
433 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS)
434 dd->sc_sizes[i].size = PIO_MAX_BLOCKS;
435
436 /* calculate our total usage */
437 used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count;
438 }
439 extra = total_blocks - used_blocks;
440 if (extra != 0)
441 dd_dev_info(dd, "unused send context blocks: %d\n", extra);
442
443 return total_contexts;
444 }
445
446 int init_send_contexts(struct hfi1_devdata *dd)
447 {
448 u16 base;
449 int ret, i, j, context;
450
451 ret = init_credit_return(dd);
452 if (ret)
453 return ret;
454
455 dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8),
456 GFP_KERNEL);
457 dd->send_contexts = kcalloc(dd->num_send_contexts,
458 sizeof(struct send_context_info),
459 GFP_KERNEL);
460 if (!dd->send_contexts || !dd->hw_to_sw) {
461 kfree(dd->hw_to_sw);
462 kfree(dd->send_contexts);
463 free_credit_return(dd);
464 return -ENOMEM;
465 }
466
467 /* hardware context map starts with invalid send context indices */
468 for (i = 0; i < TXE_NUM_CONTEXTS; i++)
469 dd->hw_to_sw[i] = INVALID_SCI;
470
471 /*
472 * All send contexts have their credit sizes. Allocate credits
473 * for each context one after another from the global space.
474 */
475 context = 0;
476 base = 1;
477 for (i = 0; i < SC_MAX; i++) {
478 struct sc_config_sizes *scs = &dd->sc_sizes[i];
479
480 for (j = 0; j < scs->count; j++) {
481 struct send_context_info *sci =
482 &dd->send_contexts[context];
483 sci->type = i;
484 sci->base = base;
485 sci->credits = scs->size;
486
487 context++;
488 base += scs->size;
489 }
490 }
491
492 return 0;
493 }
494
495 /*
496 * Allocate a software index and hardware context of the given type.
497 *
498 * Must be called with dd->sc_lock held.
499 */
500 static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index,
501 u32 *hw_context)
502 {
503 struct send_context_info *sci;
504 u32 index;
505 u32 context;
506
507 for (index = 0, sci = &dd->send_contexts[0];
508 index < dd->num_send_contexts; index++, sci++) {
509 if (sci->type == type && sci->allocated == 0) {
510 sci->allocated = 1;
511 /* use a 1:1 mapping, but make them non-equal */
512 context = dd->chip_send_contexts - index - 1;
513 dd->hw_to_sw[context] = index;
514 *sw_index = index;
515 *hw_context = context;
516 return 0; /* success */
517 }
518 }
519 dd_dev_err(dd, "Unable to locate a free type %d send context\n", type);
520 return -ENOSPC;
521 }
522
523 /*
524 * Free the send context given by its software index.
525 *
526 * Must be called with dd->sc_lock held.
527 */
528 static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context)
529 {
530 struct send_context_info *sci;
531
532 sci = &dd->send_contexts[sw_index];
533 if (!sci->allocated) {
534 dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n",
535 __func__, sw_index, hw_context);
536 }
537 sci->allocated = 0;
538 dd->hw_to_sw[hw_context] = INVALID_SCI;
539 }
540
541 /* return the base context of a context in a group */
542 static inline u32 group_context(u32 context, u32 group)
543 {
544 return (context >> group) << group;
545 }
546
547 /* return the size of a group */
548 static inline u32 group_size(u32 group)
549 {
550 return 1 << group;
551 }
552
553 /*
554 * Obtain the credit return addresses, kernel virtual and bus, for the
555 * given sc.
556 *
557 * To understand this routine:
558 * o va and dma are arrays of struct credit_return. One for each physical
559 * send context, per NUMA.
560 * o Each send context always looks in its relative location in a struct
561 * credit_return for its credit return.
562 * o Each send context in a group must have its return address CSR programmed
563 * with the same value. Use the address of the first send context in the
564 * group.
565 */
566 static void cr_group_addresses(struct send_context *sc, dma_addr_t *dma)
567 {
568 u32 gc = group_context(sc->hw_context, sc->group);
569 u32 index = sc->hw_context & 0x7;
570
571 sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index];
572 *dma = (unsigned long)
573 &((struct credit_return *)sc->dd->cr_base[sc->node].dma)[gc];
574 }
575
576 /*
577 * Work queue function triggered in error interrupt routine for
578 * kernel contexts.
579 */
580 static void sc_halted(struct work_struct *work)
581 {
582 struct send_context *sc;
583
584 sc = container_of(work, struct send_context, halt_work);
585 sc_restart(sc);
586 }
587
588 /*
589 * Calculate PIO block threshold for this send context using the given MTU.
590 * Trigger a return when one MTU plus optional header of credits remain.
591 *
592 * Parameter mtu is in bytes.
593 * Parameter hdrqentsize is in DWORDs.
594 *
595 * Return value is what to write into the CSR: trigger return when
596 * unreturned credits pass this count.
597 */
598 u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize)
599 {
600 u32 release_credits;
601 u32 threshold;
602
603 /* add in the header size, then divide by the PIO block size */
604 mtu += hdrqentsize << 2;
605 release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE);
606
607 /* check against this context's credits */
608 if (sc->credits <= release_credits)
609 threshold = 1;
610 else
611 threshold = sc->credits - release_credits;
612
613 return threshold;
614 }
615
616 /*
617 * Calculate credit threshold in terms of percent of the allocated credits.
618 * Trigger when unreturned credits equal or exceed the percentage of the whole.
619 *
620 * Return value is what to write into the CSR: trigger return when
621 * unreturned credits pass this count.
622 */
623 u32 sc_percent_to_threshold(struct send_context *sc, u32 percent)
624 {
625 return (sc->credits * percent) / 100;
626 }
627
628 /*
629 * Set the credit return threshold.
630 */
631 void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold)
632 {
633 unsigned long flags;
634 u32 old_threshold;
635 int force_return = 0;
636
637 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
638
639 old_threshold = (sc->credit_ctrl >>
640 SC(CREDIT_CTRL_THRESHOLD_SHIFT))
641 & SC(CREDIT_CTRL_THRESHOLD_MASK);
642
643 if (new_threshold != old_threshold) {
644 sc->credit_ctrl =
645 (sc->credit_ctrl
646 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK))
647 | ((new_threshold
648 & SC(CREDIT_CTRL_THRESHOLD_MASK))
649 << SC(CREDIT_CTRL_THRESHOLD_SHIFT));
650 write_kctxt_csr(sc->dd, sc->hw_context,
651 SC(CREDIT_CTRL), sc->credit_ctrl);
652
653 /* force a credit return on change to avoid a possible stall */
654 force_return = 1;
655 }
656
657 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
658
659 if (force_return)
660 sc_return_credits(sc);
661 }
662
663 /*
664 * set_pio_integrity
665 *
666 * Set the CHECK_ENABLE register for the send context 'sc'.
667 */
668 void set_pio_integrity(struct send_context *sc)
669 {
670 struct hfi1_devdata *dd = sc->dd;
671 u32 hw_context = sc->hw_context;
672 int type = sc->type;
673
674 write_kctxt_csr(dd, hw_context,
675 SC(CHECK_ENABLE),
676 hfi1_pkt_default_send_ctxt_mask(dd, type));
677 }
678
679 static u32 get_buffers_allocated(struct send_context *sc)
680 {
681 int cpu;
682 u32 ret = 0;
683
684 for_each_possible_cpu(cpu)
685 ret += *per_cpu_ptr(sc->buffers_allocated, cpu);
686 return ret;
687 }
688
689 static void reset_buffers_allocated(struct send_context *sc)
690 {
691 int cpu;
692
693 for_each_possible_cpu(cpu)
694 (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0;
695 }
696
697 /*
698 * Allocate a NUMA relative send context structure of the given type along
699 * with a HW context.
700 */
701 struct send_context *sc_alloc(struct hfi1_devdata *dd, int type,
702 uint hdrqentsize, int numa)
703 {
704 struct send_context_info *sci;
705 struct send_context *sc = NULL;
706 dma_addr_t dma;
707 unsigned long flags;
708 u64 reg;
709 u32 thresh;
710 u32 sw_index;
711 u32 hw_context;
712 int ret;
713 u8 opval, opmask;
714
715 /* do not allocate while frozen */
716 if (dd->flags & HFI1_FROZEN)
717 return NULL;
718
719 sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa);
720 if (!sc)
721 return NULL;
722
723 sc->buffers_allocated = alloc_percpu(u32);
724 if (!sc->buffers_allocated) {
725 kfree(sc);
726 dd_dev_err(dd,
727 "Cannot allocate buffers_allocated per cpu counters\n"
728 );
729 return NULL;
730 }
731
732 spin_lock_irqsave(&dd->sc_lock, flags);
733 ret = sc_hw_alloc(dd, type, &sw_index, &hw_context);
734 if (ret) {
735 spin_unlock_irqrestore(&dd->sc_lock, flags);
736 free_percpu(sc->buffers_allocated);
737 kfree(sc);
738 return NULL;
739 }
740
741 sci = &dd->send_contexts[sw_index];
742 sci->sc = sc;
743
744 sc->dd = dd;
745 sc->node = numa;
746 sc->type = type;
747 spin_lock_init(&sc->alloc_lock);
748 spin_lock_init(&sc->release_lock);
749 spin_lock_init(&sc->credit_ctrl_lock);
750 INIT_LIST_HEAD(&sc->piowait);
751 INIT_WORK(&sc->halt_work, sc_halted);
752 init_waitqueue_head(&sc->halt_wait);
753
754 /* grouping is always single context for now */
755 sc->group = 0;
756
757 sc->sw_index = sw_index;
758 sc->hw_context = hw_context;
759 cr_group_addresses(sc, &dma);
760 sc->credits = sci->credits;
761
762 /* PIO Send Memory Address details */
763 #define PIO_ADDR_CONTEXT_MASK 0xfful
764 #define PIO_ADDR_CONTEXT_SHIFT 16
765 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK)
766 << PIO_ADDR_CONTEXT_SHIFT);
767
768 /* set base and credits */
769 reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK))
770 << SC(CTRL_CTXT_DEPTH_SHIFT))
771 | ((sci->base & SC(CTRL_CTXT_BASE_MASK))
772 << SC(CTRL_CTXT_BASE_SHIFT));
773 write_kctxt_csr(dd, hw_context, SC(CTRL), reg);
774
775 set_pio_integrity(sc);
776
777 /* unmask all errors */
778 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1);
779
780 /* set the default partition key */
781 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY),
782 (SC(CHECK_PARTITION_KEY_VALUE_MASK) &
783 DEFAULT_PKEY) <<
784 SC(CHECK_PARTITION_KEY_VALUE_SHIFT));
785
786 /* per context type checks */
787 if (type == SC_USER) {
788 opval = USER_OPCODE_CHECK_VAL;
789 opmask = USER_OPCODE_CHECK_MASK;
790 } else {
791 opval = OPCODE_CHECK_VAL_DISABLED;
792 opmask = OPCODE_CHECK_MASK_DISABLED;
793 }
794
795 /* set the send context check opcode mask and value */
796 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE),
797 ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) |
798 ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT)));
799
800 /* set up credit return */
801 reg = dma & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK);
802 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg);
803
804 /*
805 * Calculate the initial credit return threshold.
806 *
807 * For Ack contexts, set a threshold for half the credits.
808 * For User contexts use the given percentage. This has been
809 * sanitized on driver start-up.
810 * For Kernel contexts, use the default MTU plus a header
811 * or half the credits, whichever is smaller. This should
812 * work for both the 3-deep buffering allocation and the
813 * pooling allocation.
814 */
815 if (type == SC_ACK) {
816 thresh = sc_percent_to_threshold(sc, 50);
817 } else if (type == SC_USER) {
818 thresh = sc_percent_to_threshold(sc,
819 user_credit_return_threshold);
820 } else { /* kernel */
821 thresh = min(sc_percent_to_threshold(sc, 50),
822 sc_mtu_to_threshold(sc, hfi1_max_mtu,
823 hdrqentsize));
824 }
825 reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT);
826 /* add in early return */
827 if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN))
828 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
829 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */
830 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
831
832 /* set up write-through credit_ctrl */
833 sc->credit_ctrl = reg;
834 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg);
835
836 /* User send contexts should not allow sending on VL15 */
837 if (type == SC_USER) {
838 reg = 1ULL << 15;
839 write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg);
840 }
841
842 spin_unlock_irqrestore(&dd->sc_lock, flags);
843
844 /*
845 * Allocate shadow ring to track outstanding PIO buffers _after_
846 * unlocking. We don't know the size until the lock is held and
847 * we can't allocate while the lock is held. No one is using
848 * the context yet, so allocate it now.
849 *
850 * User contexts do not get a shadow ring.
851 */
852 if (type != SC_USER) {
853 /*
854 * Size the shadow ring 1 larger than the number of credits
855 * so head == tail can mean empty.
856 */
857 sc->sr_size = sci->credits + 1;
858 sc->sr = kzalloc_node(sizeof(union pio_shadow_ring) *
859 sc->sr_size, GFP_KERNEL, numa);
860 if (!sc->sr) {
861 sc_free(sc);
862 return NULL;
863 }
864 }
865
866 hfi1_cdbg(PIO,
867 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n",
868 sw_index,
869 hw_context,
870 sc_type_name(type),
871 sc->group,
872 sc->credits,
873 sc->credit_ctrl,
874 thresh);
875
876 return sc;
877 }
878
879 /* free a per-NUMA send context structure */
880 void sc_free(struct send_context *sc)
881 {
882 struct hfi1_devdata *dd;
883 unsigned long flags;
884 u32 sw_index;
885 u32 hw_context;
886
887 if (!sc)
888 return;
889
890 sc->flags |= SCF_IN_FREE; /* ensure no restarts */
891 dd = sc->dd;
892 if (!list_empty(&sc->piowait))
893 dd_dev_err(dd, "piowait list not empty!\n");
894 sw_index = sc->sw_index;
895 hw_context = sc->hw_context;
896 sc_disable(sc); /* make sure the HW is disabled */
897 flush_work(&sc->halt_work);
898
899 spin_lock_irqsave(&dd->sc_lock, flags);
900 dd->send_contexts[sw_index].sc = NULL;
901
902 /* clear/disable all registers set in sc_alloc */
903 write_kctxt_csr(dd, hw_context, SC(CTRL), 0);
904 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0);
905 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0);
906 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0);
907 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0);
908 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0);
909 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0);
910
911 /* release the index and context for re-use */
912 sc_hw_free(dd, sw_index, hw_context);
913 spin_unlock_irqrestore(&dd->sc_lock, flags);
914
915 kfree(sc->sr);
916 free_percpu(sc->buffers_allocated);
917 kfree(sc);
918 }
919
920 /* disable the context */
921 void sc_disable(struct send_context *sc)
922 {
923 u64 reg;
924 unsigned long flags;
925 struct pio_buf *pbuf;
926
927 if (!sc)
928 return;
929
930 /* do all steps, even if already disabled */
931 spin_lock_irqsave(&sc->alloc_lock, flags);
932 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL));
933 reg &= ~SC(CTRL_CTXT_ENABLE_SMASK);
934 sc->flags &= ~SCF_ENABLED;
935 sc_wait_for_packet_egress(sc, 1);
936 write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg);
937 spin_unlock_irqrestore(&sc->alloc_lock, flags);
938
939 /*
940 * Flush any waiters. Once the context is disabled,
941 * credit return interrupts are stopped (although there
942 * could be one in-process when the context is disabled).
943 * Wait one microsecond for any lingering interrupts, then
944 * proceed with the flush.
945 */
946 udelay(1);
947 spin_lock_irqsave(&sc->release_lock, flags);
948 if (sc->sr) { /* this context has a shadow ring */
949 while (sc->sr_tail != sc->sr_head) {
950 pbuf = &sc->sr[sc->sr_tail].pbuf;
951 if (pbuf->cb)
952 (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE);
953 sc->sr_tail++;
954 if (sc->sr_tail >= sc->sr_size)
955 sc->sr_tail = 0;
956 }
957 }
958 spin_unlock_irqrestore(&sc->release_lock, flags);
959 }
960
961 /* return SendEgressCtxtStatus.PacketOccupancy */
962 #define packet_occupancy(r) \
963 (((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)\
964 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT)
965
966 /* is egress halted on the context? */
967 #define egress_halted(r) \
968 ((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK)
969
970 /* wait for packet egress, optionally pause for credit return */
971 static void sc_wait_for_packet_egress(struct send_context *sc, int pause)
972 {
973 struct hfi1_devdata *dd = sc->dd;
974 u64 reg = 0;
975 u64 reg_prev;
976 u32 loop = 0;
977
978 while (1) {
979 reg_prev = reg;
980 reg = read_csr(dd, sc->hw_context * 8 +
981 SEND_EGRESS_CTXT_STATUS);
982 /* done if egress is stopped */
983 if (egress_halted(reg))
984 break;
985 reg = packet_occupancy(reg);
986 if (reg == 0)
987 break;
988 /* counter is reset if occupancy count changes */
989 if (reg != reg_prev)
990 loop = 0;
991 if (loop > 50000) {
992 /* timed out - bounce the link */
993 dd_dev_err(dd,
994 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
995 __func__, sc->sw_index,
996 sc->hw_context, (u32)reg);
997 queue_work(dd->pport->hfi1_wq,
998 &dd->pport->link_bounce_work);
999 break;
1000 }
1001 loop++;
1002 udelay(1);
1003 }
1004
1005 if (pause)
1006 /* Add additional delay to ensure chip returns all credits */
1007 pause_for_credit_return(dd);
1008 }
1009
1010 void sc_wait(struct hfi1_devdata *dd)
1011 {
1012 int i;
1013
1014 for (i = 0; i < dd->num_send_contexts; i++) {
1015 struct send_context *sc = dd->send_contexts[i].sc;
1016
1017 if (!sc)
1018 continue;
1019 sc_wait_for_packet_egress(sc, 0);
1020 }
1021 }
1022
1023 /*
1024 * Restart a context after it has been halted due to error.
1025 *
1026 * If the first step fails - wait for the halt to be asserted, return early.
1027 * Otherwise complain about timeouts but keep going.
1028 *
1029 * It is expected that allocations (enabled flag bit) have been shut off
1030 * already (only applies to kernel contexts).
1031 */
1032 int sc_restart(struct send_context *sc)
1033 {
1034 struct hfi1_devdata *dd = sc->dd;
1035 u64 reg;
1036 u32 loop;
1037 int count;
1038
1039 /* bounce off if not halted, or being free'd */
1040 if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE))
1041 return -EINVAL;
1042
1043 dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index,
1044 sc->hw_context);
1045
1046 /*
1047 * Step 1: Wait for the context to actually halt.
1048 *
1049 * The error interrupt is asynchronous to actually setting halt
1050 * on the context.
1051 */
1052 loop = 0;
1053 while (1) {
1054 reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS));
1055 if (reg & SC(STATUS_CTXT_HALTED_SMASK))
1056 break;
1057 if (loop > 100) {
1058 dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n",
1059 __func__, sc->sw_index, sc->hw_context);
1060 return -ETIME;
1061 }
1062 loop++;
1063 udelay(1);
1064 }
1065
1066 /*
1067 * Step 2: Ensure no users are still trying to write to PIO.
1068 *
1069 * For kernel contexts, we have already turned off buffer allocation.
1070 * Now wait for the buffer count to go to zero.
1071 *
1072 * For user contexts, the user handling code has cut off write access
1073 * to the context's PIO pages before calling this routine and will
1074 * restore write access after this routine returns.
1075 */
1076 if (sc->type != SC_USER) {
1077 /* kernel context */
1078 loop = 0;
1079 while (1) {
1080 count = get_buffers_allocated(sc);
1081 if (count == 0)
1082 break;
1083 if (loop > 100) {
1084 dd_dev_err(dd,
1085 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1086 __func__, sc->sw_index,
1087 sc->hw_context, count);
1088 }
1089 loop++;
1090 udelay(1);
1091 }
1092 }
1093
1094 /*
1095 * Step 3: Wait for all packets to egress.
1096 * This is done while disabling the send context
1097 *
1098 * Step 4: Disable the context
1099 *
1100 * This is a superset of the halt. After the disable, the
1101 * errors can be cleared.
1102 */
1103 sc_disable(sc);
1104
1105 /*
1106 * Step 5: Enable the context
1107 *
1108 * This enable will clear the halted flag and per-send context
1109 * error flags.
1110 */
1111 return sc_enable(sc);
1112 }
1113
1114 /*
1115 * PIO freeze processing. To be called after the TXE block is fully frozen.
1116 * Go through all frozen send contexts and disable them. The contexts are
1117 * already stopped by the freeze.
1118 */
1119 void pio_freeze(struct hfi1_devdata *dd)
1120 {
1121 struct send_context *sc;
1122 int i;
1123
1124 for (i = 0; i < dd->num_send_contexts; i++) {
1125 sc = dd->send_contexts[i].sc;
1126 /*
1127 * Don't disable unallocated, unfrozen, or user send contexts.
1128 * User send contexts will be disabled when the process
1129 * calls into the driver to reset its context.
1130 */
1131 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1132 continue;
1133
1134 /* only need to disable, the context is already stopped */
1135 sc_disable(sc);
1136 }
1137 }
1138
1139 /*
1140 * Unfreeze PIO for kernel send contexts. The precondition for calling this
1141 * is that all PIO send contexts have been disabled and the SPC freeze has
1142 * been cleared. Now perform the last step and re-enable each kernel context.
1143 * User (PSM) processing will occur when PSM calls into the kernel to
1144 * acknowledge the freeze.
1145 */
1146 void pio_kernel_unfreeze(struct hfi1_devdata *dd)
1147 {
1148 struct send_context *sc;
1149 int i;
1150
1151 for (i = 0; i < dd->num_send_contexts; i++) {
1152 sc = dd->send_contexts[i].sc;
1153 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1154 continue;
1155
1156 sc_enable(sc); /* will clear the sc frozen flag */
1157 }
1158 }
1159
1160 /*
1161 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1162 * Returns:
1163 * -ETIMEDOUT - if we wait too long
1164 * -EIO - if there was an error
1165 */
1166 static int pio_init_wait_progress(struct hfi1_devdata *dd)
1167 {
1168 u64 reg;
1169 int max, count = 0;
1170
1171 /* max is the longest possible HW init time / delay */
1172 max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5;
1173 while (1) {
1174 reg = read_csr(dd, SEND_PIO_INIT_CTXT);
1175 if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK))
1176 break;
1177 if (count >= max)
1178 return -ETIMEDOUT;
1179 udelay(5);
1180 count++;
1181 }
1182
1183 return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0;
1184 }
1185
1186 /*
1187 * Reset all of the send contexts to their power-on state. Used
1188 * only during manual init - no lock against sc_enable needed.
1189 */
1190 void pio_reset_all(struct hfi1_devdata *dd)
1191 {
1192 int ret;
1193
1194 /* make sure the init engine is not busy */
1195 ret = pio_init_wait_progress(dd);
1196 /* ignore any timeout */
1197 if (ret == -EIO) {
1198 /* clear the error */
1199 write_csr(dd, SEND_PIO_ERR_CLEAR,
1200 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK);
1201 }
1202
1203 /* reset init all */
1204 write_csr(dd, SEND_PIO_INIT_CTXT,
1205 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK);
1206 udelay(2);
1207 ret = pio_init_wait_progress(dd);
1208 if (ret < 0) {
1209 dd_dev_err(dd,
1210 "PIO send context init %s while initializing all PIO blocks\n",
1211 ret == -ETIMEDOUT ? "is stuck" : "had an error");
1212 }
1213 }
1214
1215 /* enable the context */
1216 int sc_enable(struct send_context *sc)
1217 {
1218 u64 sc_ctrl, reg, pio;
1219 struct hfi1_devdata *dd;
1220 unsigned long flags;
1221 int ret = 0;
1222
1223 if (!sc)
1224 return -EINVAL;
1225 dd = sc->dd;
1226
1227 /*
1228 * Obtain the allocator lock to guard against any allocation
1229 * attempts (which should not happen prior to context being
1230 * enabled). On the release/disable side we don't need to
1231 * worry about locking since the releaser will not do anything
1232 * if the context accounting values have not changed.
1233 */
1234 spin_lock_irqsave(&sc->alloc_lock, flags);
1235 sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1236 if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK)))
1237 goto unlock; /* already enabled */
1238
1239 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1240
1241 *sc->hw_free = 0;
1242 sc->free = 0;
1243 sc->alloc_free = 0;
1244 sc->fill = 0;
1245 sc->sr_head = 0;
1246 sc->sr_tail = 0;
1247 sc->flags = 0;
1248 /* the alloc lock insures no fast path allocation */
1249 reset_buffers_allocated(sc);
1250
1251 /*
1252 * Clear all per-context errors. Some of these will be set when
1253 * we are re-enabling after a context halt. Now that the context
1254 * is disabled, the halt will not clear until after the PIO init
1255 * engine runs below.
1256 */
1257 reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS));
1258 if (reg)
1259 write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg);
1260
1261 /*
1262 * The HW PIO initialization engine can handle only one init
1263 * request at a time. Serialize access to each device's engine.
1264 */
1265 spin_lock(&dd->sc_init_lock);
1266 /*
1267 * Since access to this code block is serialized and
1268 * each access waits for the initialization to complete
1269 * before releasing the lock, the PIO initialization engine
1270 * should not be in use, so we don't have to wait for the
1271 * InProgress bit to go down.
1272 */
1273 pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) <<
1274 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) |
1275 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK;
1276 write_csr(dd, SEND_PIO_INIT_CTXT, pio);
1277 /*
1278 * Wait until the engine is done. Give the chip the required time
1279 * so, hopefully, we read the register just once.
1280 */
1281 udelay(2);
1282 ret = pio_init_wait_progress(dd);
1283 spin_unlock(&dd->sc_init_lock);
1284 if (ret) {
1285 dd_dev_err(dd,
1286 "sctxt%u(%u): Context not enabled due to init failure %d\n",
1287 sc->sw_index, sc->hw_context, ret);
1288 goto unlock;
1289 }
1290
1291 /*
1292 * All is well. Enable the context.
1293 */
1294 sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK);
1295 write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl);
1296 /*
1297 * Read SendCtxtCtrl to force the write out and prevent a timing
1298 * hazard where a PIO write may reach the context before the enable.
1299 */
1300 read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1301 sc->flags |= SCF_ENABLED;
1302
1303 unlock:
1304 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1305
1306 return ret;
1307 }
1308
1309 /* force a credit return on the context */
1310 void sc_return_credits(struct send_context *sc)
1311 {
1312 if (!sc)
1313 return;
1314
1315 /* a 0->1 transition schedules a credit return */
1316 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE),
1317 SC(CREDIT_FORCE_FORCE_RETURN_SMASK));
1318 /*
1319 * Ensure that the write is flushed and the credit return is
1320 * scheduled. We care more about the 0 -> 1 transition.
1321 */
1322 read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE));
1323 /* set back to 0 for next time */
1324 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0);
1325 }
1326
1327 /* allow all in-flight packets to drain on the context */
1328 void sc_flush(struct send_context *sc)
1329 {
1330 if (!sc)
1331 return;
1332
1333 sc_wait_for_packet_egress(sc, 1);
1334 }
1335
1336 /* drop all packets on the context, no waiting until they are sent */
1337 void sc_drop(struct send_context *sc)
1338 {
1339 if (!sc)
1340 return;
1341
1342 dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n",
1343 __func__, sc->sw_index, sc->hw_context);
1344 }
1345
1346 /*
1347 * Start the software reaction to a context halt or SPC freeze:
1348 * - mark the context as halted or frozen
1349 * - stop buffer allocations
1350 *
1351 * Called from the error interrupt. Other work is deferred until
1352 * out of the interrupt.
1353 */
1354 void sc_stop(struct send_context *sc, int flag)
1355 {
1356 unsigned long flags;
1357
1358 /* mark the context */
1359 sc->flags |= flag;
1360
1361 /* stop buffer allocations */
1362 spin_lock_irqsave(&sc->alloc_lock, flags);
1363 sc->flags &= ~SCF_ENABLED;
1364 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1365 wake_up(&sc->halt_wait);
1366 }
1367
1368 #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1369 #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1370
1371 /*
1372 * The send context buffer "allocator".
1373 *
1374 * @sc: the PIO send context we are allocating from
1375 * @len: length of whole packet - including PBC - in dwords
1376 * @cb: optional callback to call when the buffer is finished sending
1377 * @arg: argument for cb
1378 *
1379 * Return a pointer to a PIO buffer if successful, NULL if not enough room.
1380 */
1381 struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len,
1382 pio_release_cb cb, void *arg)
1383 {
1384 struct pio_buf *pbuf = NULL;
1385 unsigned long flags;
1386 unsigned long avail;
1387 unsigned long blocks = dwords_to_blocks(dw_len);
1388 unsigned long start_fill;
1389 int trycount = 0;
1390 u32 head, next;
1391
1392 spin_lock_irqsave(&sc->alloc_lock, flags);
1393 if (!(sc->flags & SCF_ENABLED)) {
1394 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1395 goto done;
1396 }
1397
1398 retry:
1399 avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free);
1400 if (blocks > avail) {
1401 /* not enough room */
1402 if (unlikely(trycount)) { /* already tried to get more room */
1403 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1404 goto done;
1405 }
1406 /* copy from receiver cache line and recalculate */
1407 sc->alloc_free = ACCESS_ONCE(sc->free);
1408 avail =
1409 (unsigned long)sc->credits -
1410 (sc->fill - sc->alloc_free);
1411 if (blocks > avail) {
1412 /* still no room, actively update */
1413 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1414 sc_release_update(sc);
1415 spin_lock_irqsave(&sc->alloc_lock, flags);
1416 sc->alloc_free = ACCESS_ONCE(sc->free);
1417 trycount++;
1418 goto retry;
1419 }
1420 }
1421
1422 /* there is enough room */
1423
1424 preempt_disable();
1425 this_cpu_inc(*sc->buffers_allocated);
1426
1427 /* read this once */
1428 head = sc->sr_head;
1429
1430 /* "allocate" the buffer */
1431 start_fill = sc->fill;
1432 sc->fill += blocks;
1433
1434 /*
1435 * Fill the parts that the releaser looks at before moving the head.
1436 * The only necessary piece is the sent_at field. The credits
1437 * we have just allocated cannot have been returned yet, so the
1438 * cb and arg will not be looked at for a "while". Put them
1439 * on this side of the memory barrier anyway.
1440 */
1441 pbuf = &sc->sr[head].pbuf;
1442 pbuf->sent_at = sc->fill;
1443 pbuf->cb = cb;
1444 pbuf->arg = arg;
1445 pbuf->sc = sc; /* could be filled in at sc->sr init time */
1446 /* make sure this is in memory before updating the head */
1447
1448 /* calculate next head index, do not store */
1449 next = head + 1;
1450 if (next >= sc->sr_size)
1451 next = 0;
1452 /*
1453 * update the head - must be last! - the releaser can look at fields
1454 * in pbuf once we move the head
1455 */
1456 smp_wmb();
1457 sc->sr_head = next;
1458 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1459
1460 /* finish filling in the buffer outside the lock */
1461 pbuf->start = sc->base_addr + ((start_fill % sc->credits)
1462 * PIO_BLOCK_SIZE);
1463 pbuf->size = sc->credits * PIO_BLOCK_SIZE;
1464 pbuf->end = sc->base_addr + pbuf->size;
1465 pbuf->block_count = blocks;
1466 pbuf->qw_written = 0;
1467 pbuf->carry_bytes = 0;
1468 pbuf->carry.val64 = 0;
1469 done:
1470 return pbuf;
1471 }
1472
1473 /*
1474 * There are at least two entities that can turn on credit return
1475 * interrupts and they can overlap. Avoid problems by implementing
1476 * a count scheme that is enforced by a lock. The lock is needed because
1477 * the count and CSR write must be paired.
1478 */
1479
1480 /*
1481 * Start credit return interrupts. This is managed by a count. If already
1482 * on, just increment the count.
1483 */
1484 void sc_add_credit_return_intr(struct send_context *sc)
1485 {
1486 unsigned long flags;
1487
1488 /* lock must surround both the count change and the CSR update */
1489 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1490 if (sc->credit_intr_count == 0) {
1491 sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1492 write_kctxt_csr(sc->dd, sc->hw_context,
1493 SC(CREDIT_CTRL), sc->credit_ctrl);
1494 }
1495 sc->credit_intr_count++;
1496 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1497 }
1498
1499 /*
1500 * Stop credit return interrupts. This is managed by a count. Decrement the
1501 * count, if the last user, then turn the credit interrupts off.
1502 */
1503 void sc_del_credit_return_intr(struct send_context *sc)
1504 {
1505 unsigned long flags;
1506
1507 WARN_ON(sc->credit_intr_count == 0);
1508
1509 /* lock must surround both the count change and the CSR update */
1510 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1511 sc->credit_intr_count--;
1512 if (sc->credit_intr_count == 0) {
1513 sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1514 write_kctxt_csr(sc->dd, sc->hw_context,
1515 SC(CREDIT_CTRL), sc->credit_ctrl);
1516 }
1517 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1518 }
1519
1520 /*
1521 * The caller must be careful when calling this. All needint calls
1522 * must be paired with !needint.
1523 */
1524 void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint)
1525 {
1526 if (needint)
1527 sc_add_credit_return_intr(sc);
1528 else
1529 sc_del_credit_return_intr(sc);
1530 trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl);
1531 if (needint) {
1532 mmiowb();
1533 sc_return_credits(sc);
1534 }
1535 }
1536
1537 /**
1538 * sc_piobufavail - callback when a PIO buffer is available
1539 * @sc: the send context
1540 *
1541 * This is called from the interrupt handler when a PIO buffer is
1542 * available after hfi1_verbs_send() returned an error that no buffers were
1543 * available. Disable the interrupt if there are no more QPs waiting.
1544 */
1545 static void sc_piobufavail(struct send_context *sc)
1546 {
1547 struct hfi1_devdata *dd = sc->dd;
1548 struct hfi1_ibdev *dev = &dd->verbs_dev;
1549 struct list_head *list;
1550 struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE];
1551 struct rvt_qp *qp;
1552 struct hfi1_qp_priv *priv;
1553 unsigned long flags;
1554 unsigned i, n = 0;
1555
1556 if (dd->send_contexts[sc->sw_index].type != SC_KERNEL &&
1557 dd->send_contexts[sc->sw_index].type != SC_VL15)
1558 return;
1559 list = &sc->piowait;
1560 /*
1561 * Note: checking that the piowait list is empty and clearing
1562 * the buffer available interrupt needs to be atomic or we
1563 * could end up with QPs on the wait list with the interrupt
1564 * disabled.
1565 */
1566 write_seqlock_irqsave(&dev->iowait_lock, flags);
1567 while (!list_empty(list)) {
1568 struct iowait *wait;
1569
1570 if (n == ARRAY_SIZE(qps))
1571 break;
1572 wait = list_first_entry(list, struct iowait, list);
1573 qp = iowait_to_qp(wait);
1574 priv = qp->priv;
1575 list_del_init(&priv->s_iowait.list);
1576 /* refcount held until actual wake up */
1577 qps[n++] = qp;
1578 }
1579 /*
1580 * If there had been waiters and there are more
1581 * insure that we redo the force to avoid a potential hang.
1582 */
1583 if (n) {
1584 hfi1_sc_wantpiobuf_intr(sc, 0);
1585 if (!list_empty(list))
1586 hfi1_sc_wantpiobuf_intr(sc, 1);
1587 }
1588 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
1589
1590 for (i = 0; i < n; i++)
1591 hfi1_qp_wakeup(qps[i],
1592 RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN);
1593 }
1594
1595 /* translate a send credit update to a bit code of reasons */
1596 static inline int fill_code(u64 hw_free)
1597 {
1598 int code = 0;
1599
1600 if (hw_free & CR_STATUS_SMASK)
1601 code |= PRC_STATUS_ERR;
1602 if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK)
1603 code |= PRC_PBC;
1604 if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK)
1605 code |= PRC_THRESHOLD;
1606 if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK)
1607 code |= PRC_FILL_ERR;
1608 if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK)
1609 code |= PRC_SC_DISABLE;
1610 return code;
1611 }
1612
1613 /* use the jiffies compare to get the wrap right */
1614 #define sent_before(a, b) time_before(a, b) /* a < b */
1615
1616 /*
1617 * The send context buffer "releaser".
1618 */
1619 void sc_release_update(struct send_context *sc)
1620 {
1621 struct pio_buf *pbuf;
1622 u64 hw_free;
1623 u32 head, tail;
1624 unsigned long old_free;
1625 unsigned long free;
1626 unsigned long extra;
1627 unsigned long flags;
1628 int code;
1629
1630 if (!sc)
1631 return;
1632
1633 spin_lock_irqsave(&sc->release_lock, flags);
1634 /* update free */
1635 hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */
1636 old_free = sc->free;
1637 extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT)
1638 - (old_free & CR_COUNTER_MASK))
1639 & CR_COUNTER_MASK;
1640 free = old_free + extra;
1641 trace_hfi1_piofree(sc, extra);
1642
1643 /* call sent buffer callbacks */
1644 code = -1; /* code not yet set */
1645 head = ACCESS_ONCE(sc->sr_head); /* snapshot the head */
1646 tail = sc->sr_tail;
1647 while (head != tail) {
1648 pbuf = &sc->sr[tail].pbuf;
1649
1650 if (sent_before(free, pbuf->sent_at)) {
1651 /* not sent yet */
1652 break;
1653 }
1654 if (pbuf->cb) {
1655 if (code < 0) /* fill in code on first user */
1656 code = fill_code(hw_free);
1657 (*pbuf->cb)(pbuf->arg, code);
1658 }
1659
1660 tail++;
1661 if (tail >= sc->sr_size)
1662 tail = 0;
1663 }
1664 sc->sr_tail = tail;
1665 /* make sure tail is updated before free */
1666 smp_wmb();
1667 sc->free = free;
1668 spin_unlock_irqrestore(&sc->release_lock, flags);
1669 sc_piobufavail(sc);
1670 }
1671
1672 /*
1673 * Send context group releaser. Argument is the send context that caused
1674 * the interrupt. Called from the send context interrupt handler.
1675 *
1676 * Call release on all contexts in the group.
1677 *
1678 * This routine takes the sc_lock without an irqsave because it is only
1679 * called from an interrupt handler. Adjust if that changes.
1680 */
1681 void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context)
1682 {
1683 struct send_context *sc;
1684 u32 sw_index;
1685 u32 gc, gc_end;
1686
1687 spin_lock(&dd->sc_lock);
1688 sw_index = dd->hw_to_sw[hw_context];
1689 if (unlikely(sw_index >= dd->num_send_contexts)) {
1690 dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n",
1691 __func__, hw_context, sw_index);
1692 goto done;
1693 }
1694 sc = dd->send_contexts[sw_index].sc;
1695 if (unlikely(!sc))
1696 goto done;
1697
1698 gc = group_context(hw_context, sc->group);
1699 gc_end = gc + group_size(sc->group);
1700 for (; gc < gc_end; gc++) {
1701 sw_index = dd->hw_to_sw[gc];
1702 if (unlikely(sw_index >= dd->num_send_contexts)) {
1703 dd_dev_err(dd,
1704 "%s: invalid hw (%u) to sw (%u) mapping\n",
1705 __func__, hw_context, sw_index);
1706 continue;
1707 }
1708 sc_release_update(dd->send_contexts[sw_index].sc);
1709 }
1710 done:
1711 spin_unlock(&dd->sc_lock);
1712 }
1713
1714 /*
1715 * pio_select_send_context_vl() - select send context
1716 * @dd: devdata
1717 * @selector: a spreading factor
1718 * @vl: this vl
1719 *
1720 * This function returns a send context based on the selector and a vl.
1721 * The mapping fields are protected by RCU
1722 */
1723 struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd,
1724 u32 selector, u8 vl)
1725 {
1726 struct pio_vl_map *m;
1727 struct pio_map_elem *e;
1728 struct send_context *rval;
1729
1730 /*
1731 * NOTE This should only happen if SC->VL changed after the initial
1732 * checks on the QP/AH
1733 * Default will return VL0's send context below
1734 */
1735 if (unlikely(vl >= num_vls)) {
1736 rval = NULL;
1737 goto done;
1738 }
1739
1740 rcu_read_lock();
1741 m = rcu_dereference(dd->pio_map);
1742 if (unlikely(!m)) {
1743 rcu_read_unlock();
1744 return dd->vld[0].sc;
1745 }
1746 e = m->map[vl & m->mask];
1747 rval = e->ksc[selector & e->mask];
1748 rcu_read_unlock();
1749
1750 done:
1751 rval = !rval ? dd->vld[0].sc : rval;
1752 return rval;
1753 }
1754
1755 /*
1756 * pio_select_send_context_sc() - select send context
1757 * @dd: devdata
1758 * @selector: a spreading factor
1759 * @sc5: the 5 bit sc
1760 *
1761 * This function returns an send context based on the selector and an sc
1762 */
1763 struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd,
1764 u32 selector, u8 sc5)
1765 {
1766 u8 vl = sc_to_vlt(dd, sc5);
1767
1768 return pio_select_send_context_vl(dd, selector, vl);
1769 }
1770
1771 /*
1772 * Free the indicated map struct
1773 */
1774 static void pio_map_free(struct pio_vl_map *m)
1775 {
1776 int i;
1777
1778 for (i = 0; m && i < m->actual_vls; i++)
1779 kfree(m->map[i]);
1780 kfree(m);
1781 }
1782
1783 /*
1784 * Handle RCU callback
1785 */
1786 static void pio_map_rcu_callback(struct rcu_head *list)
1787 {
1788 struct pio_vl_map *m = container_of(list, struct pio_vl_map, list);
1789
1790 pio_map_free(m);
1791 }
1792
1793 /*
1794 * Set credit return threshold for the kernel send context
1795 */
1796 static void set_threshold(struct hfi1_devdata *dd, int scontext, int i)
1797 {
1798 u32 thres;
1799
1800 thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext],
1801 50),
1802 sc_mtu_to_threshold(dd->kernel_send_context[scontext],
1803 dd->vld[i].mtu,
1804 dd->rcd[0]->rcvhdrqentsize));
1805 sc_set_cr_threshold(dd->kernel_send_context[scontext], thres);
1806 }
1807
1808 /*
1809 * pio_map_init - called when #vls change
1810 * @dd: hfi1_devdata
1811 * @port: port number
1812 * @num_vls: number of vls
1813 * @vl_scontexts: per vl send context mapping (optional)
1814 *
1815 * This routine changes the mapping based on the number of vls.
1816 *
1817 * vl_scontexts is used to specify a non-uniform vl/send context
1818 * loading. NULL implies auto computing the loading and giving each
1819 * VL an uniform distribution of send contexts per VL.
1820 *
1821 * The auto algorithm computers the sc_per_vl and the number of extra
1822 * send contexts. Any extra send contexts are added from the last VL
1823 * on down
1824 *
1825 * rcu locking is used here to control access to the mapping fields.
1826 *
1827 * If either the num_vls or num_send_contexts are non-power of 2, the
1828 * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1829 * rounded up to the next highest power of 2 and the first entry is
1830 * reused in a round robin fashion.
1831 *
1832 * If an error occurs the map change is not done and the mapping is not
1833 * chaged.
1834 *
1835 */
1836 int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts)
1837 {
1838 int i, j;
1839 int extra, sc_per_vl;
1840 int scontext = 1;
1841 int num_kernel_send_contexts = 0;
1842 u8 lvl_scontexts[OPA_MAX_VLS];
1843 struct pio_vl_map *oldmap, *newmap;
1844
1845 if (!vl_scontexts) {
1846 for (i = 0; i < dd->num_send_contexts; i++)
1847 if (dd->send_contexts[i].type == SC_KERNEL)
1848 num_kernel_send_contexts++;
1849 /* truncate divide */
1850 sc_per_vl = num_kernel_send_contexts / num_vls;
1851 /* extras */
1852 extra = num_kernel_send_contexts % num_vls;
1853 vl_scontexts = lvl_scontexts;
1854 /* add extras from last vl down */
1855 for (i = num_vls - 1; i >= 0; i--, extra--)
1856 vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0);
1857 }
1858 /* build new map */
1859 newmap = kzalloc(sizeof(*newmap) +
1860 roundup_pow_of_two(num_vls) *
1861 sizeof(struct pio_map_elem *),
1862 GFP_KERNEL);
1863 if (!newmap)
1864 goto bail;
1865 newmap->actual_vls = num_vls;
1866 newmap->vls = roundup_pow_of_two(num_vls);
1867 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1868 for (i = 0; i < newmap->vls; i++) {
1869 /* save for wrap around */
1870 int first_scontext = scontext;
1871
1872 if (i < newmap->actual_vls) {
1873 int sz = roundup_pow_of_two(vl_scontexts[i]);
1874
1875 /* only allocate once */
1876 newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) +
1877 sz * sizeof(struct
1878 send_context *),
1879 GFP_KERNEL);
1880 if (!newmap->map[i])
1881 goto bail;
1882 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1883 /*
1884 * assign send contexts and
1885 * adjust credit return threshold
1886 */
1887 for (j = 0; j < sz; j++) {
1888 if (dd->kernel_send_context[scontext]) {
1889 newmap->map[i]->ksc[j] =
1890 dd->kernel_send_context[scontext];
1891 set_threshold(dd, scontext, i);
1892 }
1893 if (++scontext >= first_scontext +
1894 vl_scontexts[i])
1895 /* wrap back to first send context */
1896 scontext = first_scontext;
1897 }
1898 } else {
1899 /* just re-use entry without allocating */
1900 newmap->map[i] = newmap->map[i % num_vls];
1901 }
1902 scontext = first_scontext + vl_scontexts[i];
1903 }
1904 /* newmap in hand, save old map */
1905 spin_lock_irq(&dd->pio_map_lock);
1906 oldmap = rcu_dereference_protected(dd->pio_map,
1907 lockdep_is_held(&dd->pio_map_lock));
1908
1909 /* publish newmap */
1910 rcu_assign_pointer(dd->pio_map, newmap);
1911
1912 spin_unlock_irq(&dd->pio_map_lock);
1913 /* success, free any old map after grace period */
1914 if (oldmap)
1915 call_rcu(&oldmap->list, pio_map_rcu_callback);
1916 return 0;
1917 bail:
1918 /* free any partial allocation */
1919 pio_map_free(newmap);
1920 return -ENOMEM;
1921 }
1922
1923 void free_pio_map(struct hfi1_devdata *dd)
1924 {
1925 /* Free PIO map if allocated */
1926 if (rcu_access_pointer(dd->pio_map)) {
1927 spin_lock_irq(&dd->pio_map_lock);
1928 pio_map_free(rcu_access_pointer(dd->pio_map));
1929 RCU_INIT_POINTER(dd->pio_map, NULL);
1930 spin_unlock_irq(&dd->pio_map_lock);
1931 synchronize_rcu();
1932 }
1933 kfree(dd->kernel_send_context);
1934 dd->kernel_send_context = NULL;
1935 }
1936
1937 int init_pervl_scs(struct hfi1_devdata *dd)
1938 {
1939 int i;
1940 u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */
1941 u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */
1942 u32 ctxt;
1943 struct hfi1_pportdata *ppd = dd->pport;
1944
1945 dd->vld[15].sc = sc_alloc(dd, SC_VL15,
1946 dd->rcd[0]->rcvhdrqentsize, dd->node);
1947 if (!dd->vld[15].sc)
1948 return -ENOMEM;
1949
1950 hfi1_init_ctxt(dd->vld[15].sc);
1951 dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048);
1952
1953 dd->kernel_send_context = kzalloc_node(dd->num_send_contexts *
1954 sizeof(struct send_context *),
1955 GFP_KERNEL, dd->node);
1956 if (!dd->kernel_send_context)
1957 goto freesc15;
1958
1959 dd->kernel_send_context[0] = dd->vld[15].sc;
1960
1961 for (i = 0; i < num_vls; i++) {
1962 /*
1963 * Since this function does not deal with a specific
1964 * receive context but we need the RcvHdrQ entry size,
1965 * use the size from rcd[0]. It is guaranteed to be
1966 * valid at this point and will remain the same for all
1967 * receive contexts.
1968 */
1969 dd->vld[i].sc = sc_alloc(dd, SC_KERNEL,
1970 dd->rcd[0]->rcvhdrqentsize, dd->node);
1971 if (!dd->vld[i].sc)
1972 goto nomem;
1973 dd->kernel_send_context[i + 1] = dd->vld[i].sc;
1974 hfi1_init_ctxt(dd->vld[i].sc);
1975 /* non VL15 start with the max MTU */
1976 dd->vld[i].mtu = hfi1_max_mtu;
1977 }
1978 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
1979 dd->kernel_send_context[i + 1] =
1980 sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node);
1981 if (!dd->kernel_send_context[i + 1])
1982 goto nomem;
1983 hfi1_init_ctxt(dd->kernel_send_context[i + 1]);
1984 }
1985
1986 sc_enable(dd->vld[15].sc);
1987 ctxt = dd->vld[15].sc->hw_context;
1988 mask = all_vl_mask & ~(1LL << 15);
1989 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
1990 dd_dev_info(dd,
1991 "Using send context %u(%u) for VL15\n",
1992 dd->vld[15].sc->sw_index, ctxt);
1993
1994 for (i = 0; i < num_vls; i++) {
1995 sc_enable(dd->vld[i].sc);
1996 ctxt = dd->vld[i].sc->hw_context;
1997 mask = all_vl_mask & ~(data_vls_mask);
1998 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
1999 }
2000 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2001 sc_enable(dd->kernel_send_context[i + 1]);
2002 ctxt = dd->kernel_send_context[i + 1]->hw_context;
2003 mask = all_vl_mask & ~(data_vls_mask);
2004 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2005 }
2006
2007 if (pio_map_init(dd, ppd->port - 1, num_vls, NULL))
2008 goto nomem;
2009 return 0;
2010
2011 nomem:
2012 for (i = 0; i < num_vls; i++) {
2013 sc_free(dd->vld[i].sc);
2014 dd->vld[i].sc = NULL;
2015 }
2016
2017 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++)
2018 sc_free(dd->kernel_send_context[i + 1]);
2019
2020 kfree(dd->kernel_send_context);
2021 dd->kernel_send_context = NULL;
2022
2023 freesc15:
2024 sc_free(dd->vld[15].sc);
2025 return -ENOMEM;
2026 }
2027
2028 int init_credit_return(struct hfi1_devdata *dd)
2029 {
2030 int ret;
2031 int num_numa;
2032 int i;
2033
2034 num_numa = num_online_nodes();
2035 /* enforce the expectation that the numas are compact */
2036 for (i = 0; i < num_numa; i++) {
2037 if (!node_online(i)) {
2038 dd_dev_err(dd, "NUMA nodes are not compact\n");
2039 ret = -EINVAL;
2040 goto done;
2041 }
2042 }
2043
2044 dd->cr_base = kcalloc(
2045 num_numa,
2046 sizeof(struct credit_return_base),
2047 GFP_KERNEL);
2048 if (!dd->cr_base) {
2049 dd_dev_err(dd, "Unable to allocate credit return base\n");
2050 ret = -ENOMEM;
2051 goto done;
2052 }
2053 for (i = 0; i < num_numa; i++) {
2054 int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return);
2055
2056 set_dev_node(&dd->pcidev->dev, i);
2057 dd->cr_base[i].va = dma_zalloc_coherent(
2058 &dd->pcidev->dev,
2059 bytes,
2060 &dd->cr_base[i].dma,
2061 GFP_KERNEL);
2062 if (!dd->cr_base[i].va) {
2063 set_dev_node(&dd->pcidev->dev, dd->node);
2064 dd_dev_err(dd,
2065 "Unable to allocate credit return DMA range for NUMA %d\n",
2066 i);
2067 ret = -ENOMEM;
2068 goto done;
2069 }
2070 }
2071 set_dev_node(&dd->pcidev->dev, dd->node);
2072
2073 ret = 0;
2074 done:
2075 return ret;
2076 }
2077
2078 void free_credit_return(struct hfi1_devdata *dd)
2079 {
2080 int num_numa;
2081 int i;
2082
2083 if (!dd->cr_base)
2084 return;
2085
2086 num_numa = num_online_nodes();
2087 for (i = 0; i < num_numa; i++) {
2088 if (dd->cr_base[i].va) {
2089 dma_free_coherent(&dd->pcidev->dev,
2090 TXE_NUM_CONTEXTS *
2091 sizeof(struct credit_return),
2092 dd->cr_base[i].va,
2093 dd->cr_base[i].dma);
2094 }
2095 }
2096 kfree(dd->cr_base);
2097 dd->cr_base = NULL;
2098 }