]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/infiniband/hw/hfi1/sdma.c
ASoC: max98504: Add missing MAX98504 on SND_SOC_ALL_CODECS
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124 [sdma_state_s00_hw_down] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
134 [sdma_state_s99_running] = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted] = "e60_HwHalted",
147 [sdma_event_e70_go_idle] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted] = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157 [sdma_state_s00_hw_down] = {
158 .go_s99_running_tofalse = 1,
159 .op_enable = 0,
160 .op_intenable = 0,
161 .op_halt = 0,
162 .op_cleanup = 0,
163 },
164 [sdma_state_s10_hw_start_up_halt_wait] = {
165 .op_enable = 0,
166 .op_intenable = 0,
167 .op_halt = 1,
168 .op_cleanup = 0,
169 },
170 [sdma_state_s15_hw_start_up_clean_wait] = {
171 .op_enable = 0,
172 .op_intenable = 1,
173 .op_halt = 0,
174 .op_cleanup = 1,
175 },
176 [sdma_state_s20_idle] = {
177 .op_enable = 0,
178 .op_intenable = 1,
179 .op_halt = 0,
180 .op_cleanup = 0,
181 },
182 [sdma_state_s30_sw_clean_up_wait] = {
183 .op_enable = 0,
184 .op_intenable = 0,
185 .op_halt = 0,
186 .op_cleanup = 0,
187 },
188 [sdma_state_s40_hw_clean_up_wait] = {
189 .op_enable = 0,
190 .op_intenable = 0,
191 .op_halt = 0,
192 .op_cleanup = 1,
193 },
194 [sdma_state_s50_hw_halt_wait] = {
195 .op_enable = 0,
196 .op_intenable = 0,
197 .op_halt = 0,
198 .op_cleanup = 0,
199 },
200 [sdma_state_s60_idle_halt_wait] = {
201 .go_s99_running_tofalse = 1,
202 .op_enable = 0,
203 .op_intenable = 0,
204 .op_halt = 1,
205 .op_cleanup = 0,
206 },
207 [sdma_state_s80_hw_freeze] = {
208 .op_enable = 0,
209 .op_intenable = 0,
210 .op_halt = 0,
211 .op_cleanup = 0,
212 },
213 [sdma_state_s82_freeze_sw_clean] = {
214 .op_enable = 0,
215 .op_intenable = 0,
216 .op_halt = 0,
217 .op_cleanup = 0,
218 },
219 [sdma_state_s99_running] = {
220 .op_enable = 1,
221 .op_intenable = 1,
222 .op_halt = 0,
223 .op_cleanup = 0,
224 .go_s99_running_totrue = 1,
225 },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242 struct sdma_engine *sde,
243 enum sdma_events event);
244 static void __sdma_process_event(
245 struct sdma_engine *sde,
246 enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253 * sdma_state_name() - return state string from enum
254 * @state: state
255 */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258 return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263 kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268 struct sdma_state *ss =
269 container_of(kref, struct sdma_state, kref);
270
271 complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276 kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281 sdma_put(ss);
282 wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286 struct sdma_engine *sde,
287 u32 offset0,
288 u64 value)
289 {
290 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294 struct sdma_engine *sde,
295 u32 offset0)
296 {
297 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
303 */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305 int pause)
306 {
307 u64 off = 8 * sde->this_idx;
308 struct hfi1_devdata *dd = sde->dd;
309 int lcnt = 0;
310 u64 reg_prev;
311 u64 reg = 0;
312
313 while (1) {
314 reg_prev = reg;
315 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319 if (reg == 0)
320 break;
321 /* counter is reest if accupancy count changes */
322 if (reg != reg_prev)
323 lcnt = 0;
324 if (lcnt++ > 500) {
325 /* timed out - bounce the link */
326 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327 __func__, sde->this_idx, (u32)reg);
328 queue_work(dd->pport->hfi1_wq,
329 &dd->pport->link_bounce_work);
330 break;
331 }
332 udelay(1);
333 }
334 }
335
336 /*
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
339 */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342 int i;
343
344 for (i = 0; i < dd->num_sdma; i++) {
345 struct sdma_engine *sde = &dd->per_sdma[i];
346
347 sdma_wait_for_packet_egress(sde, 0);
348 }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353 u64 reg;
354
355 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356 return;
357 reg = cnt;
358 reg &= SD(DESC_CNT_CNT_MASK);
359 reg <<= SD(DESC_CNT_CNT_SHIFT);
360 write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364 struct sdma_txreq *tx,
365 int res)
366 {
367 /* protect against complete modifying */
368 struct iowait *wait = tx->wait;
369 callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372 trace_hfi1_sdma_out_sn(sde, tx->sn);
373 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375 sde->head_sn, tx->sn);
376 sde->head_sn++;
377 #endif
378 sdma_txclean(sde->dd, tx);
379 if (complete)
380 (*complete)(tx, res);
381 if (wait && iowait_sdma_dec(wait))
382 iowait_drain_wakeup(wait);
383 }
384
385 /*
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387 *
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
391 *
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
394 *
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
398 * state to running
399 *
400 * Must be called with head_lock held
401 *
402 */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405 struct sdma_txreq *txp, *txp_next;
406 LIST_HEAD(flushlist);
407 unsigned long flags;
408
409 /* flush from head to tail */
410 sdma_flush_descq(sde);
411 spin_lock_irqsave(&sde->flushlist_lock, flags);
412 /* copy flush list */
413 list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414 list_del_init(&txp->list);
415 list_add_tail(&txp->list, &flushlist);
416 }
417 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418 /* flush from flush list */
419 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424 * Fields a work request for flushing the descq ring
425 * and the flush list
426 *
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
431 *
432 */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435 unsigned long flags;
436 struct sdma_engine *sde =
437 container_of(work, struct sdma_engine, flush_worker);
438
439 write_seqlock_irqsave(&sde->head_lock, flags);
440 if (!__sdma_running(sde))
441 sdma_flush(sde);
442 write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447 struct sdma_engine *sde = container_of(work, struct sdma_engine,
448 err_halt_worker);
449 u64 statuscsr;
450 unsigned long timeout;
451
452 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453 while (1) {
454 statuscsr = read_sde_csr(sde, SD(STATUS));
455 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456 if (statuscsr)
457 break;
458 if (time_after(jiffies, timeout)) {
459 dd_dev_err(sde->dd,
460 "SDMA engine %d - timeout waiting for engine to halt\n",
461 sde->this_idx);
462 /*
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
465 */
466 break;
467 }
468 usleep_range(80, 120);
469 }
470
471 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477 unsigned index;
478 struct hfi1_devdata *dd = sde->dd;
479
480 for (index = 0; index < dd->num_sdma; index++) {
481 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483 if (curr_sdma != sde)
484 curr_sdma->progress_check_head =
485 curr_sdma->descq_head;
486 }
487 dd_dev_err(sde->dd,
488 "SDMA engine %d - check scheduled\n",
489 sde->this_idx);
490 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491 }
492 }
493
494 static void sdma_err_progress_check(unsigned long data)
495 {
496 unsigned index;
497 struct sdma_engine *sde = (struct sdma_engine *)data;
498
499 dd_dev_err(sde->dd, "SDE progress check event\n");
500 for (index = 0; index < sde->dd->num_sdma; index++) {
501 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502 unsigned long flags;
503
504 /* check progress on each engine except the current one */
505 if (curr_sde == sde)
506 continue;
507 /*
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
511 */
512 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513 write_seqlock(&curr_sde->head_lock);
514
515 /* skip non-running queues */
516 if (curr_sde->state.current_state != sdma_state_s99_running) {
517 write_sequnlock(&curr_sde->head_lock);
518 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519 continue;
520 }
521
522 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523 (curr_sde->descq_head ==
524 curr_sde->progress_check_head))
525 __sdma_process_event(curr_sde,
526 sdma_event_e90_sw_halted);
527 write_sequnlock(&curr_sde->head_lock);
528 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529 }
530 schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535 struct sdma_engine *sde = (struct sdma_engine *)opaque;
536 u64 statuscsr;
537
538 while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde->this_idx, slashstrip(__FILE__), __LINE__,
542 __func__);
543 #endif
544 statuscsr = read_sde_csr(sde, SD(STATUS));
545 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546 if (statuscsr)
547 break;
548 udelay(10);
549 }
550
551 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556 smp_read_barrier_depends(); /* see sdma_update_tail() */
557 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
558 }
559
560 /*
561 * flush ring for recovery
562 */
563 static void sdma_flush_descq(struct sdma_engine *sde)
564 {
565 u16 head, tail;
566 int progress = 0;
567 struct sdma_txreq *txp = get_txhead(sde);
568
569 /* The reason for some of the complexity of this code is that
570 * not all descriptors have corresponding txps. So, we have to
571 * be able to skip over descs until we wander into the range of
572 * the next txp on the list.
573 */
574 head = sde->descq_head & sde->sdma_mask;
575 tail = sde->descq_tail & sde->sdma_mask;
576 while (head != tail) {
577 /* advance head, wrap if needed */
578 head = ++sde->descq_head & sde->sdma_mask;
579 /* if now past this txp's descs, do the callback */
580 if (txp && txp->next_descq_idx == head) {
581 /* remove from list */
582 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
583 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
584 trace_hfi1_sdma_progress(sde, head, tail, txp);
585 txp = get_txhead(sde);
586 }
587 progress++;
588 }
589 if (progress)
590 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
591 }
592
593 static void sdma_sw_clean_up_task(unsigned long opaque)
594 {
595 struct sdma_engine *sde = (struct sdma_engine *)opaque;
596 unsigned long flags;
597
598 spin_lock_irqsave(&sde->tail_lock, flags);
599 write_seqlock(&sde->head_lock);
600
601 /*
602 * At this point, the following should always be true:
603 * - We are halted, so no more descriptors are getting retired.
604 * - We are not running, so no one is submitting new work.
605 * - Only we can send the e40_sw_cleaned, so we can't start
606 * running again until we say so. So, the active list and
607 * descq are ours to play with.
608 */
609
610 /*
611 * In the error clean up sequence, software clean must be called
612 * before the hardware clean so we can use the hardware head in
613 * the progress routine. A hardware clean or SPC unfreeze will
614 * reset the hardware head.
615 *
616 * Process all retired requests. The progress routine will use the
617 * latest physical hardware head - we are not running so speed does
618 * not matter.
619 */
620 sdma_make_progress(sde, 0);
621
622 sdma_flush(sde);
623
624 /*
625 * Reset our notion of head and tail.
626 * Note that the HW registers have been reset via an earlier
627 * clean up.
628 */
629 sde->descq_tail = 0;
630 sde->descq_head = 0;
631 sde->desc_avail = sdma_descq_freecnt(sde);
632 *sde->head_dma = 0;
633
634 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
635
636 write_sequnlock(&sde->head_lock);
637 spin_unlock_irqrestore(&sde->tail_lock, flags);
638 }
639
640 static void sdma_sw_tear_down(struct sdma_engine *sde)
641 {
642 struct sdma_state *ss = &sde->state;
643
644 /* Releasing this reference means the state machine has stopped. */
645 sdma_put(ss);
646
647 /* stop waiting for all unfreeze events to complete */
648 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
649 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
650 }
651
652 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
653 {
654 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
655 }
656
657 static void sdma_set_state(struct sdma_engine *sde,
658 enum sdma_states next_state)
659 {
660 struct sdma_state *ss = &sde->state;
661 const struct sdma_set_state_action *action = sdma_action_table;
662 unsigned op = 0;
663
664 trace_hfi1_sdma_state(
665 sde,
666 sdma_state_names[ss->current_state],
667 sdma_state_names[next_state]);
668
669 /* debugging bookkeeping */
670 ss->previous_state = ss->current_state;
671 ss->previous_op = ss->current_op;
672 ss->current_state = next_state;
673
674 if (ss->previous_state != sdma_state_s99_running &&
675 next_state == sdma_state_s99_running)
676 sdma_flush(sde);
677
678 if (action[next_state].op_enable)
679 op |= SDMA_SENDCTRL_OP_ENABLE;
680
681 if (action[next_state].op_intenable)
682 op |= SDMA_SENDCTRL_OP_INTENABLE;
683
684 if (action[next_state].op_halt)
685 op |= SDMA_SENDCTRL_OP_HALT;
686
687 if (action[next_state].op_cleanup)
688 op |= SDMA_SENDCTRL_OP_CLEANUP;
689
690 if (action[next_state].go_s99_running_tofalse)
691 ss->go_s99_running = 0;
692
693 if (action[next_state].go_s99_running_totrue)
694 ss->go_s99_running = 1;
695
696 ss->current_op = op;
697 sdma_sendctrl(sde, ss->current_op);
698 }
699
700 /**
701 * sdma_get_descq_cnt() - called when device probed
702 *
703 * Return a validated descq count.
704 *
705 * This is currently only used in the verbs initialization to build the tx
706 * list.
707 *
708 * This will probably be deleted in favor of a more scalable approach to
709 * alloc tx's.
710 *
711 */
712 u16 sdma_get_descq_cnt(void)
713 {
714 u16 count = sdma_descq_cnt;
715
716 if (!count)
717 return SDMA_DESCQ_CNT;
718 /* count must be a power of 2 greater than 64 and less than
719 * 32768. Otherwise return default.
720 */
721 if (!is_power_of_2(count))
722 return SDMA_DESCQ_CNT;
723 if (count < 64 || count > 32768)
724 return SDMA_DESCQ_CNT;
725 return count;
726 }
727
728 /**
729 * sdma_engine_get_vl() - return vl for a given sdma engine
730 * @sde: sdma engine
731 *
732 * This function returns the vl mapped to a given engine, or an error if
733 * the mapping can't be found. The mapping fields are protected by RCU.
734 */
735 int sdma_engine_get_vl(struct sdma_engine *sde)
736 {
737 struct hfi1_devdata *dd = sde->dd;
738 struct sdma_vl_map *m;
739 u8 vl;
740
741 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
742 return -EINVAL;
743
744 rcu_read_lock();
745 m = rcu_dereference(dd->sdma_map);
746 if (unlikely(!m)) {
747 rcu_read_unlock();
748 return -EINVAL;
749 }
750 vl = m->engine_to_vl[sde->this_idx];
751 rcu_read_unlock();
752
753 return vl;
754 }
755
756 /**
757 * sdma_select_engine_vl() - select sdma engine
758 * @dd: devdata
759 * @selector: a spreading factor
760 * @vl: this vl
761 *
762 *
763 * This function returns an engine based on the selector and a vl. The
764 * mapping fields are protected by RCU.
765 */
766 struct sdma_engine *sdma_select_engine_vl(
767 struct hfi1_devdata *dd,
768 u32 selector,
769 u8 vl)
770 {
771 struct sdma_vl_map *m;
772 struct sdma_map_elem *e;
773 struct sdma_engine *rval;
774
775 /* NOTE This should only happen if SC->VL changed after the initial
776 * checks on the QP/AH
777 * Default will return engine 0 below
778 */
779 if (vl >= num_vls) {
780 rval = NULL;
781 goto done;
782 }
783
784 rcu_read_lock();
785 m = rcu_dereference(dd->sdma_map);
786 if (unlikely(!m)) {
787 rcu_read_unlock();
788 return &dd->per_sdma[0];
789 }
790 e = m->map[vl & m->mask];
791 rval = e->sde[selector & e->mask];
792 rcu_read_unlock();
793
794 done:
795 rval = !rval ? &dd->per_sdma[0] : rval;
796 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
797 return rval;
798 }
799
800 /**
801 * sdma_select_engine_sc() - select sdma engine
802 * @dd: devdata
803 * @selector: a spreading factor
804 * @sc5: the 5 bit sc
805 *
806 *
807 * This function returns an engine based on the selector and an sc.
808 */
809 struct sdma_engine *sdma_select_engine_sc(
810 struct hfi1_devdata *dd,
811 u32 selector,
812 u8 sc5)
813 {
814 u8 vl = sc_to_vlt(dd, sc5);
815
816 return sdma_select_engine_vl(dd, selector, vl);
817 }
818
819 struct sdma_rht_map_elem {
820 u32 mask;
821 u8 ctr;
822 struct sdma_engine *sde[0];
823 };
824
825 struct sdma_rht_node {
826 unsigned long cpu_id;
827 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
828 struct rhash_head node;
829 };
830
831 #define NR_CPUS_HINT 192
832
833 static const struct rhashtable_params sdma_rht_params = {
834 .nelem_hint = NR_CPUS_HINT,
835 .head_offset = offsetof(struct sdma_rht_node, node),
836 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
837 .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
838 .max_size = NR_CPUS,
839 .min_size = 8,
840 .automatic_shrinking = true,
841 };
842
843 /*
844 * sdma_select_user_engine() - select sdma engine based on user setup
845 * @dd: devdata
846 * @selector: a spreading factor
847 * @vl: this vl
848 *
849 * This function returns an sdma engine for a user sdma request.
850 * User defined sdma engine affinity setting is honored when applicable,
851 * otherwise system default sdma engine mapping is used. To ensure correct
852 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
853 */
854 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
855 u32 selector, u8 vl)
856 {
857 struct sdma_rht_node *rht_node;
858 struct sdma_engine *sde = NULL;
859 const struct cpumask *current_mask = tsk_cpus_allowed(current);
860 unsigned long cpu_id;
861
862 /*
863 * To ensure that always the same sdma engine(s) will be
864 * selected make sure the process is pinned to this CPU only.
865 */
866 if (cpumask_weight(current_mask) != 1)
867 goto out;
868
869 cpu_id = smp_processor_id();
870 rcu_read_lock();
871 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu_id,
872 sdma_rht_params);
873
874 if (rht_node && rht_node->map[vl]) {
875 struct sdma_rht_map_elem *map = rht_node->map[vl];
876
877 sde = map->sde[selector & map->mask];
878 }
879 rcu_read_unlock();
880
881 if (sde)
882 return sde;
883
884 out:
885 return sdma_select_engine_vl(dd, selector, vl);
886 }
887
888 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
889 {
890 int i;
891
892 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
893 map->sde[map->ctr + i] = map->sde[i];
894 }
895
896 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
897 struct sdma_engine *sde)
898 {
899 unsigned int i, pow;
900
901 /* only need to check the first ctr entries for a match */
902 for (i = 0; i < map->ctr; i++) {
903 if (map->sde[i] == sde) {
904 memmove(&map->sde[i], &map->sde[i + 1],
905 (map->ctr - i - 1) * sizeof(map->sde[0]));
906 map->ctr--;
907 pow = roundup_pow_of_two(map->ctr ? : 1);
908 map->mask = pow - 1;
909 sdma_populate_sde_map(map);
910 break;
911 }
912 }
913 }
914
915 /*
916 * Prevents concurrent reads and writes of the sdma engine cpu_mask
917 */
918 static DEFINE_MUTEX(process_to_sde_mutex);
919
920 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
921 size_t count)
922 {
923 struct hfi1_devdata *dd = sde->dd;
924 cpumask_var_t mask, new_mask;
925 unsigned long cpu;
926 int ret, vl, sz;
927
928 vl = sdma_engine_get_vl(sde);
929 if (unlikely(vl < 0))
930 return -EINVAL;
931
932 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933 if (!ret)
934 return -ENOMEM;
935
936 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937 if (!ret) {
938 free_cpumask_var(mask);
939 return -ENOMEM;
940 }
941 ret = cpulist_parse(buf, mask);
942 if (ret)
943 goto out_free;
944
945 if (!cpumask_subset(mask, cpu_online_mask)) {
946 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947 ret = -EINVAL;
948 goto out_free;
949 }
950
951 sz = sizeof(struct sdma_rht_map_elem) +
952 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954 mutex_lock(&process_to_sde_mutex);
955
956 for_each_cpu(cpu, mask) {
957 struct sdma_rht_node *rht_node;
958
959 /* Check if we have this already mapped */
960 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
961 cpumask_set_cpu(cpu, new_mask);
962 continue;
963 }
964
965 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu,
966 sdma_rht_params);
967 if (!rht_node) {
968 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
969 if (!rht_node) {
970 ret = -ENOMEM;
971 goto out;
972 }
973
974 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
975 if (!rht_node->map[vl]) {
976 kfree(rht_node);
977 ret = -ENOMEM;
978 goto out;
979 }
980 rht_node->cpu_id = cpu;
981 rht_node->map[vl]->mask = 0;
982 rht_node->map[vl]->ctr = 1;
983 rht_node->map[vl]->sde[0] = sde;
984
985 ret = rhashtable_insert_fast(&dd->sdma_rht,
986 &rht_node->node,
987 sdma_rht_params);
988 if (ret) {
989 kfree(rht_node->map[vl]);
990 kfree(rht_node);
991 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
992 cpu);
993 goto out;
994 }
995
996 } else {
997 int ctr, pow;
998
999 /* Add new user mappings */
1000 if (!rht_node->map[vl])
1001 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1002
1003 if (!rht_node->map[vl]) {
1004 ret = -ENOMEM;
1005 goto out;
1006 }
1007
1008 rht_node->map[vl]->ctr++;
1009 ctr = rht_node->map[vl]->ctr;
1010 rht_node->map[vl]->sde[ctr - 1] = sde;
1011 pow = roundup_pow_of_two(ctr);
1012 rht_node->map[vl]->mask = pow - 1;
1013
1014 /* Populate the sde map table */
1015 sdma_populate_sde_map(rht_node->map[vl]);
1016 }
1017 cpumask_set_cpu(cpu, new_mask);
1018 }
1019
1020 /* Clean up old mappings */
1021 for_each_cpu(cpu, cpu_online_mask) {
1022 struct sdma_rht_node *rht_node;
1023
1024 /* Don't cleanup sdes that are set in the new mask */
1025 if (cpumask_test_cpu(cpu, mask))
1026 continue;
1027
1028 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpu,
1029 sdma_rht_params);
1030 if (rht_node) {
1031 bool empty = true;
1032 int i;
1033
1034 /* Remove mappings for old sde */
1035 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1036 if (rht_node->map[i])
1037 sdma_cleanup_sde_map(rht_node->map[i],
1038 sde);
1039
1040 /* Free empty hash table entries */
1041 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1042 if (!rht_node->map[i])
1043 continue;
1044
1045 if (rht_node->map[i]->ctr) {
1046 empty = false;
1047 break;
1048 }
1049 }
1050
1051 if (empty) {
1052 ret = rhashtable_remove_fast(&dd->sdma_rht,
1053 &rht_node->node,
1054 sdma_rht_params);
1055 WARN_ON(ret);
1056
1057 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1058 kfree(rht_node->map[i]);
1059
1060 kfree(rht_node);
1061 }
1062 }
1063 }
1064
1065 cpumask_copy(&sde->cpu_mask, new_mask);
1066 out:
1067 mutex_unlock(&process_to_sde_mutex);
1068 out_free:
1069 free_cpumask_var(mask);
1070 free_cpumask_var(new_mask);
1071 return ret ? : strnlen(buf, PAGE_SIZE);
1072 }
1073
1074 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1075 {
1076 mutex_lock(&process_to_sde_mutex);
1077 if (cpumask_empty(&sde->cpu_mask))
1078 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1079 else
1080 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1081 mutex_unlock(&process_to_sde_mutex);
1082 return strnlen(buf, PAGE_SIZE);
1083 }
1084
1085 static void sdma_rht_free(void *ptr, void *arg)
1086 {
1087 struct sdma_rht_node *rht_node = ptr;
1088 int i;
1089
1090 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1091 kfree(rht_node->map[i]);
1092
1093 kfree(rht_node);
1094 }
1095
1096 /**
1097 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1098 * @s: seq file
1099 * @dd: hfi1_devdata
1100 * @cpuid: cpu id
1101 *
1102 * This routine dumps the process to sde mappings per cpu
1103 */
1104 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1105 struct hfi1_devdata *dd,
1106 unsigned long cpuid)
1107 {
1108 struct sdma_rht_node *rht_node;
1109 int i, j;
1110
1111 rht_node = rhashtable_lookup_fast(&dd->sdma_rht, &cpuid,
1112 sdma_rht_params);
1113 if (!rht_node)
1114 return;
1115
1116 seq_printf(s, "cpu%3lu: ", cpuid);
1117 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1118 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1119 continue;
1120
1121 seq_printf(s, " vl%d: [", i);
1122
1123 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1124 if (!rht_node->map[i]->sde[j])
1125 continue;
1126
1127 if (j > 0)
1128 seq_puts(s, ",");
1129
1130 seq_printf(s, " sdma%2d",
1131 rht_node->map[i]->sde[j]->this_idx);
1132 }
1133 seq_puts(s, " ]");
1134 }
1135
1136 seq_puts(s, "\n");
1137 }
1138
1139 /*
1140 * Free the indicated map struct
1141 */
1142 static void sdma_map_free(struct sdma_vl_map *m)
1143 {
1144 int i;
1145
1146 for (i = 0; m && i < m->actual_vls; i++)
1147 kfree(m->map[i]);
1148 kfree(m);
1149 }
1150
1151 /*
1152 * Handle RCU callback
1153 */
1154 static void sdma_map_rcu_callback(struct rcu_head *list)
1155 {
1156 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1157
1158 sdma_map_free(m);
1159 }
1160
1161 /**
1162 * sdma_map_init - called when # vls change
1163 * @dd: hfi1_devdata
1164 * @port: port number
1165 * @num_vls: number of vls
1166 * @vl_engines: per vl engine mapping (optional)
1167 *
1168 * This routine changes the mapping based on the number of vls.
1169 *
1170 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1171 * implies auto computing the loading and giving each VLs a uniform
1172 * distribution of engines per VL.
1173 *
1174 * The auto algorithm computes the sde_per_vl and the number of extra
1175 * engines. Any extra engines are added from the last VL on down.
1176 *
1177 * rcu locking is used here to control access to the mapping fields.
1178 *
1179 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1180 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1181 * up to the next highest power of 2 and the first entry is reused
1182 * in a round robin fashion.
1183 *
1184 * If an error occurs the map change is not done and the mapping is
1185 * not changed.
1186 *
1187 */
1188 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1189 {
1190 int i, j;
1191 int extra, sde_per_vl;
1192 int engine = 0;
1193 u8 lvl_engines[OPA_MAX_VLS];
1194 struct sdma_vl_map *oldmap, *newmap;
1195
1196 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1197 return 0;
1198
1199 if (!vl_engines) {
1200 /* truncate divide */
1201 sde_per_vl = dd->num_sdma / num_vls;
1202 /* extras */
1203 extra = dd->num_sdma % num_vls;
1204 vl_engines = lvl_engines;
1205 /* add extras from last vl down */
1206 for (i = num_vls - 1; i >= 0; i--, extra--)
1207 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1208 }
1209 /* build new map */
1210 newmap = kzalloc(
1211 sizeof(struct sdma_vl_map) +
1212 roundup_pow_of_two(num_vls) *
1213 sizeof(struct sdma_map_elem *),
1214 GFP_KERNEL);
1215 if (!newmap)
1216 goto bail;
1217 newmap->actual_vls = num_vls;
1218 newmap->vls = roundup_pow_of_two(num_vls);
1219 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1220 /* initialize back-map */
1221 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1222 newmap->engine_to_vl[i] = -1;
1223 for (i = 0; i < newmap->vls; i++) {
1224 /* save for wrap around */
1225 int first_engine = engine;
1226
1227 if (i < newmap->actual_vls) {
1228 int sz = roundup_pow_of_two(vl_engines[i]);
1229
1230 /* only allocate once */
1231 newmap->map[i] = kzalloc(
1232 sizeof(struct sdma_map_elem) +
1233 sz * sizeof(struct sdma_engine *),
1234 GFP_KERNEL);
1235 if (!newmap->map[i])
1236 goto bail;
1237 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1238 /* assign engines */
1239 for (j = 0; j < sz; j++) {
1240 newmap->map[i]->sde[j] =
1241 &dd->per_sdma[engine];
1242 if (++engine >= first_engine + vl_engines[i])
1243 /* wrap back to first engine */
1244 engine = first_engine;
1245 }
1246 /* assign back-map */
1247 for (j = 0; j < vl_engines[i]; j++)
1248 newmap->engine_to_vl[first_engine + j] = i;
1249 } else {
1250 /* just re-use entry without allocating */
1251 newmap->map[i] = newmap->map[i % num_vls];
1252 }
1253 engine = first_engine + vl_engines[i];
1254 }
1255 /* newmap in hand, save old map */
1256 spin_lock_irq(&dd->sde_map_lock);
1257 oldmap = rcu_dereference_protected(dd->sdma_map,
1258 lockdep_is_held(&dd->sde_map_lock));
1259
1260 /* publish newmap */
1261 rcu_assign_pointer(dd->sdma_map, newmap);
1262
1263 spin_unlock_irq(&dd->sde_map_lock);
1264 /* success, free any old map after grace period */
1265 if (oldmap)
1266 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1267 return 0;
1268 bail:
1269 /* free any partial allocation */
1270 sdma_map_free(newmap);
1271 return -ENOMEM;
1272 }
1273
1274 /*
1275 * Clean up allocated memory.
1276 *
1277 * This routine is can be called regardless of the success of sdma_init()
1278 *
1279 */
1280 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1281 {
1282 size_t i;
1283 struct sdma_engine *sde;
1284
1285 if (dd->sdma_pad_dma) {
1286 dma_free_coherent(&dd->pcidev->dev, 4,
1287 (void *)dd->sdma_pad_dma,
1288 dd->sdma_pad_phys);
1289 dd->sdma_pad_dma = NULL;
1290 dd->sdma_pad_phys = 0;
1291 }
1292 if (dd->sdma_heads_dma) {
1293 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294 (void *)dd->sdma_heads_dma,
1295 dd->sdma_heads_phys);
1296 dd->sdma_heads_dma = NULL;
1297 dd->sdma_heads_phys = 0;
1298 }
1299 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300 sde = &dd->per_sdma[i];
1301
1302 sde->head_dma = NULL;
1303 sde->head_phys = 0;
1304
1305 if (sde->descq) {
1306 dma_free_coherent(
1307 &dd->pcidev->dev,
1308 sde->descq_cnt * sizeof(u64[2]),
1309 sde->descq,
1310 sde->descq_phys
1311 );
1312 sde->descq = NULL;
1313 sde->descq_phys = 0;
1314 }
1315 kvfree(sde->tx_ring);
1316 sde->tx_ring = NULL;
1317 }
1318 spin_lock_irq(&dd->sde_map_lock);
1319 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1320 RCU_INIT_POINTER(dd->sdma_map, NULL);
1321 spin_unlock_irq(&dd->sde_map_lock);
1322 synchronize_rcu();
1323 kfree(dd->per_sdma);
1324 dd->per_sdma = NULL;
1325 }
1326
1327 /**
1328 * sdma_init() - called when device probed
1329 * @dd: hfi1_devdata
1330 * @port: port number (currently only zero)
1331 *
1332 * sdma_init initializes the specified number of engines.
1333 *
1334 * The code initializes each sde, its csrs. Interrupts
1335 * are not required to be enabled.
1336 *
1337 * Returns:
1338 * 0 - success, -errno on failure
1339 */
1340 int sdma_init(struct hfi1_devdata *dd, u8 port)
1341 {
1342 unsigned this_idx;
1343 struct sdma_engine *sde;
1344 u16 descq_cnt;
1345 void *curr_head;
1346 struct hfi1_pportdata *ppd = dd->pport + port;
1347 u32 per_sdma_credits;
1348 uint idle_cnt = sdma_idle_cnt;
1349 size_t num_engines = dd->chip_sdma_engines;
1350
1351 if (!HFI1_CAP_IS_KSET(SDMA)) {
1352 HFI1_CAP_CLEAR(SDMA_AHG);
1353 return 0;
1354 }
1355 if (mod_num_sdma &&
1356 /* can't exceed chip support */
1357 mod_num_sdma <= dd->chip_sdma_engines &&
1358 /* count must be >= vls */
1359 mod_num_sdma >= num_vls)
1360 num_engines = mod_num_sdma;
1361
1362 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1363 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1364 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1365 dd->chip_sdma_mem_size);
1366
1367 per_sdma_credits =
1368 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1369
1370 /* set up freeze waitqueue */
1371 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1372 atomic_set(&dd->sdma_unfreeze_count, 0);
1373
1374 descq_cnt = sdma_get_descq_cnt();
1375 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1376 num_engines, descq_cnt);
1377
1378 /* alloc memory for array of send engines */
1379 dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1380 if (!dd->per_sdma)
1381 return -ENOMEM;
1382
1383 idle_cnt = ns_to_cclock(dd, idle_cnt);
1384 if (!sdma_desct_intr)
1385 sdma_desct_intr = SDMA_DESC_INTR;
1386
1387 /* Allocate memory for SendDMA descriptor FIFOs */
1388 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1389 sde = &dd->per_sdma[this_idx];
1390 sde->dd = dd;
1391 sde->ppd = ppd;
1392 sde->this_idx = this_idx;
1393 sde->descq_cnt = descq_cnt;
1394 sde->desc_avail = sdma_descq_freecnt(sde);
1395 sde->sdma_shift = ilog2(descq_cnt);
1396 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1397
1398 /* Create a mask specifically for each interrupt source */
1399 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1400 this_idx);
1401 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1402 this_idx);
1403 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1404 this_idx);
1405 /* Create a combined mask to cover all 3 interrupt sources */
1406 sde->imask = sde->int_mask | sde->progress_mask |
1407 sde->idle_mask;
1408
1409 spin_lock_init(&sde->tail_lock);
1410 seqlock_init(&sde->head_lock);
1411 spin_lock_init(&sde->senddmactrl_lock);
1412 spin_lock_init(&sde->flushlist_lock);
1413 /* insure there is always a zero bit */
1414 sde->ahg_bits = 0xfffffffe00000000ULL;
1415
1416 sdma_set_state(sde, sdma_state_s00_hw_down);
1417
1418 /* set up reference counting */
1419 kref_init(&sde->state.kref);
1420 init_completion(&sde->state.comp);
1421
1422 INIT_LIST_HEAD(&sde->flushlist);
1423 INIT_LIST_HEAD(&sde->dmawait);
1424
1425 sde->tail_csr =
1426 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1427
1428 if (idle_cnt)
1429 dd->default_desc1 =
1430 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1431 else
1432 dd->default_desc1 =
1433 SDMA_DESC1_INT_REQ_FLAG;
1434
1435 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1436 (unsigned long)sde);
1437
1438 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1439 (unsigned long)sde);
1440 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1441 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1442
1443 sde->progress_check_head = 0;
1444
1445 setup_timer(&sde->err_progress_check_timer,
1446 sdma_err_progress_check, (unsigned long)sde);
1447
1448 sde->descq = dma_zalloc_coherent(
1449 &dd->pcidev->dev,
1450 descq_cnt * sizeof(u64[2]),
1451 &sde->descq_phys,
1452 GFP_KERNEL
1453 );
1454 if (!sde->descq)
1455 goto bail;
1456 sde->tx_ring =
1457 kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1458 GFP_KERNEL);
1459 if (!sde->tx_ring)
1460 sde->tx_ring =
1461 vzalloc(
1462 sizeof(struct sdma_txreq *) *
1463 descq_cnt);
1464 if (!sde->tx_ring)
1465 goto bail;
1466 }
1467
1468 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1469 /* Allocate memory for DMA of head registers to memory */
1470 dd->sdma_heads_dma = dma_zalloc_coherent(
1471 &dd->pcidev->dev,
1472 dd->sdma_heads_size,
1473 &dd->sdma_heads_phys,
1474 GFP_KERNEL
1475 );
1476 if (!dd->sdma_heads_dma) {
1477 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1478 goto bail;
1479 }
1480
1481 /* Allocate memory for pad */
1482 dd->sdma_pad_dma = dma_zalloc_coherent(
1483 &dd->pcidev->dev,
1484 sizeof(u32),
1485 &dd->sdma_pad_phys,
1486 GFP_KERNEL
1487 );
1488 if (!dd->sdma_pad_dma) {
1489 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1490 goto bail;
1491 }
1492
1493 /* assign each engine to different cacheline and init registers */
1494 curr_head = (void *)dd->sdma_heads_dma;
1495 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1496 unsigned long phys_offset;
1497
1498 sde = &dd->per_sdma[this_idx];
1499
1500 sde->head_dma = curr_head;
1501 curr_head += L1_CACHE_BYTES;
1502 phys_offset = (unsigned long)sde->head_dma -
1503 (unsigned long)dd->sdma_heads_dma;
1504 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1505 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1506 }
1507 dd->flags |= HFI1_HAS_SEND_DMA;
1508 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1509 dd->num_sdma = num_engines;
1510 if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1511 goto bail;
1512
1513 if (rhashtable_init(&dd->sdma_rht, &sdma_rht_params))
1514 goto bail;
1515
1516 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1517 return 0;
1518
1519 bail:
1520 sdma_clean(dd, num_engines);
1521 return -ENOMEM;
1522 }
1523
1524 /**
1525 * sdma_all_running() - called when the link goes up
1526 * @dd: hfi1_devdata
1527 *
1528 * This routine moves all engines to the running state.
1529 */
1530 void sdma_all_running(struct hfi1_devdata *dd)
1531 {
1532 struct sdma_engine *sde;
1533 unsigned int i;
1534
1535 /* move all engines to running */
1536 for (i = 0; i < dd->num_sdma; ++i) {
1537 sde = &dd->per_sdma[i];
1538 sdma_process_event(sde, sdma_event_e30_go_running);
1539 }
1540 }
1541
1542 /**
1543 * sdma_all_idle() - called when the link goes down
1544 * @dd: hfi1_devdata
1545 *
1546 * This routine moves all engines to the idle state.
1547 */
1548 void sdma_all_idle(struct hfi1_devdata *dd)
1549 {
1550 struct sdma_engine *sde;
1551 unsigned int i;
1552
1553 /* idle all engines */
1554 for (i = 0; i < dd->num_sdma; ++i) {
1555 sde = &dd->per_sdma[i];
1556 sdma_process_event(sde, sdma_event_e70_go_idle);
1557 }
1558 }
1559
1560 /**
1561 * sdma_start() - called to kick off state processing for all engines
1562 * @dd: hfi1_devdata
1563 *
1564 * This routine is for kicking off the state processing for all required
1565 * sdma engines. Interrupts need to be working at this point.
1566 *
1567 */
1568 void sdma_start(struct hfi1_devdata *dd)
1569 {
1570 unsigned i;
1571 struct sdma_engine *sde;
1572
1573 /* kick off the engines state processing */
1574 for (i = 0; i < dd->num_sdma; ++i) {
1575 sde = &dd->per_sdma[i];
1576 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1577 }
1578 }
1579
1580 /**
1581 * sdma_exit() - used when module is removed
1582 * @dd: hfi1_devdata
1583 */
1584 void sdma_exit(struct hfi1_devdata *dd)
1585 {
1586 unsigned this_idx;
1587 struct sdma_engine *sde;
1588
1589 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1590 ++this_idx) {
1591 sde = &dd->per_sdma[this_idx];
1592 if (!list_empty(&sde->dmawait))
1593 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1594 sde->this_idx);
1595 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1596
1597 del_timer_sync(&sde->err_progress_check_timer);
1598
1599 /*
1600 * This waits for the state machine to exit so it is not
1601 * necessary to kill the sdma_sw_clean_up_task to make sure
1602 * it is not running.
1603 */
1604 sdma_finalput(&sde->state);
1605 }
1606 sdma_clean(dd, dd->num_sdma);
1607 rhashtable_free_and_destroy(&dd->sdma_rht, sdma_rht_free, NULL);
1608 }
1609
1610 /*
1611 * unmap the indicated descriptor
1612 */
1613 static inline void sdma_unmap_desc(
1614 struct hfi1_devdata *dd,
1615 struct sdma_desc *descp)
1616 {
1617 switch (sdma_mapping_type(descp)) {
1618 case SDMA_MAP_SINGLE:
1619 dma_unmap_single(
1620 &dd->pcidev->dev,
1621 sdma_mapping_addr(descp),
1622 sdma_mapping_len(descp),
1623 DMA_TO_DEVICE);
1624 break;
1625 case SDMA_MAP_PAGE:
1626 dma_unmap_page(
1627 &dd->pcidev->dev,
1628 sdma_mapping_addr(descp),
1629 sdma_mapping_len(descp),
1630 DMA_TO_DEVICE);
1631 break;
1632 }
1633 }
1634
1635 /*
1636 * return the mode as indicated by the first
1637 * descriptor in the tx.
1638 */
1639 static inline u8 ahg_mode(struct sdma_txreq *tx)
1640 {
1641 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1642 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1643 }
1644
1645 /**
1646 * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1647 * @dd: hfi1_devdata for unmapping
1648 * @tx: tx request to clean
1649 *
1650 * This is used in the progress routine to clean the tx or
1651 * by the ULP to toss an in-process tx build.
1652 *
1653 * The code can be called multiple times without issue.
1654 *
1655 */
1656 void sdma_txclean(
1657 struct hfi1_devdata *dd,
1658 struct sdma_txreq *tx)
1659 {
1660 u16 i;
1661
1662 if (tx->num_desc) {
1663 u8 skip = 0, mode = ahg_mode(tx);
1664
1665 /* unmap first */
1666 sdma_unmap_desc(dd, &tx->descp[0]);
1667 /* determine number of AHG descriptors to skip */
1668 if (mode > SDMA_AHG_APPLY_UPDATE1)
1669 skip = mode >> 1;
1670 for (i = 1 + skip; i < tx->num_desc; i++)
1671 sdma_unmap_desc(dd, &tx->descp[i]);
1672 tx->num_desc = 0;
1673 }
1674 kfree(tx->coalesce_buf);
1675 tx->coalesce_buf = NULL;
1676 /* kmalloc'ed descp */
1677 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1678 tx->desc_limit = ARRAY_SIZE(tx->descs);
1679 kfree(tx->descp);
1680 }
1681 }
1682
1683 static inline u16 sdma_gethead(struct sdma_engine *sde)
1684 {
1685 struct hfi1_devdata *dd = sde->dd;
1686 int use_dmahead;
1687 u16 hwhead;
1688
1689 #ifdef CONFIG_SDMA_VERBOSITY
1690 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1691 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1692 #endif
1693
1694 retry:
1695 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1696 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1697 hwhead = use_dmahead ?
1698 (u16)le64_to_cpu(*sde->head_dma) :
1699 (u16)read_sde_csr(sde, SD(HEAD));
1700
1701 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1702 u16 cnt;
1703 u16 swtail;
1704 u16 swhead;
1705 int sane;
1706
1707 swhead = sde->descq_head & sde->sdma_mask;
1708 /* this code is really bad for cache line trading */
1709 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1710 cnt = sde->descq_cnt;
1711
1712 if (swhead < swtail)
1713 /* not wrapped */
1714 sane = (hwhead >= swhead) & (hwhead <= swtail);
1715 else if (swhead > swtail)
1716 /* wrapped around */
1717 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1718 (hwhead <= swtail);
1719 else
1720 /* empty */
1721 sane = (hwhead == swhead);
1722
1723 if (unlikely(!sane)) {
1724 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1725 sde->this_idx,
1726 use_dmahead ? "dma" : "kreg",
1727 hwhead, swhead, swtail, cnt);
1728 if (use_dmahead) {
1729 /* try one more time, using csr */
1730 use_dmahead = 0;
1731 goto retry;
1732 }
1733 /* proceed as if no progress */
1734 hwhead = swhead;
1735 }
1736 }
1737 return hwhead;
1738 }
1739
1740 /*
1741 * This is called when there are send DMA descriptors that might be
1742 * available.
1743 *
1744 * This is called with head_lock held.
1745 */
1746 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1747 {
1748 struct iowait *wait, *nw;
1749 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1750 unsigned i, n = 0, seq;
1751 struct sdma_txreq *stx;
1752 struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1753
1754 #ifdef CONFIG_SDMA_VERBOSITY
1755 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1756 slashstrip(__FILE__), __LINE__, __func__);
1757 dd_dev_err(sde->dd, "avail: %u\n", avail);
1758 #endif
1759
1760 do {
1761 seq = read_seqbegin(&dev->iowait_lock);
1762 if (!list_empty(&sde->dmawait)) {
1763 /* at least one item */
1764 write_seqlock(&dev->iowait_lock);
1765 /* Harvest waiters wanting DMA descriptors */
1766 list_for_each_entry_safe(
1767 wait,
1768 nw,
1769 &sde->dmawait,
1770 list) {
1771 u16 num_desc = 0;
1772
1773 if (!wait->wakeup)
1774 continue;
1775 if (n == ARRAY_SIZE(waits))
1776 break;
1777 if (!list_empty(&wait->tx_head)) {
1778 stx = list_first_entry(
1779 &wait->tx_head,
1780 struct sdma_txreq,
1781 list);
1782 num_desc = stx->num_desc;
1783 }
1784 if (num_desc > avail)
1785 break;
1786 avail -= num_desc;
1787 list_del_init(&wait->list);
1788 waits[n++] = wait;
1789 }
1790 write_sequnlock(&dev->iowait_lock);
1791 break;
1792 }
1793 } while (read_seqretry(&dev->iowait_lock, seq));
1794
1795 for (i = 0; i < n; i++)
1796 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1797 }
1798
1799 /* head_lock must be held */
1800 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1801 {
1802 struct sdma_txreq *txp = NULL;
1803 int progress = 0;
1804 u16 hwhead, swhead;
1805 int idle_check_done = 0;
1806
1807 hwhead = sdma_gethead(sde);
1808
1809 /* The reason for some of the complexity of this code is that
1810 * not all descriptors have corresponding txps. So, we have to
1811 * be able to skip over descs until we wander into the range of
1812 * the next txp on the list.
1813 */
1814
1815 retry:
1816 txp = get_txhead(sde);
1817 swhead = sde->descq_head & sde->sdma_mask;
1818 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1819 while (swhead != hwhead) {
1820 /* advance head, wrap if needed */
1821 swhead = ++sde->descq_head & sde->sdma_mask;
1822
1823 /* if now past this txp's descs, do the callback */
1824 if (txp && txp->next_descq_idx == swhead) {
1825 /* remove from list */
1826 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1827 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1828 /* see if there is another txp */
1829 txp = get_txhead(sde);
1830 }
1831 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1832 progress++;
1833 }
1834
1835 /*
1836 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1837 * to updates to the the dma_head location in host memory. The head
1838 * value read might not be fully up to date. If there are pending
1839 * descriptors and the SDMA idle interrupt fired then read from the
1840 * CSR SDMA head instead to get the latest value from the hardware.
1841 * The hardware SDMA head should be read at most once in this invocation
1842 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1843 */
1844 if ((status & sde->idle_mask) && !idle_check_done) {
1845 u16 swtail;
1846
1847 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1848 if (swtail != hwhead) {
1849 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1850 idle_check_done = 1;
1851 goto retry;
1852 }
1853 }
1854
1855 sde->last_status = status;
1856 if (progress)
1857 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1858 }
1859
1860 /*
1861 * sdma_engine_interrupt() - interrupt handler for engine
1862 * @sde: sdma engine
1863 * @status: sdma interrupt reason
1864 *
1865 * Status is a mask of the 3 possible interrupts for this engine. It will
1866 * contain bits _only_ for this SDMA engine. It will contain at least one
1867 * bit, it may contain more.
1868 */
1869 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1870 {
1871 trace_hfi1_sdma_engine_interrupt(sde, status);
1872 write_seqlock(&sde->head_lock);
1873 sdma_set_desc_cnt(sde, sdma_desct_intr);
1874 if (status & sde->idle_mask)
1875 sde->idle_int_cnt++;
1876 else if (status & sde->progress_mask)
1877 sde->progress_int_cnt++;
1878 else if (status & sde->int_mask)
1879 sde->sdma_int_cnt++;
1880 sdma_make_progress(sde, status);
1881 write_sequnlock(&sde->head_lock);
1882 }
1883
1884 /**
1885 * sdma_engine_error() - error handler for engine
1886 * @sde: sdma engine
1887 * @status: sdma interrupt reason
1888 */
1889 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1890 {
1891 unsigned long flags;
1892
1893 #ifdef CONFIG_SDMA_VERBOSITY
1894 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1895 sde->this_idx,
1896 (unsigned long long)status,
1897 sdma_state_names[sde->state.current_state]);
1898 #endif
1899 spin_lock_irqsave(&sde->tail_lock, flags);
1900 write_seqlock(&sde->head_lock);
1901 if (status & ALL_SDMA_ENG_HALT_ERRS)
1902 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1903 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1904 dd_dev_err(sde->dd,
1905 "SDMA (%u) engine error: 0x%llx state %s\n",
1906 sde->this_idx,
1907 (unsigned long long)status,
1908 sdma_state_names[sde->state.current_state]);
1909 dump_sdma_state(sde);
1910 }
1911 write_sequnlock(&sde->head_lock);
1912 spin_unlock_irqrestore(&sde->tail_lock, flags);
1913 }
1914
1915 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1916 {
1917 u64 set_senddmactrl = 0;
1918 u64 clr_senddmactrl = 0;
1919 unsigned long flags;
1920
1921 #ifdef CONFIG_SDMA_VERBOSITY
1922 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1923 sde->this_idx,
1924 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1925 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1926 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1927 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1928 #endif
1929
1930 if (op & SDMA_SENDCTRL_OP_ENABLE)
1931 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1932 else
1933 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1934
1935 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1936 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1937 else
1938 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1939
1940 if (op & SDMA_SENDCTRL_OP_HALT)
1941 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1942 else
1943 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1944
1945 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1946
1947 sde->p_senddmactrl |= set_senddmactrl;
1948 sde->p_senddmactrl &= ~clr_senddmactrl;
1949
1950 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1951 write_sde_csr(sde, SD(CTRL),
1952 sde->p_senddmactrl |
1953 SD(CTRL_SDMA_CLEANUP_SMASK));
1954 else
1955 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1956
1957 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1958
1959 #ifdef CONFIG_SDMA_VERBOSITY
1960 sdma_dumpstate(sde);
1961 #endif
1962 }
1963
1964 static void sdma_setlengen(struct sdma_engine *sde)
1965 {
1966 #ifdef CONFIG_SDMA_VERBOSITY
1967 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1968 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1969 #endif
1970
1971 /*
1972 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1973 * count to enable generation checking and load the internal
1974 * generation counter.
1975 */
1976 write_sde_csr(sde, SD(LEN_GEN),
1977 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1978 write_sde_csr(sde, SD(LEN_GEN),
1979 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1980 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1981 }
1982
1983 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1984 {
1985 /* Commit writes to memory and advance the tail on the chip */
1986 smp_wmb(); /* see get_txhead() */
1987 writeq(tail, sde->tail_csr);
1988 }
1989
1990 /*
1991 * This is called when changing to state s10_hw_start_up_halt_wait as
1992 * a result of send buffer errors or send DMA descriptor errors.
1993 */
1994 static void sdma_hw_start_up(struct sdma_engine *sde)
1995 {
1996 u64 reg;
1997
1998 #ifdef CONFIG_SDMA_VERBOSITY
1999 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2000 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2001 #endif
2002
2003 sdma_setlengen(sde);
2004 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2005 *sde->head_dma = 0;
2006
2007 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2008 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2009 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2010 }
2011
2012 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
2013 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
2014
2015 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
2016 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
2017 /*
2018 * set_sdma_integrity
2019 *
2020 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2021 */
2022 static void set_sdma_integrity(struct sdma_engine *sde)
2023 {
2024 struct hfi1_devdata *dd = sde->dd;
2025 u64 reg;
2026
2027 if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
2028 return;
2029
2030 reg = hfi1_pkt_base_sdma_integrity(dd);
2031
2032 if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2033 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
2034 else
2035 SET_STATIC_RATE_CONTROL_SMASK(reg);
2036
2037 write_sde_csr(sde, SD(CHECK_ENABLE), reg);
2038 }
2039
2040 static void init_sdma_regs(
2041 struct sdma_engine *sde,
2042 u32 credits,
2043 uint idle_cnt)
2044 {
2045 u8 opval, opmask;
2046 #ifdef CONFIG_SDMA_VERBOSITY
2047 struct hfi1_devdata *dd = sde->dd;
2048
2049 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2050 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2051 #endif
2052
2053 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2054 sdma_setlengen(sde);
2055 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2056 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2057 write_sde_csr(sde, SD(DESC_CNT), 0);
2058 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2059 write_sde_csr(sde, SD(MEMORY),
2060 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2061 ((u64)(credits * sde->this_idx) <<
2062 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2063 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2064 set_sdma_integrity(sde);
2065 opmask = OPCODE_CHECK_MASK_DISABLED;
2066 opval = OPCODE_CHECK_VAL_DISABLED;
2067 write_sde_csr(sde, SD(CHECK_OPCODE),
2068 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2069 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2070 }
2071
2072 #ifdef CONFIG_SDMA_VERBOSITY
2073
2074 #define sdma_dumpstate_helper0(reg) do { \
2075 csr = read_csr(sde->dd, reg); \
2076 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2077 } while (0)
2078
2079 #define sdma_dumpstate_helper(reg) do { \
2080 csr = read_sde_csr(sde, reg); \
2081 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2082 #reg, sde->this_idx, csr); \
2083 } while (0)
2084
2085 #define sdma_dumpstate_helper2(reg) do { \
2086 csr = read_csr(sde->dd, reg + (8 * i)); \
2087 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2088 #reg, i, csr); \
2089 } while (0)
2090
2091 void sdma_dumpstate(struct sdma_engine *sde)
2092 {
2093 u64 csr;
2094 unsigned i;
2095
2096 sdma_dumpstate_helper(SD(CTRL));
2097 sdma_dumpstate_helper(SD(STATUS));
2098 sdma_dumpstate_helper0(SD(ERR_STATUS));
2099 sdma_dumpstate_helper0(SD(ERR_MASK));
2100 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2101 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2102
2103 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2104 sdma_dumpstate_helper2(CCE_INT_STATUS);
2105 sdma_dumpstate_helper2(CCE_INT_MASK);
2106 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2107 }
2108
2109 sdma_dumpstate_helper(SD(TAIL));
2110 sdma_dumpstate_helper(SD(HEAD));
2111 sdma_dumpstate_helper(SD(PRIORITY_THLD));
2112 sdma_dumpstate_helper(SD(IDLE_CNT));
2113 sdma_dumpstate_helper(SD(RELOAD_CNT));
2114 sdma_dumpstate_helper(SD(DESC_CNT));
2115 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2116 sdma_dumpstate_helper(SD(MEMORY));
2117 sdma_dumpstate_helper0(SD(ENGINES));
2118 sdma_dumpstate_helper0(SD(MEM_SIZE));
2119 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2120 sdma_dumpstate_helper(SD(BASE_ADDR));
2121 sdma_dumpstate_helper(SD(LEN_GEN));
2122 sdma_dumpstate_helper(SD(HEAD_ADDR));
2123 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2124 sdma_dumpstate_helper(SD(CHECK_VL));
2125 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2126 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2127 sdma_dumpstate_helper(SD(CHECK_SLID));
2128 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2129 }
2130 #endif
2131
2132 static void dump_sdma_state(struct sdma_engine *sde)
2133 {
2134 struct hw_sdma_desc *descq;
2135 struct hw_sdma_desc *descqp;
2136 u64 desc[2];
2137 u64 addr;
2138 u8 gen;
2139 u16 len;
2140 u16 head, tail, cnt;
2141
2142 head = sde->descq_head & sde->sdma_mask;
2143 tail = sde->descq_tail & sde->sdma_mask;
2144 cnt = sdma_descq_freecnt(sde);
2145 descq = sde->descq;
2146
2147 dd_dev_err(sde->dd,
2148 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2149 sde->this_idx, head, tail, cnt,
2150 !list_empty(&sde->flushlist));
2151
2152 /* print info for each entry in the descriptor queue */
2153 while (head != tail) {
2154 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2155
2156 descqp = &sde->descq[head];
2157 desc[0] = le64_to_cpu(descqp->qw[0]);
2158 desc[1] = le64_to_cpu(descqp->qw[1]);
2159 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2160 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2161 'H' : '-';
2162 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2163 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2164 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2165 & SDMA_DESC0_PHY_ADDR_MASK;
2166 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2167 & SDMA_DESC1_GENERATION_MASK;
2168 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2169 & SDMA_DESC0_BYTE_COUNT_MASK;
2170 dd_dev_err(sde->dd,
2171 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2172 head, flags, addr, gen, len);
2173 dd_dev_err(sde->dd,
2174 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2175 desc[0], desc[1]);
2176 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2177 dd_dev_err(sde->dd,
2178 "\taidx: %u amode: %u alen: %u\n",
2179 (u8)((desc[1] &
2180 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2181 SDMA_DESC1_HEADER_INDEX_SHIFT),
2182 (u8)((desc[1] &
2183 SDMA_DESC1_HEADER_MODE_SMASK) >>
2184 SDMA_DESC1_HEADER_MODE_SHIFT),
2185 (u8)((desc[1] &
2186 SDMA_DESC1_HEADER_DWS_SMASK) >>
2187 SDMA_DESC1_HEADER_DWS_SHIFT));
2188 head++;
2189 head &= sde->sdma_mask;
2190 }
2191 }
2192
2193 #define SDE_FMT \
2194 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2195 /**
2196 * sdma_seqfile_dump_sde() - debugfs dump of sde
2197 * @s: seq file
2198 * @sde: send dma engine to dump
2199 *
2200 * This routine dumps the sde to the indicated seq file.
2201 */
2202 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2203 {
2204 u16 head, tail;
2205 struct hw_sdma_desc *descqp;
2206 u64 desc[2];
2207 u64 addr;
2208 u8 gen;
2209 u16 len;
2210
2211 head = sde->descq_head & sde->sdma_mask;
2212 tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
2213 seq_printf(s, SDE_FMT, sde->this_idx,
2214 sde->cpu,
2215 sdma_state_name(sde->state.current_state),
2216 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2217 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2218 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2219 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2220 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2221 (unsigned long long)le64_to_cpu(*sde->head_dma),
2222 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2223 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2224 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2225 (unsigned long long)sde->last_status,
2226 (unsigned long long)sde->ahg_bits,
2227 sde->tx_tail,
2228 sde->tx_head,
2229 sde->descq_tail,
2230 sde->descq_head,
2231 !list_empty(&sde->flushlist),
2232 sde->descq_full_count,
2233 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2234
2235 /* print info for each entry in the descriptor queue */
2236 while (head != tail) {
2237 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2238
2239 descqp = &sde->descq[head];
2240 desc[0] = le64_to_cpu(descqp->qw[0]);
2241 desc[1] = le64_to_cpu(descqp->qw[1]);
2242 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2243 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2244 'H' : '-';
2245 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2246 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2247 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2248 & SDMA_DESC0_PHY_ADDR_MASK;
2249 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2250 & SDMA_DESC1_GENERATION_MASK;
2251 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2252 & SDMA_DESC0_BYTE_COUNT_MASK;
2253 seq_printf(s,
2254 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2255 head, flags, addr, gen, len);
2256 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2257 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2258 (u8)((desc[1] &
2259 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2260 SDMA_DESC1_HEADER_INDEX_SHIFT),
2261 (u8)((desc[1] &
2262 SDMA_DESC1_HEADER_MODE_SMASK) >>
2263 SDMA_DESC1_HEADER_MODE_SHIFT));
2264 head = (head + 1) & sde->sdma_mask;
2265 }
2266 }
2267
2268 /*
2269 * add the generation number into
2270 * the qw1 and return
2271 */
2272 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2273 {
2274 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2275
2276 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2277 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2278 << SDMA_DESC1_GENERATION_SHIFT;
2279 return qw1;
2280 }
2281
2282 /*
2283 * This routine submits the indicated tx
2284 *
2285 * Space has already been guaranteed and
2286 * tail side of ring is locked.
2287 *
2288 * The hardware tail update is done
2289 * in the caller and that is facilitated
2290 * by returning the new tail.
2291 *
2292 * There is special case logic for ahg
2293 * to not add the generation number for
2294 * up to 2 descriptors that follow the
2295 * first descriptor.
2296 *
2297 */
2298 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2299 {
2300 int i;
2301 u16 tail;
2302 struct sdma_desc *descp = tx->descp;
2303 u8 skip = 0, mode = ahg_mode(tx);
2304
2305 tail = sde->descq_tail & sde->sdma_mask;
2306 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2307 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2308 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2309 tail, &sde->descq[tail]);
2310 tail = ++sde->descq_tail & sde->sdma_mask;
2311 descp++;
2312 if (mode > SDMA_AHG_APPLY_UPDATE1)
2313 skip = mode >> 1;
2314 for (i = 1; i < tx->num_desc; i++, descp++) {
2315 u64 qw1;
2316
2317 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2318 if (skip) {
2319 /* edits don't have generation */
2320 qw1 = descp->qw[1];
2321 skip--;
2322 } else {
2323 /* replace generation with real one for non-edits */
2324 qw1 = add_gen(sde, descp->qw[1]);
2325 }
2326 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2327 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2328 tail, &sde->descq[tail]);
2329 tail = ++sde->descq_tail & sde->sdma_mask;
2330 }
2331 tx->next_descq_idx = tail;
2332 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2333 tx->sn = sde->tail_sn++;
2334 trace_hfi1_sdma_in_sn(sde, tx->sn);
2335 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2336 #endif
2337 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2338 sde->desc_avail -= tx->num_desc;
2339 return tail;
2340 }
2341
2342 /*
2343 * Check for progress
2344 */
2345 static int sdma_check_progress(
2346 struct sdma_engine *sde,
2347 struct iowait *wait,
2348 struct sdma_txreq *tx)
2349 {
2350 int ret;
2351
2352 sde->desc_avail = sdma_descq_freecnt(sde);
2353 if (tx->num_desc <= sde->desc_avail)
2354 return -EAGAIN;
2355 /* pulse the head_lock */
2356 if (wait && wait->sleep) {
2357 unsigned seq;
2358
2359 seq = raw_seqcount_begin(
2360 (const seqcount_t *)&sde->head_lock.seqcount);
2361 ret = wait->sleep(sde, wait, tx, seq);
2362 if (ret == -EAGAIN)
2363 sde->desc_avail = sdma_descq_freecnt(sde);
2364 } else {
2365 ret = -EBUSY;
2366 }
2367 return ret;
2368 }
2369
2370 /**
2371 * sdma_send_txreq() - submit a tx req to ring
2372 * @sde: sdma engine to use
2373 * @wait: wait structure to use when full (may be NULL)
2374 * @tx: sdma_txreq to submit
2375 *
2376 * The call submits the tx into the ring. If a iowait structure is non-NULL
2377 * the packet will be queued to the list in wait.
2378 *
2379 * Return:
2380 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2381 * ring (wait == NULL)
2382 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2383 */
2384 int sdma_send_txreq(struct sdma_engine *sde,
2385 struct iowait *wait,
2386 struct sdma_txreq *tx)
2387 {
2388 int ret = 0;
2389 u16 tail;
2390 unsigned long flags;
2391
2392 /* user should have supplied entire packet */
2393 if (unlikely(tx->tlen))
2394 return -EINVAL;
2395 tx->wait = wait;
2396 spin_lock_irqsave(&sde->tail_lock, flags);
2397 retry:
2398 if (unlikely(!__sdma_running(sde)))
2399 goto unlock_noconn;
2400 if (unlikely(tx->num_desc > sde->desc_avail))
2401 goto nodesc;
2402 tail = submit_tx(sde, tx);
2403 if (wait)
2404 iowait_sdma_inc(wait);
2405 sdma_update_tail(sde, tail);
2406 unlock:
2407 spin_unlock_irqrestore(&sde->tail_lock, flags);
2408 return ret;
2409 unlock_noconn:
2410 if (wait)
2411 iowait_sdma_inc(wait);
2412 tx->next_descq_idx = 0;
2413 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2414 tx->sn = sde->tail_sn++;
2415 trace_hfi1_sdma_in_sn(sde, tx->sn);
2416 #endif
2417 spin_lock(&sde->flushlist_lock);
2418 list_add_tail(&tx->list, &sde->flushlist);
2419 spin_unlock(&sde->flushlist_lock);
2420 if (wait) {
2421 wait->tx_count++;
2422 wait->count += tx->num_desc;
2423 }
2424 schedule_work(&sde->flush_worker);
2425 ret = -ECOMM;
2426 goto unlock;
2427 nodesc:
2428 ret = sdma_check_progress(sde, wait, tx);
2429 if (ret == -EAGAIN) {
2430 ret = 0;
2431 goto retry;
2432 }
2433 sde->descq_full_count++;
2434 goto unlock;
2435 }
2436
2437 /**
2438 * sdma_send_txlist() - submit a list of tx req to ring
2439 * @sde: sdma engine to use
2440 * @wait: wait structure to use when full (may be NULL)
2441 * @tx_list: list of sdma_txreqs to submit
2442 * @count: pointer to a u32 which, after return will contain the total number of
2443 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2444 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2445 * which are added to SDMA engine flush list if the SDMA engine state is
2446 * not running.
2447 *
2448 * The call submits the list into the ring.
2449 *
2450 * If the iowait structure is non-NULL and not equal to the iowait list
2451 * the unprocessed part of the list will be appended to the list in wait.
2452 *
2453 * In all cases, the tx_list will be updated so the head of the tx_list is
2454 * the list of descriptors that have yet to be transmitted.
2455 *
2456 * The intent of this call is to provide a more efficient
2457 * way of submitting multiple packets to SDMA while holding the tail
2458 * side locking.
2459 *
2460 * Return:
2461 * 0 - Success,
2462 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2463 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2464 */
2465 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2466 struct list_head *tx_list, u32 *count_out)
2467 {
2468 struct sdma_txreq *tx, *tx_next;
2469 int ret = 0;
2470 unsigned long flags;
2471 u16 tail = INVALID_TAIL;
2472 u32 submit_count = 0, flush_count = 0, total_count;
2473
2474 spin_lock_irqsave(&sde->tail_lock, flags);
2475 retry:
2476 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2477 tx->wait = wait;
2478 if (unlikely(!__sdma_running(sde)))
2479 goto unlock_noconn;
2480 if (unlikely(tx->num_desc > sde->desc_avail))
2481 goto nodesc;
2482 if (unlikely(tx->tlen)) {
2483 ret = -EINVAL;
2484 goto update_tail;
2485 }
2486 list_del_init(&tx->list);
2487 tail = submit_tx(sde, tx);
2488 submit_count++;
2489 if (tail != INVALID_TAIL &&
2490 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2491 sdma_update_tail(sde, tail);
2492 tail = INVALID_TAIL;
2493 }
2494 }
2495 update_tail:
2496 total_count = submit_count + flush_count;
2497 if (wait)
2498 iowait_sdma_add(wait, total_count);
2499 if (tail != INVALID_TAIL)
2500 sdma_update_tail(sde, tail);
2501 spin_unlock_irqrestore(&sde->tail_lock, flags);
2502 *count_out = total_count;
2503 return ret;
2504 unlock_noconn:
2505 spin_lock(&sde->flushlist_lock);
2506 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2507 tx->wait = wait;
2508 list_del_init(&tx->list);
2509 tx->next_descq_idx = 0;
2510 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2511 tx->sn = sde->tail_sn++;
2512 trace_hfi1_sdma_in_sn(sde, tx->sn);
2513 #endif
2514 list_add_tail(&tx->list, &sde->flushlist);
2515 flush_count++;
2516 if (wait) {
2517 wait->tx_count++;
2518 wait->count += tx->num_desc;
2519 }
2520 }
2521 spin_unlock(&sde->flushlist_lock);
2522 schedule_work(&sde->flush_worker);
2523 ret = -ECOMM;
2524 goto update_tail;
2525 nodesc:
2526 ret = sdma_check_progress(sde, wait, tx);
2527 if (ret == -EAGAIN) {
2528 ret = 0;
2529 goto retry;
2530 }
2531 sde->descq_full_count++;
2532 goto update_tail;
2533 }
2534
2535 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2536 {
2537 unsigned long flags;
2538
2539 spin_lock_irqsave(&sde->tail_lock, flags);
2540 write_seqlock(&sde->head_lock);
2541
2542 __sdma_process_event(sde, event);
2543
2544 if (sde->state.current_state == sdma_state_s99_running)
2545 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2546
2547 write_sequnlock(&sde->head_lock);
2548 spin_unlock_irqrestore(&sde->tail_lock, flags);
2549 }
2550
2551 static void __sdma_process_event(struct sdma_engine *sde,
2552 enum sdma_events event)
2553 {
2554 struct sdma_state *ss = &sde->state;
2555 int need_progress = 0;
2556
2557 /* CONFIG SDMA temporary */
2558 #ifdef CONFIG_SDMA_VERBOSITY
2559 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2560 sdma_state_names[ss->current_state],
2561 sdma_event_names[event]);
2562 #endif
2563
2564 switch (ss->current_state) {
2565 case sdma_state_s00_hw_down:
2566 switch (event) {
2567 case sdma_event_e00_go_hw_down:
2568 break;
2569 case sdma_event_e30_go_running:
2570 /*
2571 * If down, but running requested (usually result
2572 * of link up, then we need to start up.
2573 * This can happen when hw down is requested while
2574 * bringing the link up with traffic active on
2575 * 7220, e.g.
2576 */
2577 ss->go_s99_running = 1;
2578 /* fall through and start dma engine */
2579 case sdma_event_e10_go_hw_start:
2580 /* This reference means the state machine is started */
2581 sdma_get(&sde->state);
2582 sdma_set_state(sde,
2583 sdma_state_s10_hw_start_up_halt_wait);
2584 break;
2585 case sdma_event_e15_hw_halt_done:
2586 break;
2587 case sdma_event_e25_hw_clean_up_done:
2588 break;
2589 case sdma_event_e40_sw_cleaned:
2590 sdma_sw_tear_down(sde);
2591 break;
2592 case sdma_event_e50_hw_cleaned:
2593 break;
2594 case sdma_event_e60_hw_halted:
2595 break;
2596 case sdma_event_e70_go_idle:
2597 break;
2598 case sdma_event_e80_hw_freeze:
2599 break;
2600 case sdma_event_e81_hw_frozen:
2601 break;
2602 case sdma_event_e82_hw_unfreeze:
2603 break;
2604 case sdma_event_e85_link_down:
2605 break;
2606 case sdma_event_e90_sw_halted:
2607 break;
2608 }
2609 break;
2610
2611 case sdma_state_s10_hw_start_up_halt_wait:
2612 switch (event) {
2613 case sdma_event_e00_go_hw_down:
2614 sdma_set_state(sde, sdma_state_s00_hw_down);
2615 sdma_sw_tear_down(sde);
2616 break;
2617 case sdma_event_e10_go_hw_start:
2618 break;
2619 case sdma_event_e15_hw_halt_done:
2620 sdma_set_state(sde,
2621 sdma_state_s15_hw_start_up_clean_wait);
2622 sdma_start_hw_clean_up(sde);
2623 break;
2624 case sdma_event_e25_hw_clean_up_done:
2625 break;
2626 case sdma_event_e30_go_running:
2627 ss->go_s99_running = 1;
2628 break;
2629 case sdma_event_e40_sw_cleaned:
2630 break;
2631 case sdma_event_e50_hw_cleaned:
2632 break;
2633 case sdma_event_e60_hw_halted:
2634 schedule_work(&sde->err_halt_worker);
2635 break;
2636 case sdma_event_e70_go_idle:
2637 ss->go_s99_running = 0;
2638 break;
2639 case sdma_event_e80_hw_freeze:
2640 break;
2641 case sdma_event_e81_hw_frozen:
2642 break;
2643 case sdma_event_e82_hw_unfreeze:
2644 break;
2645 case sdma_event_e85_link_down:
2646 break;
2647 case sdma_event_e90_sw_halted:
2648 break;
2649 }
2650 break;
2651
2652 case sdma_state_s15_hw_start_up_clean_wait:
2653 switch (event) {
2654 case sdma_event_e00_go_hw_down:
2655 sdma_set_state(sde, sdma_state_s00_hw_down);
2656 sdma_sw_tear_down(sde);
2657 break;
2658 case sdma_event_e10_go_hw_start:
2659 break;
2660 case sdma_event_e15_hw_halt_done:
2661 break;
2662 case sdma_event_e25_hw_clean_up_done:
2663 sdma_hw_start_up(sde);
2664 sdma_set_state(sde, ss->go_s99_running ?
2665 sdma_state_s99_running :
2666 sdma_state_s20_idle);
2667 break;
2668 case sdma_event_e30_go_running:
2669 ss->go_s99_running = 1;
2670 break;
2671 case sdma_event_e40_sw_cleaned:
2672 break;
2673 case sdma_event_e50_hw_cleaned:
2674 break;
2675 case sdma_event_e60_hw_halted:
2676 break;
2677 case sdma_event_e70_go_idle:
2678 ss->go_s99_running = 0;
2679 break;
2680 case sdma_event_e80_hw_freeze:
2681 break;
2682 case sdma_event_e81_hw_frozen:
2683 break;
2684 case sdma_event_e82_hw_unfreeze:
2685 break;
2686 case sdma_event_e85_link_down:
2687 break;
2688 case sdma_event_e90_sw_halted:
2689 break;
2690 }
2691 break;
2692
2693 case sdma_state_s20_idle:
2694 switch (event) {
2695 case sdma_event_e00_go_hw_down:
2696 sdma_set_state(sde, sdma_state_s00_hw_down);
2697 sdma_sw_tear_down(sde);
2698 break;
2699 case sdma_event_e10_go_hw_start:
2700 break;
2701 case sdma_event_e15_hw_halt_done:
2702 break;
2703 case sdma_event_e25_hw_clean_up_done:
2704 break;
2705 case sdma_event_e30_go_running:
2706 sdma_set_state(sde, sdma_state_s99_running);
2707 ss->go_s99_running = 1;
2708 break;
2709 case sdma_event_e40_sw_cleaned:
2710 break;
2711 case sdma_event_e50_hw_cleaned:
2712 break;
2713 case sdma_event_e60_hw_halted:
2714 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2715 schedule_work(&sde->err_halt_worker);
2716 break;
2717 case sdma_event_e70_go_idle:
2718 break;
2719 case sdma_event_e85_link_down:
2720 /* fall through */
2721 case sdma_event_e80_hw_freeze:
2722 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2723 atomic_dec(&sde->dd->sdma_unfreeze_count);
2724 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2725 break;
2726 case sdma_event_e81_hw_frozen:
2727 break;
2728 case sdma_event_e82_hw_unfreeze:
2729 break;
2730 case sdma_event_e90_sw_halted:
2731 break;
2732 }
2733 break;
2734
2735 case sdma_state_s30_sw_clean_up_wait:
2736 switch (event) {
2737 case sdma_event_e00_go_hw_down:
2738 sdma_set_state(sde, sdma_state_s00_hw_down);
2739 break;
2740 case sdma_event_e10_go_hw_start:
2741 break;
2742 case sdma_event_e15_hw_halt_done:
2743 break;
2744 case sdma_event_e25_hw_clean_up_done:
2745 break;
2746 case sdma_event_e30_go_running:
2747 ss->go_s99_running = 1;
2748 break;
2749 case sdma_event_e40_sw_cleaned:
2750 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2751 sdma_start_hw_clean_up(sde);
2752 break;
2753 case sdma_event_e50_hw_cleaned:
2754 break;
2755 case sdma_event_e60_hw_halted:
2756 break;
2757 case sdma_event_e70_go_idle:
2758 ss->go_s99_running = 0;
2759 break;
2760 case sdma_event_e80_hw_freeze:
2761 break;
2762 case sdma_event_e81_hw_frozen:
2763 break;
2764 case sdma_event_e82_hw_unfreeze:
2765 break;
2766 case sdma_event_e85_link_down:
2767 ss->go_s99_running = 0;
2768 break;
2769 case sdma_event_e90_sw_halted:
2770 break;
2771 }
2772 break;
2773
2774 case sdma_state_s40_hw_clean_up_wait:
2775 switch (event) {
2776 case sdma_event_e00_go_hw_down:
2777 sdma_set_state(sde, sdma_state_s00_hw_down);
2778 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2779 break;
2780 case sdma_event_e10_go_hw_start:
2781 break;
2782 case sdma_event_e15_hw_halt_done:
2783 break;
2784 case sdma_event_e25_hw_clean_up_done:
2785 sdma_hw_start_up(sde);
2786 sdma_set_state(sde, ss->go_s99_running ?
2787 sdma_state_s99_running :
2788 sdma_state_s20_idle);
2789 break;
2790 case sdma_event_e30_go_running:
2791 ss->go_s99_running = 1;
2792 break;
2793 case sdma_event_e40_sw_cleaned:
2794 break;
2795 case sdma_event_e50_hw_cleaned:
2796 break;
2797 case sdma_event_e60_hw_halted:
2798 break;
2799 case sdma_event_e70_go_idle:
2800 ss->go_s99_running = 0;
2801 break;
2802 case sdma_event_e80_hw_freeze:
2803 break;
2804 case sdma_event_e81_hw_frozen:
2805 break;
2806 case sdma_event_e82_hw_unfreeze:
2807 break;
2808 case sdma_event_e85_link_down:
2809 ss->go_s99_running = 0;
2810 break;
2811 case sdma_event_e90_sw_halted:
2812 break;
2813 }
2814 break;
2815
2816 case sdma_state_s50_hw_halt_wait:
2817 switch (event) {
2818 case sdma_event_e00_go_hw_down:
2819 sdma_set_state(sde, sdma_state_s00_hw_down);
2820 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2821 break;
2822 case sdma_event_e10_go_hw_start:
2823 break;
2824 case sdma_event_e15_hw_halt_done:
2825 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2826 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2827 break;
2828 case sdma_event_e25_hw_clean_up_done:
2829 break;
2830 case sdma_event_e30_go_running:
2831 ss->go_s99_running = 1;
2832 break;
2833 case sdma_event_e40_sw_cleaned:
2834 break;
2835 case sdma_event_e50_hw_cleaned:
2836 break;
2837 case sdma_event_e60_hw_halted:
2838 schedule_work(&sde->err_halt_worker);
2839 break;
2840 case sdma_event_e70_go_idle:
2841 ss->go_s99_running = 0;
2842 break;
2843 case sdma_event_e80_hw_freeze:
2844 break;
2845 case sdma_event_e81_hw_frozen:
2846 break;
2847 case sdma_event_e82_hw_unfreeze:
2848 break;
2849 case sdma_event_e85_link_down:
2850 ss->go_s99_running = 0;
2851 break;
2852 case sdma_event_e90_sw_halted:
2853 break;
2854 }
2855 break;
2856
2857 case sdma_state_s60_idle_halt_wait:
2858 switch (event) {
2859 case sdma_event_e00_go_hw_down:
2860 sdma_set_state(sde, sdma_state_s00_hw_down);
2861 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2862 break;
2863 case sdma_event_e10_go_hw_start:
2864 break;
2865 case sdma_event_e15_hw_halt_done:
2866 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2867 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2868 break;
2869 case sdma_event_e25_hw_clean_up_done:
2870 break;
2871 case sdma_event_e30_go_running:
2872 ss->go_s99_running = 1;
2873 break;
2874 case sdma_event_e40_sw_cleaned:
2875 break;
2876 case sdma_event_e50_hw_cleaned:
2877 break;
2878 case sdma_event_e60_hw_halted:
2879 schedule_work(&sde->err_halt_worker);
2880 break;
2881 case sdma_event_e70_go_idle:
2882 ss->go_s99_running = 0;
2883 break;
2884 case sdma_event_e80_hw_freeze:
2885 break;
2886 case sdma_event_e81_hw_frozen:
2887 break;
2888 case sdma_event_e82_hw_unfreeze:
2889 break;
2890 case sdma_event_e85_link_down:
2891 break;
2892 case sdma_event_e90_sw_halted:
2893 break;
2894 }
2895 break;
2896
2897 case sdma_state_s80_hw_freeze:
2898 switch (event) {
2899 case sdma_event_e00_go_hw_down:
2900 sdma_set_state(sde, sdma_state_s00_hw_down);
2901 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2902 break;
2903 case sdma_event_e10_go_hw_start:
2904 break;
2905 case sdma_event_e15_hw_halt_done:
2906 break;
2907 case sdma_event_e25_hw_clean_up_done:
2908 break;
2909 case sdma_event_e30_go_running:
2910 ss->go_s99_running = 1;
2911 break;
2912 case sdma_event_e40_sw_cleaned:
2913 break;
2914 case sdma_event_e50_hw_cleaned:
2915 break;
2916 case sdma_event_e60_hw_halted:
2917 break;
2918 case sdma_event_e70_go_idle:
2919 ss->go_s99_running = 0;
2920 break;
2921 case sdma_event_e80_hw_freeze:
2922 break;
2923 case sdma_event_e81_hw_frozen:
2924 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2925 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2926 break;
2927 case sdma_event_e82_hw_unfreeze:
2928 break;
2929 case sdma_event_e85_link_down:
2930 break;
2931 case sdma_event_e90_sw_halted:
2932 break;
2933 }
2934 break;
2935
2936 case sdma_state_s82_freeze_sw_clean:
2937 switch (event) {
2938 case sdma_event_e00_go_hw_down:
2939 sdma_set_state(sde, sdma_state_s00_hw_down);
2940 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2941 break;
2942 case sdma_event_e10_go_hw_start:
2943 break;
2944 case sdma_event_e15_hw_halt_done:
2945 break;
2946 case sdma_event_e25_hw_clean_up_done:
2947 break;
2948 case sdma_event_e30_go_running:
2949 ss->go_s99_running = 1;
2950 break;
2951 case sdma_event_e40_sw_cleaned:
2952 /* notify caller this engine is done cleaning */
2953 atomic_dec(&sde->dd->sdma_unfreeze_count);
2954 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2955 break;
2956 case sdma_event_e50_hw_cleaned:
2957 break;
2958 case sdma_event_e60_hw_halted:
2959 break;
2960 case sdma_event_e70_go_idle:
2961 ss->go_s99_running = 0;
2962 break;
2963 case sdma_event_e80_hw_freeze:
2964 break;
2965 case sdma_event_e81_hw_frozen:
2966 break;
2967 case sdma_event_e82_hw_unfreeze:
2968 sdma_hw_start_up(sde);
2969 sdma_set_state(sde, ss->go_s99_running ?
2970 sdma_state_s99_running :
2971 sdma_state_s20_idle);
2972 break;
2973 case sdma_event_e85_link_down:
2974 break;
2975 case sdma_event_e90_sw_halted:
2976 break;
2977 }
2978 break;
2979
2980 case sdma_state_s99_running:
2981 switch (event) {
2982 case sdma_event_e00_go_hw_down:
2983 sdma_set_state(sde, sdma_state_s00_hw_down);
2984 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2985 break;
2986 case sdma_event_e10_go_hw_start:
2987 break;
2988 case sdma_event_e15_hw_halt_done:
2989 break;
2990 case sdma_event_e25_hw_clean_up_done:
2991 break;
2992 case sdma_event_e30_go_running:
2993 break;
2994 case sdma_event_e40_sw_cleaned:
2995 break;
2996 case sdma_event_e50_hw_cleaned:
2997 break;
2998 case sdma_event_e60_hw_halted:
2999 need_progress = 1;
3000 sdma_err_progress_check_schedule(sde);
3001 case sdma_event_e90_sw_halted:
3002 /*
3003 * SW initiated halt does not perform engines
3004 * progress check
3005 */
3006 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3007 schedule_work(&sde->err_halt_worker);
3008 break;
3009 case sdma_event_e70_go_idle:
3010 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3011 break;
3012 case sdma_event_e85_link_down:
3013 ss->go_s99_running = 0;
3014 /* fall through */
3015 case sdma_event_e80_hw_freeze:
3016 sdma_set_state(sde, sdma_state_s80_hw_freeze);
3017 atomic_dec(&sde->dd->sdma_unfreeze_count);
3018 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3019 break;
3020 case sdma_event_e81_hw_frozen:
3021 break;
3022 case sdma_event_e82_hw_unfreeze:
3023 break;
3024 }
3025 break;
3026 }
3027
3028 ss->last_event = event;
3029 if (need_progress)
3030 sdma_make_progress(sde, 0);
3031 }
3032
3033 /*
3034 * _extend_sdma_tx_descs() - helper to extend txreq
3035 *
3036 * This is called once the initial nominal allocation
3037 * of descriptors in the sdma_txreq is exhausted.
3038 *
3039 * The code will bump the allocation up to the max
3040 * of MAX_DESC (64) descriptors. There doesn't seem
3041 * much point in an interim step. The last descriptor
3042 * is reserved for coalesce buffer in order to support
3043 * cases where input packet has >MAX_DESC iovecs.
3044 *
3045 */
3046 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3047 {
3048 int i;
3049
3050 /* Handle last descriptor */
3051 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3052 /* if tlen is 0, it is for padding, release last descriptor */
3053 if (!tx->tlen) {
3054 tx->desc_limit = MAX_DESC;
3055 } else if (!tx->coalesce_buf) {
3056 /* allocate coalesce buffer with space for padding */
3057 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3058 GFP_ATOMIC);
3059 if (!tx->coalesce_buf)
3060 goto enomem;
3061 tx->coalesce_idx = 0;
3062 }
3063 return 0;
3064 }
3065
3066 if (unlikely(tx->num_desc == MAX_DESC))
3067 goto enomem;
3068
3069 tx->descp = kmalloc_array(
3070 MAX_DESC,
3071 sizeof(struct sdma_desc),
3072 GFP_ATOMIC);
3073 if (!tx->descp)
3074 goto enomem;
3075
3076 /* reserve last descriptor for coalescing */
3077 tx->desc_limit = MAX_DESC - 1;
3078 /* copy ones already built */
3079 for (i = 0; i < tx->num_desc; i++)
3080 tx->descp[i] = tx->descs[i];
3081 return 0;
3082 enomem:
3083 sdma_txclean(dd, tx);
3084 return -ENOMEM;
3085 }
3086
3087 /*
3088 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3089 *
3090 * This is called once the initial nominal allocation of descriptors
3091 * in the sdma_txreq is exhausted.
3092 *
3093 * This function calls _extend_sdma_tx_descs to extend or allocate
3094 * coalesce buffer. If there is a allocated coalesce buffer, it will
3095 * copy the input packet data into the coalesce buffer. It also adds
3096 * coalesce buffer descriptor once when whole packet is received.
3097 *
3098 * Return:
3099 * <0 - error
3100 * 0 - coalescing, don't populate descriptor
3101 * 1 - continue with populating descriptor
3102 */
3103 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3104 int type, void *kvaddr, struct page *page,
3105 unsigned long offset, u16 len)
3106 {
3107 int pad_len, rval;
3108 dma_addr_t addr;
3109
3110 rval = _extend_sdma_tx_descs(dd, tx);
3111 if (rval) {
3112 sdma_txclean(dd, tx);
3113 return rval;
3114 }
3115
3116 /* If coalesce buffer is allocated, copy data into it */
3117 if (tx->coalesce_buf) {
3118 if (type == SDMA_MAP_NONE) {
3119 sdma_txclean(dd, tx);
3120 return -EINVAL;
3121 }
3122
3123 if (type == SDMA_MAP_PAGE) {
3124 kvaddr = kmap(page);
3125 kvaddr += offset;
3126 } else if (WARN_ON(!kvaddr)) {
3127 sdma_txclean(dd, tx);
3128 return -EINVAL;
3129 }
3130
3131 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3132 tx->coalesce_idx += len;
3133 if (type == SDMA_MAP_PAGE)
3134 kunmap(page);
3135
3136 /* If there is more data, return */
3137 if (tx->tlen - tx->coalesce_idx)
3138 return 0;
3139
3140 /* Whole packet is received; add any padding */
3141 pad_len = tx->packet_len & (sizeof(u32) - 1);
3142 if (pad_len) {
3143 pad_len = sizeof(u32) - pad_len;
3144 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3145 /* padding is taken care of for coalescing case */
3146 tx->packet_len += pad_len;
3147 tx->tlen += pad_len;
3148 }
3149
3150 /* dma map the coalesce buffer */
3151 addr = dma_map_single(&dd->pcidev->dev,
3152 tx->coalesce_buf,
3153 tx->tlen,
3154 DMA_TO_DEVICE);
3155
3156 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3157 sdma_txclean(dd, tx);
3158 return -ENOSPC;
3159 }
3160
3161 /* Add descriptor for coalesce buffer */
3162 tx->desc_limit = MAX_DESC;
3163 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3164 addr, tx->tlen);
3165 }
3166
3167 return 1;
3168 }
3169
3170 /* Update sdes when the lmc changes */
3171 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3172 {
3173 struct sdma_engine *sde;
3174 int i;
3175 u64 sreg;
3176
3177 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3178 SD(CHECK_SLID_MASK_SHIFT)) |
3179 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3180 SD(CHECK_SLID_VALUE_SHIFT));
3181
3182 for (i = 0; i < dd->num_sdma; i++) {
3183 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3184 i, (u32)sreg);
3185 sde = &dd->per_sdma[i];
3186 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3187 }
3188 }
3189
3190 /* tx not dword sized - pad */
3191 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3192 {
3193 int rval = 0;
3194
3195 tx->num_desc++;
3196 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3197 rval = _extend_sdma_tx_descs(dd, tx);
3198 if (rval) {
3199 sdma_txclean(dd, tx);
3200 return rval;
3201 }
3202 }
3203 /* finish the one just added */
3204 make_tx_sdma_desc(
3205 tx,
3206 SDMA_MAP_NONE,
3207 dd->sdma_pad_phys,
3208 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3209 _sdma_close_tx(dd, tx);
3210 return rval;
3211 }
3212
3213 /*
3214 * Add ahg to the sdma_txreq
3215 *
3216 * The logic will consume up to 3
3217 * descriptors at the beginning of
3218 * sdma_txreq.
3219 */
3220 void _sdma_txreq_ahgadd(
3221 struct sdma_txreq *tx,
3222 u8 num_ahg,
3223 u8 ahg_entry,
3224 u32 *ahg,
3225 u8 ahg_hlen)
3226 {
3227 u32 i, shift = 0, desc = 0;
3228 u8 mode;
3229
3230 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3231 /* compute mode */
3232 if (num_ahg == 1)
3233 mode = SDMA_AHG_APPLY_UPDATE1;
3234 else if (num_ahg <= 5)
3235 mode = SDMA_AHG_APPLY_UPDATE2;
3236 else
3237 mode = SDMA_AHG_APPLY_UPDATE3;
3238 tx->num_desc++;
3239 /* initialize to consumed descriptors to zero */
3240 switch (mode) {
3241 case SDMA_AHG_APPLY_UPDATE3:
3242 tx->num_desc++;
3243 tx->descs[2].qw[0] = 0;
3244 tx->descs[2].qw[1] = 0;
3245 /* FALLTHROUGH */
3246 case SDMA_AHG_APPLY_UPDATE2:
3247 tx->num_desc++;
3248 tx->descs[1].qw[0] = 0;
3249 tx->descs[1].qw[1] = 0;
3250 break;
3251 }
3252 ahg_hlen >>= 2;
3253 tx->descs[0].qw[1] |=
3254 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3255 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3256 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3257 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3258 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3259 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3260 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3261 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3262 for (i = 0; i < (num_ahg - 1); i++) {
3263 if (!shift && !(i & 2))
3264 desc++;
3265 tx->descs[desc].qw[!!(i & 2)] |=
3266 (((u64)ahg[i + 1])
3267 << shift);
3268 shift = (shift + 32) & 63;
3269 }
3270 }
3271
3272 /**
3273 * sdma_ahg_alloc - allocate an AHG entry
3274 * @sde: engine to allocate from
3275 *
3276 * Return:
3277 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3278 * -ENOSPC if an entry is not available
3279 */
3280 int sdma_ahg_alloc(struct sdma_engine *sde)
3281 {
3282 int nr;
3283 int oldbit;
3284
3285 if (!sde) {
3286 trace_hfi1_ahg_allocate(sde, -EINVAL);
3287 return -EINVAL;
3288 }
3289 while (1) {
3290 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
3291 if (nr > 31) {
3292 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3293 return -ENOSPC;
3294 }
3295 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3296 if (!oldbit)
3297 break;
3298 cpu_relax();
3299 }
3300 trace_hfi1_ahg_allocate(sde, nr);
3301 return nr;
3302 }
3303
3304 /**
3305 * sdma_ahg_free - free an AHG entry
3306 * @sde: engine to return AHG entry
3307 * @ahg_index: index to free
3308 *
3309 * This routine frees the indicate AHG entry.
3310 */
3311 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3312 {
3313 if (!sde)
3314 return;
3315 trace_hfi1_ahg_deallocate(sde, ahg_index);
3316 if (ahg_index < 0 || ahg_index > 31)
3317 return;
3318 clear_bit(ahg_index, &sde->ahg_bits);
3319 }
3320
3321 /*
3322 * SPC freeze handling for SDMA engines. Called when the driver knows
3323 * the SPC is going into a freeze but before the freeze is fully
3324 * settled. Generally an error interrupt.
3325 *
3326 * This event will pull the engine out of running so no more entries can be
3327 * added to the engine's queue.
3328 */
3329 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3330 {
3331 int i;
3332 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3333 sdma_event_e80_hw_freeze;
3334
3335 /* set up the wait but do not wait here */
3336 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3337
3338 /* tell all engines to stop running and wait */
3339 for (i = 0; i < dd->num_sdma; i++)
3340 sdma_process_event(&dd->per_sdma[i], event);
3341
3342 /* sdma_freeze() will wait for all engines to have stopped */
3343 }
3344
3345 /*
3346 * SPC freeze handling for SDMA engines. Called when the driver knows
3347 * the SPC is fully frozen.
3348 */
3349 void sdma_freeze(struct hfi1_devdata *dd)
3350 {
3351 int i;
3352 int ret;
3353
3354 /*
3355 * Make sure all engines have moved out of the running state before
3356 * continuing.
3357 */
3358 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3359 atomic_read(&dd->sdma_unfreeze_count) <=
3360 0);
3361 /* interrupted or count is negative, then unloading - just exit */
3362 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3363 return;
3364
3365 /* set up the count for the next wait */
3366 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3367
3368 /* tell all engines that the SPC is frozen, they can start cleaning */
3369 for (i = 0; i < dd->num_sdma; i++)
3370 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3371
3372 /*
3373 * Wait for everyone to finish software clean before exiting. The
3374 * software clean will read engine CSRs, so must be completed before
3375 * the next step, which will clear the engine CSRs.
3376 */
3377 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3378 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3379 /* no need to check results - done no matter what */
3380 }
3381
3382 /*
3383 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3384 *
3385 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3386 * that is left is a software clean. We could do it after the SPC is fully
3387 * frozen, but then we'd have to add another state to wait for the unfreeze.
3388 * Instead, just defer the software clean until the unfreeze step.
3389 */
3390 void sdma_unfreeze(struct hfi1_devdata *dd)
3391 {
3392 int i;
3393
3394 /* tell all engines start freeze clean up */
3395 for (i = 0; i < dd->num_sdma; i++)
3396 sdma_process_event(&dd->per_sdma[i],
3397 sdma_event_e82_hw_unfreeze);
3398 }
3399
3400 /**
3401 * _sdma_engine_progress_schedule() - schedule progress on engine
3402 * @sde: sdma_engine to schedule progress
3403 *
3404 */
3405 void _sdma_engine_progress_schedule(
3406 struct sdma_engine *sde)
3407 {
3408 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3409 /* assume we have selected a good cpu */
3410 write_csr(sde->dd,
3411 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3412 sde->progress_mask);
3413 }