2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
69 static uint sdma_descq_cnt
= SDMA_DESCQ_CNT
;
70 module_param(sdma_descq_cnt
, uint
, S_IRUGO
);
71 MODULE_PARM_DESC(sdma_descq_cnt
, "Number of SDMA descq entries");
73 static uint sdma_idle_cnt
= 250;
74 module_param(sdma_idle_cnt
, uint
, S_IRUGO
);
75 MODULE_PARM_DESC(sdma_idle_cnt
, "sdma interrupt idle delay (ns,default 250)");
78 module_param_named(num_sdma
, mod_num_sdma
, uint
, S_IRUGO
);
79 MODULE_PARM_DESC(num_sdma
, "Set max number SDMA engines to use");
81 static uint sdma_desct_intr
= SDMA_DESC_INTR
;
82 module_param_named(desct_intr
, sdma_desct_intr
, uint
, S_IRUGO
| S_IWUSR
);
83 MODULE_PARM_DESC(desct_intr
, "Number of SDMA descriptor before interrupt");
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
123 static const char * const sdma_state_names
[] = {
124 [sdma_state_s00_hw_down
] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait
] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait
] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle
] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait
] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait
] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait
] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait
] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze
] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean
] = "s82_FreezeSwClean",
134 [sdma_state_s99_running
] = "s99_Running",
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names
[] = {
139 [sdma_event_e00_go_hw_down
] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start
] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done
] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done
] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running
] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned
] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned
] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted
] = "e60_HwHalted",
147 [sdma_event_e70_go_idle
] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze
] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen
] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze
] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down
] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted
] = "e90_SwHalted",
156 static const struct sdma_set_state_action sdma_action_table
[] = {
157 [sdma_state_s00_hw_down
] = {
158 .go_s99_running_tofalse
= 1,
164 [sdma_state_s10_hw_start_up_halt_wait
] = {
170 [sdma_state_s15_hw_start_up_clean_wait
] = {
176 [sdma_state_s20_idle
] = {
182 [sdma_state_s30_sw_clean_up_wait
] = {
188 [sdma_state_s40_hw_clean_up_wait
] = {
194 [sdma_state_s50_hw_halt_wait
] = {
200 [sdma_state_s60_idle_halt_wait
] = {
201 .go_s99_running_tofalse
= 1,
207 [sdma_state_s80_hw_freeze
] = {
213 [sdma_state_s82_freeze_sw_clean
] = {
219 [sdma_state_s99_running
] = {
224 .go_s99_running_totrue
= 1,
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref
*);
232 static void sdma_finalput(struct sdma_state
*);
233 static void sdma_get(struct sdma_state
*);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state
*);
236 static void sdma_set_state(struct sdma_engine
*, enum sdma_states
);
237 static void sdma_start_hw_clean_up(struct sdma_engine
*);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine
*, unsigned);
240 static void init_sdma_regs(struct sdma_engine
*, u32
, uint
);
241 static void sdma_process_event(
242 struct sdma_engine
*sde
,
243 enum sdma_events event
);
244 static void __sdma_process_event(
245 struct sdma_engine
*sde
,
246 enum sdma_events event
);
247 static void dump_sdma_state(struct sdma_engine
*sde
);
248 static void sdma_make_progress(struct sdma_engine
*sde
, u64 status
);
249 static void sdma_desc_avail(struct sdma_engine
*sde
, unsigned avail
);
250 static void sdma_flush_descq(struct sdma_engine
*sde
);
253 * sdma_state_name() - return state string from enum
256 static const char *sdma_state_name(enum sdma_states state
)
258 return sdma_state_names
[state
];
261 static void sdma_get(struct sdma_state
*ss
)
266 static void sdma_complete(struct kref
*kref
)
268 struct sdma_state
*ss
=
269 container_of(kref
, struct sdma_state
, kref
);
274 static void sdma_put(struct sdma_state
*ss
)
276 kref_put(&ss
->kref
, sdma_complete
);
279 static void sdma_finalput(struct sdma_state
*ss
)
282 wait_for_completion(&ss
->comp
);
285 static inline void write_sde_csr(
286 struct sdma_engine
*sde
,
290 write_kctxt_csr(sde
->dd
, sde
->this_idx
, offset0
, value
);
293 static inline u64
read_sde_csr(
294 struct sdma_engine
*sde
,
297 return read_kctxt_csr(sde
->dd
, sde
->this_idx
, offset0
);
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
304 static void sdma_wait_for_packet_egress(struct sdma_engine
*sde
,
307 u64 off
= 8 * sde
->this_idx
;
308 struct hfi1_devdata
*dd
= sde
->dd
;
315 reg
= read_csr(dd
, off
+ SEND_EGRESS_SEND_DMA_STATUS
);
317 reg
&= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
;
318 reg
>>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
;
321 /* counter is reest if accupancy count changes */
325 /* timed out - bounce the link */
326 dd_dev_err(dd
, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327 __func__
, sde
->this_idx
, (u32
)reg
);
328 queue_work(dd
->pport
->hfi1_wq
,
329 &dd
->pport
->link_bounce_work
);
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
340 void sdma_wait(struct hfi1_devdata
*dd
)
344 for (i
= 0; i
< dd
->num_sdma
; i
++) {
345 struct sdma_engine
*sde
= &dd
->per_sdma
[i
];
347 sdma_wait_for_packet_egress(sde
, 0);
351 static inline void sdma_set_desc_cnt(struct sdma_engine
*sde
, unsigned cnt
)
355 if (!(sde
->dd
->flags
& HFI1_HAS_SDMA_TIMEOUT
))
358 reg
&= SD(DESC_CNT_CNT_MASK
);
359 reg
<<= SD(DESC_CNT_CNT_SHIFT
);
360 write_sde_csr(sde
, SD(DESC_CNT
), reg
);
363 static inline void complete_tx(struct sdma_engine
*sde
,
364 struct sdma_txreq
*tx
,
367 /* protect against complete modifying */
368 struct iowait
*wait
= tx
->wait
;
369 callback_t complete
= tx
->complete
;
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372 trace_hfi1_sdma_out_sn(sde
, tx
->sn
);
373 if (WARN_ON_ONCE(sde
->head_sn
!= tx
->sn
))
374 dd_dev_err(sde
->dd
, "expected %llu got %llu\n",
375 sde
->head_sn
, tx
->sn
);
378 sdma_txclean(sde
->dd
, tx
);
380 (*complete
)(tx
, res
);
381 if (wait
&& iowait_sdma_dec(wait
))
382 iowait_drain_wakeup(wait
);
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
400 * Must be called with head_lock held
403 static void sdma_flush(struct sdma_engine
*sde
)
405 struct sdma_txreq
*txp
, *txp_next
;
406 LIST_HEAD(flushlist
);
409 /* flush from head to tail */
410 sdma_flush_descq(sde
);
411 spin_lock_irqsave(&sde
->flushlist_lock
, flags
);
412 /* copy flush list */
413 list_for_each_entry_safe(txp
, txp_next
, &sde
->flushlist
, list
) {
414 list_del_init(&txp
->list
);
415 list_add_tail(&txp
->list
, &flushlist
);
417 spin_unlock_irqrestore(&sde
->flushlist_lock
, flags
);
418 /* flush from flush list */
419 list_for_each_entry_safe(txp
, txp_next
, &flushlist
, list
)
420 complete_tx(sde
, txp
, SDMA_TXREQ_S_ABORTED
);
424 * Fields a work request for flushing the descq ring
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
433 static void sdma_field_flush(struct work_struct
*work
)
436 struct sdma_engine
*sde
=
437 container_of(work
, struct sdma_engine
, flush_worker
);
439 write_seqlock_irqsave(&sde
->head_lock
, flags
);
440 if (!__sdma_running(sde
))
442 write_sequnlock_irqrestore(&sde
->head_lock
, flags
);
445 static void sdma_err_halt_wait(struct work_struct
*work
)
447 struct sdma_engine
*sde
= container_of(work
, struct sdma_engine
,
450 unsigned long timeout
;
452 timeout
= jiffies
+ msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT
);
454 statuscsr
= read_sde_csr(sde
, SD(STATUS
));
455 statuscsr
&= SD(STATUS_ENG_HALTED_SMASK
);
458 if (time_after(jiffies
, timeout
)) {
460 "SDMA engine %d - timeout waiting for engine to halt\n",
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
468 usleep_range(80, 120);
471 sdma_process_event(sde
, sdma_event_e15_hw_halt_done
);
474 static void sdma_err_progress_check_schedule(struct sdma_engine
*sde
)
476 if (!is_bx(sde
->dd
) && HFI1_CAP_IS_KSET(SDMA_AHG
)) {
478 struct hfi1_devdata
*dd
= sde
->dd
;
480 for (index
= 0; index
< dd
->num_sdma
; index
++) {
481 struct sdma_engine
*curr_sdma
= &dd
->per_sdma
[index
];
483 if (curr_sdma
!= sde
)
484 curr_sdma
->progress_check_head
=
485 curr_sdma
->descq_head
;
488 "SDMA engine %d - check scheduled\n",
490 mod_timer(&sde
->err_progress_check_timer
, jiffies
+ 10);
494 static void sdma_err_progress_check(unsigned long data
)
497 struct sdma_engine
*sde
= (struct sdma_engine
*)data
;
499 dd_dev_err(sde
->dd
, "SDE progress check event\n");
500 for (index
= 0; index
< sde
->dd
->num_sdma
; index
++) {
501 struct sdma_engine
*curr_sde
= &sde
->dd
->per_sdma
[index
];
504 /* check progress on each engine except the current one */
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
512 spin_lock_irqsave(&curr_sde
->tail_lock
, flags
);
513 write_seqlock(&curr_sde
->head_lock
);
515 /* skip non-running queues */
516 if (curr_sde
->state
.current_state
!= sdma_state_s99_running
) {
517 write_sequnlock(&curr_sde
->head_lock
);
518 spin_unlock_irqrestore(&curr_sde
->tail_lock
, flags
);
522 if ((curr_sde
->descq_head
!= curr_sde
->descq_tail
) &&
523 (curr_sde
->descq_head
==
524 curr_sde
->progress_check_head
))
525 __sdma_process_event(curr_sde
,
526 sdma_event_e90_sw_halted
);
527 write_sequnlock(&curr_sde
->head_lock
);
528 spin_unlock_irqrestore(&curr_sde
->tail_lock
, flags
);
530 schedule_work(&sde
->err_halt_worker
);
533 static void sdma_hw_clean_up_task(unsigned long opaque
)
535 struct sdma_engine
*sde
= (struct sdma_engine
*)opaque
;
539 #ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
,
544 statuscsr
= read_sde_csr(sde
, SD(STATUS
));
545 statuscsr
&= SD(STATUS_ENG_CLEANED_UP_SMASK
);
551 sdma_process_event(sde
, sdma_event_e25_hw_clean_up_done
);
554 static inline struct sdma_txreq
*get_txhead(struct sdma_engine
*sde
)
556 smp_read_barrier_depends(); /* see sdma_update_tail() */
557 return sde
->tx_ring
[sde
->tx_head
& sde
->sdma_mask
];
561 * flush ring for recovery
563 static void sdma_flush_descq(struct sdma_engine
*sde
)
567 struct sdma_txreq
*txp
= get_txhead(sde
);
569 /* The reason for some of the complexity of this code is that
570 * not all descriptors have corresponding txps. So, we have to
571 * be able to skip over descs until we wander into the range of
572 * the next txp on the list.
574 head
= sde
->descq_head
& sde
->sdma_mask
;
575 tail
= sde
->descq_tail
& sde
->sdma_mask
;
576 while (head
!= tail
) {
577 /* advance head, wrap if needed */
578 head
= ++sde
->descq_head
& sde
->sdma_mask
;
579 /* if now past this txp's descs, do the callback */
580 if (txp
&& txp
->next_descq_idx
== head
) {
581 /* remove from list */
582 sde
->tx_ring
[sde
->tx_head
++ & sde
->sdma_mask
] = NULL
;
583 complete_tx(sde
, txp
, SDMA_TXREQ_S_ABORTED
);
584 trace_hfi1_sdma_progress(sde
, head
, tail
, txp
);
585 txp
= get_txhead(sde
);
590 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
593 static void sdma_sw_clean_up_task(unsigned long opaque
)
595 struct sdma_engine
*sde
= (struct sdma_engine
*)opaque
;
598 spin_lock_irqsave(&sde
->tail_lock
, flags
);
599 write_seqlock(&sde
->head_lock
);
602 * At this point, the following should always be true:
603 * - We are halted, so no more descriptors are getting retired.
604 * - We are not running, so no one is submitting new work.
605 * - Only we can send the e40_sw_cleaned, so we can't start
606 * running again until we say so. So, the active list and
607 * descq are ours to play with.
611 * In the error clean up sequence, software clean must be called
612 * before the hardware clean so we can use the hardware head in
613 * the progress routine. A hardware clean or SPC unfreeze will
614 * reset the hardware head.
616 * Process all retired requests. The progress routine will use the
617 * latest physical hardware head - we are not running so speed does
620 sdma_make_progress(sde
, 0);
625 * Reset our notion of head and tail.
626 * Note that the HW registers have been reset via an earlier
631 sde
->desc_avail
= sdma_descq_freecnt(sde
);
634 __sdma_process_event(sde
, sdma_event_e40_sw_cleaned
);
636 write_sequnlock(&sde
->head_lock
);
637 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
640 static void sdma_sw_tear_down(struct sdma_engine
*sde
)
642 struct sdma_state
*ss
= &sde
->state
;
644 /* Releasing this reference means the state machine has stopped. */
647 /* stop waiting for all unfreeze events to complete */
648 atomic_set(&sde
->dd
->sdma_unfreeze_count
, -1);
649 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
652 static void sdma_start_hw_clean_up(struct sdma_engine
*sde
)
654 tasklet_hi_schedule(&sde
->sdma_hw_clean_up_task
);
657 static void sdma_set_state(struct sdma_engine
*sde
,
658 enum sdma_states next_state
)
660 struct sdma_state
*ss
= &sde
->state
;
661 const struct sdma_set_state_action
*action
= sdma_action_table
;
664 trace_hfi1_sdma_state(
666 sdma_state_names
[ss
->current_state
],
667 sdma_state_names
[next_state
]);
669 /* debugging bookkeeping */
670 ss
->previous_state
= ss
->current_state
;
671 ss
->previous_op
= ss
->current_op
;
672 ss
->current_state
= next_state
;
674 if (ss
->previous_state
!= sdma_state_s99_running
&&
675 next_state
== sdma_state_s99_running
)
678 if (action
[next_state
].op_enable
)
679 op
|= SDMA_SENDCTRL_OP_ENABLE
;
681 if (action
[next_state
].op_intenable
)
682 op
|= SDMA_SENDCTRL_OP_INTENABLE
;
684 if (action
[next_state
].op_halt
)
685 op
|= SDMA_SENDCTRL_OP_HALT
;
687 if (action
[next_state
].op_cleanup
)
688 op
|= SDMA_SENDCTRL_OP_CLEANUP
;
690 if (action
[next_state
].go_s99_running_tofalse
)
691 ss
->go_s99_running
= 0;
693 if (action
[next_state
].go_s99_running_totrue
)
694 ss
->go_s99_running
= 1;
697 sdma_sendctrl(sde
, ss
->current_op
);
701 * sdma_get_descq_cnt() - called when device probed
703 * Return a validated descq count.
705 * This is currently only used in the verbs initialization to build the tx
708 * This will probably be deleted in favor of a more scalable approach to
712 u16
sdma_get_descq_cnt(void)
714 u16 count
= sdma_descq_cnt
;
717 return SDMA_DESCQ_CNT
;
718 /* count must be a power of 2 greater than 64 and less than
719 * 32768. Otherwise return default.
721 if (!is_power_of_2(count
))
722 return SDMA_DESCQ_CNT
;
723 if (count
< 64 || count
> 32768)
724 return SDMA_DESCQ_CNT
;
729 * sdma_engine_get_vl() - return vl for a given sdma engine
732 * This function returns the vl mapped to a given engine, or an error if
733 * the mapping can't be found. The mapping fields are protected by RCU.
735 int sdma_engine_get_vl(struct sdma_engine
*sde
)
737 struct hfi1_devdata
*dd
= sde
->dd
;
738 struct sdma_vl_map
*m
;
741 if (sde
->this_idx
>= TXE_NUM_SDMA_ENGINES
)
745 m
= rcu_dereference(dd
->sdma_map
);
750 vl
= m
->engine_to_vl
[sde
->this_idx
];
757 * sdma_select_engine_vl() - select sdma engine
759 * @selector: a spreading factor
763 * This function returns an engine based on the selector and a vl. The
764 * mapping fields are protected by RCU.
766 struct sdma_engine
*sdma_select_engine_vl(
767 struct hfi1_devdata
*dd
,
771 struct sdma_vl_map
*m
;
772 struct sdma_map_elem
*e
;
773 struct sdma_engine
*rval
;
775 /* NOTE This should only happen if SC->VL changed after the initial
776 * checks on the QP/AH
777 * Default will return engine 0 below
785 m
= rcu_dereference(dd
->sdma_map
);
788 return &dd
->per_sdma
[0];
790 e
= m
->map
[vl
& m
->mask
];
791 rval
= e
->sde
[selector
& e
->mask
];
795 rval
= !rval
? &dd
->per_sdma
[0] : rval
;
796 trace_hfi1_sdma_engine_select(dd
, selector
, vl
, rval
->this_idx
);
801 * sdma_select_engine_sc() - select sdma engine
803 * @selector: a spreading factor
807 * This function returns an engine based on the selector and an sc.
809 struct sdma_engine
*sdma_select_engine_sc(
810 struct hfi1_devdata
*dd
,
814 u8 vl
= sc_to_vlt(dd
, sc5
);
816 return sdma_select_engine_vl(dd
, selector
, vl
);
819 struct sdma_rht_map_elem
{
822 struct sdma_engine
*sde
[0];
825 struct sdma_rht_node
{
826 unsigned long cpu_id
;
827 struct sdma_rht_map_elem
*map
[HFI1_MAX_VLS_SUPPORTED
];
828 struct rhash_head node
;
831 #define NR_CPUS_HINT 192
833 static const struct rhashtable_params sdma_rht_params
= {
834 .nelem_hint
= NR_CPUS_HINT
,
835 .head_offset
= offsetof(struct sdma_rht_node
, node
),
836 .key_offset
= offsetof(struct sdma_rht_node
, cpu_id
),
837 .key_len
= FIELD_SIZEOF(struct sdma_rht_node
, cpu_id
),
840 .automatic_shrinking
= true,
844 * sdma_select_user_engine() - select sdma engine based on user setup
846 * @selector: a spreading factor
849 * This function returns an sdma engine for a user sdma request.
850 * User defined sdma engine affinity setting is honored when applicable,
851 * otherwise system default sdma engine mapping is used. To ensure correct
852 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
854 struct sdma_engine
*sdma_select_user_engine(struct hfi1_devdata
*dd
,
857 struct sdma_rht_node
*rht_node
;
858 struct sdma_engine
*sde
= NULL
;
859 const struct cpumask
*current_mask
= tsk_cpus_allowed(current
);
860 unsigned long cpu_id
;
863 * To ensure that always the same sdma engine(s) will be
864 * selected make sure the process is pinned to this CPU only.
866 if (cpumask_weight(current_mask
) != 1)
869 cpu_id
= smp_processor_id();
871 rht_node
= rhashtable_lookup_fast(&dd
->sdma_rht
, &cpu_id
,
874 if (rht_node
&& rht_node
->map
[vl
]) {
875 struct sdma_rht_map_elem
*map
= rht_node
->map
[vl
];
877 sde
= map
->sde
[selector
& map
->mask
];
885 return sdma_select_engine_vl(dd
, selector
, vl
);
888 static void sdma_populate_sde_map(struct sdma_rht_map_elem
*map
)
892 for (i
= 0; i
< roundup_pow_of_two(map
->ctr
? : 1) - map
->ctr
; i
++)
893 map
->sde
[map
->ctr
+ i
] = map
->sde
[i
];
896 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem
*map
,
897 struct sdma_engine
*sde
)
901 /* only need to check the first ctr entries for a match */
902 for (i
= 0; i
< map
->ctr
; i
++) {
903 if (map
->sde
[i
] == sde
) {
904 memmove(&map
->sde
[i
], &map
->sde
[i
+ 1],
905 (map
->ctr
- i
- 1) * sizeof(map
->sde
[0]));
907 pow
= roundup_pow_of_two(map
->ctr
? : 1);
909 sdma_populate_sde_map(map
);
916 * Prevents concurrent reads and writes of the sdma engine cpu_mask
918 static DEFINE_MUTEX(process_to_sde_mutex
);
920 ssize_t
sdma_set_cpu_to_sde_map(struct sdma_engine
*sde
, const char *buf
,
923 struct hfi1_devdata
*dd
= sde
->dd
;
924 cpumask_var_t mask
, new_mask
;
928 vl
= sdma_engine_get_vl(sde
);
929 if (unlikely(vl
< 0))
932 ret
= zalloc_cpumask_var(&mask
, GFP_KERNEL
);
936 ret
= zalloc_cpumask_var(&new_mask
, GFP_KERNEL
);
938 free_cpumask_var(mask
);
941 ret
= cpulist_parse(buf
, mask
);
945 if (!cpumask_subset(mask
, cpu_online_mask
)) {
946 dd_dev_warn(sde
->dd
, "Invalid CPU mask\n");
951 sz
= sizeof(struct sdma_rht_map_elem
) +
952 (TXE_NUM_SDMA_ENGINES
* sizeof(struct sdma_engine
*));
954 mutex_lock(&process_to_sde_mutex
);
956 for_each_cpu(cpu
, mask
) {
957 struct sdma_rht_node
*rht_node
;
959 /* Check if we have this already mapped */
960 if (cpumask_test_cpu(cpu
, &sde
->cpu_mask
)) {
961 cpumask_set_cpu(cpu
, new_mask
);
965 rht_node
= rhashtable_lookup_fast(&dd
->sdma_rht
, &cpu
,
968 rht_node
= kzalloc(sizeof(*rht_node
), GFP_KERNEL
);
974 rht_node
->map
[vl
] = kzalloc(sz
, GFP_KERNEL
);
975 if (!rht_node
->map
[vl
]) {
980 rht_node
->cpu_id
= cpu
;
981 rht_node
->map
[vl
]->mask
= 0;
982 rht_node
->map
[vl
]->ctr
= 1;
983 rht_node
->map
[vl
]->sde
[0] = sde
;
985 ret
= rhashtable_insert_fast(&dd
->sdma_rht
,
989 kfree(rht_node
->map
[vl
]);
991 dd_dev_err(sde
->dd
, "Failed to set process to sde affinity for cpu %lu\n",
999 /* Add new user mappings */
1000 if (!rht_node
->map
[vl
])
1001 rht_node
->map
[vl
] = kzalloc(sz
, GFP_KERNEL
);
1003 if (!rht_node
->map
[vl
]) {
1008 rht_node
->map
[vl
]->ctr
++;
1009 ctr
= rht_node
->map
[vl
]->ctr
;
1010 rht_node
->map
[vl
]->sde
[ctr
- 1] = sde
;
1011 pow
= roundup_pow_of_two(ctr
);
1012 rht_node
->map
[vl
]->mask
= pow
- 1;
1014 /* Populate the sde map table */
1015 sdma_populate_sde_map(rht_node
->map
[vl
]);
1017 cpumask_set_cpu(cpu
, new_mask
);
1020 /* Clean up old mappings */
1021 for_each_cpu(cpu
, cpu_online_mask
) {
1022 struct sdma_rht_node
*rht_node
;
1024 /* Don't cleanup sdes that are set in the new mask */
1025 if (cpumask_test_cpu(cpu
, mask
))
1028 rht_node
= rhashtable_lookup_fast(&dd
->sdma_rht
, &cpu
,
1034 /* Remove mappings for old sde */
1035 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1036 if (rht_node
->map
[i
])
1037 sdma_cleanup_sde_map(rht_node
->map
[i
],
1040 /* Free empty hash table entries */
1041 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++) {
1042 if (!rht_node
->map
[i
])
1045 if (rht_node
->map
[i
]->ctr
) {
1052 ret
= rhashtable_remove_fast(&dd
->sdma_rht
,
1057 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1058 kfree(rht_node
->map
[i
]);
1065 cpumask_copy(&sde
->cpu_mask
, new_mask
);
1067 mutex_unlock(&process_to_sde_mutex
);
1069 free_cpumask_var(mask
);
1070 free_cpumask_var(new_mask
);
1071 return ret
? : strnlen(buf
, PAGE_SIZE
);
1074 ssize_t
sdma_get_cpu_to_sde_map(struct sdma_engine
*sde
, char *buf
)
1076 mutex_lock(&process_to_sde_mutex
);
1077 if (cpumask_empty(&sde
->cpu_mask
))
1078 snprintf(buf
, PAGE_SIZE
, "%s\n", "empty");
1080 cpumap_print_to_pagebuf(true, buf
, &sde
->cpu_mask
);
1081 mutex_unlock(&process_to_sde_mutex
);
1082 return strnlen(buf
, PAGE_SIZE
);
1085 static void sdma_rht_free(void *ptr
, void *arg
)
1087 struct sdma_rht_node
*rht_node
= ptr
;
1090 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1091 kfree(rht_node
->map
[i
]);
1097 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1102 * This routine dumps the process to sde mappings per cpu
1104 void sdma_seqfile_dump_cpu_list(struct seq_file
*s
,
1105 struct hfi1_devdata
*dd
,
1106 unsigned long cpuid
)
1108 struct sdma_rht_node
*rht_node
;
1111 rht_node
= rhashtable_lookup_fast(&dd
->sdma_rht
, &cpuid
,
1116 seq_printf(s
, "cpu%3lu: ", cpuid
);
1117 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++) {
1118 if (!rht_node
->map
[i
] || !rht_node
->map
[i
]->ctr
)
1121 seq_printf(s
, " vl%d: [", i
);
1123 for (j
= 0; j
< rht_node
->map
[i
]->ctr
; j
++) {
1124 if (!rht_node
->map
[i
]->sde
[j
])
1130 seq_printf(s
, " sdma%2d",
1131 rht_node
->map
[i
]->sde
[j
]->this_idx
);
1140 * Free the indicated map struct
1142 static void sdma_map_free(struct sdma_vl_map
*m
)
1146 for (i
= 0; m
&& i
< m
->actual_vls
; i
++)
1152 * Handle RCU callback
1154 static void sdma_map_rcu_callback(struct rcu_head
*list
)
1156 struct sdma_vl_map
*m
= container_of(list
, struct sdma_vl_map
, list
);
1162 * sdma_map_init - called when # vls change
1164 * @port: port number
1165 * @num_vls: number of vls
1166 * @vl_engines: per vl engine mapping (optional)
1168 * This routine changes the mapping based on the number of vls.
1170 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1171 * implies auto computing the loading and giving each VLs a uniform
1172 * distribution of engines per VL.
1174 * The auto algorithm computes the sde_per_vl and the number of extra
1175 * engines. Any extra engines are added from the last VL on down.
1177 * rcu locking is used here to control access to the mapping fields.
1179 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1180 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1181 * up to the next highest power of 2 and the first entry is reused
1182 * in a round robin fashion.
1184 * If an error occurs the map change is not done and the mapping is
1188 int sdma_map_init(struct hfi1_devdata
*dd
, u8 port
, u8 num_vls
, u8
*vl_engines
)
1191 int extra
, sde_per_vl
;
1193 u8 lvl_engines
[OPA_MAX_VLS
];
1194 struct sdma_vl_map
*oldmap
, *newmap
;
1196 if (!(dd
->flags
& HFI1_HAS_SEND_DMA
))
1200 /* truncate divide */
1201 sde_per_vl
= dd
->num_sdma
/ num_vls
;
1203 extra
= dd
->num_sdma
% num_vls
;
1204 vl_engines
= lvl_engines
;
1205 /* add extras from last vl down */
1206 for (i
= num_vls
- 1; i
>= 0; i
--, extra
--)
1207 vl_engines
[i
] = sde_per_vl
+ (extra
> 0 ? 1 : 0);
1211 sizeof(struct sdma_vl_map
) +
1212 roundup_pow_of_two(num_vls
) *
1213 sizeof(struct sdma_map_elem
*),
1217 newmap
->actual_vls
= num_vls
;
1218 newmap
->vls
= roundup_pow_of_two(num_vls
);
1219 newmap
->mask
= (1 << ilog2(newmap
->vls
)) - 1;
1220 /* initialize back-map */
1221 for (i
= 0; i
< TXE_NUM_SDMA_ENGINES
; i
++)
1222 newmap
->engine_to_vl
[i
] = -1;
1223 for (i
= 0; i
< newmap
->vls
; i
++) {
1224 /* save for wrap around */
1225 int first_engine
= engine
;
1227 if (i
< newmap
->actual_vls
) {
1228 int sz
= roundup_pow_of_two(vl_engines
[i
]);
1230 /* only allocate once */
1231 newmap
->map
[i
] = kzalloc(
1232 sizeof(struct sdma_map_elem
) +
1233 sz
* sizeof(struct sdma_engine
*),
1235 if (!newmap
->map
[i
])
1237 newmap
->map
[i
]->mask
= (1 << ilog2(sz
)) - 1;
1238 /* assign engines */
1239 for (j
= 0; j
< sz
; j
++) {
1240 newmap
->map
[i
]->sde
[j
] =
1241 &dd
->per_sdma
[engine
];
1242 if (++engine
>= first_engine
+ vl_engines
[i
])
1243 /* wrap back to first engine */
1244 engine
= first_engine
;
1246 /* assign back-map */
1247 for (j
= 0; j
< vl_engines
[i
]; j
++)
1248 newmap
->engine_to_vl
[first_engine
+ j
] = i
;
1250 /* just re-use entry without allocating */
1251 newmap
->map
[i
] = newmap
->map
[i
% num_vls
];
1253 engine
= first_engine
+ vl_engines
[i
];
1255 /* newmap in hand, save old map */
1256 spin_lock_irq(&dd
->sde_map_lock
);
1257 oldmap
= rcu_dereference_protected(dd
->sdma_map
,
1258 lockdep_is_held(&dd
->sde_map_lock
));
1260 /* publish newmap */
1261 rcu_assign_pointer(dd
->sdma_map
, newmap
);
1263 spin_unlock_irq(&dd
->sde_map_lock
);
1264 /* success, free any old map after grace period */
1266 call_rcu(&oldmap
->list
, sdma_map_rcu_callback
);
1269 /* free any partial allocation */
1270 sdma_map_free(newmap
);
1275 * Clean up allocated memory.
1277 * This routine is can be called regardless of the success of sdma_init()
1280 static void sdma_clean(struct hfi1_devdata
*dd
, size_t num_engines
)
1283 struct sdma_engine
*sde
;
1285 if (dd
->sdma_pad_dma
) {
1286 dma_free_coherent(&dd
->pcidev
->dev
, 4,
1287 (void *)dd
->sdma_pad_dma
,
1289 dd
->sdma_pad_dma
= NULL
;
1290 dd
->sdma_pad_phys
= 0;
1292 if (dd
->sdma_heads_dma
) {
1293 dma_free_coherent(&dd
->pcidev
->dev
, dd
->sdma_heads_size
,
1294 (void *)dd
->sdma_heads_dma
,
1295 dd
->sdma_heads_phys
);
1296 dd
->sdma_heads_dma
= NULL
;
1297 dd
->sdma_heads_phys
= 0;
1299 for (i
= 0; dd
->per_sdma
&& i
< num_engines
; ++i
) {
1300 sde
= &dd
->per_sdma
[i
];
1302 sde
->head_dma
= NULL
;
1308 sde
->descq_cnt
* sizeof(u64
[2]),
1313 sde
->descq_phys
= 0;
1315 kvfree(sde
->tx_ring
);
1316 sde
->tx_ring
= NULL
;
1318 spin_lock_irq(&dd
->sde_map_lock
);
1319 sdma_map_free(rcu_access_pointer(dd
->sdma_map
));
1320 RCU_INIT_POINTER(dd
->sdma_map
, NULL
);
1321 spin_unlock_irq(&dd
->sde_map_lock
);
1323 kfree(dd
->per_sdma
);
1324 dd
->per_sdma
= NULL
;
1328 * sdma_init() - called when device probed
1330 * @port: port number (currently only zero)
1332 * sdma_init initializes the specified number of engines.
1334 * The code initializes each sde, its csrs. Interrupts
1335 * are not required to be enabled.
1338 * 0 - success, -errno on failure
1340 int sdma_init(struct hfi1_devdata
*dd
, u8 port
)
1343 struct sdma_engine
*sde
;
1346 struct hfi1_pportdata
*ppd
= dd
->pport
+ port
;
1347 u32 per_sdma_credits
;
1348 uint idle_cnt
= sdma_idle_cnt
;
1349 size_t num_engines
= dd
->chip_sdma_engines
;
1351 if (!HFI1_CAP_IS_KSET(SDMA
)) {
1352 HFI1_CAP_CLEAR(SDMA_AHG
);
1356 /* can't exceed chip support */
1357 mod_num_sdma
<= dd
->chip_sdma_engines
&&
1358 /* count must be >= vls */
1359 mod_num_sdma
>= num_vls
)
1360 num_engines
= mod_num_sdma
;
1362 dd_dev_info(dd
, "SDMA mod_num_sdma: %u\n", mod_num_sdma
);
1363 dd_dev_info(dd
, "SDMA chip_sdma_engines: %u\n", dd
->chip_sdma_engines
);
1364 dd_dev_info(dd
, "SDMA chip_sdma_mem_size: %u\n",
1365 dd
->chip_sdma_mem_size
);
1368 dd
->chip_sdma_mem_size
/ (num_engines
* SDMA_BLOCK_SIZE
);
1370 /* set up freeze waitqueue */
1371 init_waitqueue_head(&dd
->sdma_unfreeze_wq
);
1372 atomic_set(&dd
->sdma_unfreeze_count
, 0);
1374 descq_cnt
= sdma_get_descq_cnt();
1375 dd_dev_info(dd
, "SDMA engines %zu descq_cnt %u\n",
1376 num_engines
, descq_cnt
);
1378 /* alloc memory for array of send engines */
1379 dd
->per_sdma
= kcalloc(num_engines
, sizeof(*dd
->per_sdma
), GFP_KERNEL
);
1383 idle_cnt
= ns_to_cclock(dd
, idle_cnt
);
1384 if (!sdma_desct_intr
)
1385 sdma_desct_intr
= SDMA_DESC_INTR
;
1387 /* Allocate memory for SendDMA descriptor FIFOs */
1388 for (this_idx
= 0; this_idx
< num_engines
; ++this_idx
) {
1389 sde
= &dd
->per_sdma
[this_idx
];
1392 sde
->this_idx
= this_idx
;
1393 sde
->descq_cnt
= descq_cnt
;
1394 sde
->desc_avail
= sdma_descq_freecnt(sde
);
1395 sde
->sdma_shift
= ilog2(descq_cnt
);
1396 sde
->sdma_mask
= (1 << sde
->sdma_shift
) - 1;
1398 /* Create a mask specifically for each interrupt source */
1399 sde
->int_mask
= (u64
)1 << (0 * TXE_NUM_SDMA_ENGINES
+
1401 sde
->progress_mask
= (u64
)1 << (1 * TXE_NUM_SDMA_ENGINES
+
1403 sde
->idle_mask
= (u64
)1 << (2 * TXE_NUM_SDMA_ENGINES
+
1405 /* Create a combined mask to cover all 3 interrupt sources */
1406 sde
->imask
= sde
->int_mask
| sde
->progress_mask
|
1409 spin_lock_init(&sde
->tail_lock
);
1410 seqlock_init(&sde
->head_lock
);
1411 spin_lock_init(&sde
->senddmactrl_lock
);
1412 spin_lock_init(&sde
->flushlist_lock
);
1413 /* insure there is always a zero bit */
1414 sde
->ahg_bits
= 0xfffffffe00000000ULL
;
1416 sdma_set_state(sde
, sdma_state_s00_hw_down
);
1418 /* set up reference counting */
1419 kref_init(&sde
->state
.kref
);
1420 init_completion(&sde
->state
.comp
);
1422 INIT_LIST_HEAD(&sde
->flushlist
);
1423 INIT_LIST_HEAD(&sde
->dmawait
);
1426 get_kctxt_csr_addr(dd
, this_idx
, SD(TAIL
));
1430 SDMA_DESC1_HEAD_TO_HOST_FLAG
;
1433 SDMA_DESC1_INT_REQ_FLAG
;
1435 tasklet_init(&sde
->sdma_hw_clean_up_task
, sdma_hw_clean_up_task
,
1436 (unsigned long)sde
);
1438 tasklet_init(&sde
->sdma_sw_clean_up_task
, sdma_sw_clean_up_task
,
1439 (unsigned long)sde
);
1440 INIT_WORK(&sde
->err_halt_worker
, sdma_err_halt_wait
);
1441 INIT_WORK(&sde
->flush_worker
, sdma_field_flush
);
1443 sde
->progress_check_head
= 0;
1445 setup_timer(&sde
->err_progress_check_timer
,
1446 sdma_err_progress_check
, (unsigned long)sde
);
1448 sde
->descq
= dma_zalloc_coherent(
1450 descq_cnt
* sizeof(u64
[2]),
1457 kcalloc(descq_cnt
, sizeof(struct sdma_txreq
*),
1462 sizeof(struct sdma_txreq
*) *
1468 dd
->sdma_heads_size
= L1_CACHE_BYTES
* num_engines
;
1469 /* Allocate memory for DMA of head registers to memory */
1470 dd
->sdma_heads_dma
= dma_zalloc_coherent(
1472 dd
->sdma_heads_size
,
1473 &dd
->sdma_heads_phys
,
1476 if (!dd
->sdma_heads_dma
) {
1477 dd_dev_err(dd
, "failed to allocate SendDMA head memory\n");
1481 /* Allocate memory for pad */
1482 dd
->sdma_pad_dma
= dma_zalloc_coherent(
1488 if (!dd
->sdma_pad_dma
) {
1489 dd_dev_err(dd
, "failed to allocate SendDMA pad memory\n");
1493 /* assign each engine to different cacheline and init registers */
1494 curr_head
= (void *)dd
->sdma_heads_dma
;
1495 for (this_idx
= 0; this_idx
< num_engines
; ++this_idx
) {
1496 unsigned long phys_offset
;
1498 sde
= &dd
->per_sdma
[this_idx
];
1500 sde
->head_dma
= curr_head
;
1501 curr_head
+= L1_CACHE_BYTES
;
1502 phys_offset
= (unsigned long)sde
->head_dma
-
1503 (unsigned long)dd
->sdma_heads_dma
;
1504 sde
->head_phys
= dd
->sdma_heads_phys
+ phys_offset
;
1505 init_sdma_regs(sde
, per_sdma_credits
, idle_cnt
);
1507 dd
->flags
|= HFI1_HAS_SEND_DMA
;
1508 dd
->flags
|= idle_cnt
? HFI1_HAS_SDMA_TIMEOUT
: 0;
1509 dd
->num_sdma
= num_engines
;
1510 if (sdma_map_init(dd
, port
, ppd
->vls_operational
, NULL
))
1513 if (rhashtable_init(&dd
->sdma_rht
, &sdma_rht_params
))
1516 dd_dev_info(dd
, "SDMA num_sdma: %u\n", dd
->num_sdma
);
1520 sdma_clean(dd
, num_engines
);
1525 * sdma_all_running() - called when the link goes up
1528 * This routine moves all engines to the running state.
1530 void sdma_all_running(struct hfi1_devdata
*dd
)
1532 struct sdma_engine
*sde
;
1535 /* move all engines to running */
1536 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1537 sde
= &dd
->per_sdma
[i
];
1538 sdma_process_event(sde
, sdma_event_e30_go_running
);
1543 * sdma_all_idle() - called when the link goes down
1546 * This routine moves all engines to the idle state.
1548 void sdma_all_idle(struct hfi1_devdata
*dd
)
1550 struct sdma_engine
*sde
;
1553 /* idle all engines */
1554 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1555 sde
= &dd
->per_sdma
[i
];
1556 sdma_process_event(sde
, sdma_event_e70_go_idle
);
1561 * sdma_start() - called to kick off state processing for all engines
1564 * This routine is for kicking off the state processing for all required
1565 * sdma engines. Interrupts need to be working at this point.
1568 void sdma_start(struct hfi1_devdata
*dd
)
1571 struct sdma_engine
*sde
;
1573 /* kick off the engines state processing */
1574 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1575 sde
= &dd
->per_sdma
[i
];
1576 sdma_process_event(sde
, sdma_event_e10_go_hw_start
);
1581 * sdma_exit() - used when module is removed
1584 void sdma_exit(struct hfi1_devdata
*dd
)
1587 struct sdma_engine
*sde
;
1589 for (this_idx
= 0; dd
->per_sdma
&& this_idx
< dd
->num_sdma
;
1591 sde
= &dd
->per_sdma
[this_idx
];
1592 if (!list_empty(&sde
->dmawait
))
1593 dd_dev_err(dd
, "sde %u: dmawait list not empty!\n",
1595 sdma_process_event(sde
, sdma_event_e00_go_hw_down
);
1597 del_timer_sync(&sde
->err_progress_check_timer
);
1600 * This waits for the state machine to exit so it is not
1601 * necessary to kill the sdma_sw_clean_up_task to make sure
1602 * it is not running.
1604 sdma_finalput(&sde
->state
);
1606 sdma_clean(dd
, dd
->num_sdma
);
1607 rhashtable_free_and_destroy(&dd
->sdma_rht
, sdma_rht_free
, NULL
);
1611 * unmap the indicated descriptor
1613 static inline void sdma_unmap_desc(
1614 struct hfi1_devdata
*dd
,
1615 struct sdma_desc
*descp
)
1617 switch (sdma_mapping_type(descp
)) {
1618 case SDMA_MAP_SINGLE
:
1621 sdma_mapping_addr(descp
),
1622 sdma_mapping_len(descp
),
1628 sdma_mapping_addr(descp
),
1629 sdma_mapping_len(descp
),
1636 * return the mode as indicated by the first
1637 * descriptor in the tx.
1639 static inline u8
ahg_mode(struct sdma_txreq
*tx
)
1641 return (tx
->descp
[0].qw
[1] & SDMA_DESC1_HEADER_MODE_SMASK
)
1642 >> SDMA_DESC1_HEADER_MODE_SHIFT
;
1646 * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1647 * @dd: hfi1_devdata for unmapping
1648 * @tx: tx request to clean
1650 * This is used in the progress routine to clean the tx or
1651 * by the ULP to toss an in-process tx build.
1653 * The code can be called multiple times without issue.
1657 struct hfi1_devdata
*dd
,
1658 struct sdma_txreq
*tx
)
1663 u8 skip
= 0, mode
= ahg_mode(tx
);
1666 sdma_unmap_desc(dd
, &tx
->descp
[0]);
1667 /* determine number of AHG descriptors to skip */
1668 if (mode
> SDMA_AHG_APPLY_UPDATE1
)
1670 for (i
= 1 + skip
; i
< tx
->num_desc
; i
++)
1671 sdma_unmap_desc(dd
, &tx
->descp
[i
]);
1674 kfree(tx
->coalesce_buf
);
1675 tx
->coalesce_buf
= NULL
;
1676 /* kmalloc'ed descp */
1677 if (unlikely(tx
->desc_limit
> ARRAY_SIZE(tx
->descs
))) {
1678 tx
->desc_limit
= ARRAY_SIZE(tx
->descs
);
1683 static inline u16
sdma_gethead(struct sdma_engine
*sde
)
1685 struct hfi1_devdata
*dd
= sde
->dd
;
1689 #ifdef CONFIG_SDMA_VERBOSITY
1690 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
1691 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
1695 use_dmahead
= HFI1_CAP_IS_KSET(USE_SDMA_HEAD
) && __sdma_running(sde
) &&
1696 (dd
->flags
& HFI1_HAS_SDMA_TIMEOUT
);
1697 hwhead
= use_dmahead
?
1698 (u16
)le64_to_cpu(*sde
->head_dma
) :
1699 (u16
)read_sde_csr(sde
, SD(HEAD
));
1701 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK
))) {
1707 swhead
= sde
->descq_head
& sde
->sdma_mask
;
1708 /* this code is really bad for cache line trading */
1709 swtail
= ACCESS_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
1710 cnt
= sde
->descq_cnt
;
1712 if (swhead
< swtail
)
1714 sane
= (hwhead
>= swhead
) & (hwhead
<= swtail
);
1715 else if (swhead
> swtail
)
1716 /* wrapped around */
1717 sane
= ((hwhead
>= swhead
) && (hwhead
< cnt
)) ||
1721 sane
= (hwhead
== swhead
);
1723 if (unlikely(!sane
)) {
1724 dd_dev_err(dd
, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1726 use_dmahead
? "dma" : "kreg",
1727 hwhead
, swhead
, swtail
, cnt
);
1729 /* try one more time, using csr */
1733 /* proceed as if no progress */
1741 * This is called when there are send DMA descriptors that might be
1744 * This is called with head_lock held.
1746 static void sdma_desc_avail(struct sdma_engine
*sde
, unsigned avail
)
1748 struct iowait
*wait
, *nw
;
1749 struct iowait
*waits
[SDMA_WAIT_BATCH_SIZE
];
1750 unsigned i
, n
= 0, seq
;
1751 struct sdma_txreq
*stx
;
1752 struct hfi1_ibdev
*dev
= &sde
->dd
->verbs_dev
;
1754 #ifdef CONFIG_SDMA_VERBOSITY
1755 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n", sde
->this_idx
,
1756 slashstrip(__FILE__
), __LINE__
, __func__
);
1757 dd_dev_err(sde
->dd
, "avail: %u\n", avail
);
1761 seq
= read_seqbegin(&dev
->iowait_lock
);
1762 if (!list_empty(&sde
->dmawait
)) {
1763 /* at least one item */
1764 write_seqlock(&dev
->iowait_lock
);
1765 /* Harvest waiters wanting DMA descriptors */
1766 list_for_each_entry_safe(
1775 if (n
== ARRAY_SIZE(waits
))
1777 if (!list_empty(&wait
->tx_head
)) {
1778 stx
= list_first_entry(
1782 num_desc
= stx
->num_desc
;
1784 if (num_desc
> avail
)
1787 list_del_init(&wait
->list
);
1790 write_sequnlock(&dev
->iowait_lock
);
1793 } while (read_seqretry(&dev
->iowait_lock
, seq
));
1795 for (i
= 0; i
< n
; i
++)
1796 waits
[i
]->wakeup(waits
[i
], SDMA_AVAIL_REASON
);
1799 /* head_lock must be held */
1800 static void sdma_make_progress(struct sdma_engine
*sde
, u64 status
)
1802 struct sdma_txreq
*txp
= NULL
;
1805 int idle_check_done
= 0;
1807 hwhead
= sdma_gethead(sde
);
1809 /* The reason for some of the complexity of this code is that
1810 * not all descriptors have corresponding txps. So, we have to
1811 * be able to skip over descs until we wander into the range of
1812 * the next txp on the list.
1816 txp
= get_txhead(sde
);
1817 swhead
= sde
->descq_head
& sde
->sdma_mask
;
1818 trace_hfi1_sdma_progress(sde
, hwhead
, swhead
, txp
);
1819 while (swhead
!= hwhead
) {
1820 /* advance head, wrap if needed */
1821 swhead
= ++sde
->descq_head
& sde
->sdma_mask
;
1823 /* if now past this txp's descs, do the callback */
1824 if (txp
&& txp
->next_descq_idx
== swhead
) {
1825 /* remove from list */
1826 sde
->tx_ring
[sde
->tx_head
++ & sde
->sdma_mask
] = NULL
;
1827 complete_tx(sde
, txp
, SDMA_TXREQ_S_OK
);
1828 /* see if there is another txp */
1829 txp
= get_txhead(sde
);
1831 trace_hfi1_sdma_progress(sde
, hwhead
, swhead
, txp
);
1836 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1837 * to updates to the the dma_head location in host memory. The head
1838 * value read might not be fully up to date. If there are pending
1839 * descriptors and the SDMA idle interrupt fired then read from the
1840 * CSR SDMA head instead to get the latest value from the hardware.
1841 * The hardware SDMA head should be read at most once in this invocation
1842 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1844 if ((status
& sde
->idle_mask
) && !idle_check_done
) {
1847 swtail
= ACCESS_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
1848 if (swtail
!= hwhead
) {
1849 hwhead
= (u16
)read_sde_csr(sde
, SD(HEAD
));
1850 idle_check_done
= 1;
1855 sde
->last_status
= status
;
1857 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
1861 * sdma_engine_interrupt() - interrupt handler for engine
1863 * @status: sdma interrupt reason
1865 * Status is a mask of the 3 possible interrupts for this engine. It will
1866 * contain bits _only_ for this SDMA engine. It will contain at least one
1867 * bit, it may contain more.
1869 void sdma_engine_interrupt(struct sdma_engine
*sde
, u64 status
)
1871 trace_hfi1_sdma_engine_interrupt(sde
, status
);
1872 write_seqlock(&sde
->head_lock
);
1873 sdma_set_desc_cnt(sde
, sdma_desct_intr
);
1874 if (status
& sde
->idle_mask
)
1875 sde
->idle_int_cnt
++;
1876 else if (status
& sde
->progress_mask
)
1877 sde
->progress_int_cnt
++;
1878 else if (status
& sde
->int_mask
)
1879 sde
->sdma_int_cnt
++;
1880 sdma_make_progress(sde
, status
);
1881 write_sequnlock(&sde
->head_lock
);
1885 * sdma_engine_error() - error handler for engine
1887 * @status: sdma interrupt reason
1889 void sdma_engine_error(struct sdma_engine
*sde
, u64 status
)
1891 unsigned long flags
;
1893 #ifdef CONFIG_SDMA_VERBOSITY
1894 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1896 (unsigned long long)status
,
1897 sdma_state_names
[sde
->state
.current_state
]);
1899 spin_lock_irqsave(&sde
->tail_lock
, flags
);
1900 write_seqlock(&sde
->head_lock
);
1901 if (status
& ALL_SDMA_ENG_HALT_ERRS
)
1902 __sdma_process_event(sde
, sdma_event_e60_hw_halted
);
1903 if (status
& ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK
)) {
1905 "SDMA (%u) engine error: 0x%llx state %s\n",
1907 (unsigned long long)status
,
1908 sdma_state_names
[sde
->state
.current_state
]);
1909 dump_sdma_state(sde
);
1911 write_sequnlock(&sde
->head_lock
);
1912 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
1915 static void sdma_sendctrl(struct sdma_engine
*sde
, unsigned op
)
1917 u64 set_senddmactrl
= 0;
1918 u64 clr_senddmactrl
= 0;
1919 unsigned long flags
;
1921 #ifdef CONFIG_SDMA_VERBOSITY
1922 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1924 (op
& SDMA_SENDCTRL_OP_ENABLE
) ? 1 : 0,
1925 (op
& SDMA_SENDCTRL_OP_INTENABLE
) ? 1 : 0,
1926 (op
& SDMA_SENDCTRL_OP_HALT
) ? 1 : 0,
1927 (op
& SDMA_SENDCTRL_OP_CLEANUP
) ? 1 : 0);
1930 if (op
& SDMA_SENDCTRL_OP_ENABLE
)
1931 set_senddmactrl
|= SD(CTRL_SDMA_ENABLE_SMASK
);
1933 clr_senddmactrl
|= SD(CTRL_SDMA_ENABLE_SMASK
);
1935 if (op
& SDMA_SENDCTRL_OP_INTENABLE
)
1936 set_senddmactrl
|= SD(CTRL_SDMA_INT_ENABLE_SMASK
);
1938 clr_senddmactrl
|= SD(CTRL_SDMA_INT_ENABLE_SMASK
);
1940 if (op
& SDMA_SENDCTRL_OP_HALT
)
1941 set_senddmactrl
|= SD(CTRL_SDMA_HALT_SMASK
);
1943 clr_senddmactrl
|= SD(CTRL_SDMA_HALT_SMASK
);
1945 spin_lock_irqsave(&sde
->senddmactrl_lock
, flags
);
1947 sde
->p_senddmactrl
|= set_senddmactrl
;
1948 sde
->p_senddmactrl
&= ~clr_senddmactrl
;
1950 if (op
& SDMA_SENDCTRL_OP_CLEANUP
)
1951 write_sde_csr(sde
, SD(CTRL
),
1952 sde
->p_senddmactrl
|
1953 SD(CTRL_SDMA_CLEANUP_SMASK
));
1955 write_sde_csr(sde
, SD(CTRL
), sde
->p_senddmactrl
);
1957 spin_unlock_irqrestore(&sde
->senddmactrl_lock
, flags
);
1959 #ifdef CONFIG_SDMA_VERBOSITY
1960 sdma_dumpstate(sde
);
1964 static void sdma_setlengen(struct sdma_engine
*sde
)
1966 #ifdef CONFIG_SDMA_VERBOSITY
1967 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
1968 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
1972 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1973 * count to enable generation checking and load the internal
1974 * generation counter.
1976 write_sde_csr(sde
, SD(LEN_GEN
),
1977 (sde
->descq_cnt
/ 64) << SD(LEN_GEN_LENGTH_SHIFT
));
1978 write_sde_csr(sde
, SD(LEN_GEN
),
1979 ((sde
->descq_cnt
/ 64) << SD(LEN_GEN_LENGTH_SHIFT
)) |
1980 (4ULL << SD(LEN_GEN_GENERATION_SHIFT
)));
1983 static inline void sdma_update_tail(struct sdma_engine
*sde
, u16 tail
)
1985 /* Commit writes to memory and advance the tail on the chip */
1986 smp_wmb(); /* see get_txhead() */
1987 writeq(tail
, sde
->tail_csr
);
1991 * This is called when changing to state s10_hw_start_up_halt_wait as
1992 * a result of send buffer errors or send DMA descriptor errors.
1994 static void sdma_hw_start_up(struct sdma_engine
*sde
)
1998 #ifdef CONFIG_SDMA_VERBOSITY
1999 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
2000 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
2003 sdma_setlengen(sde
);
2004 sdma_update_tail(sde
, 0); /* Set SendDmaTail */
2007 reg
= SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK
) <<
2008 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT
);
2009 write_sde_csr(sde
, SD(ENG_ERR_CLEAR
), reg
);
2012 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
2013 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
2015 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
2016 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
2018 * set_sdma_integrity
2020 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2022 static void set_sdma_integrity(struct sdma_engine
*sde
)
2024 struct hfi1_devdata
*dd
= sde
->dd
;
2027 if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY
)))
2030 reg
= hfi1_pkt_base_sdma_integrity(dd
);
2032 if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL
))
2033 CLEAR_STATIC_RATE_CONTROL_SMASK(reg
);
2035 SET_STATIC_RATE_CONTROL_SMASK(reg
);
2037 write_sde_csr(sde
, SD(CHECK_ENABLE
), reg
);
2040 static void init_sdma_regs(
2041 struct sdma_engine
*sde
,
2046 #ifdef CONFIG_SDMA_VERBOSITY
2047 struct hfi1_devdata
*dd
= sde
->dd
;
2049 dd_dev_err(dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
2050 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
2053 write_sde_csr(sde
, SD(BASE_ADDR
), sde
->descq_phys
);
2054 sdma_setlengen(sde
);
2055 sdma_update_tail(sde
, 0); /* Set SendDmaTail */
2056 write_sde_csr(sde
, SD(RELOAD_CNT
), idle_cnt
);
2057 write_sde_csr(sde
, SD(DESC_CNT
), 0);
2058 write_sde_csr(sde
, SD(HEAD_ADDR
), sde
->head_phys
);
2059 write_sde_csr(sde
, SD(MEMORY
),
2060 ((u64
)credits
<< SD(MEMORY_SDMA_MEMORY_CNT_SHIFT
)) |
2061 ((u64
)(credits
* sde
->this_idx
) <<
2062 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT
)));
2063 write_sde_csr(sde
, SD(ENG_ERR_MASK
), ~0ull);
2064 set_sdma_integrity(sde
);
2065 opmask
= OPCODE_CHECK_MASK_DISABLED
;
2066 opval
= OPCODE_CHECK_VAL_DISABLED
;
2067 write_sde_csr(sde
, SD(CHECK_OPCODE
),
2068 (opmask
<< SEND_CTXT_CHECK_OPCODE_MASK_SHIFT
) |
2069 (opval
<< SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT
));
2072 #ifdef CONFIG_SDMA_VERBOSITY
2074 #define sdma_dumpstate_helper0(reg) do { \
2075 csr = read_csr(sde->dd, reg); \
2076 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2079 #define sdma_dumpstate_helper(reg) do { \
2080 csr = read_sde_csr(sde, reg); \
2081 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2082 #reg, sde->this_idx, csr); \
2085 #define sdma_dumpstate_helper2(reg) do { \
2086 csr = read_csr(sde->dd, reg + (8 * i)); \
2087 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2091 void sdma_dumpstate(struct sdma_engine
*sde
)
2096 sdma_dumpstate_helper(SD(CTRL
));
2097 sdma_dumpstate_helper(SD(STATUS
));
2098 sdma_dumpstate_helper0(SD(ERR_STATUS
));
2099 sdma_dumpstate_helper0(SD(ERR_MASK
));
2100 sdma_dumpstate_helper(SD(ENG_ERR_STATUS
));
2101 sdma_dumpstate_helper(SD(ENG_ERR_MASK
));
2103 for (i
= 0; i
< CCE_NUM_INT_CSRS
; ++i
) {
2104 sdma_dumpstate_helper2(CCE_INT_STATUS
);
2105 sdma_dumpstate_helper2(CCE_INT_MASK
);
2106 sdma_dumpstate_helper2(CCE_INT_BLOCKED
);
2109 sdma_dumpstate_helper(SD(TAIL
));
2110 sdma_dumpstate_helper(SD(HEAD
));
2111 sdma_dumpstate_helper(SD(PRIORITY_THLD
));
2112 sdma_dumpstate_helper(SD(IDLE_CNT
));
2113 sdma_dumpstate_helper(SD(RELOAD_CNT
));
2114 sdma_dumpstate_helper(SD(DESC_CNT
));
2115 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT
));
2116 sdma_dumpstate_helper(SD(MEMORY
));
2117 sdma_dumpstate_helper0(SD(ENGINES
));
2118 sdma_dumpstate_helper0(SD(MEM_SIZE
));
2119 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2120 sdma_dumpstate_helper(SD(BASE_ADDR
));
2121 sdma_dumpstate_helper(SD(LEN_GEN
));
2122 sdma_dumpstate_helper(SD(HEAD_ADDR
));
2123 sdma_dumpstate_helper(SD(CHECK_ENABLE
));
2124 sdma_dumpstate_helper(SD(CHECK_VL
));
2125 sdma_dumpstate_helper(SD(CHECK_JOB_KEY
));
2126 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY
));
2127 sdma_dumpstate_helper(SD(CHECK_SLID
));
2128 sdma_dumpstate_helper(SD(CHECK_OPCODE
));
2132 static void dump_sdma_state(struct sdma_engine
*sde
)
2134 struct hw_sdma_desc
*descq
;
2135 struct hw_sdma_desc
*descqp
;
2140 u16 head
, tail
, cnt
;
2142 head
= sde
->descq_head
& sde
->sdma_mask
;
2143 tail
= sde
->descq_tail
& sde
->sdma_mask
;
2144 cnt
= sdma_descq_freecnt(sde
);
2148 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2149 sde
->this_idx
, head
, tail
, cnt
,
2150 !list_empty(&sde
->flushlist
));
2152 /* print info for each entry in the descriptor queue */
2153 while (head
!= tail
) {
2154 char flags
[6] = { 'x', 'x', 'x', 'x', 0 };
2156 descqp
= &sde
->descq
[head
];
2157 desc
[0] = le64_to_cpu(descqp
->qw
[0]);
2158 desc
[1] = le64_to_cpu(descqp
->qw
[1]);
2159 flags
[0] = (desc
[1] & SDMA_DESC1_INT_REQ_FLAG
) ? 'I' : '-';
2160 flags
[1] = (desc
[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG
) ?
2162 flags
[2] = (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
) ? 'F' : '-';
2163 flags
[3] = (desc
[0] & SDMA_DESC0_LAST_DESC_FLAG
) ? 'L' : '-';
2164 addr
= (desc
[0] >> SDMA_DESC0_PHY_ADDR_SHIFT
)
2165 & SDMA_DESC0_PHY_ADDR_MASK
;
2166 gen
= (desc
[1] >> SDMA_DESC1_GENERATION_SHIFT
)
2167 & SDMA_DESC1_GENERATION_MASK
;
2168 len
= (desc
[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT
)
2169 & SDMA_DESC0_BYTE_COUNT_MASK
;
2171 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2172 head
, flags
, addr
, gen
, len
);
2174 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2176 if (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
)
2178 "\taidx: %u amode: %u alen: %u\n",
2180 SDMA_DESC1_HEADER_INDEX_SMASK
) >>
2181 SDMA_DESC1_HEADER_INDEX_SHIFT
),
2183 SDMA_DESC1_HEADER_MODE_SMASK
) >>
2184 SDMA_DESC1_HEADER_MODE_SHIFT
),
2186 SDMA_DESC1_HEADER_DWS_SMASK
) >>
2187 SDMA_DESC1_HEADER_DWS_SHIFT
));
2189 head
&= sde
->sdma_mask
;
2194 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2196 * sdma_seqfile_dump_sde() - debugfs dump of sde
2198 * @sde: send dma engine to dump
2200 * This routine dumps the sde to the indicated seq file.
2202 void sdma_seqfile_dump_sde(struct seq_file
*s
, struct sdma_engine
*sde
)
2205 struct hw_sdma_desc
*descqp
;
2211 head
= sde
->descq_head
& sde
->sdma_mask
;
2212 tail
= ACCESS_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
2213 seq_printf(s
, SDE_FMT
, sde
->this_idx
,
2215 sdma_state_name(sde
->state
.current_state
),
2216 (unsigned long long)read_sde_csr(sde
, SD(CTRL
)),
2217 (unsigned long long)read_sde_csr(sde
, SD(STATUS
)),
2218 (unsigned long long)read_sde_csr(sde
, SD(ENG_ERR_STATUS
)),
2219 (unsigned long long)read_sde_csr(sde
, SD(TAIL
)), tail
,
2220 (unsigned long long)read_sde_csr(sde
, SD(HEAD
)), head
,
2221 (unsigned long long)le64_to_cpu(*sde
->head_dma
),
2222 (unsigned long long)read_sde_csr(sde
, SD(MEMORY
)),
2223 (unsigned long long)read_sde_csr(sde
, SD(LEN_GEN
)),
2224 (unsigned long long)read_sde_csr(sde
, SD(RELOAD_CNT
)),
2225 (unsigned long long)sde
->last_status
,
2226 (unsigned long long)sde
->ahg_bits
,
2231 !list_empty(&sde
->flushlist
),
2232 sde
->descq_full_count
,
2233 (unsigned long long)read_sde_csr(sde
, SEND_DMA_CHECK_SLID
));
2235 /* print info for each entry in the descriptor queue */
2236 while (head
!= tail
) {
2237 char flags
[6] = { 'x', 'x', 'x', 'x', 0 };
2239 descqp
= &sde
->descq
[head
];
2240 desc
[0] = le64_to_cpu(descqp
->qw
[0]);
2241 desc
[1] = le64_to_cpu(descqp
->qw
[1]);
2242 flags
[0] = (desc
[1] & SDMA_DESC1_INT_REQ_FLAG
) ? 'I' : '-';
2243 flags
[1] = (desc
[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG
) ?
2245 flags
[2] = (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
) ? 'F' : '-';
2246 flags
[3] = (desc
[0] & SDMA_DESC0_LAST_DESC_FLAG
) ? 'L' : '-';
2247 addr
= (desc
[0] >> SDMA_DESC0_PHY_ADDR_SHIFT
)
2248 & SDMA_DESC0_PHY_ADDR_MASK
;
2249 gen
= (desc
[1] >> SDMA_DESC1_GENERATION_SHIFT
)
2250 & SDMA_DESC1_GENERATION_MASK
;
2251 len
= (desc
[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT
)
2252 & SDMA_DESC0_BYTE_COUNT_MASK
;
2254 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2255 head
, flags
, addr
, gen
, len
);
2256 if (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
)
2257 seq_printf(s
, "\t\tahgidx: %u ahgmode: %u\n",
2259 SDMA_DESC1_HEADER_INDEX_SMASK
) >>
2260 SDMA_DESC1_HEADER_INDEX_SHIFT
),
2262 SDMA_DESC1_HEADER_MODE_SMASK
) >>
2263 SDMA_DESC1_HEADER_MODE_SHIFT
));
2264 head
= (head
+ 1) & sde
->sdma_mask
;
2269 * add the generation number into
2270 * the qw1 and return
2272 static inline u64
add_gen(struct sdma_engine
*sde
, u64 qw1
)
2274 u8 generation
= (sde
->descq_tail
>> sde
->sdma_shift
) & 3;
2276 qw1
&= ~SDMA_DESC1_GENERATION_SMASK
;
2277 qw1
|= ((u64
)generation
& SDMA_DESC1_GENERATION_MASK
)
2278 << SDMA_DESC1_GENERATION_SHIFT
;
2283 * This routine submits the indicated tx
2285 * Space has already been guaranteed and
2286 * tail side of ring is locked.
2288 * The hardware tail update is done
2289 * in the caller and that is facilitated
2290 * by returning the new tail.
2292 * There is special case logic for ahg
2293 * to not add the generation number for
2294 * up to 2 descriptors that follow the
2298 static inline u16
submit_tx(struct sdma_engine
*sde
, struct sdma_txreq
*tx
)
2302 struct sdma_desc
*descp
= tx
->descp
;
2303 u8 skip
= 0, mode
= ahg_mode(tx
);
2305 tail
= sde
->descq_tail
& sde
->sdma_mask
;
2306 sde
->descq
[tail
].qw
[0] = cpu_to_le64(descp
->qw
[0]);
2307 sde
->descq
[tail
].qw
[1] = cpu_to_le64(add_gen(sde
, descp
->qw
[1]));
2308 trace_hfi1_sdma_descriptor(sde
, descp
->qw
[0], descp
->qw
[1],
2309 tail
, &sde
->descq
[tail
]);
2310 tail
= ++sde
->descq_tail
& sde
->sdma_mask
;
2312 if (mode
> SDMA_AHG_APPLY_UPDATE1
)
2314 for (i
= 1; i
< tx
->num_desc
; i
++, descp
++) {
2317 sde
->descq
[tail
].qw
[0] = cpu_to_le64(descp
->qw
[0]);
2319 /* edits don't have generation */
2323 /* replace generation with real one for non-edits */
2324 qw1
= add_gen(sde
, descp
->qw
[1]);
2326 sde
->descq
[tail
].qw
[1] = cpu_to_le64(qw1
);
2327 trace_hfi1_sdma_descriptor(sde
, descp
->qw
[0], qw1
,
2328 tail
, &sde
->descq
[tail
]);
2329 tail
= ++sde
->descq_tail
& sde
->sdma_mask
;
2331 tx
->next_descq_idx
= tail
;
2332 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2333 tx
->sn
= sde
->tail_sn
++;
2334 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2335 WARN_ON_ONCE(sde
->tx_ring
[sde
->tx_tail
& sde
->sdma_mask
]);
2337 sde
->tx_ring
[sde
->tx_tail
++ & sde
->sdma_mask
] = tx
;
2338 sde
->desc_avail
-= tx
->num_desc
;
2343 * Check for progress
2345 static int sdma_check_progress(
2346 struct sdma_engine
*sde
,
2347 struct iowait
*wait
,
2348 struct sdma_txreq
*tx
)
2352 sde
->desc_avail
= sdma_descq_freecnt(sde
);
2353 if (tx
->num_desc
<= sde
->desc_avail
)
2355 /* pulse the head_lock */
2356 if (wait
&& wait
->sleep
) {
2359 seq
= raw_seqcount_begin(
2360 (const seqcount_t
*)&sde
->head_lock
.seqcount
);
2361 ret
= wait
->sleep(sde
, wait
, tx
, seq
);
2363 sde
->desc_avail
= sdma_descq_freecnt(sde
);
2371 * sdma_send_txreq() - submit a tx req to ring
2372 * @sde: sdma engine to use
2373 * @wait: wait structure to use when full (may be NULL)
2374 * @tx: sdma_txreq to submit
2376 * The call submits the tx into the ring. If a iowait structure is non-NULL
2377 * the packet will be queued to the list in wait.
2380 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2381 * ring (wait == NULL)
2382 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2384 int sdma_send_txreq(struct sdma_engine
*sde
,
2385 struct iowait
*wait
,
2386 struct sdma_txreq
*tx
)
2390 unsigned long flags
;
2392 /* user should have supplied entire packet */
2393 if (unlikely(tx
->tlen
))
2396 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2398 if (unlikely(!__sdma_running(sde
)))
2400 if (unlikely(tx
->num_desc
> sde
->desc_avail
))
2402 tail
= submit_tx(sde
, tx
);
2404 iowait_sdma_inc(wait
);
2405 sdma_update_tail(sde
, tail
);
2407 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2411 iowait_sdma_inc(wait
);
2412 tx
->next_descq_idx
= 0;
2413 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2414 tx
->sn
= sde
->tail_sn
++;
2415 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2417 spin_lock(&sde
->flushlist_lock
);
2418 list_add_tail(&tx
->list
, &sde
->flushlist
);
2419 spin_unlock(&sde
->flushlist_lock
);
2422 wait
->count
+= tx
->num_desc
;
2424 schedule_work(&sde
->flush_worker
);
2428 ret
= sdma_check_progress(sde
, wait
, tx
);
2429 if (ret
== -EAGAIN
) {
2433 sde
->descq_full_count
++;
2438 * sdma_send_txlist() - submit a list of tx req to ring
2439 * @sde: sdma engine to use
2440 * @wait: wait structure to use when full (may be NULL)
2441 * @tx_list: list of sdma_txreqs to submit
2442 * @count: pointer to a u32 which, after return will contain the total number of
2443 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2444 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2445 * which are added to SDMA engine flush list if the SDMA engine state is
2448 * The call submits the list into the ring.
2450 * If the iowait structure is non-NULL and not equal to the iowait list
2451 * the unprocessed part of the list will be appended to the list in wait.
2453 * In all cases, the tx_list will be updated so the head of the tx_list is
2454 * the list of descriptors that have yet to be transmitted.
2456 * The intent of this call is to provide a more efficient
2457 * way of submitting multiple packets to SDMA while holding the tail
2462 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2463 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2465 int sdma_send_txlist(struct sdma_engine
*sde
, struct iowait
*wait
,
2466 struct list_head
*tx_list
, u32
*count_out
)
2468 struct sdma_txreq
*tx
, *tx_next
;
2470 unsigned long flags
;
2471 u16 tail
= INVALID_TAIL
;
2472 u32 submit_count
= 0, flush_count
= 0, total_count
;
2474 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2476 list_for_each_entry_safe(tx
, tx_next
, tx_list
, list
) {
2478 if (unlikely(!__sdma_running(sde
)))
2480 if (unlikely(tx
->num_desc
> sde
->desc_avail
))
2482 if (unlikely(tx
->tlen
)) {
2486 list_del_init(&tx
->list
);
2487 tail
= submit_tx(sde
, tx
);
2489 if (tail
!= INVALID_TAIL
&&
2490 (submit_count
& SDMA_TAIL_UPDATE_THRESH
) == 0) {
2491 sdma_update_tail(sde
, tail
);
2492 tail
= INVALID_TAIL
;
2496 total_count
= submit_count
+ flush_count
;
2498 iowait_sdma_add(wait
, total_count
);
2499 if (tail
!= INVALID_TAIL
)
2500 sdma_update_tail(sde
, tail
);
2501 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2502 *count_out
= total_count
;
2505 spin_lock(&sde
->flushlist_lock
);
2506 list_for_each_entry_safe(tx
, tx_next
, tx_list
, list
) {
2508 list_del_init(&tx
->list
);
2509 tx
->next_descq_idx
= 0;
2510 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2511 tx
->sn
= sde
->tail_sn
++;
2512 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2514 list_add_tail(&tx
->list
, &sde
->flushlist
);
2518 wait
->count
+= tx
->num_desc
;
2521 spin_unlock(&sde
->flushlist_lock
);
2522 schedule_work(&sde
->flush_worker
);
2526 ret
= sdma_check_progress(sde
, wait
, tx
);
2527 if (ret
== -EAGAIN
) {
2531 sde
->descq_full_count
++;
2535 static void sdma_process_event(struct sdma_engine
*sde
, enum sdma_events event
)
2537 unsigned long flags
;
2539 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2540 write_seqlock(&sde
->head_lock
);
2542 __sdma_process_event(sde
, event
);
2544 if (sde
->state
.current_state
== sdma_state_s99_running
)
2545 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
2547 write_sequnlock(&sde
->head_lock
);
2548 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2551 static void __sdma_process_event(struct sdma_engine
*sde
,
2552 enum sdma_events event
)
2554 struct sdma_state
*ss
= &sde
->state
;
2555 int need_progress
= 0;
2557 /* CONFIG SDMA temporary */
2558 #ifdef CONFIG_SDMA_VERBOSITY
2559 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) [%s] %s\n", sde
->this_idx
,
2560 sdma_state_names
[ss
->current_state
],
2561 sdma_event_names
[event
]);
2564 switch (ss
->current_state
) {
2565 case sdma_state_s00_hw_down
:
2567 case sdma_event_e00_go_hw_down
:
2569 case sdma_event_e30_go_running
:
2571 * If down, but running requested (usually result
2572 * of link up, then we need to start up.
2573 * This can happen when hw down is requested while
2574 * bringing the link up with traffic active on
2577 ss
->go_s99_running
= 1;
2578 /* fall through and start dma engine */
2579 case sdma_event_e10_go_hw_start
:
2580 /* This reference means the state machine is started */
2581 sdma_get(&sde
->state
);
2583 sdma_state_s10_hw_start_up_halt_wait
);
2585 case sdma_event_e15_hw_halt_done
:
2587 case sdma_event_e25_hw_clean_up_done
:
2589 case sdma_event_e40_sw_cleaned
:
2590 sdma_sw_tear_down(sde
);
2592 case sdma_event_e50_hw_cleaned
:
2594 case sdma_event_e60_hw_halted
:
2596 case sdma_event_e70_go_idle
:
2598 case sdma_event_e80_hw_freeze
:
2600 case sdma_event_e81_hw_frozen
:
2602 case sdma_event_e82_hw_unfreeze
:
2604 case sdma_event_e85_link_down
:
2606 case sdma_event_e90_sw_halted
:
2611 case sdma_state_s10_hw_start_up_halt_wait
:
2613 case sdma_event_e00_go_hw_down
:
2614 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2615 sdma_sw_tear_down(sde
);
2617 case sdma_event_e10_go_hw_start
:
2619 case sdma_event_e15_hw_halt_done
:
2621 sdma_state_s15_hw_start_up_clean_wait
);
2622 sdma_start_hw_clean_up(sde
);
2624 case sdma_event_e25_hw_clean_up_done
:
2626 case sdma_event_e30_go_running
:
2627 ss
->go_s99_running
= 1;
2629 case sdma_event_e40_sw_cleaned
:
2631 case sdma_event_e50_hw_cleaned
:
2633 case sdma_event_e60_hw_halted
:
2634 schedule_work(&sde
->err_halt_worker
);
2636 case sdma_event_e70_go_idle
:
2637 ss
->go_s99_running
= 0;
2639 case sdma_event_e80_hw_freeze
:
2641 case sdma_event_e81_hw_frozen
:
2643 case sdma_event_e82_hw_unfreeze
:
2645 case sdma_event_e85_link_down
:
2647 case sdma_event_e90_sw_halted
:
2652 case sdma_state_s15_hw_start_up_clean_wait
:
2654 case sdma_event_e00_go_hw_down
:
2655 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2656 sdma_sw_tear_down(sde
);
2658 case sdma_event_e10_go_hw_start
:
2660 case sdma_event_e15_hw_halt_done
:
2662 case sdma_event_e25_hw_clean_up_done
:
2663 sdma_hw_start_up(sde
);
2664 sdma_set_state(sde
, ss
->go_s99_running
?
2665 sdma_state_s99_running
:
2666 sdma_state_s20_idle
);
2668 case sdma_event_e30_go_running
:
2669 ss
->go_s99_running
= 1;
2671 case sdma_event_e40_sw_cleaned
:
2673 case sdma_event_e50_hw_cleaned
:
2675 case sdma_event_e60_hw_halted
:
2677 case sdma_event_e70_go_idle
:
2678 ss
->go_s99_running
= 0;
2680 case sdma_event_e80_hw_freeze
:
2682 case sdma_event_e81_hw_frozen
:
2684 case sdma_event_e82_hw_unfreeze
:
2686 case sdma_event_e85_link_down
:
2688 case sdma_event_e90_sw_halted
:
2693 case sdma_state_s20_idle
:
2695 case sdma_event_e00_go_hw_down
:
2696 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2697 sdma_sw_tear_down(sde
);
2699 case sdma_event_e10_go_hw_start
:
2701 case sdma_event_e15_hw_halt_done
:
2703 case sdma_event_e25_hw_clean_up_done
:
2705 case sdma_event_e30_go_running
:
2706 sdma_set_state(sde
, sdma_state_s99_running
);
2707 ss
->go_s99_running
= 1;
2709 case sdma_event_e40_sw_cleaned
:
2711 case sdma_event_e50_hw_cleaned
:
2713 case sdma_event_e60_hw_halted
:
2714 sdma_set_state(sde
, sdma_state_s50_hw_halt_wait
);
2715 schedule_work(&sde
->err_halt_worker
);
2717 case sdma_event_e70_go_idle
:
2719 case sdma_event_e85_link_down
:
2721 case sdma_event_e80_hw_freeze
:
2722 sdma_set_state(sde
, sdma_state_s80_hw_freeze
);
2723 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
2724 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
2726 case sdma_event_e81_hw_frozen
:
2728 case sdma_event_e82_hw_unfreeze
:
2730 case sdma_event_e90_sw_halted
:
2735 case sdma_state_s30_sw_clean_up_wait
:
2737 case sdma_event_e00_go_hw_down
:
2738 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2740 case sdma_event_e10_go_hw_start
:
2742 case sdma_event_e15_hw_halt_done
:
2744 case sdma_event_e25_hw_clean_up_done
:
2746 case sdma_event_e30_go_running
:
2747 ss
->go_s99_running
= 1;
2749 case sdma_event_e40_sw_cleaned
:
2750 sdma_set_state(sde
, sdma_state_s40_hw_clean_up_wait
);
2751 sdma_start_hw_clean_up(sde
);
2753 case sdma_event_e50_hw_cleaned
:
2755 case sdma_event_e60_hw_halted
:
2757 case sdma_event_e70_go_idle
:
2758 ss
->go_s99_running
= 0;
2760 case sdma_event_e80_hw_freeze
:
2762 case sdma_event_e81_hw_frozen
:
2764 case sdma_event_e82_hw_unfreeze
:
2766 case sdma_event_e85_link_down
:
2767 ss
->go_s99_running
= 0;
2769 case sdma_event_e90_sw_halted
:
2774 case sdma_state_s40_hw_clean_up_wait
:
2776 case sdma_event_e00_go_hw_down
:
2777 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2778 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2780 case sdma_event_e10_go_hw_start
:
2782 case sdma_event_e15_hw_halt_done
:
2784 case sdma_event_e25_hw_clean_up_done
:
2785 sdma_hw_start_up(sde
);
2786 sdma_set_state(sde
, ss
->go_s99_running
?
2787 sdma_state_s99_running
:
2788 sdma_state_s20_idle
);
2790 case sdma_event_e30_go_running
:
2791 ss
->go_s99_running
= 1;
2793 case sdma_event_e40_sw_cleaned
:
2795 case sdma_event_e50_hw_cleaned
:
2797 case sdma_event_e60_hw_halted
:
2799 case sdma_event_e70_go_idle
:
2800 ss
->go_s99_running
= 0;
2802 case sdma_event_e80_hw_freeze
:
2804 case sdma_event_e81_hw_frozen
:
2806 case sdma_event_e82_hw_unfreeze
:
2808 case sdma_event_e85_link_down
:
2809 ss
->go_s99_running
= 0;
2811 case sdma_event_e90_sw_halted
:
2816 case sdma_state_s50_hw_halt_wait
:
2818 case sdma_event_e00_go_hw_down
:
2819 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2820 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2822 case sdma_event_e10_go_hw_start
:
2824 case sdma_event_e15_hw_halt_done
:
2825 sdma_set_state(sde
, sdma_state_s30_sw_clean_up_wait
);
2826 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2828 case sdma_event_e25_hw_clean_up_done
:
2830 case sdma_event_e30_go_running
:
2831 ss
->go_s99_running
= 1;
2833 case sdma_event_e40_sw_cleaned
:
2835 case sdma_event_e50_hw_cleaned
:
2837 case sdma_event_e60_hw_halted
:
2838 schedule_work(&sde
->err_halt_worker
);
2840 case sdma_event_e70_go_idle
:
2841 ss
->go_s99_running
= 0;
2843 case sdma_event_e80_hw_freeze
:
2845 case sdma_event_e81_hw_frozen
:
2847 case sdma_event_e82_hw_unfreeze
:
2849 case sdma_event_e85_link_down
:
2850 ss
->go_s99_running
= 0;
2852 case sdma_event_e90_sw_halted
:
2857 case sdma_state_s60_idle_halt_wait
:
2859 case sdma_event_e00_go_hw_down
:
2860 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2861 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2863 case sdma_event_e10_go_hw_start
:
2865 case sdma_event_e15_hw_halt_done
:
2866 sdma_set_state(sde
, sdma_state_s30_sw_clean_up_wait
);
2867 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2869 case sdma_event_e25_hw_clean_up_done
:
2871 case sdma_event_e30_go_running
:
2872 ss
->go_s99_running
= 1;
2874 case sdma_event_e40_sw_cleaned
:
2876 case sdma_event_e50_hw_cleaned
:
2878 case sdma_event_e60_hw_halted
:
2879 schedule_work(&sde
->err_halt_worker
);
2881 case sdma_event_e70_go_idle
:
2882 ss
->go_s99_running
= 0;
2884 case sdma_event_e80_hw_freeze
:
2886 case sdma_event_e81_hw_frozen
:
2888 case sdma_event_e82_hw_unfreeze
:
2890 case sdma_event_e85_link_down
:
2892 case sdma_event_e90_sw_halted
:
2897 case sdma_state_s80_hw_freeze
:
2899 case sdma_event_e00_go_hw_down
:
2900 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2901 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2903 case sdma_event_e10_go_hw_start
:
2905 case sdma_event_e15_hw_halt_done
:
2907 case sdma_event_e25_hw_clean_up_done
:
2909 case sdma_event_e30_go_running
:
2910 ss
->go_s99_running
= 1;
2912 case sdma_event_e40_sw_cleaned
:
2914 case sdma_event_e50_hw_cleaned
:
2916 case sdma_event_e60_hw_halted
:
2918 case sdma_event_e70_go_idle
:
2919 ss
->go_s99_running
= 0;
2921 case sdma_event_e80_hw_freeze
:
2923 case sdma_event_e81_hw_frozen
:
2924 sdma_set_state(sde
, sdma_state_s82_freeze_sw_clean
);
2925 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2927 case sdma_event_e82_hw_unfreeze
:
2929 case sdma_event_e85_link_down
:
2931 case sdma_event_e90_sw_halted
:
2936 case sdma_state_s82_freeze_sw_clean
:
2938 case sdma_event_e00_go_hw_down
:
2939 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2940 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2942 case sdma_event_e10_go_hw_start
:
2944 case sdma_event_e15_hw_halt_done
:
2946 case sdma_event_e25_hw_clean_up_done
:
2948 case sdma_event_e30_go_running
:
2949 ss
->go_s99_running
= 1;
2951 case sdma_event_e40_sw_cleaned
:
2952 /* notify caller this engine is done cleaning */
2953 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
2954 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
2956 case sdma_event_e50_hw_cleaned
:
2958 case sdma_event_e60_hw_halted
:
2960 case sdma_event_e70_go_idle
:
2961 ss
->go_s99_running
= 0;
2963 case sdma_event_e80_hw_freeze
:
2965 case sdma_event_e81_hw_frozen
:
2967 case sdma_event_e82_hw_unfreeze
:
2968 sdma_hw_start_up(sde
);
2969 sdma_set_state(sde
, ss
->go_s99_running
?
2970 sdma_state_s99_running
:
2971 sdma_state_s20_idle
);
2973 case sdma_event_e85_link_down
:
2975 case sdma_event_e90_sw_halted
:
2980 case sdma_state_s99_running
:
2982 case sdma_event_e00_go_hw_down
:
2983 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2984 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2986 case sdma_event_e10_go_hw_start
:
2988 case sdma_event_e15_hw_halt_done
:
2990 case sdma_event_e25_hw_clean_up_done
:
2992 case sdma_event_e30_go_running
:
2994 case sdma_event_e40_sw_cleaned
:
2996 case sdma_event_e50_hw_cleaned
:
2998 case sdma_event_e60_hw_halted
:
3000 sdma_err_progress_check_schedule(sde
);
3001 case sdma_event_e90_sw_halted
:
3003 * SW initiated halt does not perform engines
3006 sdma_set_state(sde
, sdma_state_s50_hw_halt_wait
);
3007 schedule_work(&sde
->err_halt_worker
);
3009 case sdma_event_e70_go_idle
:
3010 sdma_set_state(sde
, sdma_state_s60_idle_halt_wait
);
3012 case sdma_event_e85_link_down
:
3013 ss
->go_s99_running
= 0;
3015 case sdma_event_e80_hw_freeze
:
3016 sdma_set_state(sde
, sdma_state_s80_hw_freeze
);
3017 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
3018 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
3020 case sdma_event_e81_hw_frozen
:
3022 case sdma_event_e82_hw_unfreeze
:
3028 ss
->last_event
= event
;
3030 sdma_make_progress(sde
, 0);
3034 * _extend_sdma_tx_descs() - helper to extend txreq
3036 * This is called once the initial nominal allocation
3037 * of descriptors in the sdma_txreq is exhausted.
3039 * The code will bump the allocation up to the max
3040 * of MAX_DESC (64) descriptors. There doesn't seem
3041 * much point in an interim step. The last descriptor
3042 * is reserved for coalesce buffer in order to support
3043 * cases where input packet has >MAX_DESC iovecs.
3046 static int _extend_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
)
3050 /* Handle last descriptor */
3051 if (unlikely((tx
->num_desc
== (MAX_DESC
- 1)))) {
3052 /* if tlen is 0, it is for padding, release last descriptor */
3054 tx
->desc_limit
= MAX_DESC
;
3055 } else if (!tx
->coalesce_buf
) {
3056 /* allocate coalesce buffer with space for padding */
3057 tx
->coalesce_buf
= kmalloc(tx
->tlen
+ sizeof(u32
),
3059 if (!tx
->coalesce_buf
)
3061 tx
->coalesce_idx
= 0;
3066 if (unlikely(tx
->num_desc
== MAX_DESC
))
3069 tx
->descp
= kmalloc_array(
3071 sizeof(struct sdma_desc
),
3076 /* reserve last descriptor for coalescing */
3077 tx
->desc_limit
= MAX_DESC
- 1;
3078 /* copy ones already built */
3079 for (i
= 0; i
< tx
->num_desc
; i
++)
3080 tx
->descp
[i
] = tx
->descs
[i
];
3083 sdma_txclean(dd
, tx
);
3088 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3090 * This is called once the initial nominal allocation of descriptors
3091 * in the sdma_txreq is exhausted.
3093 * This function calls _extend_sdma_tx_descs to extend or allocate
3094 * coalesce buffer. If there is a allocated coalesce buffer, it will
3095 * copy the input packet data into the coalesce buffer. It also adds
3096 * coalesce buffer descriptor once when whole packet is received.
3100 * 0 - coalescing, don't populate descriptor
3101 * 1 - continue with populating descriptor
3103 int ext_coal_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
,
3104 int type
, void *kvaddr
, struct page
*page
,
3105 unsigned long offset
, u16 len
)
3110 rval
= _extend_sdma_tx_descs(dd
, tx
);
3112 sdma_txclean(dd
, tx
);
3116 /* If coalesce buffer is allocated, copy data into it */
3117 if (tx
->coalesce_buf
) {
3118 if (type
== SDMA_MAP_NONE
) {
3119 sdma_txclean(dd
, tx
);
3123 if (type
== SDMA_MAP_PAGE
) {
3124 kvaddr
= kmap(page
);
3126 } else if (WARN_ON(!kvaddr
)) {
3127 sdma_txclean(dd
, tx
);
3131 memcpy(tx
->coalesce_buf
+ tx
->coalesce_idx
, kvaddr
, len
);
3132 tx
->coalesce_idx
+= len
;
3133 if (type
== SDMA_MAP_PAGE
)
3136 /* If there is more data, return */
3137 if (tx
->tlen
- tx
->coalesce_idx
)
3140 /* Whole packet is received; add any padding */
3141 pad_len
= tx
->packet_len
& (sizeof(u32
) - 1);
3143 pad_len
= sizeof(u32
) - pad_len
;
3144 memset(tx
->coalesce_buf
+ tx
->coalesce_idx
, 0, pad_len
);
3145 /* padding is taken care of for coalescing case */
3146 tx
->packet_len
+= pad_len
;
3147 tx
->tlen
+= pad_len
;
3150 /* dma map the coalesce buffer */
3151 addr
= dma_map_single(&dd
->pcidev
->dev
,
3156 if (unlikely(dma_mapping_error(&dd
->pcidev
->dev
, addr
))) {
3157 sdma_txclean(dd
, tx
);
3161 /* Add descriptor for coalesce buffer */
3162 tx
->desc_limit
= MAX_DESC
;
3163 return _sdma_txadd_daddr(dd
, SDMA_MAP_SINGLE
, tx
,
3170 /* Update sdes when the lmc changes */
3171 void sdma_update_lmc(struct hfi1_devdata
*dd
, u64 mask
, u32 lid
)
3173 struct sdma_engine
*sde
;
3177 sreg
= ((mask
& SD(CHECK_SLID_MASK_MASK
)) <<
3178 SD(CHECK_SLID_MASK_SHIFT
)) |
3179 (((lid
& mask
) & SD(CHECK_SLID_VALUE_MASK
)) <<
3180 SD(CHECK_SLID_VALUE_SHIFT
));
3182 for (i
= 0; i
< dd
->num_sdma
; i
++) {
3183 hfi1_cdbg(LINKVERB
, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3185 sde
= &dd
->per_sdma
[i
];
3186 write_sde_csr(sde
, SD(CHECK_SLID
), sreg
);
3190 /* tx not dword sized - pad */
3191 int _pad_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
)
3196 if ((unlikely(tx
->num_desc
== tx
->desc_limit
))) {
3197 rval
= _extend_sdma_tx_descs(dd
, tx
);
3199 sdma_txclean(dd
, tx
);
3203 /* finish the one just added */
3208 sizeof(u32
) - (tx
->packet_len
& (sizeof(u32
) - 1)));
3209 _sdma_close_tx(dd
, tx
);
3214 * Add ahg to the sdma_txreq
3216 * The logic will consume up to 3
3217 * descriptors at the beginning of
3220 void _sdma_txreq_ahgadd(
3221 struct sdma_txreq
*tx
,
3227 u32 i
, shift
= 0, desc
= 0;
3230 WARN_ON_ONCE(num_ahg
> 9 || (ahg_hlen
& 3) || ahg_hlen
== 4);
3233 mode
= SDMA_AHG_APPLY_UPDATE1
;
3234 else if (num_ahg
<= 5)
3235 mode
= SDMA_AHG_APPLY_UPDATE2
;
3237 mode
= SDMA_AHG_APPLY_UPDATE3
;
3239 /* initialize to consumed descriptors to zero */
3241 case SDMA_AHG_APPLY_UPDATE3
:
3243 tx
->descs
[2].qw
[0] = 0;
3244 tx
->descs
[2].qw
[1] = 0;
3246 case SDMA_AHG_APPLY_UPDATE2
:
3248 tx
->descs
[1].qw
[0] = 0;
3249 tx
->descs
[1].qw
[1] = 0;
3253 tx
->descs
[0].qw
[1] |=
3254 (((u64
)ahg_entry
& SDMA_DESC1_HEADER_INDEX_MASK
)
3255 << SDMA_DESC1_HEADER_INDEX_SHIFT
) |
3256 (((u64
)ahg_hlen
& SDMA_DESC1_HEADER_DWS_MASK
)
3257 << SDMA_DESC1_HEADER_DWS_SHIFT
) |
3258 (((u64
)mode
& SDMA_DESC1_HEADER_MODE_MASK
)
3259 << SDMA_DESC1_HEADER_MODE_SHIFT
) |
3260 (((u64
)ahg
[0] & SDMA_DESC1_HEADER_UPDATE1_MASK
)
3261 << SDMA_DESC1_HEADER_UPDATE1_SHIFT
);
3262 for (i
= 0; i
< (num_ahg
- 1); i
++) {
3263 if (!shift
&& !(i
& 2))
3265 tx
->descs
[desc
].qw
[!!(i
& 2)] |=
3268 shift
= (shift
+ 32) & 63;
3273 * sdma_ahg_alloc - allocate an AHG entry
3274 * @sde: engine to allocate from
3277 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3278 * -ENOSPC if an entry is not available
3280 int sdma_ahg_alloc(struct sdma_engine
*sde
)
3286 trace_hfi1_ahg_allocate(sde
, -EINVAL
);
3290 nr
= ffz(ACCESS_ONCE(sde
->ahg_bits
));
3292 trace_hfi1_ahg_allocate(sde
, -ENOSPC
);
3295 oldbit
= test_and_set_bit(nr
, &sde
->ahg_bits
);
3300 trace_hfi1_ahg_allocate(sde
, nr
);
3305 * sdma_ahg_free - free an AHG entry
3306 * @sde: engine to return AHG entry
3307 * @ahg_index: index to free
3309 * This routine frees the indicate AHG entry.
3311 void sdma_ahg_free(struct sdma_engine
*sde
, int ahg_index
)
3315 trace_hfi1_ahg_deallocate(sde
, ahg_index
);
3316 if (ahg_index
< 0 || ahg_index
> 31)
3318 clear_bit(ahg_index
, &sde
->ahg_bits
);
3322 * SPC freeze handling for SDMA engines. Called when the driver knows
3323 * the SPC is going into a freeze but before the freeze is fully
3324 * settled. Generally an error interrupt.
3326 * This event will pull the engine out of running so no more entries can be
3327 * added to the engine's queue.
3329 void sdma_freeze_notify(struct hfi1_devdata
*dd
, int link_down
)
3332 enum sdma_events event
= link_down
? sdma_event_e85_link_down
:
3333 sdma_event_e80_hw_freeze
;
3335 /* set up the wait but do not wait here */
3336 atomic_set(&dd
->sdma_unfreeze_count
, dd
->num_sdma
);
3338 /* tell all engines to stop running and wait */
3339 for (i
= 0; i
< dd
->num_sdma
; i
++)
3340 sdma_process_event(&dd
->per_sdma
[i
], event
);
3342 /* sdma_freeze() will wait for all engines to have stopped */
3346 * SPC freeze handling for SDMA engines. Called when the driver knows
3347 * the SPC is fully frozen.
3349 void sdma_freeze(struct hfi1_devdata
*dd
)
3355 * Make sure all engines have moved out of the running state before
3358 ret
= wait_event_interruptible(dd
->sdma_unfreeze_wq
,
3359 atomic_read(&dd
->sdma_unfreeze_count
) <=
3361 /* interrupted or count is negative, then unloading - just exit */
3362 if (ret
|| atomic_read(&dd
->sdma_unfreeze_count
) < 0)
3365 /* set up the count for the next wait */
3366 atomic_set(&dd
->sdma_unfreeze_count
, dd
->num_sdma
);
3368 /* tell all engines that the SPC is frozen, they can start cleaning */
3369 for (i
= 0; i
< dd
->num_sdma
; i
++)
3370 sdma_process_event(&dd
->per_sdma
[i
], sdma_event_e81_hw_frozen
);
3373 * Wait for everyone to finish software clean before exiting. The
3374 * software clean will read engine CSRs, so must be completed before
3375 * the next step, which will clear the engine CSRs.
3377 (void)wait_event_interruptible(dd
->sdma_unfreeze_wq
,
3378 atomic_read(&dd
->sdma_unfreeze_count
) <= 0);
3379 /* no need to check results - done no matter what */
3383 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3385 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3386 * that is left is a software clean. We could do it after the SPC is fully
3387 * frozen, but then we'd have to add another state to wait for the unfreeze.
3388 * Instead, just defer the software clean until the unfreeze step.
3390 void sdma_unfreeze(struct hfi1_devdata
*dd
)
3394 /* tell all engines start freeze clean up */
3395 for (i
= 0; i
< dd
->num_sdma
; i
++)
3396 sdma_process_event(&dd
->per_sdma
[i
],
3397 sdma_event_e82_hw_unfreeze
);
3401 * _sdma_engine_progress_schedule() - schedule progress on engine
3402 * @sde: sdma_engine to schedule progress
3405 void _sdma_engine_progress_schedule(
3406 struct sdma_engine
*sde
)
3408 trace_hfi1_sdma_engine_progress(sde
, sde
->progress_mask
);
3409 /* assume we have selected a good cpu */
3411 CCE_INT_FORCE
+ (8 * (IS_SDMA_START
/ 64)),
3412 sde
->progress_mask
);