]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/infiniband/hw/hfi1/tid_rdma.c
01c8b0280700d8e1f50b1662b9121177f2f4136e
[mirror_ubuntu-jammy-kernel.git] / drivers / infiniband / hw / hfi1 / tid_rdma.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3 * Copyright(c) 2018 Intel Corporation.
4 *
5 */
6
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
14
15 /**
16 * DOC: TID RDMA READ protocol
17 *
18 * This is an end-to-end protocol at the hfi1 level between two nodes that
19 * improves performance by avoiding data copy on the requester side. It
20 * converts a qualified RDMA READ request into a TID RDMA READ request on
21 * the requester side and thereafter handles the request and response
22 * differently. To be qualified, the RDMA READ request should meet the
23 * following:
24 * -- The total data length should be greater than 256K;
25 * -- The total data length should be a multiple of 4K page size;
26 * -- Each local scatter-gather entry should be 4K page aligned;
27 * -- Each local scatter-gather entry should be a multiple of 4K page size;
28 */
29
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39
40 #define GENERATION_MASK 0xFFFFF
41
42 static u32 mask_generation(u32 a)
43 {
44 return a & GENERATION_MASK;
45 }
46
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49
50 /*
51 * J_KEY for kernel contexts when TID RDMA is used.
52 * See generate_jkey() in hfi.h for more information.
53 */
54 #define TID_RDMA_JKEY 32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ 6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62 TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64
65 #define MAX_EXPECTED_PAGES (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66
67 #define TID_RDMA_DESTQP_FLOW_SHIFT 11
68 #define TID_RDMA_DESTQP_FLOW_MASK 0x1f
69
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
90
91 /*
92 * OPFN TID layout
93 *
94 * 63 47 31 15
95 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97 * N - the context Number
98 * K - the Kdeth_qp
99 * M - Max_len
100 * T - Timeout
101 * D - reserveD
102 * V - version
103 * U - Urg capable
104 * J - Jkey
105 * R - max_Read
106 * W - max_Write
107 * C - Capcode
108 */
109
110 static u32 tid_rdma_flow_wt;
111
112 static void tid_rdma_trigger_resume(struct work_struct *work);
113 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
114 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
115 gfp_t gfp);
116 static void hfi1_init_trdma_req(struct rvt_qp *qp,
117 struct tid_rdma_request *req);
118 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
119 static void hfi1_tid_timeout(struct timer_list *t);
120 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
121 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
122 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
123 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
124 static void hfi1_tid_retry_timeout(struct timer_list *t);
125 static int make_tid_rdma_ack(struct rvt_qp *qp,
126 struct ib_other_headers *ohdr,
127 struct hfi1_pkt_state *ps);
128 static void hfi1_do_tid_send(struct rvt_qp *qp);
129 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
130 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
131 struct ib_other_headers *ohdr,
132 struct rvt_qp *qp, u32 psn, int diff, bool fecn);
133 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
134 struct hfi1_qp_priv *priv,
135 struct hfi1_ctxtdata *rcd,
136 struct tid_rdma_flow *flow,
137 bool fecn);
138
139 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
140 {
141 return
142 (((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
143 TID_OPFN_QP_CTXT_SHIFT) |
144 ((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
145 TID_OPFN_QP_KDETH_SHIFT) |
146 (((u64)((p->max_len >> PAGE_SHIFT) - 1) &
147 TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
148 (((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
149 TID_OPFN_TIMEOUT_SHIFT) |
150 (((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
151 (((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
152 (((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
153 TID_OPFN_MAX_READ_SHIFT) |
154 (((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
155 TID_OPFN_MAX_WRITE_SHIFT);
156 }
157
158 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
159 {
160 p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
161 TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
162 p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
163 p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
164 TID_OPFN_MAX_WRITE_MASK;
165 p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
166 TID_OPFN_MAX_READ_MASK;
167 p->qp =
168 ((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
169 << 16) |
170 ((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
171 p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
172 p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
173 }
174
175 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
176 {
177 struct hfi1_qp_priv *priv = qp->priv;
178
179 p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
180 p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
181 p->jkey = priv->rcd->jkey;
182 p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
183 p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
184 p->timeout = qp->timeout;
185 p->urg = is_urg_masked(priv->rcd);
186 }
187
188 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
189 {
190 struct hfi1_qp_priv *priv = qp->priv;
191
192 *data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
193 return true;
194 }
195
196 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
197 {
198 struct hfi1_qp_priv *priv = qp->priv;
199 struct tid_rdma_params *remote, *old;
200 bool ret = true;
201
202 old = rcu_dereference_protected(priv->tid_rdma.remote,
203 lockdep_is_held(&priv->opfn.lock));
204 data &= ~0xfULL;
205 /*
206 * If data passed in is zero, return true so as not to continue the
207 * negotiation process
208 */
209 if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
210 goto null;
211 /*
212 * If kzalloc fails, return false. This will result in:
213 * * at the requester a new OPFN request being generated to retry
214 * the negotiation
215 * * at the responder, 0 being returned to the requester so as to
216 * disable TID RDMA at both the requester and the responder
217 */
218 remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
219 if (!remote) {
220 ret = false;
221 goto null;
222 }
223
224 tid_rdma_opfn_decode(remote, data);
225 priv->tid_timer_timeout_jiffies =
226 usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
227 1000UL) << 3) * 7);
228 trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
229 trace_hfi1_opfn_param(qp, 1, remote);
230 rcu_assign_pointer(priv->tid_rdma.remote, remote);
231 /*
232 * A TID RDMA READ request's segment size is not equal to
233 * remote->max_len only when the request's data length is smaller
234 * than remote->max_len. In that case, there will be only one segment.
235 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
236 * during retry, it will lead to req->cur_seg = 0, which is exactly
237 * what is expected.
238 */
239 priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
240 priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
241 goto free;
242 null:
243 RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
244 priv->timeout_shift = 0;
245 free:
246 if (old)
247 kfree_rcu(old, rcu_head);
248 return ret;
249 }
250
251 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
252 {
253 bool ret;
254
255 ret = tid_rdma_conn_reply(qp, *data);
256 *data = 0;
257 /*
258 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
259 * TID RDMA could not be enabled. This will result in TID RDMA being
260 * disabled at the requester too.
261 */
262 if (ret)
263 (void)tid_rdma_conn_req(qp, data);
264 return ret;
265 }
266
267 void tid_rdma_conn_error(struct rvt_qp *qp)
268 {
269 struct hfi1_qp_priv *priv = qp->priv;
270 struct tid_rdma_params *old;
271
272 old = rcu_dereference_protected(priv->tid_rdma.remote,
273 lockdep_is_held(&priv->opfn.lock));
274 RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
275 if (old)
276 kfree_rcu(old, rcu_head);
277 }
278
279 /* This is called at context initialization time */
280 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
281 {
282 if (reinit)
283 return 0;
284
285 BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
286 BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
287 rcd->jkey = TID_RDMA_JKEY;
288 hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
289 return hfi1_alloc_ctxt_rcv_groups(rcd);
290 }
291
292 /**
293 * qp_to_rcd - determine the receive context used by a qp
294 * @qp - the qp
295 *
296 * This routine returns the receive context associated
297 * with a a qp's qpn.
298 *
299 * Returns the context.
300 */
301 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
302 struct rvt_qp *qp)
303 {
304 struct hfi1_ibdev *verbs_dev = container_of(rdi,
305 struct hfi1_ibdev,
306 rdi);
307 struct hfi1_devdata *dd = container_of(verbs_dev,
308 struct hfi1_devdata,
309 verbs_dev);
310 unsigned int ctxt;
311
312 if (qp->ibqp.qp_num == 0)
313 ctxt = 0;
314 else
315 ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
316 return dd->rcd[ctxt];
317 }
318
319 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
320 struct ib_qp_init_attr *init_attr)
321 {
322 struct hfi1_qp_priv *qpriv = qp->priv;
323 int i, ret;
324
325 qpriv->rcd = qp_to_rcd(rdi, qp);
326
327 spin_lock_init(&qpriv->opfn.lock);
328 INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
329 INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
330 qpriv->flow_state.psn = 0;
331 qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
332 qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
333 qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
334 qpriv->s_state = TID_OP(WRITE_RESP);
335 qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
336 qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
337 qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
338 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
339 qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
340 qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
341 qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
342 qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
343 atomic_set(&qpriv->n_requests, 0);
344 atomic_set(&qpriv->n_tid_requests, 0);
345 timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
346 timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
347 INIT_LIST_HEAD(&qpriv->tid_wait);
348
349 if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
350 struct hfi1_devdata *dd = qpriv->rcd->dd;
351
352 qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
353 sizeof(*qpriv->pages),
354 GFP_KERNEL, dd->node);
355 if (!qpriv->pages)
356 return -ENOMEM;
357 for (i = 0; i < qp->s_size; i++) {
358 struct hfi1_swqe_priv *priv;
359 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
360
361 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
362 dd->node);
363 if (!priv)
364 return -ENOMEM;
365
366 hfi1_init_trdma_req(qp, &priv->tid_req);
367 priv->tid_req.e.swqe = wqe;
368 wqe->priv = priv;
369 }
370 for (i = 0; i < rvt_max_atomic(rdi); i++) {
371 struct hfi1_ack_priv *priv;
372
373 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
374 dd->node);
375 if (!priv)
376 return -ENOMEM;
377
378 hfi1_init_trdma_req(qp, &priv->tid_req);
379 priv->tid_req.e.ack = &qp->s_ack_queue[i];
380
381 ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
382 GFP_KERNEL);
383 if (ret) {
384 kfree(priv);
385 return ret;
386 }
387 qp->s_ack_queue[i].priv = priv;
388 }
389 }
390
391 return 0;
392 }
393
394 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
395 {
396 struct hfi1_qp_priv *qpriv = qp->priv;
397 struct rvt_swqe *wqe;
398 u32 i;
399
400 if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
401 for (i = 0; i < qp->s_size; i++) {
402 wqe = rvt_get_swqe_ptr(qp, i);
403 kfree(wqe->priv);
404 wqe->priv = NULL;
405 }
406 for (i = 0; i < rvt_max_atomic(rdi); i++) {
407 struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
408
409 if (priv)
410 hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
411 kfree(priv);
412 qp->s_ack_queue[i].priv = NULL;
413 }
414 cancel_work_sync(&qpriv->opfn.opfn_work);
415 kfree(qpriv->pages);
416 qpriv->pages = NULL;
417 }
418 }
419
420 /* Flow and tid waiter functions */
421 /**
422 * DOC: lock ordering
423 *
424 * There are two locks involved with the queuing
425 * routines: the qp s_lock and the exp_lock.
426 *
427 * Since the tid space allocation is called from
428 * the send engine, the qp s_lock is already held.
429 *
430 * The allocation routines will get the exp_lock.
431 *
432 * The first_qp() call is provided to allow the head of
433 * the rcd wait queue to be fetched under the exp_lock and
434 * followed by a drop of the exp_lock.
435 *
436 * Any qp in the wait list will have the qp reference count held
437 * to hold the qp in memory.
438 */
439
440 /*
441 * return head of rcd wait list
442 *
443 * Must hold the exp_lock.
444 *
445 * Get a reference to the QP to hold the QP in memory.
446 *
447 * The caller must release the reference when the local
448 * is no longer being used.
449 */
450 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
451 struct tid_queue *queue)
452 __must_hold(&rcd->exp_lock)
453 {
454 struct hfi1_qp_priv *priv;
455
456 lockdep_assert_held(&rcd->exp_lock);
457 priv = list_first_entry_or_null(&queue->queue_head,
458 struct hfi1_qp_priv,
459 tid_wait);
460 if (!priv)
461 return NULL;
462 rvt_get_qp(priv->owner);
463 return priv->owner;
464 }
465
466 /**
467 * kernel_tid_waiters - determine rcd wait
468 * @rcd: the receive context
469 * @qp: the head of the qp being processed
470 *
471 * This routine will return false IFF
472 * the list is NULL or the head of the
473 * list is the indicated qp.
474 *
475 * Must hold the qp s_lock and the exp_lock.
476 *
477 * Return:
478 * false if either of the conditions below are satisfied:
479 * 1. The list is empty or
480 * 2. The indicated qp is at the head of the list and the
481 * HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
482 * true is returned otherwise.
483 */
484 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
485 struct tid_queue *queue, struct rvt_qp *qp)
486 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
487 {
488 struct rvt_qp *fqp;
489 bool ret = true;
490
491 lockdep_assert_held(&qp->s_lock);
492 lockdep_assert_held(&rcd->exp_lock);
493 fqp = first_qp(rcd, queue);
494 if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
495 ret = false;
496 rvt_put_qp(fqp);
497 return ret;
498 }
499
500 /**
501 * dequeue_tid_waiter - dequeue the qp from the list
502 * @qp - the qp to remove the wait list
503 *
504 * This routine removes the indicated qp from the
505 * wait list if it is there.
506 *
507 * This should be done after the hardware flow and
508 * tid array resources have been allocated.
509 *
510 * Must hold the qp s_lock and the rcd exp_lock.
511 *
512 * It assumes the s_lock to protect the s_flags
513 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
514 */
515 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
516 struct tid_queue *queue, struct rvt_qp *qp)
517 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
518 {
519 struct hfi1_qp_priv *priv = qp->priv;
520
521 lockdep_assert_held(&qp->s_lock);
522 lockdep_assert_held(&rcd->exp_lock);
523 if (list_empty(&priv->tid_wait))
524 return;
525 list_del_init(&priv->tid_wait);
526 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
527 queue->dequeue++;
528 rvt_put_qp(qp);
529 }
530
531 /**
532 * queue_qp_for_tid_wait - suspend QP on tid space
533 * @rcd: the receive context
534 * @qp: the qp
535 *
536 * The qp is inserted at the tail of the rcd
537 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
538 *
539 * Must hold the qp s_lock and the exp_lock.
540 */
541 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
542 struct tid_queue *queue, struct rvt_qp *qp)
543 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
544 {
545 struct hfi1_qp_priv *priv = qp->priv;
546
547 lockdep_assert_held(&qp->s_lock);
548 lockdep_assert_held(&rcd->exp_lock);
549 if (list_empty(&priv->tid_wait)) {
550 qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
551 list_add_tail(&priv->tid_wait, &queue->queue_head);
552 priv->tid_enqueue = ++queue->enqueue;
553 rcd->dd->verbs_dev.n_tidwait++;
554 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
555 rvt_get_qp(qp);
556 }
557 }
558
559 /**
560 * __trigger_tid_waiter - trigger tid waiter
561 * @qp: the qp
562 *
563 * This is a private entrance to schedule the qp
564 * assuming the caller is holding the qp->s_lock.
565 */
566 static void __trigger_tid_waiter(struct rvt_qp *qp)
567 __must_hold(&qp->s_lock)
568 {
569 lockdep_assert_held(&qp->s_lock);
570 if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
571 return;
572 trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
573 hfi1_schedule_send(qp);
574 }
575
576 /**
577 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
578 * @qp - the qp
579 *
580 * trigger a schedule or a waiting qp in a deadlock
581 * safe manner. The qp reference is held prior
582 * to this call via first_qp().
583 *
584 * If the qp trigger was already scheduled (!rval)
585 * the the reference is dropped, otherwise the resume
586 * or the destroy cancel will dispatch the reference.
587 */
588 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
589 {
590 struct hfi1_qp_priv *priv;
591 struct hfi1_ibport *ibp;
592 struct hfi1_pportdata *ppd;
593 struct hfi1_devdata *dd;
594 bool rval;
595
596 if (!qp)
597 return;
598
599 priv = qp->priv;
600 ibp = to_iport(qp->ibqp.device, qp->port_num);
601 ppd = ppd_from_ibp(ibp);
602 dd = dd_from_ibdev(qp->ibqp.device);
603
604 rval = queue_work_on(priv->s_sde ?
605 priv->s_sde->cpu :
606 cpumask_first(cpumask_of_node(dd->node)),
607 ppd->hfi1_wq,
608 &priv->tid_rdma.trigger_work);
609 if (!rval)
610 rvt_put_qp(qp);
611 }
612
613 /**
614 * tid_rdma_trigger_resume - field a trigger work request
615 * @work - the work item
616 *
617 * Complete the off qp trigger processing by directly
618 * calling the progress routine.
619 */
620 static void tid_rdma_trigger_resume(struct work_struct *work)
621 {
622 struct tid_rdma_qp_params *tr;
623 struct hfi1_qp_priv *priv;
624 struct rvt_qp *qp;
625
626 tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
627 priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
628 qp = priv->owner;
629 spin_lock_irq(&qp->s_lock);
630 if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
631 spin_unlock_irq(&qp->s_lock);
632 hfi1_do_send(priv->owner, true);
633 } else {
634 spin_unlock_irq(&qp->s_lock);
635 }
636 rvt_put_qp(qp);
637 }
638
639 /**
640 * tid_rdma_flush_wait - unwind any tid space wait
641 *
642 * This is called when resetting a qp to
643 * allow a destroy or reset to get rid
644 * of any tid space linkage and reference counts.
645 */
646 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
647 __must_hold(&qp->s_lock)
648 {
649 struct hfi1_qp_priv *priv;
650
651 if (!qp)
652 return;
653 lockdep_assert_held(&qp->s_lock);
654 priv = qp->priv;
655 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
656 spin_lock(&priv->rcd->exp_lock);
657 if (!list_empty(&priv->tid_wait)) {
658 list_del_init(&priv->tid_wait);
659 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
660 queue->dequeue++;
661 rvt_put_qp(qp);
662 }
663 spin_unlock(&priv->rcd->exp_lock);
664 }
665
666 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
667 __must_hold(&qp->s_lock)
668 {
669 struct hfi1_qp_priv *priv = qp->priv;
670
671 _tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
672 _tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
673 }
674
675 /* Flow functions */
676 /**
677 * kern_reserve_flow - allocate a hardware flow
678 * @rcd - the context to use for allocation
679 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
680 * signify "don't care".
681 *
682 * Use a bit mask based allocation to reserve a hardware
683 * flow for use in receiving KDETH data packets. If a preferred flow is
684 * specified the function will attempt to reserve that flow again, if
685 * available.
686 *
687 * The exp_lock must be held.
688 *
689 * Return:
690 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
691 * On failure: -EAGAIN
692 */
693 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
694 __must_hold(&rcd->exp_lock)
695 {
696 int nr;
697
698 /* Attempt to reserve the preferred flow index */
699 if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
700 !test_and_set_bit(last, &rcd->flow_mask))
701 return last;
702
703 nr = ffz(rcd->flow_mask);
704 BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
705 (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
706 if (nr > (RXE_NUM_TID_FLOWS - 1))
707 return -EAGAIN;
708 set_bit(nr, &rcd->flow_mask);
709 return nr;
710 }
711
712 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
713 u32 flow_idx)
714 {
715 u64 reg;
716
717 reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
718 RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
719 RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
720 RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
721 RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
722 RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
723
724 if (generation != KERN_GENERATION_RESERVED)
725 reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
726
727 write_uctxt_csr(rcd->dd, rcd->ctxt,
728 RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
729 }
730
731 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
732 __must_hold(&rcd->exp_lock)
733 {
734 u32 generation = rcd->flows[flow_idx].generation;
735
736 kern_set_hw_flow(rcd, generation, flow_idx);
737 return generation;
738 }
739
740 static u32 kern_flow_generation_next(u32 gen)
741 {
742 u32 generation = mask_generation(gen + 1);
743
744 if (generation == KERN_GENERATION_RESERVED)
745 generation = mask_generation(generation + 1);
746 return generation;
747 }
748
749 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
750 __must_hold(&rcd->exp_lock)
751 {
752 rcd->flows[flow_idx].generation =
753 kern_flow_generation_next(rcd->flows[flow_idx].generation);
754 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
755 }
756
757 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
758 {
759 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
760 struct tid_flow_state *fs = &qpriv->flow_state;
761 struct rvt_qp *fqp;
762 unsigned long flags;
763 int ret = 0;
764
765 /* The QP already has an allocated flow */
766 if (fs->index != RXE_NUM_TID_FLOWS)
767 return ret;
768
769 spin_lock_irqsave(&rcd->exp_lock, flags);
770 if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
771 goto queue;
772
773 ret = kern_reserve_flow(rcd, fs->last_index);
774 if (ret < 0)
775 goto queue;
776 fs->index = ret;
777 fs->last_index = fs->index;
778
779 /* Generation received in a RESYNC overrides default flow generation */
780 if (fs->generation != KERN_GENERATION_RESERVED)
781 rcd->flows[fs->index].generation = fs->generation;
782 fs->generation = kern_setup_hw_flow(rcd, fs->index);
783 fs->psn = 0;
784 dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
785 /* get head before dropping lock */
786 fqp = first_qp(rcd, &rcd->flow_queue);
787 spin_unlock_irqrestore(&rcd->exp_lock, flags);
788
789 tid_rdma_schedule_tid_wakeup(fqp);
790 return 0;
791 queue:
792 queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
793 spin_unlock_irqrestore(&rcd->exp_lock, flags);
794 return -EAGAIN;
795 }
796
797 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
798 {
799 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
800 struct tid_flow_state *fs = &qpriv->flow_state;
801 struct rvt_qp *fqp;
802 unsigned long flags;
803
804 if (fs->index >= RXE_NUM_TID_FLOWS)
805 return;
806 spin_lock_irqsave(&rcd->exp_lock, flags);
807 kern_clear_hw_flow(rcd, fs->index);
808 clear_bit(fs->index, &rcd->flow_mask);
809 fs->index = RXE_NUM_TID_FLOWS;
810 fs->psn = 0;
811 fs->generation = KERN_GENERATION_RESERVED;
812
813 /* get head before dropping lock */
814 fqp = first_qp(rcd, &rcd->flow_queue);
815 spin_unlock_irqrestore(&rcd->exp_lock, flags);
816
817 if (fqp == qp) {
818 __trigger_tid_waiter(fqp);
819 rvt_put_qp(fqp);
820 } else {
821 tid_rdma_schedule_tid_wakeup(fqp);
822 }
823 }
824
825 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
826 {
827 int i;
828
829 for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
830 rcd->flows[i].generation = mask_generation(prandom_u32());
831 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
832 }
833 }
834
835 /* TID allocation functions */
836 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
837 {
838 u8 count = s->count;
839
840 return ilog2(count) + 1;
841 }
842
843 /**
844 * tid_rdma_find_phys_blocks_4k - get groups base on mr info
845 * @npages - number of pages
846 * @pages - pointer to an array of page structs
847 * @list - page set array to return
848 *
849 * This routine returns the number of groups associated with
850 * the current sge information. This implementation is based
851 * on the expected receive find_phys_blocks() adjusted to
852 * use the MR information vs. the pfn.
853 *
854 * Return:
855 * the number of RcvArray entries
856 */
857 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
858 struct page **pages,
859 u32 npages,
860 struct tid_rdma_pageset *list)
861 {
862 u32 pagecount, pageidx, setcount = 0, i;
863 void *vaddr, *this_vaddr;
864
865 if (!npages)
866 return 0;
867
868 /*
869 * Look for sets of physically contiguous pages in the user buffer.
870 * This will allow us to optimize Expected RcvArray entry usage by
871 * using the bigger supported sizes.
872 */
873 vaddr = page_address(pages[0]);
874 trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
875 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
876 this_vaddr = i < npages ? page_address(pages[i]) : NULL;
877 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
878 this_vaddr);
879 /*
880 * If the vaddr's are not sequential, pages are not physically
881 * contiguous.
882 */
883 if (this_vaddr != (vaddr + PAGE_SIZE)) {
884 /*
885 * At this point we have to loop over the set of
886 * physically contiguous pages and break them down it
887 * sizes supported by the HW.
888 * There are two main constraints:
889 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
890 * If the total set size is bigger than that
891 * program only a MAX_EXPECTED_BUFFER chunk.
892 * 2. The buffer size has to be a power of two. If
893 * it is not, round down to the closes power of
894 * 2 and program that size.
895 */
896 while (pagecount) {
897 int maxpages = pagecount;
898 u32 bufsize = pagecount * PAGE_SIZE;
899
900 if (bufsize > MAX_EXPECTED_BUFFER)
901 maxpages =
902 MAX_EXPECTED_BUFFER >>
903 PAGE_SHIFT;
904 else if (!is_power_of_2(bufsize))
905 maxpages =
906 rounddown_pow_of_two(bufsize) >>
907 PAGE_SHIFT;
908
909 list[setcount].idx = pageidx;
910 list[setcount].count = maxpages;
911 trace_hfi1_tid_pageset(flow->req->qp, setcount,
912 list[setcount].idx,
913 list[setcount].count);
914 pagecount -= maxpages;
915 pageidx += maxpages;
916 setcount++;
917 }
918 pageidx = i;
919 pagecount = 1;
920 vaddr = this_vaddr;
921 } else {
922 vaddr += PAGE_SIZE;
923 pagecount++;
924 }
925 }
926 /* insure we always return an even number of sets */
927 if (setcount & 1)
928 list[setcount++].count = 0;
929 return setcount;
930 }
931
932 /**
933 * tid_flush_pages - dump out pages into pagesets
934 * @list - list of pagesets
935 * @idx - pointer to current page index
936 * @pages - number of pages to dump
937 * @sets - current number of pagesset
938 *
939 * This routine flushes out accumuated pages.
940 *
941 * To insure an even number of sets the
942 * code may add a filler.
943 *
944 * This can happen with when pages is not
945 * a power of 2 or pages is a power of 2
946 * less than the maximum pages.
947 *
948 * Return:
949 * The new number of sets
950 */
951
952 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
953 u32 *idx, u32 pages, u32 sets)
954 {
955 while (pages) {
956 u32 maxpages = pages;
957
958 if (maxpages > MAX_EXPECTED_PAGES)
959 maxpages = MAX_EXPECTED_PAGES;
960 else if (!is_power_of_2(maxpages))
961 maxpages = rounddown_pow_of_two(maxpages);
962 list[sets].idx = *idx;
963 list[sets++].count = maxpages;
964 *idx += maxpages;
965 pages -= maxpages;
966 }
967 /* might need a filler */
968 if (sets & 1)
969 list[sets++].count = 0;
970 return sets;
971 }
972
973 /**
974 * tid_rdma_find_phys_blocks_8k - get groups base on mr info
975 * @pages - pointer to an array of page structs
976 * @npages - number of pages
977 * @list - page set array to return
978 *
979 * This routine parses an array of pages to compute pagesets
980 * in an 8k compatible way.
981 *
982 * pages are tested two at a time, i, i + 1 for contiguous
983 * pages and i - 1 and i contiguous pages.
984 *
985 * If any condition is false, any accumlated pages are flushed and
986 * v0,v1 are emitted as separate PAGE_SIZE pagesets
987 *
988 * Otherwise, the current 8k is totaled for a future flush.
989 *
990 * Return:
991 * The number of pagesets
992 * list set with the returned number of pagesets
993 *
994 */
995 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
996 struct page **pages,
997 u32 npages,
998 struct tid_rdma_pageset *list)
999 {
1000 u32 idx, sets = 0, i;
1001 u32 pagecnt = 0;
1002 void *v0, *v1, *vm1;
1003
1004 if (!npages)
1005 return 0;
1006 for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1007 /* get a new v0 */
1008 v0 = page_address(pages[i]);
1009 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1010 v1 = i + 1 < npages ?
1011 page_address(pages[i + 1]) : NULL;
1012 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1013 /* compare i, i + 1 vaddr */
1014 if (v1 != (v0 + PAGE_SIZE)) {
1015 /* flush out pages */
1016 sets = tid_flush_pages(list, &idx, pagecnt, sets);
1017 /* output v0,v1 as two pagesets */
1018 list[sets].idx = idx++;
1019 list[sets++].count = 1;
1020 if (v1) {
1021 list[sets].count = 1;
1022 list[sets++].idx = idx++;
1023 } else {
1024 list[sets++].count = 0;
1025 }
1026 vm1 = NULL;
1027 pagecnt = 0;
1028 continue;
1029 }
1030 /* i,i+1 consecutive, look at i-1,i */
1031 if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1032 /* flush out pages */
1033 sets = tid_flush_pages(list, &idx, pagecnt, sets);
1034 pagecnt = 0;
1035 }
1036 /* pages will always be a multiple of 8k */
1037 pagecnt += 2;
1038 /* save i-1 */
1039 vm1 = v1;
1040 /* move to next pair */
1041 }
1042 /* dump residual pages at end */
1043 sets = tid_flush_pages(list, &idx, npages - idx, sets);
1044 /* by design cannot be odd sets */
1045 WARN_ON(sets & 1);
1046 return sets;
1047 }
1048
1049 /**
1050 * Find pages for one segment of a sge array represented by @ss. The function
1051 * does not check the sge, the sge must have been checked for alignment with a
1052 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1053 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1054 * copy maintained in @ss->sge, the original sge is not modified.
1055 *
1056 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1057 * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1058 * references to the MR. This difference requires that we keep track of progress
1059 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1060 * structure.
1061 */
1062 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1063 struct page **pages,
1064 struct rvt_sge_state *ss, bool *last)
1065 {
1066 struct tid_rdma_request *req = flow->req;
1067 struct rvt_sge *sge = &ss->sge;
1068 u32 length = flow->req->seg_len;
1069 u32 len = PAGE_SIZE;
1070 u32 i = 0;
1071
1072 while (length && req->isge < ss->num_sge) {
1073 pages[i++] = virt_to_page(sge->vaddr);
1074
1075 sge->vaddr += len;
1076 sge->length -= len;
1077 sge->sge_length -= len;
1078 if (!sge->sge_length) {
1079 if (++req->isge < ss->num_sge)
1080 *sge = ss->sg_list[req->isge - 1];
1081 } else if (sge->length == 0 && sge->mr->lkey) {
1082 if (++sge->n >= RVT_SEGSZ) {
1083 ++sge->m;
1084 sge->n = 0;
1085 }
1086 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1087 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1088 }
1089 length -= len;
1090 }
1091
1092 flow->length = flow->req->seg_len - length;
1093 *last = req->isge == ss->num_sge ? false : true;
1094 return i;
1095 }
1096
1097 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1098 {
1099 struct hfi1_devdata *dd;
1100 int i;
1101 struct tid_rdma_pageset *pset;
1102
1103 dd = flow->req->rcd->dd;
1104 for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1105 i++, pset++) {
1106 if (pset->count && pset->addr) {
1107 dma_unmap_page(&dd->pcidev->dev,
1108 pset->addr,
1109 PAGE_SIZE * pset->count,
1110 DMA_FROM_DEVICE);
1111 pset->mapped = 0;
1112 }
1113 }
1114 }
1115
1116 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1117 {
1118 int i;
1119 struct hfi1_devdata *dd = flow->req->rcd->dd;
1120 struct tid_rdma_pageset *pset;
1121
1122 for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1123 i++, pset++) {
1124 if (pset->count) {
1125 pset->addr = dma_map_page(&dd->pcidev->dev,
1126 pages[pset->idx],
1127 0,
1128 PAGE_SIZE * pset->count,
1129 DMA_FROM_DEVICE);
1130
1131 if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1132 dma_unmap_flow(flow);
1133 return -ENOMEM;
1134 }
1135 pset->mapped = 1;
1136 }
1137 }
1138 return 0;
1139 }
1140
1141 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1142 {
1143 return !!flow->pagesets[0].mapped;
1144 }
1145
1146 /*
1147 * Get pages pointers and identify contiguous physical memory chunks for a
1148 * segment. All segments are of length flow->req->seg_len.
1149 */
1150 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1151 struct page **pages,
1152 struct rvt_sge_state *ss, bool *last)
1153 {
1154 u8 npages;
1155
1156 /* Reuse previously computed pagesets, if any */
1157 if (flow->npagesets) {
1158 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1159 flow);
1160 if (!dma_mapped(flow))
1161 return dma_map_flow(flow, pages);
1162 return 0;
1163 }
1164
1165 npages = kern_find_pages(flow, pages, ss, last);
1166
1167 if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1168 flow->npagesets =
1169 tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1170 flow->pagesets);
1171 else
1172 flow->npagesets =
1173 tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1174 flow->pagesets);
1175
1176 return dma_map_flow(flow, pages);
1177 }
1178
1179 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1180 struct hfi1_ctxtdata *rcd, char *s,
1181 struct tid_group *grp, u8 cnt)
1182 {
1183 struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1184
1185 WARN_ON_ONCE(flow->tnode_cnt >=
1186 (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1187 if (WARN_ON_ONCE(cnt & 1))
1188 dd_dev_err(rcd->dd,
1189 "unexpected odd allocation cnt %u map 0x%x used %u",
1190 cnt, grp->map, grp->used);
1191
1192 node->grp = grp;
1193 node->map = grp->map;
1194 node->cnt = cnt;
1195 trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1196 grp->base, grp->map, grp->used, cnt);
1197 }
1198
1199 /*
1200 * Try to allocate pageset_count TID's from TID groups for a context
1201 *
1202 * This function allocates TID's without moving groups between lists or
1203 * modifying grp->map. This is done as follows, being cogizant of the lists
1204 * between which the TID groups will move:
1205 * 1. First allocate complete groups of 8 TID's since this is more efficient,
1206 * these groups will move from group->full without affecting used
1207 * 2. If more TID's are needed allocate from used (will move from used->full or
1208 * stay in used)
1209 * 3. If we still don't have the required number of TID's go back and look again
1210 * at a complete group (will move from group->used)
1211 */
1212 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1213 {
1214 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1215 struct hfi1_devdata *dd = rcd->dd;
1216 u32 ngroups, pageidx = 0;
1217 struct tid_group *group = NULL, *used;
1218 u8 use;
1219
1220 flow->tnode_cnt = 0;
1221 ngroups = flow->npagesets / dd->rcv_entries.group_size;
1222 if (!ngroups)
1223 goto used_list;
1224
1225 /* First look at complete groups */
1226 list_for_each_entry(group, &rcd->tid_group_list.list, list) {
1227 kern_add_tid_node(flow, rcd, "complete groups", group,
1228 group->size);
1229
1230 pageidx += group->size;
1231 if (!--ngroups)
1232 break;
1233 }
1234
1235 if (pageidx >= flow->npagesets)
1236 goto ok;
1237
1238 used_list:
1239 /* Now look at partially used groups */
1240 list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1241 use = min_t(u32, flow->npagesets - pageidx,
1242 used->size - used->used);
1243 kern_add_tid_node(flow, rcd, "used groups", used, use);
1244
1245 pageidx += use;
1246 if (pageidx >= flow->npagesets)
1247 goto ok;
1248 }
1249
1250 /*
1251 * Look again at a complete group, continuing from where we left.
1252 * However, if we are at the head, we have reached the end of the
1253 * complete groups list from the first loop above
1254 */
1255 if (group && &group->list == &rcd->tid_group_list.list)
1256 goto bail_eagain;
1257 group = list_prepare_entry(group, &rcd->tid_group_list.list,
1258 list);
1259 if (list_is_last(&group->list, &rcd->tid_group_list.list))
1260 goto bail_eagain;
1261 group = list_next_entry(group, list);
1262 use = min_t(u32, flow->npagesets - pageidx, group->size);
1263 kern_add_tid_node(flow, rcd, "complete continue", group, use);
1264 pageidx += use;
1265 if (pageidx >= flow->npagesets)
1266 goto ok;
1267 bail_eagain:
1268 trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1269 (u64)flow->npagesets);
1270 return -EAGAIN;
1271 ok:
1272 return 0;
1273 }
1274
1275 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1276 u32 *pset_idx)
1277 {
1278 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1279 struct hfi1_devdata *dd = rcd->dd;
1280 struct kern_tid_node *node = &flow->tnode[grp_num];
1281 struct tid_group *grp = node->grp;
1282 struct tid_rdma_pageset *pset;
1283 u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1284 u32 rcventry, npages = 0, pair = 0, tidctrl;
1285 u8 i, cnt = 0;
1286
1287 for (i = 0; i < grp->size; i++) {
1288 rcventry = grp->base + i;
1289
1290 if (node->map & BIT(i) || cnt >= node->cnt) {
1291 rcv_array_wc_fill(dd, rcventry);
1292 continue;
1293 }
1294 pset = &flow->pagesets[(*pset_idx)++];
1295 if (pset->count) {
1296 hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1297 pset->addr, trdma_pset_order(pset));
1298 } else {
1299 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1300 }
1301 npages += pset->count;
1302
1303 rcventry -= rcd->expected_base;
1304 tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1305 /*
1306 * A single TID entry will be used to use a rcvarr pair (with
1307 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1308 * (b) the group map shows current and the next bits as free
1309 * indicating two consecutive rcvarry entries are available (c)
1310 * we actually need 2 more entries
1311 */
1312 pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1313 node->cnt >= cnt + 2;
1314 if (!pair) {
1315 if (!pset->count)
1316 tidctrl = 0x1;
1317 flow->tid_entry[flow->tidcnt++] =
1318 EXP_TID_SET(IDX, rcventry >> 1) |
1319 EXP_TID_SET(CTRL, tidctrl) |
1320 EXP_TID_SET(LEN, npages);
1321 trace_hfi1_tid_entry_alloc(/* entry */
1322 flow->req->qp, flow->tidcnt - 1,
1323 flow->tid_entry[flow->tidcnt - 1]);
1324
1325 /* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1326 flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1327 npages = 0;
1328 }
1329
1330 if (grp->used == grp->size - 1)
1331 tid_group_move(grp, &rcd->tid_used_list,
1332 &rcd->tid_full_list);
1333 else if (!grp->used)
1334 tid_group_move(grp, &rcd->tid_group_list,
1335 &rcd->tid_used_list);
1336
1337 grp->used++;
1338 grp->map |= BIT(i);
1339 cnt++;
1340 }
1341 }
1342
1343 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1344 {
1345 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1346 struct hfi1_devdata *dd = rcd->dd;
1347 struct kern_tid_node *node = &flow->tnode[grp_num];
1348 struct tid_group *grp = node->grp;
1349 u32 rcventry;
1350 u8 i, cnt = 0;
1351
1352 for (i = 0; i < grp->size; i++) {
1353 rcventry = grp->base + i;
1354
1355 if (node->map & BIT(i) || cnt >= node->cnt) {
1356 rcv_array_wc_fill(dd, rcventry);
1357 continue;
1358 }
1359
1360 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1361
1362 grp->used--;
1363 grp->map &= ~BIT(i);
1364 cnt++;
1365
1366 if (grp->used == grp->size - 1)
1367 tid_group_move(grp, &rcd->tid_full_list,
1368 &rcd->tid_used_list);
1369 else if (!grp->used)
1370 tid_group_move(grp, &rcd->tid_used_list,
1371 &rcd->tid_group_list);
1372 }
1373 if (WARN_ON_ONCE(cnt & 1)) {
1374 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1375 struct hfi1_devdata *dd = rcd->dd;
1376
1377 dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1378 cnt, grp->map, grp->used);
1379 }
1380 }
1381
1382 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1383 {
1384 u32 pset_idx = 0;
1385 int i;
1386
1387 flow->npkts = 0;
1388 flow->tidcnt = 0;
1389 for (i = 0; i < flow->tnode_cnt; i++)
1390 kern_program_rcv_group(flow, i, &pset_idx);
1391 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1392 }
1393
1394 /**
1395 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1396 * TID RDMA request
1397 *
1398 * @req: TID RDMA request for which the segment/flow is being set up
1399 * @ss: sge state, maintains state across successive segments of a sge
1400 * @last: set to true after the last sge segment has been processed
1401 *
1402 * This function
1403 * (1) finds a free flow entry in the flow circular buffer
1404 * (2) finds pages and continuous physical chunks constituing one segment
1405 * of an sge
1406 * (3) allocates TID group entries for those chunks
1407 * (4) programs rcvarray entries in the hardware corresponding to those
1408 * TID's
1409 * (5) computes a tidarray with formatted TID entries which can be sent
1410 * to the sender
1411 * (6) Reserves and programs HW flows.
1412 * (7) It also manages queing the QP when TID/flow resources are not
1413 * available.
1414 *
1415 * @req points to struct tid_rdma_request of which the segments are a part. The
1416 * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1417 * req->flow_idx is the index of the flow which has been prepared in this
1418 * invocation of function call. With flow = &req->flows[req->flow_idx],
1419 * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1420 * sends and flow->npkts contains number of packets required to send the
1421 * segment.
1422 *
1423 * hfi1_check_sge_align should be called prior to calling this function and if
1424 * it signals error TID RDMA cannot be used for this sge and this function
1425 * should not be called.
1426 *
1427 * For the queuing, caller must hold the flow->req->qp s_lock from the send
1428 * engine and the function will procure the exp_lock.
1429 *
1430 * Return:
1431 * The function returns -EAGAIN if sufficient number of TID/flow resources to
1432 * map the segment could not be allocated. In this case the function should be
1433 * called again with previous arguments to retry the TID allocation. There are
1434 * no other error returns. The function returns 0 on success.
1435 */
1436 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1437 struct rvt_sge_state *ss, bool *last)
1438 __must_hold(&req->qp->s_lock)
1439 {
1440 struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1441 struct hfi1_ctxtdata *rcd = req->rcd;
1442 struct hfi1_qp_priv *qpriv = req->qp->priv;
1443 unsigned long flags;
1444 struct rvt_qp *fqp;
1445 u16 clear_tail = req->clear_tail;
1446
1447 lockdep_assert_held(&req->qp->s_lock);
1448 /*
1449 * We return error if either (a) we don't have space in the flow
1450 * circular buffer, or (b) we already have max entries in the buffer.
1451 * Max entries depend on the type of request we are processing and the
1452 * negotiated TID RDMA parameters.
1453 */
1454 if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1455 CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1456 req->n_flows)
1457 return -EINVAL;
1458
1459 /*
1460 * Get pages, identify contiguous physical memory chunks for the segment
1461 * If we can not determine a DMA address mapping we will treat it just
1462 * like if we ran out of space above.
1463 */
1464 if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1465 hfi1_wait_kmem(flow->req->qp);
1466 return -ENOMEM;
1467 }
1468
1469 spin_lock_irqsave(&rcd->exp_lock, flags);
1470 if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1471 goto queue;
1472
1473 /*
1474 * At this point we know the number of pagesets and hence the number of
1475 * TID's to map the segment. Allocate the TID's from the TID groups. If
1476 * we cannot allocate the required number we exit and try again later
1477 */
1478 if (kern_alloc_tids(flow))
1479 goto queue;
1480 /*
1481 * Finally program the TID entries with the pagesets, compute the
1482 * tidarray and enable the HW flow
1483 */
1484 kern_program_rcvarray(flow);
1485
1486 /*
1487 * Setup the flow state with relevant information.
1488 * This information is used for tracking the sequence of data packets
1489 * for the segment.
1490 * The flow is setup here as this is the most accurate time and place
1491 * to do so. Doing at a later time runs the risk of the flow data in
1492 * qpriv getting out of sync.
1493 */
1494 memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1495 flow->idx = qpriv->flow_state.index;
1496 flow->flow_state.generation = qpriv->flow_state.generation;
1497 flow->flow_state.spsn = qpriv->flow_state.psn;
1498 flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1499 flow->flow_state.r_next_psn =
1500 full_flow_psn(flow, flow->flow_state.spsn);
1501 qpriv->flow_state.psn += flow->npkts;
1502
1503 dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1504 /* get head before dropping lock */
1505 fqp = first_qp(rcd, &rcd->rarr_queue);
1506 spin_unlock_irqrestore(&rcd->exp_lock, flags);
1507 tid_rdma_schedule_tid_wakeup(fqp);
1508
1509 req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1510 return 0;
1511 queue:
1512 queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1513 spin_unlock_irqrestore(&rcd->exp_lock, flags);
1514 return -EAGAIN;
1515 }
1516
1517 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1518 {
1519 flow->npagesets = 0;
1520 }
1521
1522 /*
1523 * This function is called after one segment has been successfully sent to
1524 * release the flow and TID HW/SW resources for that segment. The segments for a
1525 * TID RDMA request are setup and cleared in FIFO order which is managed using a
1526 * circular buffer.
1527 */
1528 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1529 __must_hold(&req->qp->s_lock)
1530 {
1531 struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1532 struct hfi1_ctxtdata *rcd = req->rcd;
1533 unsigned long flags;
1534 int i;
1535 struct rvt_qp *fqp;
1536
1537 lockdep_assert_held(&req->qp->s_lock);
1538 /* Exit if we have nothing in the flow circular buffer */
1539 if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1540 return -EINVAL;
1541
1542 spin_lock_irqsave(&rcd->exp_lock, flags);
1543
1544 for (i = 0; i < flow->tnode_cnt; i++)
1545 kern_unprogram_rcv_group(flow, i);
1546 /* To prevent double unprogramming */
1547 flow->tnode_cnt = 0;
1548 /* get head before dropping lock */
1549 fqp = first_qp(rcd, &rcd->rarr_queue);
1550 spin_unlock_irqrestore(&rcd->exp_lock, flags);
1551
1552 dma_unmap_flow(flow);
1553
1554 hfi1_tid_rdma_reset_flow(flow);
1555 req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1556
1557 if (fqp == req->qp) {
1558 __trigger_tid_waiter(fqp);
1559 rvt_put_qp(fqp);
1560 } else {
1561 tid_rdma_schedule_tid_wakeup(fqp);
1562 }
1563
1564 return 0;
1565 }
1566
1567 /*
1568 * This function is called to release all the tid entries for
1569 * a request.
1570 */
1571 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1572 __must_hold(&req->qp->s_lock)
1573 {
1574 /* Use memory barrier for proper ordering */
1575 while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1576 if (hfi1_kern_exp_rcv_clear(req))
1577 break;
1578 }
1579 }
1580
1581 /**
1582 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1583 * @req - the tid rdma request to be cleaned
1584 */
1585 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1586 {
1587 kfree(req->flows);
1588 req->flows = NULL;
1589 }
1590
1591 /**
1592 * __trdma_clean_swqe - clean up for large sized QPs
1593 * @qp: the queue patch
1594 * @wqe: the send wqe
1595 */
1596 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1597 {
1598 struct hfi1_swqe_priv *p = wqe->priv;
1599
1600 hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1601 }
1602
1603 /*
1604 * This can be called at QP create time or in the data path.
1605 */
1606 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1607 gfp_t gfp)
1608 {
1609 struct tid_rdma_flow *flows;
1610 int i;
1611
1612 if (likely(req->flows))
1613 return 0;
1614 flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1615 req->rcd->numa_id);
1616 if (!flows)
1617 return -ENOMEM;
1618 /* mini init */
1619 for (i = 0; i < MAX_FLOWS; i++) {
1620 flows[i].req = req;
1621 flows[i].npagesets = 0;
1622 flows[i].pagesets[0].mapped = 0;
1623 flows[i].resync_npkts = 0;
1624 }
1625 req->flows = flows;
1626 return 0;
1627 }
1628
1629 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1630 struct tid_rdma_request *req)
1631 {
1632 struct hfi1_qp_priv *qpriv = qp->priv;
1633
1634 /*
1635 * Initialize various TID RDMA request variables.
1636 * These variables are "static", which is why they
1637 * can be pre-initialized here before the WRs has
1638 * even been submitted.
1639 * However, non-NULL values for these variables do not
1640 * imply that this WQE has been enabled for TID RDMA.
1641 * Drivers should check the WQE's opcode to determine
1642 * if a request is a TID RDMA one or not.
1643 */
1644 req->qp = qp;
1645 req->rcd = qpriv->rcd;
1646 }
1647
1648 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1649 void *context, int vl, int mode, u64 data)
1650 {
1651 struct hfi1_devdata *dd = context;
1652
1653 return dd->verbs_dev.n_tidwait;
1654 }
1655
1656 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1657 u32 psn, u16 *fidx)
1658 {
1659 u16 head, tail;
1660 struct tid_rdma_flow *flow;
1661
1662 head = req->setup_head;
1663 tail = req->clear_tail;
1664 for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1665 tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1666 flow = &req->flows[tail];
1667 if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1668 cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1669 if (fidx)
1670 *fidx = tail;
1671 return flow;
1672 }
1673 }
1674 return NULL;
1675 }
1676
1677 /* TID RDMA READ functions */
1678 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1679 struct ib_other_headers *ohdr, u32 *bth1,
1680 u32 *bth2, u32 *len)
1681 {
1682 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1683 struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1684 struct rvt_qp *qp = req->qp;
1685 struct hfi1_qp_priv *qpriv = qp->priv;
1686 struct hfi1_swqe_priv *wpriv = wqe->priv;
1687 struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1688 struct tid_rdma_params *remote;
1689 u32 req_len = 0;
1690 void *req_addr = NULL;
1691
1692 /* This is the IB psn used to send the request */
1693 *bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1694 trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1695
1696 /* TID Entries for TID RDMA READ payload */
1697 req_addr = &flow->tid_entry[flow->tid_idx];
1698 req_len = sizeof(*flow->tid_entry) *
1699 (flow->tidcnt - flow->tid_idx);
1700
1701 memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1702 wpriv->ss.sge.vaddr = req_addr;
1703 wpriv->ss.sge.sge_length = req_len;
1704 wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1705 /*
1706 * We can safely zero these out. Since the first SGE covers the
1707 * entire packet, nothing else should even look at the MR.
1708 */
1709 wpriv->ss.sge.mr = NULL;
1710 wpriv->ss.sge.m = 0;
1711 wpriv->ss.sge.n = 0;
1712
1713 wpriv->ss.sg_list = NULL;
1714 wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1715 wpriv->ss.num_sge = 1;
1716
1717 /* Construct the TID RDMA READ REQ packet header */
1718 rcu_read_lock();
1719 remote = rcu_dereference(qpriv->tid_rdma.remote);
1720
1721 KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1722 KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1723 rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1724 req->cur_seg * req->seg_len + flow->sent);
1725 rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1726 rreq->reth.length = cpu_to_be32(*len);
1727 rreq->tid_flow_psn =
1728 cpu_to_be32((flow->flow_state.generation <<
1729 HFI1_KDETH_BTH_SEQ_SHIFT) |
1730 ((flow->flow_state.spsn + flow->pkt) &
1731 HFI1_KDETH_BTH_SEQ_MASK));
1732 rreq->tid_flow_qp =
1733 cpu_to_be32(qpriv->tid_rdma.local.qp |
1734 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1735 TID_RDMA_DESTQP_FLOW_SHIFT) |
1736 qpriv->rcd->ctxt);
1737 rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1738 *bth1 &= ~RVT_QPN_MASK;
1739 *bth1 |= remote->qp;
1740 *bth2 |= IB_BTH_REQ_ACK;
1741 rcu_read_unlock();
1742
1743 /* We are done with this segment */
1744 flow->sent += *len;
1745 req->cur_seg++;
1746 qp->s_state = TID_OP(READ_REQ);
1747 req->ack_pending++;
1748 req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1749 qpriv->pending_tid_r_segs++;
1750 qp->s_num_rd_atomic++;
1751
1752 /* Set the TID RDMA READ request payload size */
1753 *len = req_len;
1754
1755 return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1756 }
1757
1758 /*
1759 * @len: contains the data length to read upon entry and the read request
1760 * payload length upon exit.
1761 */
1762 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1763 struct ib_other_headers *ohdr, u32 *bth1,
1764 u32 *bth2, u32 *len)
1765 __must_hold(&qp->s_lock)
1766 {
1767 struct hfi1_qp_priv *qpriv = qp->priv;
1768 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1769 struct tid_rdma_flow *flow = NULL;
1770 u32 hdwords = 0;
1771 bool last;
1772 bool retry = true;
1773 u32 npkts = rvt_div_round_up_mtu(qp, *len);
1774
1775 trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1776 wqe->lpsn, req);
1777 /*
1778 * Check sync conditions. Make sure that there are no pending
1779 * segments before freeing the flow.
1780 */
1781 sync_check:
1782 if (req->state == TID_REQUEST_SYNC) {
1783 if (qpriv->pending_tid_r_segs)
1784 goto done;
1785
1786 hfi1_kern_clear_hw_flow(req->rcd, qp);
1787 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1788 req->state = TID_REQUEST_ACTIVE;
1789 }
1790
1791 /*
1792 * If the request for this segment is resent, the tid resources should
1793 * have been allocated before. In this case, req->flow_idx should
1794 * fall behind req->setup_head.
1795 */
1796 if (req->flow_idx == req->setup_head) {
1797 retry = false;
1798 if (req->state == TID_REQUEST_RESEND) {
1799 /*
1800 * This is the first new segment for a request whose
1801 * earlier segments have been re-sent. We need to
1802 * set up the sge pointer correctly.
1803 */
1804 restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1805 qp->pmtu);
1806 req->isge = 0;
1807 req->state = TID_REQUEST_ACTIVE;
1808 }
1809
1810 /*
1811 * Check sync. The last PSN of each generation is reserved for
1812 * RESYNC.
1813 */
1814 if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1815 req->state = TID_REQUEST_SYNC;
1816 goto sync_check;
1817 }
1818
1819 /* Allocate the flow if not yet */
1820 if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1821 goto done;
1822
1823 /*
1824 * The following call will advance req->setup_head after
1825 * allocating the tid entries.
1826 */
1827 if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1828 req->state = TID_REQUEST_QUEUED;
1829
1830 /*
1831 * We don't have resources for this segment. The QP has
1832 * already been queued.
1833 */
1834 goto done;
1835 }
1836 }
1837
1838 /* req->flow_idx should only be one slot behind req->setup_head */
1839 flow = &req->flows[req->flow_idx];
1840 flow->pkt = 0;
1841 flow->tid_idx = 0;
1842 flow->sent = 0;
1843 if (!retry) {
1844 /* Set the first and last IB PSN for the flow in use.*/
1845 flow->flow_state.ib_spsn = req->s_next_psn;
1846 flow->flow_state.ib_lpsn =
1847 flow->flow_state.ib_spsn + flow->npkts - 1;
1848 }
1849
1850 /* Calculate the next segment start psn.*/
1851 req->s_next_psn += flow->npkts;
1852
1853 /* Build the packet header */
1854 hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1855 done:
1856 return hdwords;
1857 }
1858
1859 /*
1860 * Validate and accept the TID RDMA READ request parameters.
1861 * Return 0 if the request is accepted successfully;
1862 * Return 1 otherwise.
1863 */
1864 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1865 struct rvt_ack_entry *e,
1866 struct hfi1_packet *packet,
1867 struct ib_other_headers *ohdr,
1868 u32 bth0, u32 psn, u64 vaddr, u32 len)
1869 {
1870 struct hfi1_qp_priv *qpriv = qp->priv;
1871 struct tid_rdma_request *req;
1872 struct tid_rdma_flow *flow;
1873 u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1874
1875 req = ack_to_tid_req(e);
1876
1877 /* Validate the payload first */
1878 flow = &req->flows[req->setup_head];
1879
1880 /* payload length = packet length - (header length + ICRC length) */
1881 pktlen = packet->tlen - (packet->hlen + 4);
1882 if (pktlen > sizeof(flow->tid_entry))
1883 return 1;
1884 memcpy(flow->tid_entry, packet->ebuf, pktlen);
1885 flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1886
1887 /*
1888 * Walk the TID_ENTRY list to make sure we have enough space for a
1889 * complete segment. Also calculate the number of required packets.
1890 */
1891 flow->npkts = rvt_div_round_up_mtu(qp, len);
1892 for (i = 0; i < flow->tidcnt; i++) {
1893 trace_hfi1_tid_entry_rcv_read_req(qp, i,
1894 flow->tid_entry[i]);
1895 tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1896 if (!tlen)
1897 return 1;
1898
1899 /*
1900 * For tid pair (tidctr == 3), the buffer size of the pair
1901 * should be the sum of the buffer size described by each
1902 * tid entry. However, only the first entry needs to be
1903 * specified in the request (see WFR HAS Section 8.5.7.1).
1904 */
1905 tidlen += tlen;
1906 }
1907 if (tidlen * PAGE_SIZE < len)
1908 return 1;
1909
1910 /* Empty the flow array */
1911 req->clear_tail = req->setup_head;
1912 flow->pkt = 0;
1913 flow->tid_idx = 0;
1914 flow->tid_offset = 0;
1915 flow->sent = 0;
1916 flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1917 flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1918 TID_RDMA_DESTQP_FLOW_MASK;
1919 flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1920 flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1921 flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1922 flow->length = len;
1923
1924 flow->flow_state.lpsn = flow->flow_state.spsn +
1925 flow->npkts - 1;
1926 flow->flow_state.ib_spsn = psn;
1927 flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1928
1929 trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1930 /* Set the initial flow index to the current flow. */
1931 req->flow_idx = req->setup_head;
1932
1933 /* advance circular buffer head */
1934 req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1935
1936 /*
1937 * Compute last PSN for request.
1938 */
1939 e->opcode = (bth0 >> 24) & 0xff;
1940 e->psn = psn;
1941 e->lpsn = psn + flow->npkts - 1;
1942 e->sent = 0;
1943
1944 req->n_flows = qpriv->tid_rdma.local.max_read;
1945 req->state = TID_REQUEST_ACTIVE;
1946 req->cur_seg = 0;
1947 req->comp_seg = 0;
1948 req->ack_seg = 0;
1949 req->isge = 0;
1950 req->seg_len = qpriv->tid_rdma.local.max_len;
1951 req->total_len = len;
1952 req->total_segs = 1;
1953 req->r_flow_psn = e->psn;
1954
1955 trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1956 req);
1957 return 0;
1958 }
1959
1960 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1961 struct ib_other_headers *ohdr,
1962 struct rvt_qp *qp, u32 psn, int diff)
1963 {
1964 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1965 struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1966 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1967 struct hfi1_qp_priv *qpriv = qp->priv;
1968 struct rvt_ack_entry *e;
1969 struct tid_rdma_request *req;
1970 unsigned long flags;
1971 u8 prev;
1972 bool old_req;
1973
1974 trace_hfi1_rsp_tid_rcv_error(qp, psn);
1975 trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
1976 if (diff > 0) {
1977 /* sequence error */
1978 if (!qp->r_nak_state) {
1979 ibp->rvp.n_rc_seqnak++;
1980 qp->r_nak_state = IB_NAK_PSN_ERROR;
1981 qp->r_ack_psn = qp->r_psn;
1982 rc_defered_ack(rcd, qp);
1983 }
1984 goto done;
1985 }
1986
1987 ibp->rvp.n_rc_dupreq++;
1988
1989 spin_lock_irqsave(&qp->s_lock, flags);
1990 e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
1991 if (!e || (e->opcode != TID_OP(READ_REQ) &&
1992 e->opcode != TID_OP(WRITE_REQ)))
1993 goto unlock;
1994
1995 req = ack_to_tid_req(e);
1996 req->r_flow_psn = psn;
1997 trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
1998 if (e->opcode == TID_OP(READ_REQ)) {
1999 struct ib_reth *reth;
2000 u32 len;
2001 u32 rkey;
2002 u64 vaddr;
2003 int ok;
2004 u32 bth0;
2005
2006 reth = &ohdr->u.tid_rdma.r_req.reth;
2007 /*
2008 * The requester always restarts from the start of the original
2009 * request.
2010 */
2011 len = be32_to_cpu(reth->length);
2012 if (psn != e->psn || len != req->total_len)
2013 goto unlock;
2014
2015 release_rdma_sge_mr(e);
2016
2017 rkey = be32_to_cpu(reth->rkey);
2018 vaddr = get_ib_reth_vaddr(reth);
2019
2020 qp->r_len = len;
2021 ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2022 IB_ACCESS_REMOTE_READ);
2023 if (unlikely(!ok))
2024 goto unlock;
2025
2026 /*
2027 * If all the response packets for the current request have
2028 * been sent out and this request is complete (old_request
2029 * == false) and the TID flow may be unusable (the
2030 * req->clear_tail is advanced). However, when an earlier
2031 * request is received, this request will not be complete any
2032 * more (qp->s_tail_ack_queue is moved back, see below).
2033 * Consequently, we need to update the TID flow info everytime
2034 * a duplicate request is received.
2035 */
2036 bth0 = be32_to_cpu(ohdr->bth[0]);
2037 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2038 vaddr, len))
2039 goto unlock;
2040
2041 /*
2042 * True if the request is already scheduled (between
2043 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2044 */
2045 if (old_req)
2046 goto unlock;
2047 } else {
2048 struct flow_state *fstate;
2049 bool schedule = false;
2050 u8 i;
2051
2052 if (req->state == TID_REQUEST_RESEND) {
2053 req->state = TID_REQUEST_RESEND_ACTIVE;
2054 } else if (req->state == TID_REQUEST_INIT_RESEND) {
2055 req->state = TID_REQUEST_INIT;
2056 schedule = true;
2057 }
2058
2059 /*
2060 * True if the request is already scheduled (between
2061 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2062 * Also, don't change requests, which are at the SYNC
2063 * point and haven't generated any responses yet.
2064 * There is nothing to retransmit for them yet.
2065 */
2066 if (old_req || req->state == TID_REQUEST_INIT ||
2067 (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2068 for (i = prev + 1; ; i++) {
2069 if (i > rvt_size_atomic(&dev->rdi))
2070 i = 0;
2071 if (i == qp->r_head_ack_queue)
2072 break;
2073 e = &qp->s_ack_queue[i];
2074 req = ack_to_tid_req(e);
2075 if (e->opcode == TID_OP(WRITE_REQ) &&
2076 req->state == TID_REQUEST_INIT)
2077 req->state = TID_REQUEST_INIT_RESEND;
2078 }
2079 /*
2080 * If the state of the request has been changed,
2081 * the first leg needs to get scheduled in order to
2082 * pick up the change. Otherwise, normal response
2083 * processing should take care of it.
2084 */
2085 if (!schedule)
2086 goto unlock;
2087 }
2088
2089 /*
2090 * If there is no more allocated segment, just schedule the qp
2091 * without changing any state.
2092 */
2093 if (req->clear_tail == req->setup_head)
2094 goto schedule;
2095 /*
2096 * If this request has sent responses for segments, which have
2097 * not received data yet (flow_idx != clear_tail), the flow_idx
2098 * pointer needs to be adjusted so the same responses can be
2099 * re-sent.
2100 */
2101 if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2102 fstate = &req->flows[req->clear_tail].flow_state;
2103 qpriv->pending_tid_w_segs -=
2104 CIRC_CNT(req->flow_idx, req->clear_tail,
2105 MAX_FLOWS);
2106 req->flow_idx =
2107 CIRC_ADD(req->clear_tail,
2108 delta_psn(psn, fstate->resp_ib_psn),
2109 MAX_FLOWS);
2110 qpriv->pending_tid_w_segs +=
2111 delta_psn(psn, fstate->resp_ib_psn);
2112 /*
2113 * When flow_idx == setup_head, we've gotten a duplicate
2114 * request for a segment, which has not been allocated
2115 * yet. In that case, don't adjust this request.
2116 * However, we still want to go through the loop below
2117 * to adjust all subsequent requests.
2118 */
2119 if (CIRC_CNT(req->setup_head, req->flow_idx,
2120 MAX_FLOWS)) {
2121 req->cur_seg = delta_psn(psn, e->psn);
2122 req->state = TID_REQUEST_RESEND_ACTIVE;
2123 }
2124 }
2125
2126 for (i = prev + 1; ; i++) {
2127 /*
2128 * Look at everything up to and including
2129 * s_tail_ack_queue
2130 */
2131 if (i > rvt_size_atomic(&dev->rdi))
2132 i = 0;
2133 if (i == qp->r_head_ack_queue)
2134 break;
2135 e = &qp->s_ack_queue[i];
2136 req = ack_to_tid_req(e);
2137 trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2138 e->lpsn, req);
2139 if (e->opcode != TID_OP(WRITE_REQ) ||
2140 req->cur_seg == req->comp_seg ||
2141 req->state == TID_REQUEST_INIT ||
2142 req->state == TID_REQUEST_INIT_RESEND) {
2143 if (req->state == TID_REQUEST_INIT)
2144 req->state = TID_REQUEST_INIT_RESEND;
2145 continue;
2146 }
2147 qpriv->pending_tid_w_segs -=
2148 CIRC_CNT(req->flow_idx,
2149 req->clear_tail,
2150 MAX_FLOWS);
2151 req->flow_idx = req->clear_tail;
2152 req->state = TID_REQUEST_RESEND;
2153 req->cur_seg = req->comp_seg;
2154 }
2155 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2156 }
2157 /* Re-process old requests.*/
2158 if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2159 qp->s_acked_ack_queue = prev;
2160 qp->s_tail_ack_queue = prev;
2161 /*
2162 * Since the qp->s_tail_ack_queue is modified, the
2163 * qp->s_ack_state must be changed to re-initialize
2164 * qp->s_ack_rdma_sge; Otherwise, we will end up in
2165 * wrong memory region.
2166 */
2167 qp->s_ack_state = OP(ACKNOWLEDGE);
2168 schedule:
2169 /*
2170 * It's possible to receive a retry psn that is earlier than an RNRNAK
2171 * psn. In this case, the rnrnak state should be cleared.
2172 */
2173 if (qpriv->rnr_nak_state) {
2174 qp->s_nak_state = 0;
2175 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2176 qp->r_psn = e->lpsn + 1;
2177 hfi1_tid_write_alloc_resources(qp, true);
2178 }
2179
2180 qp->r_state = e->opcode;
2181 qp->r_nak_state = 0;
2182 qp->s_flags |= RVT_S_RESP_PENDING;
2183 hfi1_schedule_send(qp);
2184 unlock:
2185 spin_unlock_irqrestore(&qp->s_lock, flags);
2186 done:
2187 return 1;
2188 }
2189
2190 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2191 {
2192 /* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2193
2194 /*
2195 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2196 * (see hfi1_rc_rcv())
2197 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2198 * - Setup struct tid_rdma_req with request info
2199 * - Initialize struct tid_rdma_flow info;
2200 * - Copy TID entries;
2201 * 3. Set the qp->s_ack_state.
2202 * 4. Set RVT_S_RESP_PENDING in s_flags.
2203 * 5. Kick the send engine (hfi1_schedule_send())
2204 */
2205 struct hfi1_ctxtdata *rcd = packet->rcd;
2206 struct rvt_qp *qp = packet->qp;
2207 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2208 struct ib_other_headers *ohdr = packet->ohdr;
2209 struct rvt_ack_entry *e;
2210 unsigned long flags;
2211 struct ib_reth *reth;
2212 struct hfi1_qp_priv *qpriv = qp->priv;
2213 u32 bth0, psn, len, rkey;
2214 bool fecn;
2215 u8 next;
2216 u64 vaddr;
2217 int diff;
2218 u8 nack_state = IB_NAK_INVALID_REQUEST;
2219
2220 bth0 = be32_to_cpu(ohdr->bth[0]);
2221 if (hfi1_ruc_check_hdr(ibp, packet))
2222 return;
2223
2224 fecn = process_ecn(qp, packet);
2225 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2226 trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2227
2228 if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2229 rvt_comm_est(qp);
2230
2231 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2232 goto nack_inv;
2233
2234 reth = &ohdr->u.tid_rdma.r_req.reth;
2235 vaddr = be64_to_cpu(reth->vaddr);
2236 len = be32_to_cpu(reth->length);
2237 /* The length needs to be in multiples of PAGE_SIZE */
2238 if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2239 goto nack_inv;
2240
2241 diff = delta_psn(psn, qp->r_psn);
2242 if (unlikely(diff)) {
2243 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2244 return;
2245 }
2246
2247 /* We've verified the request, insert it into the ack queue. */
2248 next = qp->r_head_ack_queue + 1;
2249 if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2250 next = 0;
2251 spin_lock_irqsave(&qp->s_lock, flags);
2252 if (unlikely(next == qp->s_tail_ack_queue)) {
2253 if (!qp->s_ack_queue[next].sent) {
2254 nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2255 goto nack_inv_unlock;
2256 }
2257 update_ack_queue(qp, next);
2258 }
2259 e = &qp->s_ack_queue[qp->r_head_ack_queue];
2260 release_rdma_sge_mr(e);
2261
2262 rkey = be32_to_cpu(reth->rkey);
2263 qp->r_len = len;
2264
2265 if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2266 rkey, IB_ACCESS_REMOTE_READ)))
2267 goto nack_acc;
2268
2269 /* Accept the request parameters */
2270 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2271 len))
2272 goto nack_inv_unlock;
2273
2274 qp->r_state = e->opcode;
2275 qp->r_nak_state = 0;
2276 /*
2277 * We need to increment the MSN here instead of when we
2278 * finish sending the result since a duplicate request would
2279 * increment it more than once.
2280 */
2281 qp->r_msn++;
2282 qp->r_psn += e->lpsn - e->psn + 1;
2283
2284 qp->r_head_ack_queue = next;
2285
2286 /*
2287 * For all requests other than TID WRITE which are added to the ack
2288 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2289 * do this because of interlocks between these and TID WRITE
2290 * requests. The same change has also been made in hfi1_rc_rcv().
2291 */
2292 qpriv->r_tid_alloc = qp->r_head_ack_queue;
2293
2294 /* Schedule the send tasklet. */
2295 qp->s_flags |= RVT_S_RESP_PENDING;
2296 if (fecn)
2297 qp->s_flags |= RVT_S_ECN;
2298 hfi1_schedule_send(qp);
2299
2300 spin_unlock_irqrestore(&qp->s_lock, flags);
2301 return;
2302
2303 nack_inv_unlock:
2304 spin_unlock_irqrestore(&qp->s_lock, flags);
2305 nack_inv:
2306 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2307 qp->r_nak_state = nack_state;
2308 qp->r_ack_psn = qp->r_psn;
2309 /* Queue NAK for later */
2310 rc_defered_ack(rcd, qp);
2311 return;
2312 nack_acc:
2313 spin_unlock_irqrestore(&qp->s_lock, flags);
2314 rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2315 qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2316 qp->r_ack_psn = qp->r_psn;
2317 }
2318
2319 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2320 struct ib_other_headers *ohdr, u32 *bth0,
2321 u32 *bth1, u32 *bth2, u32 *len, bool *last)
2322 {
2323 struct hfi1_ack_priv *epriv = e->priv;
2324 struct tid_rdma_request *req = &epriv->tid_req;
2325 struct hfi1_qp_priv *qpriv = qp->priv;
2326 struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2327 u32 tidentry = flow->tid_entry[flow->tid_idx];
2328 u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2329 struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2330 u32 next_offset, om = KDETH_OM_LARGE;
2331 bool last_pkt;
2332 u32 hdwords = 0;
2333 struct tid_rdma_params *remote;
2334
2335 *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2336 flow->sent += *len;
2337 next_offset = flow->tid_offset + *len;
2338 last_pkt = (flow->sent >= flow->length);
2339
2340 trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2341 trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2342
2343 rcu_read_lock();
2344 remote = rcu_dereference(qpriv->tid_rdma.remote);
2345 if (!remote) {
2346 rcu_read_unlock();
2347 goto done;
2348 }
2349 KDETH_RESET(resp->kdeth0, KVER, 0x1);
2350 KDETH_SET(resp->kdeth0, SH, !last_pkt);
2351 KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2352 KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2353 KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2354 KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2355 KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2356 KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2357 resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2358 rcu_read_unlock();
2359
2360 resp->aeth = rvt_compute_aeth(qp);
2361 resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2362 flow->pkt));
2363
2364 *bth0 = TID_OP(READ_RESP) << 24;
2365 *bth1 = flow->tid_qpn;
2366 *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2367 HFI1_KDETH_BTH_SEQ_MASK) |
2368 (flow->flow_state.generation <<
2369 HFI1_KDETH_BTH_SEQ_SHIFT));
2370 *last = last_pkt;
2371 if (last_pkt)
2372 /* Advance to next flow */
2373 req->clear_tail = (req->clear_tail + 1) &
2374 (MAX_FLOWS - 1);
2375
2376 if (next_offset >= tidlen) {
2377 flow->tid_offset = 0;
2378 flow->tid_idx++;
2379 } else {
2380 flow->tid_offset = next_offset;
2381 }
2382
2383 hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2384
2385 done:
2386 return hdwords;
2387 }
2388
2389 static inline struct tid_rdma_request *
2390 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2391 __must_hold(&qp->s_lock)
2392 {
2393 struct rvt_swqe *wqe;
2394 struct tid_rdma_request *req = NULL;
2395 u32 i, end;
2396
2397 end = qp->s_cur + 1;
2398 if (end == qp->s_size)
2399 end = 0;
2400 for (i = qp->s_acked; i != end;) {
2401 wqe = rvt_get_swqe_ptr(qp, i);
2402 if (cmp_psn(psn, wqe->psn) >= 0 &&
2403 cmp_psn(psn, wqe->lpsn) <= 0) {
2404 if (wqe->wr.opcode == opcode)
2405 req = wqe_to_tid_req(wqe);
2406 break;
2407 }
2408 if (++i == qp->s_size)
2409 i = 0;
2410 }
2411
2412 return req;
2413 }
2414
2415 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2416 {
2417 /* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2418
2419 /*
2420 * 1. Find matching SWQE
2421 * 2. Check that the entire segment has been read.
2422 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2423 * 4. Free the TID flow resources.
2424 * 5. Kick the send engine (hfi1_schedule_send())
2425 */
2426 struct ib_other_headers *ohdr = packet->ohdr;
2427 struct rvt_qp *qp = packet->qp;
2428 struct hfi1_qp_priv *priv = qp->priv;
2429 struct hfi1_ctxtdata *rcd = packet->rcd;
2430 struct tid_rdma_request *req;
2431 struct tid_rdma_flow *flow;
2432 u32 opcode, aeth;
2433 bool fecn;
2434 unsigned long flags;
2435 u32 kpsn, ipsn;
2436
2437 trace_hfi1_sender_rcv_tid_read_resp(qp);
2438 fecn = process_ecn(qp, packet);
2439 kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2440 aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2441 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2442
2443 spin_lock_irqsave(&qp->s_lock, flags);
2444 ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2445 req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2446 if (unlikely(!req))
2447 goto ack_op_err;
2448
2449 flow = &req->flows[req->clear_tail];
2450 /* When header suppression is disabled */
2451 if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2452 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2453
2454 if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2455 goto ack_done;
2456 flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2457 /*
2458 * Copy the payload to destination buffer if this packet is
2459 * delivered as an eager packet due to RSM rule and FECN.
2460 * The RSM rule selects FECN bit in BTH and SH bit in
2461 * KDETH header and therefore will not match the last
2462 * packet of each segment that has SH bit cleared.
2463 */
2464 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2465 struct rvt_sge_state ss;
2466 u32 len;
2467 u32 tlen = packet->tlen;
2468 u16 hdrsize = packet->hlen;
2469 u8 pad = packet->pad;
2470 u8 extra_bytes = pad + packet->extra_byte +
2471 (SIZE_OF_CRC << 2);
2472 u32 pmtu = qp->pmtu;
2473
2474 if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2475 goto ack_op_err;
2476 len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2477 if (unlikely(len < pmtu))
2478 goto ack_op_err;
2479 rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2480 false);
2481 /* Raise the sw sequence check flag for next packet */
2482 priv->s_flags |= HFI1_R_TID_SW_PSN;
2483 }
2484
2485 goto ack_done;
2486 }
2487 flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2488 req->ack_pending--;
2489 priv->pending_tid_r_segs--;
2490 qp->s_num_rd_atomic--;
2491 if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2492 !qp->s_num_rd_atomic) {
2493 qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2494 RVT_S_WAIT_ACK);
2495 hfi1_schedule_send(qp);
2496 }
2497 if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2498 qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2499 hfi1_schedule_send(qp);
2500 }
2501
2502 trace_hfi1_ack(qp, ipsn);
2503 trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2504 req->e.swqe->psn, req->e.swqe->lpsn,
2505 req);
2506 trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2507
2508 /* Release the tid resources */
2509 hfi1_kern_exp_rcv_clear(req);
2510
2511 if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2512 goto ack_done;
2513
2514 /* If not done yet, build next read request */
2515 if (++req->comp_seg >= req->total_segs) {
2516 priv->tid_r_comp++;
2517 req->state = TID_REQUEST_COMPLETE;
2518 }
2519
2520 /*
2521 * Clear the hw flow under two conditions:
2522 * 1. This request is a sync point and it is complete;
2523 * 2. Current request is completed and there are no more requests.
2524 */
2525 if ((req->state == TID_REQUEST_SYNC &&
2526 req->comp_seg == req->cur_seg) ||
2527 priv->tid_r_comp == priv->tid_r_reqs) {
2528 hfi1_kern_clear_hw_flow(priv->rcd, qp);
2529 priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2530 if (req->state == TID_REQUEST_SYNC)
2531 req->state = TID_REQUEST_ACTIVE;
2532 }
2533
2534 hfi1_schedule_send(qp);
2535 goto ack_done;
2536
2537 ack_op_err:
2538 /*
2539 * The test indicates that the send engine has finished its cleanup
2540 * after sending the request and it's now safe to put the QP into error
2541 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2542 * == qp->s_head), it would be unsafe to complete the wqe pointed by
2543 * qp->s_acked here. Putting the qp into error state will safely flush
2544 * all remaining requests.
2545 */
2546 if (qp->s_last == qp->s_acked)
2547 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2548
2549 ack_done:
2550 spin_unlock_irqrestore(&qp->s_lock, flags);
2551 }
2552
2553 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2554 __must_hold(&qp->s_lock)
2555 {
2556 u32 n = qp->s_acked;
2557 struct rvt_swqe *wqe;
2558 struct tid_rdma_request *req;
2559 struct hfi1_qp_priv *priv = qp->priv;
2560
2561 lockdep_assert_held(&qp->s_lock);
2562 /* Free any TID entries */
2563 while (n != qp->s_tail) {
2564 wqe = rvt_get_swqe_ptr(qp, n);
2565 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2566 req = wqe_to_tid_req(wqe);
2567 hfi1_kern_exp_rcv_clear_all(req);
2568 }
2569
2570 if (++n == qp->s_size)
2571 n = 0;
2572 }
2573 /* Free flow */
2574 hfi1_kern_clear_hw_flow(priv->rcd, qp);
2575 }
2576
2577 static bool tid_rdma_tid_err(struct hfi1_ctxtdata *rcd,
2578 struct hfi1_packet *packet, u8 rcv_type,
2579 u8 opcode)
2580 {
2581 struct rvt_qp *qp = packet->qp;
2582 struct hfi1_qp_priv *qpriv = qp->priv;
2583 u32 ipsn;
2584 struct ib_other_headers *ohdr = packet->ohdr;
2585 struct rvt_ack_entry *e;
2586 struct tid_rdma_request *req;
2587 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2588 u32 i;
2589
2590 if (rcv_type >= RHF_RCV_TYPE_IB)
2591 goto done;
2592
2593 spin_lock(&qp->s_lock);
2594
2595 /*
2596 * We've ran out of space in the eager buffer.
2597 * Eagerly received KDETH packets which require space in the
2598 * Eager buffer (packet that have payload) are TID RDMA WRITE
2599 * response packets. In this case, we have to re-transmit the
2600 * TID RDMA WRITE request.
2601 */
2602 if (rcv_type == RHF_RCV_TYPE_EAGER) {
2603 hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2604 hfi1_schedule_send(qp);
2605 goto done_unlock;
2606 }
2607
2608 /*
2609 * For TID READ response, error out QP after freeing the tid
2610 * resources.
2611 */
2612 if (opcode == TID_OP(READ_RESP)) {
2613 ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2614 if (cmp_psn(ipsn, qp->s_last_psn) > 0 &&
2615 cmp_psn(ipsn, qp->s_psn) < 0) {
2616 hfi1_kern_read_tid_flow_free(qp);
2617 spin_unlock(&qp->s_lock);
2618 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2619 goto done;
2620 }
2621 goto done_unlock;
2622 }
2623
2624 /*
2625 * Error out the qp for TID RDMA WRITE
2626 */
2627 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
2628 for (i = 0; i < rvt_max_atomic(rdi); i++) {
2629 e = &qp->s_ack_queue[i];
2630 if (e->opcode == TID_OP(WRITE_REQ)) {
2631 req = ack_to_tid_req(e);
2632 hfi1_kern_exp_rcv_clear_all(req);
2633 }
2634 }
2635 spin_unlock(&qp->s_lock);
2636 rvt_rc_error(qp, IB_WC_LOC_LEN_ERR);
2637 goto done;
2638
2639 done_unlock:
2640 spin_unlock(&qp->s_lock);
2641 done:
2642 return true;
2643 }
2644
2645 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2646 struct rvt_qp *qp, struct rvt_swqe *wqe)
2647 {
2648 struct tid_rdma_request *req;
2649 struct tid_rdma_flow *flow;
2650
2651 /* Start from the right segment */
2652 qp->r_flags |= RVT_R_RDMAR_SEQ;
2653 req = wqe_to_tid_req(wqe);
2654 flow = &req->flows[req->clear_tail];
2655 hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2656 if (list_empty(&qp->rspwait)) {
2657 qp->r_flags |= RVT_R_RSP_SEND;
2658 rvt_get_qp(qp);
2659 list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2660 }
2661 }
2662
2663 /*
2664 * Handle the KDETH eflags for TID RDMA READ response.
2665 *
2666 * Return true if the last packet for a segment has been received and it is
2667 * time to process the response normally; otherwise, return true.
2668 *
2669 * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2670 */
2671 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2672 struct hfi1_packet *packet, u8 rcv_type,
2673 u8 rte, u32 psn, u32 ibpsn)
2674 __must_hold(&packet->qp->r_lock) __must_hold(RCU)
2675 {
2676 struct hfi1_pportdata *ppd = rcd->ppd;
2677 struct hfi1_devdata *dd = ppd->dd;
2678 struct hfi1_ibport *ibp;
2679 struct rvt_swqe *wqe;
2680 struct tid_rdma_request *req;
2681 struct tid_rdma_flow *flow;
2682 u32 ack_psn;
2683 struct rvt_qp *qp = packet->qp;
2684 struct hfi1_qp_priv *priv = qp->priv;
2685 bool ret = true;
2686 int diff = 0;
2687 u32 fpsn;
2688
2689 lockdep_assert_held(&qp->r_lock);
2690 spin_lock(&qp->s_lock);
2691 /* If the psn is out of valid range, drop the packet */
2692 if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2693 cmp_psn(ibpsn, qp->s_psn) > 0)
2694 goto s_unlock;
2695
2696 /*
2697 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2698 * requests and implicitly NAK RDMA read and atomic requests issued
2699 * before the NAK'ed request.
2700 */
2701 ack_psn = ibpsn - 1;
2702 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2703 ibp = to_iport(qp->ibqp.device, qp->port_num);
2704
2705 /* Complete WQEs that the PSN finishes. */
2706 while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2707 /*
2708 * If this request is a RDMA read or atomic, and the NACK is
2709 * for a later operation, this NACK NAKs the RDMA read or
2710 * atomic.
2711 */
2712 if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2713 wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2714 wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2715 wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2716 /* Retry this request. */
2717 if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2718 qp->r_flags |= RVT_R_RDMAR_SEQ;
2719 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2720 restart_tid_rdma_read_req(rcd, qp,
2721 wqe);
2722 } else {
2723 hfi1_restart_rc(qp, qp->s_last_psn + 1,
2724 0);
2725 if (list_empty(&qp->rspwait)) {
2726 qp->r_flags |= RVT_R_RSP_SEND;
2727 rvt_get_qp(qp);
2728 list_add_tail(/* wait */
2729 &qp->rspwait,
2730 &rcd->qp_wait_list);
2731 }
2732 }
2733 }
2734 /*
2735 * No need to process the NAK since we are
2736 * restarting an earlier request.
2737 */
2738 break;
2739 }
2740
2741 wqe = do_rc_completion(qp, wqe, ibp);
2742 if (qp->s_acked == qp->s_tail)
2743 break;
2744 }
2745
2746 /* Handle the eflags for the request */
2747 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2748 goto s_unlock;
2749
2750 req = wqe_to_tid_req(wqe);
2751 switch (rcv_type) {
2752 case RHF_RCV_TYPE_EXPECTED:
2753 switch (rte) {
2754 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2755 /*
2756 * On the first occurrence of a Flow Sequence error,
2757 * the flag TID_FLOW_SW_PSN is set.
2758 *
2759 * After that, the flow is *not* reprogrammed and the
2760 * protocol falls back to SW PSN checking. This is done
2761 * to prevent continuous Flow Sequence errors for any
2762 * packets that could be still in the fabric.
2763 */
2764 flow = &req->flows[req->clear_tail];
2765 if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2766 diff = cmp_psn(psn,
2767 flow->flow_state.r_next_psn);
2768 if (diff > 0) {
2769 if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2770 restart_tid_rdma_read_req(rcd,
2771 qp,
2772 wqe);
2773
2774 /* Drop the packet.*/
2775 goto s_unlock;
2776 } else if (diff < 0) {
2777 /*
2778 * If a response packet for a restarted
2779 * request has come back, reset the
2780 * restart flag.
2781 */
2782 if (qp->r_flags & RVT_R_RDMAR_SEQ)
2783 qp->r_flags &=
2784 ~RVT_R_RDMAR_SEQ;
2785
2786 /* Drop the packet.*/
2787 goto s_unlock;
2788 }
2789
2790 /*
2791 * If SW PSN verification is successful and
2792 * this is the last packet in the segment, tell
2793 * the caller to process it as a normal packet.
2794 */
2795 fpsn = full_flow_psn(flow,
2796 flow->flow_state.lpsn);
2797 if (cmp_psn(fpsn, psn) == 0) {
2798 ret = false;
2799 if (qp->r_flags & RVT_R_RDMAR_SEQ)
2800 qp->r_flags &=
2801 ~RVT_R_RDMAR_SEQ;
2802 }
2803 flow->flow_state.r_next_psn =
2804 mask_psn(psn + 1);
2805 } else {
2806 u32 last_psn;
2807
2808 last_psn = read_r_next_psn(dd, rcd->ctxt,
2809 flow->idx);
2810 flow->flow_state.r_next_psn = last_psn;
2811 priv->s_flags |= HFI1_R_TID_SW_PSN;
2812 /*
2813 * If no request has been restarted yet,
2814 * restart the current one.
2815 */
2816 if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2817 restart_tid_rdma_read_req(rcd, qp,
2818 wqe);
2819 }
2820
2821 break;
2822
2823 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2824 /*
2825 * Since the TID flow is able to ride through
2826 * generation mismatch, drop this stale packet.
2827 */
2828 break;
2829
2830 default:
2831 break;
2832 }
2833 break;
2834
2835 case RHF_RCV_TYPE_ERROR:
2836 switch (rte) {
2837 case RHF_RTE_ERROR_OP_CODE_ERR:
2838 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2839 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2840 case RHF_RTE_ERROR_KHDR_KVER_ERR:
2841 case RHF_RTE_ERROR_CONTEXT_ERR:
2842 case RHF_RTE_ERROR_KHDR_TID_ERR:
2843 default:
2844 break;
2845 }
2846 default:
2847 break;
2848 }
2849 s_unlock:
2850 spin_unlock(&qp->s_lock);
2851 return ret;
2852 }
2853
2854 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2855 struct hfi1_pportdata *ppd,
2856 struct hfi1_packet *packet)
2857 {
2858 struct hfi1_ibport *ibp = &ppd->ibport_data;
2859 struct hfi1_devdata *dd = ppd->dd;
2860 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2861 u8 rcv_type = rhf_rcv_type(packet->rhf);
2862 u8 rte = rhf_rcv_type_err(packet->rhf);
2863 struct ib_header *hdr = packet->hdr;
2864 struct ib_other_headers *ohdr = NULL;
2865 int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2866 u16 lid = be16_to_cpu(hdr->lrh[1]);
2867 u8 opcode;
2868 u32 qp_num, psn, ibpsn;
2869 struct rvt_qp *qp;
2870 struct hfi1_qp_priv *qpriv;
2871 unsigned long flags;
2872 bool ret = true;
2873 struct rvt_ack_entry *e;
2874 struct tid_rdma_request *req;
2875 struct tid_rdma_flow *flow;
2876 int diff = 0;
2877
2878 trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2879 packet->rhf);
2880 if (packet->rhf & RHF_ICRC_ERR)
2881 return ret;
2882
2883 packet->ohdr = &hdr->u.oth;
2884 ohdr = packet->ohdr;
2885 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2886
2887 /* Get the destination QP number. */
2888 qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2889 RVT_QPN_MASK;
2890 if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2891 goto drop;
2892
2893 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2894 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2895
2896 rcu_read_lock();
2897 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2898 if (!qp)
2899 goto rcu_unlock;
2900
2901 packet->qp = qp;
2902
2903 /* Check for valid receive state. */
2904 spin_lock_irqsave(&qp->r_lock, flags);
2905 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2906 ibp->rvp.n_pkt_drops++;
2907 goto r_unlock;
2908 }
2909
2910 if (packet->rhf & RHF_TID_ERR) {
2911 /* For TIDERR and RC QPs preemptively schedule a NAK */
2912 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2913
2914 /* Sanity check packet */
2915 if (tlen < 24)
2916 goto r_unlock;
2917
2918 /*
2919 * Check for GRH. We should never get packets with GRH in this
2920 * path.
2921 */
2922 if (lnh == HFI1_LRH_GRH)
2923 goto r_unlock;
2924
2925 if (tid_rdma_tid_err(rcd, packet, rcv_type, opcode))
2926 goto r_unlock;
2927 }
2928
2929 /* handle TID RDMA READ */
2930 if (opcode == TID_OP(READ_RESP)) {
2931 ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2932 ibpsn = mask_psn(ibpsn);
2933 ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2934 ibpsn);
2935 goto r_unlock;
2936 }
2937
2938 /*
2939 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2940 * processed. These a completed sequentially so we can be sure that
2941 * the pointer will not change until the entire request has completed.
2942 */
2943 spin_lock(&qp->s_lock);
2944 qpriv = qp->priv;
2945 e = &qp->s_ack_queue[qpriv->r_tid_tail];
2946 req = ack_to_tid_req(e);
2947 flow = &req->flows[req->clear_tail];
2948 trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2949 trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2950 trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2951 trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2952 e->lpsn, req);
2953 trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2954
2955 switch (rcv_type) {
2956 case RHF_RCV_TYPE_EXPECTED:
2957 switch (rte) {
2958 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2959 if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2960 qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2961 flow->flow_state.r_next_psn =
2962 read_r_next_psn(dd, rcd->ctxt,
2963 flow->idx);
2964 qpriv->r_next_psn_kdeth =
2965 flow->flow_state.r_next_psn;
2966 goto nak_psn;
2967 } else {
2968 /*
2969 * If the received PSN does not match the next
2970 * expected PSN, NAK the packet.
2971 * However, only do that if we know that the a
2972 * NAK has already been sent. Otherwise, this
2973 * mismatch could be due to packets that were
2974 * already in flight.
2975 */
2976 diff = cmp_psn(psn,
2977 flow->flow_state.r_next_psn);
2978 if (diff > 0)
2979 goto nak_psn;
2980 else if (diff < 0)
2981 break;
2982
2983 qpriv->s_nak_state = 0;
2984 /*
2985 * If SW PSN verification is successful and this
2986 * is the last packet in the segment, tell the
2987 * caller to process it as a normal packet.
2988 */
2989 if (psn == full_flow_psn(flow,
2990 flow->flow_state.lpsn))
2991 ret = false;
2992 flow->flow_state.r_next_psn =
2993 mask_psn(psn + 1);
2994 qpriv->r_next_psn_kdeth =
2995 flow->flow_state.r_next_psn;
2996 }
2997 break;
2998
2999 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
3000 goto nak_psn;
3001
3002 default:
3003 break;
3004 }
3005 break;
3006
3007 case RHF_RCV_TYPE_ERROR:
3008 switch (rte) {
3009 case RHF_RTE_ERROR_OP_CODE_ERR:
3010 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3011 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3012 case RHF_RTE_ERROR_KHDR_KVER_ERR:
3013 case RHF_RTE_ERROR_CONTEXT_ERR:
3014 case RHF_RTE_ERROR_KHDR_TID_ERR:
3015 default:
3016 break;
3017 }
3018 default:
3019 break;
3020 }
3021
3022 unlock:
3023 spin_unlock(&qp->s_lock);
3024 r_unlock:
3025 spin_unlock_irqrestore(&qp->r_lock, flags);
3026 rcu_unlock:
3027 rcu_read_unlock();
3028 drop:
3029 return ret;
3030 nak_psn:
3031 ibp->rvp.n_rc_seqnak++;
3032 if (!qpriv->s_nak_state) {
3033 qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3034 /* We are NAK'ing the next expected PSN */
3035 qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3036 qpriv->s_flags |= RVT_S_ACK_PENDING;
3037 if (qpriv->r_tid_ack == HFI1_QP_WQE_INVALID)
3038 qpriv->r_tid_ack = qpriv->r_tid_tail;
3039 hfi1_schedule_tid_send(qp);
3040 }
3041 goto unlock;
3042 }
3043
3044 /*
3045 * "Rewind" the TID request information.
3046 * This means that we reset the state back to ACTIVE,
3047 * find the proper flow, set the flow index to that flow,
3048 * and reset the flow information.
3049 */
3050 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3051 u32 *bth2)
3052 {
3053 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3054 struct tid_rdma_flow *flow;
3055 struct hfi1_qp_priv *qpriv = qp->priv;
3056 int diff, delta_pkts;
3057 u32 tididx = 0, i;
3058 u16 fidx;
3059
3060 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3061 *bth2 = mask_psn(qp->s_psn);
3062 flow = find_flow_ib(req, *bth2, &fidx);
3063 if (!flow) {
3064 trace_hfi1_msg_tid_restart_req(/* msg */
3065 qp, "!!!!!! Could not find flow to restart: bth2 ",
3066 (u64)*bth2);
3067 trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3068 wqe->psn, wqe->lpsn,
3069 req);
3070 return;
3071 }
3072 } else {
3073 fidx = req->acked_tail;
3074 flow = &req->flows[fidx];
3075 *bth2 = mask_psn(req->r_ack_psn);
3076 }
3077
3078 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3079 delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3080 else
3081 delta_pkts = delta_psn(*bth2,
3082 full_flow_psn(flow,
3083 flow->flow_state.spsn));
3084
3085 trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3086 diff = delta_pkts + flow->resync_npkts;
3087
3088 flow->sent = 0;
3089 flow->pkt = 0;
3090 flow->tid_idx = 0;
3091 flow->tid_offset = 0;
3092 if (diff) {
3093 for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3094 u32 tidentry = flow->tid_entry[tididx], tidlen,
3095 tidnpkts, npkts;
3096
3097 flow->tid_offset = 0;
3098 tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3099 tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3100 npkts = min_t(u32, diff, tidnpkts);
3101 flow->pkt += npkts;
3102 flow->sent += (npkts == tidnpkts ? tidlen :
3103 npkts * qp->pmtu);
3104 flow->tid_offset += npkts * qp->pmtu;
3105 diff -= npkts;
3106 if (!diff)
3107 break;
3108 }
3109 }
3110 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3111 rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3112 flow->sent, 0);
3113 /*
3114 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3115 * during a RESYNC, the generation is incremented and the
3116 * sequence is reset to 0. Since we've adjusted the npkts in the
3117 * flow and the SGE has been sufficiently advanced, we have to
3118 * adjust flow->pkt in order to calculate the correct PSN.
3119 */
3120 flow->pkt -= flow->resync_npkts;
3121 }
3122
3123 if (flow->tid_offset ==
3124 EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3125 tididx++;
3126 flow->tid_offset = 0;
3127 }
3128 flow->tid_idx = tididx;
3129 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3130 /* Move flow_idx to correct index */
3131 req->flow_idx = fidx;
3132 else
3133 req->clear_tail = fidx;
3134
3135 trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3136 trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3137 wqe->lpsn, req);
3138 req->state = TID_REQUEST_ACTIVE;
3139 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3140 /* Reset all the flows that we are going to resend */
3141 fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3142 i = qpriv->s_tid_tail;
3143 do {
3144 for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3145 fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3146 req->flows[fidx].sent = 0;
3147 req->flows[fidx].pkt = 0;
3148 req->flows[fidx].tid_idx = 0;
3149 req->flows[fidx].tid_offset = 0;
3150 req->flows[fidx].resync_npkts = 0;
3151 }
3152 if (i == qpriv->s_tid_cur)
3153 break;
3154 do {
3155 i = (++i == qp->s_size ? 0 : i);
3156 wqe = rvt_get_swqe_ptr(qp, i);
3157 } while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3158 req = wqe_to_tid_req(wqe);
3159 req->cur_seg = req->ack_seg;
3160 fidx = req->acked_tail;
3161 /* Pull req->clear_tail back */
3162 req->clear_tail = fidx;
3163 } while (1);
3164 }
3165 }
3166
3167 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3168 {
3169 int i, ret;
3170 struct hfi1_qp_priv *qpriv = qp->priv;
3171 struct tid_flow_state *fs;
3172
3173 if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3174 return;
3175
3176 /*
3177 * First, clear the flow to help prevent any delayed packets from
3178 * being delivered.
3179 */
3180 fs = &qpriv->flow_state;
3181 if (fs->index != RXE_NUM_TID_FLOWS)
3182 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3183
3184 for (i = qp->s_acked; i != qp->s_head;) {
3185 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3186
3187 if (++i == qp->s_size)
3188 i = 0;
3189 /* Free only locally allocated TID entries */
3190 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3191 continue;
3192 do {
3193 struct hfi1_swqe_priv *priv = wqe->priv;
3194
3195 ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3196 } while (!ret);
3197 }
3198 for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3199 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3200
3201 if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3202 i = 0;
3203 /* Free only locally allocated TID entries */
3204 if (e->opcode != TID_OP(WRITE_REQ))
3205 continue;
3206 do {
3207 struct hfi1_ack_priv *priv = e->priv;
3208
3209 ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3210 } while (!ret);
3211 }
3212 }
3213
3214 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3215 {
3216 struct rvt_swqe *prev;
3217 struct hfi1_qp_priv *priv = qp->priv;
3218 u32 s_prev;
3219 struct tid_rdma_request *req;
3220
3221 s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3222 prev = rvt_get_swqe_ptr(qp, s_prev);
3223
3224 switch (wqe->wr.opcode) {
3225 case IB_WR_SEND:
3226 case IB_WR_SEND_WITH_IMM:
3227 case IB_WR_SEND_WITH_INV:
3228 case IB_WR_ATOMIC_CMP_AND_SWP:
3229 case IB_WR_ATOMIC_FETCH_AND_ADD:
3230 case IB_WR_RDMA_WRITE:
3231 switch (prev->wr.opcode) {
3232 case IB_WR_TID_RDMA_WRITE:
3233 req = wqe_to_tid_req(prev);
3234 if (req->ack_seg != req->total_segs)
3235 goto interlock;
3236 default:
3237 break;
3238 }
3239 break;
3240 case IB_WR_RDMA_READ:
3241 if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3242 break;
3243 /* fall through */
3244 case IB_WR_TID_RDMA_READ:
3245 switch (prev->wr.opcode) {
3246 case IB_WR_RDMA_READ:
3247 if (qp->s_acked != qp->s_cur)
3248 goto interlock;
3249 break;
3250 case IB_WR_TID_RDMA_WRITE:
3251 req = wqe_to_tid_req(prev);
3252 if (req->ack_seg != req->total_segs)
3253 goto interlock;
3254 default:
3255 break;
3256 }
3257 default:
3258 break;
3259 }
3260 return false;
3261
3262 interlock:
3263 priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3264 return true;
3265 }
3266
3267 /* Does @sge meet the alignment requirements for tid rdma? */
3268 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3269 struct rvt_sge *sge, int num_sge)
3270 {
3271 int i;
3272
3273 for (i = 0; i < num_sge; i++, sge++) {
3274 trace_hfi1_sge_check_align(qp, i, sge);
3275 if ((u64)sge->vaddr & ~PAGE_MASK ||
3276 sge->sge_length & ~PAGE_MASK)
3277 return false;
3278 }
3279 return true;
3280 }
3281
3282 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3283 {
3284 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3285 struct hfi1_swqe_priv *priv = wqe->priv;
3286 struct tid_rdma_params *remote;
3287 enum ib_wr_opcode new_opcode;
3288 bool do_tid_rdma = false;
3289 struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3290
3291 if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3292 ppd->lid)
3293 return;
3294 if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3295 return;
3296
3297 rcu_read_lock();
3298 remote = rcu_dereference(qpriv->tid_rdma.remote);
3299 /*
3300 * If TID RDMA is disabled by the negotiation, don't
3301 * use it.
3302 */
3303 if (!remote)
3304 goto exit;
3305
3306 if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3307 if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3308 wqe->wr.num_sge)) {
3309 new_opcode = IB_WR_TID_RDMA_READ;
3310 do_tid_rdma = true;
3311 }
3312 } else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3313 /*
3314 * TID RDMA is enabled for this RDMA WRITE request iff:
3315 * 1. The remote address is page-aligned,
3316 * 2. The length is larger than the minimum segment size,
3317 * 3. The length is page-multiple.
3318 */
3319 if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3320 !(wqe->length & ~PAGE_MASK)) {
3321 new_opcode = IB_WR_TID_RDMA_WRITE;
3322 do_tid_rdma = true;
3323 }
3324 }
3325
3326 if (do_tid_rdma) {
3327 if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3328 goto exit;
3329 wqe->wr.opcode = new_opcode;
3330 priv->tid_req.seg_len =
3331 min_t(u32, remote->max_len, wqe->length);
3332 priv->tid_req.total_segs =
3333 DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3334 /* Compute the last PSN of the request */
3335 wqe->lpsn = wqe->psn;
3336 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3337 priv->tid_req.n_flows = remote->max_read;
3338 qpriv->tid_r_reqs++;
3339 wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3340 } else {
3341 wqe->lpsn += priv->tid_req.total_segs - 1;
3342 atomic_inc(&qpriv->n_requests);
3343 }
3344
3345 priv->tid_req.cur_seg = 0;
3346 priv->tid_req.comp_seg = 0;
3347 priv->tid_req.ack_seg = 0;
3348 priv->tid_req.state = TID_REQUEST_INACTIVE;
3349 /*
3350 * Reset acked_tail.
3351 * TID RDMA READ does not have ACKs so it does not
3352 * update the pointer. We have to reset it so TID RDMA
3353 * WRITE does not get confused.
3354 */
3355 priv->tid_req.acked_tail = priv->tid_req.setup_head;
3356 trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3357 wqe->psn, wqe->lpsn,
3358 &priv->tid_req);
3359 }
3360 exit:
3361 rcu_read_unlock();
3362 }
3363
3364 /* TID RDMA WRITE functions */
3365
3366 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3367 struct ib_other_headers *ohdr,
3368 u32 *bth1, u32 *bth2, u32 *len)
3369 {
3370 struct hfi1_qp_priv *qpriv = qp->priv;
3371 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3372 struct tid_rdma_params *remote;
3373
3374 rcu_read_lock();
3375 remote = rcu_dereference(qpriv->tid_rdma.remote);
3376 /*
3377 * Set the number of flow to be used based on negotiated
3378 * parameters.
3379 */
3380 req->n_flows = remote->max_write;
3381 req->state = TID_REQUEST_ACTIVE;
3382
3383 KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3384 KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3385 ohdr->u.tid_rdma.w_req.reth.vaddr =
3386 cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3387 ohdr->u.tid_rdma.w_req.reth.rkey =
3388 cpu_to_be32(wqe->rdma_wr.rkey);
3389 ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3390 ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3391 *bth1 &= ~RVT_QPN_MASK;
3392 *bth1 |= remote->qp;
3393 qp->s_state = TID_OP(WRITE_REQ);
3394 qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3395 *bth2 |= IB_BTH_REQ_ACK;
3396 *len = 0;
3397
3398 rcu_read_unlock();
3399 return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3400 }
3401
3402 void hfi1_compute_tid_rdma_flow_wt(void)
3403 {
3404 /*
3405 * Heuristic for computing the RNR timeout when waiting on the flow
3406 * queue. Rather than a computationaly expensive exact estimate of when
3407 * a flow will be available, we assume that if a QP is at position N in
3408 * the flow queue it has to wait approximately (N + 1) * (number of
3409 * segments between two sync points), assuming PMTU of 4K. The rationale
3410 * for this is that flows are released and recycled at each sync point.
3411 */
3412 tid_rdma_flow_wt = MAX_TID_FLOW_PSN * enum_to_mtu(OPA_MTU_4096) /
3413 TID_RDMA_MAX_SEGMENT_SIZE;
3414 }
3415
3416 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3417 struct tid_queue *queue)
3418 {
3419 return qpriv->tid_enqueue - queue->dequeue;
3420 }
3421
3422 /*
3423 * @qp: points to rvt_qp context.
3424 * @to_seg: desired RNR timeout in segments.
3425 * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3426 */
3427 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3428 {
3429 struct hfi1_qp_priv *qpriv = qp->priv;
3430 u64 timeout;
3431 u32 bytes_per_us;
3432 u8 i;
3433
3434 bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3435 timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3436 /*
3437 * Find the next highest value in the RNR table to the required
3438 * timeout. This gives the responder some padding.
3439 */
3440 for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3441 if (rvt_rnr_tbl_to_usec(i) >= timeout)
3442 return i;
3443 return 0;
3444 }
3445
3446 /**
3447 * Central place for resource allocation at TID write responder,
3448 * is called from write_req and write_data interrupt handlers as
3449 * well as the send thread when a queued QP is scheduled for
3450 * resource allocation.
3451 *
3452 * Iterates over (a) segments of a request and then (b) queued requests
3453 * themselves to allocate resources for up to local->max_write
3454 * segments across multiple requests. Stop allocating when we
3455 * hit a sync point, resume allocating after data packets at
3456 * sync point have been received.
3457 *
3458 * Resource allocation and sending of responses is decoupled. The
3459 * request/segment which are being allocated and sent are as follows.
3460 * Resources are allocated for:
3461 * [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3462 * The send thread sends:
3463 * [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3464 */
3465 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3466 {
3467 struct tid_rdma_request *req;
3468 struct hfi1_qp_priv *qpriv = qp->priv;
3469 struct hfi1_ctxtdata *rcd = qpriv->rcd;
3470 struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3471 struct rvt_ack_entry *e;
3472 u32 npkts, to_seg;
3473 bool last;
3474 int ret = 0;
3475
3476 lockdep_assert_held(&qp->s_lock);
3477
3478 while (1) {
3479 trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3480 trace_hfi1_tid_write_rsp_alloc_res(qp);
3481 /*
3482 * Don't allocate more segments if a RNR NAK has already been
3483 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3484 * be sent only when all allocated segments have been sent.
3485 * However, if more segments are allocated before that, TID RDMA
3486 * WRITE RESP packets will be sent out for these new segments
3487 * before the RNR NAK packet. When the requester receives the
3488 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3489 * which does not match qp->r_psn and will be dropped.
3490 * Consequently, the requester will exhaust its retries and
3491 * put the qp into error state.
3492 */
3493 if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3494 break;
3495
3496 /* No requests left to process */
3497 if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3498 /* If all data has been received, clear the flow */
3499 if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3500 !qpriv->alloc_w_segs) {
3501 hfi1_kern_clear_hw_flow(rcd, qp);
3502 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3503 }
3504 break;
3505 }
3506
3507 e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3508 if (e->opcode != TID_OP(WRITE_REQ))
3509 goto next_req;
3510 req = ack_to_tid_req(e);
3511 trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3512 e->lpsn, req);
3513 /* Finished allocating for all segments of this request */
3514 if (req->alloc_seg >= req->total_segs)
3515 goto next_req;
3516
3517 /* Can allocate only a maximum of local->max_write for a QP */
3518 if (qpriv->alloc_w_segs >= local->max_write)
3519 break;
3520
3521 /* Don't allocate at a sync point with data packets pending */
3522 if (qpriv->sync_pt && qpriv->alloc_w_segs)
3523 break;
3524
3525 /* All data received at the sync point, continue */
3526 if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3527 hfi1_kern_clear_hw_flow(rcd, qp);
3528 qpriv->sync_pt = false;
3529 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3530 }
3531
3532 /* Allocate flow if we don't have one */
3533 if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3534 ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3535 if (ret) {
3536 to_seg = tid_rdma_flow_wt *
3537 position_in_queue(qpriv,
3538 &rcd->flow_queue);
3539 break;
3540 }
3541 }
3542
3543 npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3544
3545 /*
3546 * We are at a sync point if we run out of KDETH PSN space.
3547 * Last PSN of every generation is reserved for RESYNC.
3548 */
3549 if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3550 qpriv->sync_pt = true;
3551 break;
3552 }
3553
3554 /*
3555 * If overtaking req->acked_tail, send an RNR NAK. Because the
3556 * QP is not queued in this case, and the issue can only be
3557 * caused due a delay in scheduling the second leg which we
3558 * cannot estimate, we use a rather arbitrary RNR timeout of
3559 * (MAX_FLOWS / 2) segments
3560 */
3561 if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3562 MAX_FLOWS)) {
3563 ret = -EAGAIN;
3564 to_seg = MAX_FLOWS >> 1;
3565 qpriv->s_flags |= RVT_S_ACK_PENDING;
3566 hfi1_schedule_tid_send(qp);
3567 break;
3568 }
3569
3570 /* Try to allocate rcv array / TID entries */
3571 ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3572 if (ret == -EAGAIN)
3573 to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3574 if (ret)
3575 break;
3576
3577 qpriv->alloc_w_segs++;
3578 req->alloc_seg++;
3579 continue;
3580 next_req:
3581 /* Begin processing the next request */
3582 if (++qpriv->r_tid_alloc >
3583 rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3584 qpriv->r_tid_alloc = 0;
3585 }
3586
3587 /*
3588 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3589 * has failed (b) we are called from the rcv handler interrupt context
3590 * (c) an RNR NAK has not already been scheduled
3591 */
3592 if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3593 goto send_rnr_nak;
3594
3595 return;
3596
3597 send_rnr_nak:
3598 lockdep_assert_held(&qp->r_lock);
3599
3600 /* Set r_nak_state to prevent unrelated events from generating NAK's */
3601 qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3602
3603 /* Pull back r_psn to the segment being RNR NAK'd */
3604 qp->r_psn = e->psn + req->alloc_seg;
3605 qp->r_ack_psn = qp->r_psn;
3606 /*
3607 * Pull back r_head_ack_queue to the ack entry following the request
3608 * being RNR NAK'd. This allows resources to be allocated to the request
3609 * if the queued QP is scheduled.
3610 */
3611 qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3612 if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3613 qp->r_head_ack_queue = 0;
3614 qpriv->r_tid_head = qp->r_head_ack_queue;
3615 /*
3616 * These send side fields are used in make_rc_ack(). They are set in
3617 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3618 * for consistency
3619 */
3620 qp->s_nak_state = qp->r_nak_state;
3621 qp->s_ack_psn = qp->r_ack_psn;
3622 /*
3623 * Clear the ACK PENDING flag to prevent unwanted ACK because we
3624 * have modified qp->s_ack_psn here.
3625 */
3626 qp->s_flags &= ~(RVT_S_ACK_PENDING);
3627
3628 trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3629 /*
3630 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3631 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3632 * used for this because qp->s_lock is dropped before calling
3633 * hfi1_send_rc_ack() leading to inconsistency between the receive
3634 * interrupt handlers and the send thread in make_rc_ack()
3635 */
3636 qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3637
3638 /*
3639 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3640 * interrupt handlers but will be sent from the send engine behind any
3641 * previous responses that may have been scheduled
3642 */
3643 rc_defered_ack(rcd, qp);
3644 }
3645
3646 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3647 {
3648 /* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3649
3650 /*
3651 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3652 * (see hfi1_rc_rcv())
3653 * - Don't allow 0-length requests.
3654 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3655 * - Setup struct tid_rdma_req with request info
3656 * - Prepare struct tid_rdma_flow array?
3657 * 3. Set the qp->s_ack_state as state diagram in design doc.
3658 * 4. Set RVT_S_RESP_PENDING in s_flags.
3659 * 5. Kick the send engine (hfi1_schedule_send())
3660 */
3661 struct hfi1_ctxtdata *rcd = packet->rcd;
3662 struct rvt_qp *qp = packet->qp;
3663 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3664 struct ib_other_headers *ohdr = packet->ohdr;
3665 struct rvt_ack_entry *e;
3666 unsigned long flags;
3667 struct ib_reth *reth;
3668 struct hfi1_qp_priv *qpriv = qp->priv;
3669 struct tid_rdma_request *req;
3670 u32 bth0, psn, len, rkey, num_segs;
3671 bool fecn;
3672 u8 next;
3673 u64 vaddr;
3674 int diff;
3675
3676 bth0 = be32_to_cpu(ohdr->bth[0]);
3677 if (hfi1_ruc_check_hdr(ibp, packet))
3678 return;
3679
3680 fecn = process_ecn(qp, packet);
3681 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3682 trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3683
3684 if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3685 rvt_comm_est(qp);
3686
3687 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3688 goto nack_inv;
3689
3690 reth = &ohdr->u.tid_rdma.w_req.reth;
3691 vaddr = be64_to_cpu(reth->vaddr);
3692 len = be32_to_cpu(reth->length);
3693
3694 num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3695 diff = delta_psn(psn, qp->r_psn);
3696 if (unlikely(diff)) {
3697 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3698 return;
3699 }
3700
3701 /*
3702 * The resent request which was previously RNR NAK'd is inserted at the
3703 * location of the original request, which is one entry behind
3704 * r_head_ack_queue
3705 */
3706 if (qpriv->rnr_nak_state)
3707 qp->r_head_ack_queue = qp->r_head_ack_queue ?
3708 qp->r_head_ack_queue - 1 :
3709 rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3710
3711 /* We've verified the request, insert it into the ack queue. */
3712 next = qp->r_head_ack_queue + 1;
3713 if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3714 next = 0;
3715 spin_lock_irqsave(&qp->s_lock, flags);
3716 if (unlikely(next == qp->s_acked_ack_queue)) {
3717 if (!qp->s_ack_queue[next].sent)
3718 goto nack_inv_unlock;
3719 update_ack_queue(qp, next);
3720 }
3721 e = &qp->s_ack_queue[qp->r_head_ack_queue];
3722 req = ack_to_tid_req(e);
3723
3724 /* Bring previously RNR NAK'd request back to life */
3725 if (qpriv->rnr_nak_state) {
3726 qp->r_nak_state = 0;
3727 qp->s_nak_state = 0;
3728 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3729 qp->r_psn = e->lpsn + 1;
3730 req->state = TID_REQUEST_INIT;
3731 goto update_head;
3732 }
3733
3734 release_rdma_sge_mr(e);
3735
3736 /* The length needs to be in multiples of PAGE_SIZE */
3737 if (!len || len & ~PAGE_MASK)
3738 goto nack_inv_unlock;
3739
3740 rkey = be32_to_cpu(reth->rkey);
3741 qp->r_len = len;
3742
3743 if (e->opcode == TID_OP(WRITE_REQ) &&
3744 (req->setup_head != req->clear_tail ||
3745 req->clear_tail != req->acked_tail))
3746 goto nack_inv_unlock;
3747
3748 if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3749 rkey, IB_ACCESS_REMOTE_WRITE)))
3750 goto nack_acc;
3751
3752 qp->r_psn += num_segs - 1;
3753
3754 e->opcode = (bth0 >> 24) & 0xff;
3755 e->psn = psn;
3756 e->lpsn = qp->r_psn;
3757 e->sent = 0;
3758
3759 req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3760 req->state = TID_REQUEST_INIT;
3761 req->cur_seg = 0;
3762 req->comp_seg = 0;
3763 req->ack_seg = 0;
3764 req->alloc_seg = 0;
3765 req->isge = 0;
3766 req->seg_len = qpriv->tid_rdma.local.max_len;
3767 req->total_len = len;
3768 req->total_segs = num_segs;
3769 req->r_flow_psn = e->psn;
3770 req->ss.sge = e->rdma_sge;
3771 req->ss.num_sge = 1;
3772
3773 req->flow_idx = req->setup_head;
3774 req->clear_tail = req->setup_head;
3775 req->acked_tail = req->setup_head;
3776
3777 qp->r_state = e->opcode;
3778 qp->r_nak_state = 0;
3779 /*
3780 * We need to increment the MSN here instead of when we
3781 * finish sending the result since a duplicate request would
3782 * increment it more than once.
3783 */
3784 qp->r_msn++;
3785 qp->r_psn++;
3786
3787 trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3788 req);
3789
3790 if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3791 qpriv->r_tid_tail = qp->r_head_ack_queue;
3792 } else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3793 struct tid_rdma_request *ptr;
3794
3795 e = &qp->s_ack_queue[qpriv->r_tid_tail];
3796 ptr = ack_to_tid_req(e);
3797
3798 if (e->opcode != TID_OP(WRITE_REQ) ||
3799 ptr->comp_seg == ptr->total_segs) {
3800 if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3801 qpriv->r_tid_ack = qp->r_head_ack_queue;
3802 qpriv->r_tid_tail = qp->r_head_ack_queue;
3803 }
3804 }
3805 update_head:
3806 qp->r_head_ack_queue = next;
3807 qpriv->r_tid_head = qp->r_head_ack_queue;
3808
3809 hfi1_tid_write_alloc_resources(qp, true);
3810 trace_hfi1_tid_write_rsp_rcv_req(qp);
3811
3812 /* Schedule the send tasklet. */
3813 qp->s_flags |= RVT_S_RESP_PENDING;
3814 if (fecn)
3815 qp->s_flags |= RVT_S_ECN;
3816 hfi1_schedule_send(qp);
3817
3818 spin_unlock_irqrestore(&qp->s_lock, flags);
3819 return;
3820
3821 nack_inv_unlock:
3822 spin_unlock_irqrestore(&qp->s_lock, flags);
3823 nack_inv:
3824 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3825 qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3826 qp->r_ack_psn = qp->r_psn;
3827 /* Queue NAK for later */
3828 rc_defered_ack(rcd, qp);
3829 return;
3830 nack_acc:
3831 spin_unlock_irqrestore(&qp->s_lock, flags);
3832 rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3833 qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3834 qp->r_ack_psn = qp->r_psn;
3835 }
3836
3837 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3838 struct ib_other_headers *ohdr, u32 *bth1,
3839 u32 bth2, u32 *len,
3840 struct rvt_sge_state **ss)
3841 {
3842 struct hfi1_ack_priv *epriv = e->priv;
3843 struct tid_rdma_request *req = &epriv->tid_req;
3844 struct hfi1_qp_priv *qpriv = qp->priv;
3845 struct tid_rdma_flow *flow = NULL;
3846 u32 resp_len = 0, hdwords = 0;
3847 void *resp_addr = NULL;
3848 struct tid_rdma_params *remote;
3849
3850 trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3851 req);
3852 trace_hfi1_tid_write_rsp_build_resp(qp);
3853 trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3854 flow = &req->flows[req->flow_idx];
3855 switch (req->state) {
3856 default:
3857 /*
3858 * Try to allocate resources here in case QP was queued and was
3859 * later scheduled when resources became available
3860 */
3861 hfi1_tid_write_alloc_resources(qp, false);
3862
3863 /* We've already sent everything which is ready */
3864 if (req->cur_seg >= req->alloc_seg)
3865 goto done;
3866
3867 /*
3868 * Resources can be assigned but responses cannot be sent in
3869 * rnr_nak state, till the resent request is received
3870 */
3871 if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3872 goto done;
3873
3874 req->state = TID_REQUEST_ACTIVE;
3875 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3876 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3877 hfi1_add_tid_reap_timer(qp);
3878 break;
3879
3880 case TID_REQUEST_RESEND_ACTIVE:
3881 case TID_REQUEST_RESEND:
3882 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3883 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3884 if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3885 req->state = TID_REQUEST_ACTIVE;
3886
3887 hfi1_mod_tid_reap_timer(qp);
3888 break;
3889 }
3890 flow->flow_state.resp_ib_psn = bth2;
3891 resp_addr = (void *)flow->tid_entry;
3892 resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3893 req->cur_seg++;
3894
3895 memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3896 epriv->ss.sge.vaddr = resp_addr;
3897 epriv->ss.sge.sge_length = resp_len;
3898 epriv->ss.sge.length = epriv->ss.sge.sge_length;
3899 /*
3900 * We can safely zero these out. Since the first SGE covers the
3901 * entire packet, nothing else should even look at the MR.
3902 */
3903 epriv->ss.sge.mr = NULL;
3904 epriv->ss.sge.m = 0;
3905 epriv->ss.sge.n = 0;
3906
3907 epriv->ss.sg_list = NULL;
3908 epriv->ss.total_len = epriv->ss.sge.sge_length;
3909 epriv->ss.num_sge = 1;
3910
3911 *ss = &epriv->ss;
3912 *len = epriv->ss.total_len;
3913
3914 /* Construct the TID RDMA WRITE RESP packet header */
3915 rcu_read_lock();
3916 remote = rcu_dereference(qpriv->tid_rdma.remote);
3917
3918 KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3919 KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3920 ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3921 ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3922 cpu_to_be32((flow->flow_state.generation <<
3923 HFI1_KDETH_BTH_SEQ_SHIFT) |
3924 (flow->flow_state.spsn &
3925 HFI1_KDETH_BTH_SEQ_MASK));
3926 ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3927 cpu_to_be32(qpriv->tid_rdma.local.qp |
3928 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3929 TID_RDMA_DESTQP_FLOW_SHIFT) |
3930 qpriv->rcd->ctxt);
3931 ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3932 *bth1 = remote->qp;
3933 rcu_read_unlock();
3934 hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3935 qpriv->pending_tid_w_segs++;
3936 done:
3937 return hdwords;
3938 }
3939
3940 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3941 {
3942 struct hfi1_qp_priv *qpriv = qp->priv;
3943
3944 lockdep_assert_held(&qp->s_lock);
3945 if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3946 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3947 qpriv->s_tid_timer.expires = jiffies +
3948 qpriv->tid_timer_timeout_jiffies;
3949 add_timer(&qpriv->s_tid_timer);
3950 }
3951 }
3952
3953 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3954 {
3955 struct hfi1_qp_priv *qpriv = qp->priv;
3956
3957 lockdep_assert_held(&qp->s_lock);
3958 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3959 mod_timer(&qpriv->s_tid_timer, jiffies +
3960 qpriv->tid_timer_timeout_jiffies);
3961 }
3962
3963 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
3964 {
3965 struct hfi1_qp_priv *qpriv = qp->priv;
3966 int rval = 0;
3967
3968 lockdep_assert_held(&qp->s_lock);
3969 if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3970 rval = del_timer(&qpriv->s_tid_timer);
3971 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3972 }
3973 return rval;
3974 }
3975
3976 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
3977 {
3978 struct hfi1_qp_priv *qpriv = qp->priv;
3979
3980 del_timer_sync(&qpriv->s_tid_timer);
3981 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3982 }
3983
3984 static void hfi1_tid_timeout(struct timer_list *t)
3985 {
3986 struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
3987 struct rvt_qp *qp = qpriv->owner;
3988 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
3989 unsigned long flags;
3990 u32 i;
3991
3992 spin_lock_irqsave(&qp->r_lock, flags);
3993 spin_lock(&qp->s_lock);
3994 if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3995 dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
3996 qp->ibqp.qp_num, __func__, __LINE__);
3997 trace_hfi1_msg_tid_timeout(/* msg */
3998 qp, "resource timeout = ",
3999 (u64)qpriv->tid_timer_timeout_jiffies);
4000 hfi1_stop_tid_reap_timer(qp);
4001 /*
4002 * Go though the entire ack queue and clear any outstanding
4003 * HW flow and RcvArray resources.
4004 */
4005 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
4006 for (i = 0; i < rvt_max_atomic(rdi); i++) {
4007 struct tid_rdma_request *req =
4008 ack_to_tid_req(&qp->s_ack_queue[i]);
4009
4010 hfi1_kern_exp_rcv_clear_all(req);
4011 }
4012 spin_unlock(&qp->s_lock);
4013 if (qp->ibqp.event_handler) {
4014 struct ib_event ev;
4015
4016 ev.device = qp->ibqp.device;
4017 ev.element.qp = &qp->ibqp;
4018 ev.event = IB_EVENT_QP_FATAL;
4019 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4020 }
4021 rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4022 goto unlock_r_lock;
4023 }
4024 spin_unlock(&qp->s_lock);
4025 unlock_r_lock:
4026 spin_unlock_irqrestore(&qp->r_lock, flags);
4027 }
4028
4029 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4030 {
4031 /* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4032
4033 /*
4034 * 1. Find matching SWQE
4035 * 2. Check that TIDENTRY array has enough space for a complete
4036 * segment. If not, put QP in error state.
4037 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4038 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4039 * 5. Set qp->s_state
4040 * 6. Kick the send engine (hfi1_schedule_send())
4041 */
4042 struct ib_other_headers *ohdr = packet->ohdr;
4043 struct rvt_qp *qp = packet->qp;
4044 struct hfi1_qp_priv *qpriv = qp->priv;
4045 struct hfi1_ctxtdata *rcd = packet->rcd;
4046 struct rvt_swqe *wqe;
4047 struct tid_rdma_request *req;
4048 struct tid_rdma_flow *flow;
4049 enum ib_wc_status status;
4050 u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4051 bool fecn;
4052 unsigned long flags;
4053
4054 fecn = process_ecn(qp, packet);
4055 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4056 aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4057 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4058
4059 spin_lock_irqsave(&qp->s_lock, flags);
4060
4061 /* Ignore invalid responses */
4062 if (cmp_psn(psn, qp->s_next_psn) >= 0)
4063 goto ack_done;
4064
4065 /* Ignore duplicate responses. */
4066 if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4067 goto ack_done;
4068
4069 if (unlikely(qp->s_acked == qp->s_tail))
4070 goto ack_done;
4071
4072 /*
4073 * If we are waiting for a particular packet sequence number
4074 * due to a request being resent, check for it. Otherwise,
4075 * ensure that we haven't missed anything.
4076 */
4077 if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4078 if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4079 goto ack_done;
4080 qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4081 }
4082
4083 wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4084 if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4085 goto ack_op_err;
4086
4087 req = wqe_to_tid_req(wqe);
4088 /*
4089 * If we've lost ACKs and our acked_tail pointer is too far
4090 * behind, don't overwrite segments. Just drop the packet and
4091 * let the reliability protocol take care of it.
4092 */
4093 if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4094 goto ack_done;
4095
4096 /*
4097 * The call to do_rc_ack() should be last in the chain of
4098 * packet checks because it will end up updating the QP state.
4099 * Therefore, anything that would prevent the packet from
4100 * being accepted as a successful response should be prior
4101 * to it.
4102 */
4103 if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4104 goto ack_done;
4105
4106 trace_hfi1_ack(qp, psn);
4107
4108 flow = &req->flows[req->setup_head];
4109 flow->pkt = 0;
4110 flow->tid_idx = 0;
4111 flow->tid_offset = 0;
4112 flow->sent = 0;
4113 flow->resync_npkts = 0;
4114 flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4115 flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4116 TID_RDMA_DESTQP_FLOW_MASK;
4117 flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4118 flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4119 flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4120 flow->flow_state.resp_ib_psn = psn;
4121 flow->length = min_t(u32, req->seg_len,
4122 (wqe->length - (req->comp_seg * req->seg_len)));
4123
4124 flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4125 flow->flow_state.lpsn = flow->flow_state.spsn +
4126 flow->npkts - 1;
4127 /* payload length = packet length - (header length + ICRC length) */
4128 pktlen = packet->tlen - (packet->hlen + 4);
4129 if (pktlen > sizeof(flow->tid_entry)) {
4130 status = IB_WC_LOC_LEN_ERR;
4131 goto ack_err;
4132 }
4133 memcpy(flow->tid_entry, packet->ebuf, pktlen);
4134 flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4135 trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4136
4137 req->comp_seg++;
4138 trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4139 /*
4140 * Walk the TID_ENTRY list to make sure we have enough space for a
4141 * complete segment.
4142 */
4143 for (i = 0; i < flow->tidcnt; i++) {
4144 trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4145 qp, i, flow->tid_entry[i]);
4146 if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4147 status = IB_WC_LOC_LEN_ERR;
4148 goto ack_err;
4149 }
4150 tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4151 }
4152 if (tidlen * PAGE_SIZE < flow->length) {
4153 status = IB_WC_LOC_LEN_ERR;
4154 goto ack_err;
4155 }
4156
4157 trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4158 wqe->lpsn, req);
4159 /*
4160 * If this is the first response for this request, set the initial
4161 * flow index to the current flow.
4162 */
4163 if (!cmp_psn(psn, wqe->psn)) {
4164 req->r_last_acked = mask_psn(wqe->psn - 1);
4165 /* Set acked flow index to head index */
4166 req->acked_tail = req->setup_head;
4167 }
4168
4169 /* advance circular buffer head */
4170 req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4171 req->state = TID_REQUEST_ACTIVE;
4172
4173 /*
4174 * If all responses for this TID RDMA WRITE request have been received
4175 * advance the pointer to the next one.
4176 * Since TID RDMA requests could be mixed in with regular IB requests,
4177 * they might not appear sequentially in the queue. Therefore, the
4178 * next request needs to be "found".
4179 */
4180 if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4181 req->comp_seg == req->total_segs) {
4182 for (i = qpriv->s_tid_cur + 1; ; i++) {
4183 if (i == qp->s_size)
4184 i = 0;
4185 wqe = rvt_get_swqe_ptr(qp, i);
4186 if (i == qpriv->s_tid_head)
4187 break;
4188 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4189 break;
4190 }
4191 qpriv->s_tid_cur = i;
4192 }
4193 qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4194 hfi1_schedule_tid_send(qp);
4195 goto ack_done;
4196
4197 ack_op_err:
4198 status = IB_WC_LOC_QP_OP_ERR;
4199 ack_err:
4200 rvt_error_qp(qp, status);
4201 ack_done:
4202 if (fecn)
4203 qp->s_flags |= RVT_S_ECN;
4204 spin_unlock_irqrestore(&qp->s_lock, flags);
4205 }
4206
4207 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4208 struct ib_other_headers *ohdr,
4209 u32 *bth1, u32 *bth2, u32 *len)
4210 {
4211 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4212 struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4213 struct tid_rdma_params *remote;
4214 struct rvt_qp *qp = req->qp;
4215 struct hfi1_qp_priv *qpriv = qp->priv;
4216 u32 tidentry = flow->tid_entry[flow->tid_idx];
4217 u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4218 struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4219 u32 next_offset, om = KDETH_OM_LARGE;
4220 bool last_pkt;
4221
4222 if (!tidlen) {
4223 hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4224 rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4225 }
4226
4227 *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4228 flow->sent += *len;
4229 next_offset = flow->tid_offset + *len;
4230 last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4231 next_offset >= tidlen) || (flow->sent >= flow->length);
4232 trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4233 trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4234
4235 rcu_read_lock();
4236 remote = rcu_dereference(qpriv->tid_rdma.remote);
4237 KDETH_RESET(wd->kdeth0, KVER, 0x1);
4238 KDETH_SET(wd->kdeth0, SH, !last_pkt);
4239 KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4240 KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4241 KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4242 KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4243 KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4244 KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4245 wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4246 rcu_read_unlock();
4247
4248 *bth1 = flow->tid_qpn;
4249 *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4250 HFI1_KDETH_BTH_SEQ_MASK) |
4251 (flow->flow_state.generation <<
4252 HFI1_KDETH_BTH_SEQ_SHIFT));
4253 if (last_pkt) {
4254 /* PSNs are zero-based, so +1 to count number of packets */
4255 if (flow->flow_state.lpsn + 1 +
4256 rvt_div_round_up_mtu(qp, req->seg_len) >
4257 MAX_TID_FLOW_PSN)
4258 req->state = TID_REQUEST_SYNC;
4259 *bth2 |= IB_BTH_REQ_ACK;
4260 }
4261
4262 if (next_offset >= tidlen) {
4263 flow->tid_offset = 0;
4264 flow->tid_idx++;
4265 } else {
4266 flow->tid_offset = next_offset;
4267 }
4268 return last_pkt;
4269 }
4270
4271 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4272 {
4273 struct rvt_qp *qp = packet->qp;
4274 struct hfi1_qp_priv *priv = qp->priv;
4275 struct hfi1_ctxtdata *rcd = priv->rcd;
4276 struct ib_other_headers *ohdr = packet->ohdr;
4277 struct rvt_ack_entry *e;
4278 struct tid_rdma_request *req;
4279 struct tid_rdma_flow *flow;
4280 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4281 unsigned long flags;
4282 u32 psn, next;
4283 u8 opcode;
4284 bool fecn;
4285
4286 fecn = process_ecn(qp, packet);
4287 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4288 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4289
4290 /*
4291 * All error handling should be done by now. If we are here, the packet
4292 * is either good or been accepted by the error handler.
4293 */
4294 spin_lock_irqsave(&qp->s_lock, flags);
4295 e = &qp->s_ack_queue[priv->r_tid_tail];
4296 req = ack_to_tid_req(e);
4297 flow = &req->flows[req->clear_tail];
4298 if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4299 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4300
4301 if (cmp_psn(psn, flow->flow_state.r_next_psn))
4302 goto send_nak;
4303
4304 flow->flow_state.r_next_psn = mask_psn(psn + 1);
4305 /*
4306 * Copy the payload to destination buffer if this packet is
4307 * delivered as an eager packet due to RSM rule and FECN.
4308 * The RSM rule selects FECN bit in BTH and SH bit in
4309 * KDETH header and therefore will not match the last
4310 * packet of each segment that has SH bit cleared.
4311 */
4312 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4313 struct rvt_sge_state ss;
4314 u32 len;
4315 u32 tlen = packet->tlen;
4316 u16 hdrsize = packet->hlen;
4317 u8 pad = packet->pad;
4318 u8 extra_bytes = pad + packet->extra_byte +
4319 (SIZE_OF_CRC << 2);
4320 u32 pmtu = qp->pmtu;
4321
4322 if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4323 goto send_nak;
4324 len = req->comp_seg * req->seg_len;
4325 len += delta_psn(psn,
4326 full_flow_psn(flow, flow->flow_state.spsn)) *
4327 pmtu;
4328 if (unlikely(req->total_len - len < pmtu))
4329 goto send_nak;
4330
4331 /*
4332 * The e->rdma_sge field is set when TID RDMA WRITE REQ
4333 * is first received and is never modified thereafter.
4334 */
4335 ss.sge = e->rdma_sge;
4336 ss.sg_list = NULL;
4337 ss.num_sge = 1;
4338 ss.total_len = req->total_len;
4339 rvt_skip_sge(&ss, len, false);
4340 rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4341 false);
4342 /* Raise the sw sequence check flag for next packet */
4343 priv->r_next_psn_kdeth = mask_psn(psn + 1);
4344 priv->s_flags |= HFI1_R_TID_SW_PSN;
4345 }
4346 goto exit;
4347 }
4348 flow->flow_state.r_next_psn = mask_psn(psn + 1);
4349 hfi1_kern_exp_rcv_clear(req);
4350 priv->alloc_w_segs--;
4351 rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4352 req->comp_seg++;
4353 priv->s_nak_state = 0;
4354
4355 /*
4356 * Release the flow if one of the following conditions has been met:
4357 * - The request has reached a sync point AND all outstanding
4358 * segments have been completed, or
4359 * - The entire request is complete and there are no more requests
4360 * (of any kind) in the queue.
4361 */
4362 trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4363 trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4364 req);
4365 trace_hfi1_tid_write_rsp_rcv_data(qp);
4366 if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
4367 priv->r_tid_ack = priv->r_tid_tail;
4368
4369 if (opcode == TID_OP(WRITE_DATA_LAST)) {
4370 release_rdma_sge_mr(e);
4371 for (next = priv->r_tid_tail + 1; ; next++) {
4372 if (next > rvt_size_atomic(&dev->rdi))
4373 next = 0;
4374 if (next == priv->r_tid_head)
4375 break;
4376 e = &qp->s_ack_queue[next];
4377 if (e->opcode == TID_OP(WRITE_REQ))
4378 break;
4379 }
4380 priv->r_tid_tail = next;
4381 if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4382 qp->s_acked_ack_queue = 0;
4383 }
4384
4385 hfi1_tid_write_alloc_resources(qp, true);
4386
4387 /*
4388 * If we need to generate more responses, schedule the
4389 * send engine.
4390 */
4391 if (req->cur_seg < req->total_segs ||
4392 qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4393 qp->s_flags |= RVT_S_RESP_PENDING;
4394 hfi1_schedule_send(qp);
4395 }
4396
4397 priv->pending_tid_w_segs--;
4398 if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4399 if (priv->pending_tid_w_segs)
4400 hfi1_mod_tid_reap_timer(req->qp);
4401 else
4402 hfi1_stop_tid_reap_timer(req->qp);
4403 }
4404
4405 done:
4406 priv->s_flags |= RVT_S_ACK_PENDING;
4407 hfi1_schedule_tid_send(qp);
4408 exit:
4409 priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4410 if (fecn)
4411 qp->s_flags |= RVT_S_ECN;
4412 spin_unlock_irqrestore(&qp->s_lock, flags);
4413 return;
4414
4415 send_nak:
4416 if (!priv->s_nak_state) {
4417 priv->s_nak_state = IB_NAK_PSN_ERROR;
4418 priv->s_nak_psn = flow->flow_state.r_next_psn;
4419 priv->s_flags |= RVT_S_ACK_PENDING;
4420 if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
4421 priv->r_tid_ack = priv->r_tid_tail;
4422 hfi1_schedule_tid_send(qp);
4423 }
4424 goto done;
4425 }
4426
4427 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4428 {
4429 return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4430 HFI1_KDETH_BTH_SEQ_MASK);
4431 }
4432
4433 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4434 struct ib_other_headers *ohdr, u16 iflow,
4435 u32 *bth1, u32 *bth2)
4436 {
4437 struct hfi1_qp_priv *qpriv = qp->priv;
4438 struct tid_flow_state *fs = &qpriv->flow_state;
4439 struct tid_rdma_request *req = ack_to_tid_req(e);
4440 struct tid_rdma_flow *flow = &req->flows[iflow];
4441 struct tid_rdma_params *remote;
4442
4443 rcu_read_lock();
4444 remote = rcu_dereference(qpriv->tid_rdma.remote);
4445 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4446 ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4447 *bth1 = remote->qp;
4448 rcu_read_unlock();
4449
4450 if (qpriv->resync) {
4451 *bth2 = mask_psn((fs->generation <<
4452 HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4453 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4454 } else if (qpriv->s_nak_state) {
4455 *bth2 = mask_psn(qpriv->s_nak_psn);
4456 ohdr->u.tid_rdma.ack.aeth =
4457 cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4458 (qpriv->s_nak_state <<
4459 IB_AETH_CREDIT_SHIFT));
4460 } else {
4461 *bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4462 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4463 }
4464 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4465 ohdr->u.tid_rdma.ack.tid_flow_qp =
4466 cpu_to_be32(qpriv->tid_rdma.local.qp |
4467 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4468 TID_RDMA_DESTQP_FLOW_SHIFT) |
4469 qpriv->rcd->ctxt);
4470
4471 ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4472 ohdr->u.tid_rdma.ack.verbs_psn =
4473 cpu_to_be32(flow->flow_state.resp_ib_psn);
4474
4475 if (qpriv->resync) {
4476 /*
4477 * If the PSN before the current expect KDETH PSN is the
4478 * RESYNC PSN, then we never received a good TID RDMA WRITE
4479 * DATA packet after a previous RESYNC.
4480 * In this case, the next expected KDETH PSN stays the same.
4481 */
4482 if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4483 ohdr->u.tid_rdma.ack.tid_flow_psn =
4484 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4485 } else {
4486 /*
4487 * Because the KDETH PSNs jump during a RESYNC, it's
4488 * not possible to infer (or compute) the previous value
4489 * of r_next_psn_kdeth in the case of back-to-back
4490 * RESYNC packets. Therefore, we save it.
4491 */
4492 qpriv->r_next_psn_kdeth_save =
4493 qpriv->r_next_psn_kdeth - 1;
4494 ohdr->u.tid_rdma.ack.tid_flow_psn =
4495 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4496 qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4497 }
4498 qpriv->resync = false;
4499 }
4500
4501 return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4502 }
4503
4504 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4505 {
4506 struct ib_other_headers *ohdr = packet->ohdr;
4507 struct rvt_qp *qp = packet->qp;
4508 struct hfi1_qp_priv *qpriv = qp->priv;
4509 struct rvt_swqe *wqe;
4510 struct tid_rdma_request *req;
4511 struct tid_rdma_flow *flow;
4512 u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
4513 unsigned long flags;
4514 u16 fidx;
4515
4516 trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4517 process_ecn(qp, packet);
4518 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4519 aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4520 req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4521 resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4522
4523 spin_lock_irqsave(&qp->s_lock, flags);
4524 trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4525
4526 /* If we are waiting for an ACK to RESYNC, drop any other packets */
4527 if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4528 cmp_psn(psn, qpriv->s_resync_psn))
4529 goto ack_op_err;
4530
4531 ack_psn = req_psn;
4532 if (hfi1_tid_rdma_is_resync_psn(psn))
4533 ack_kpsn = resync_psn;
4534 else
4535 ack_kpsn = psn;
4536 if (aeth >> 29) {
4537 ack_psn--;
4538 ack_kpsn--;
4539 }
4540
4541 if (unlikely(qp->s_acked == qp->s_tail))
4542 goto ack_op_err;
4543
4544 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4545
4546 if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4547 goto ack_op_err;
4548
4549 req = wqe_to_tid_req(wqe);
4550 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4551 wqe->lpsn, req);
4552 flow = &req->flows[req->acked_tail];
4553 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4554
4555 /* Drop stale ACK/NAK */
4556 if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
4557 cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
4558 goto ack_op_err;
4559
4560 while (cmp_psn(ack_kpsn,
4561 full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4562 req->ack_seg < req->cur_seg) {
4563 req->ack_seg++;
4564 /* advance acked segment pointer */
4565 req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4566 req->r_last_acked = flow->flow_state.resp_ib_psn;
4567 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4568 wqe->lpsn, req);
4569 if (req->ack_seg == req->total_segs) {
4570 req->state = TID_REQUEST_COMPLETE;
4571 wqe = do_rc_completion(qp, wqe,
4572 to_iport(qp->ibqp.device,
4573 qp->port_num));
4574 trace_hfi1_sender_rcv_tid_ack(qp);
4575 atomic_dec(&qpriv->n_tid_requests);
4576 if (qp->s_acked == qp->s_tail)
4577 break;
4578 if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4579 break;
4580 req = wqe_to_tid_req(wqe);
4581 }
4582 flow = &req->flows[req->acked_tail];
4583 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4584 }
4585
4586 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4587 wqe->lpsn, req);
4588 switch (aeth >> 29) {
4589 case 0: /* ACK */
4590 if (qpriv->s_flags & RVT_S_WAIT_ACK)
4591 qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4592 if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4593 /* Check if there is any pending TID ACK */
4594 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4595 req->ack_seg < req->cur_seg)
4596 hfi1_mod_tid_retry_timer(qp);
4597 else
4598 hfi1_stop_tid_retry_timer(qp);
4599 hfi1_schedule_send(qp);
4600 } else {
4601 u32 spsn, fpsn, last_acked, generation;
4602 struct tid_rdma_request *rptr;
4603
4604 /* ACK(RESYNC) */
4605 hfi1_stop_tid_retry_timer(qp);
4606 /* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4607 qp->s_flags &= ~HFI1_S_WAIT_HALT;
4608 /*
4609 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4610 * ACK is received after the TID retry timer is fired
4611 * again. In this case, do not send any more TID
4612 * RESYNC request or wait for any more TID ACK packet.
4613 */
4614 qpriv->s_flags &= ~RVT_S_SEND_ONE;
4615 hfi1_schedule_send(qp);
4616
4617 if ((qp->s_acked == qpriv->s_tid_tail &&
4618 req->ack_seg == req->total_segs) ||
4619 qp->s_acked == qp->s_tail) {
4620 qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4621 goto done;
4622 }
4623
4624 if (req->ack_seg == req->comp_seg) {
4625 qpriv->s_state = TID_OP(WRITE_DATA);
4626 goto done;
4627 }
4628
4629 /*
4630 * The PSN to start with is the next PSN after the
4631 * RESYNC PSN.
4632 */
4633 psn = mask_psn(psn + 1);
4634 generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4635 spsn = 0;
4636
4637 /*
4638 * Update to the correct WQE when we get an ACK(RESYNC)
4639 * in the middle of a request.
4640 */
4641 if (delta_psn(ack_psn, wqe->lpsn))
4642 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4643 req = wqe_to_tid_req(wqe);
4644 flow = &req->flows[req->acked_tail];
4645 /*
4646 * RESYNC re-numbers the PSN ranges of all remaining
4647 * segments. Also, PSN's start from 0 in the middle of a
4648 * segment and the first segment size is less than the
4649 * default number of packets. flow->resync_npkts is used
4650 * to track the number of packets from the start of the
4651 * real segment to the point of 0 PSN after the RESYNC
4652 * in order to later correctly rewind the SGE.
4653 */
4654 fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4655 req->r_ack_psn = psn;
4656 flow->resync_npkts +=
4657 delta_psn(mask_psn(resync_psn + 1), fpsn);
4658 /*
4659 * Renumber all packet sequence number ranges
4660 * based on the new generation.
4661 */
4662 last_acked = qp->s_acked;
4663 rptr = req;
4664 while (1) {
4665 /* start from last acked segment */
4666 for (fidx = rptr->acked_tail;
4667 CIRC_CNT(rptr->setup_head, fidx,
4668 MAX_FLOWS);
4669 fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4670 u32 lpsn;
4671 u32 gen;
4672
4673 flow = &rptr->flows[fidx];
4674 gen = flow->flow_state.generation;
4675 if (WARN_ON(gen == generation &&
4676 flow->flow_state.spsn !=
4677 spsn))
4678 continue;
4679 lpsn = flow->flow_state.lpsn;
4680 lpsn = full_flow_psn(flow, lpsn);
4681 flow->npkts =
4682 delta_psn(lpsn,
4683 mask_psn(resync_psn)
4684 );
4685 flow->flow_state.generation =
4686 generation;
4687 flow->flow_state.spsn = spsn;
4688 flow->flow_state.lpsn =
4689 flow->flow_state.spsn +
4690 flow->npkts - 1;
4691 flow->pkt = 0;
4692 spsn += flow->npkts;
4693 resync_psn += flow->npkts;
4694 trace_hfi1_tid_flow_rcv_tid_ack(qp,
4695 fidx,
4696 flow);
4697 }
4698 if (++last_acked == qpriv->s_tid_cur + 1)
4699 break;
4700 if (last_acked == qp->s_size)
4701 last_acked = 0;
4702 wqe = rvt_get_swqe_ptr(qp, last_acked);
4703 rptr = wqe_to_tid_req(wqe);
4704 }
4705 req->cur_seg = req->ack_seg;
4706 qpriv->s_tid_tail = qp->s_acked;
4707 qpriv->s_state = TID_OP(WRITE_REQ);
4708 hfi1_schedule_tid_send(qp);
4709 }
4710 done:
4711 qpriv->s_retry = qp->s_retry_cnt;
4712 break;
4713
4714 case 3: /* NAK */
4715 hfi1_stop_tid_retry_timer(qp);
4716 switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4717 IB_AETH_CREDIT_MASK) {
4718 case 0: /* PSN sequence error */
4719 if (!req->flows)
4720 break;
4721 flow = &req->flows[req->acked_tail];
4722 flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
4723 if (cmp_psn(psn, flpsn) > 0)
4724 break;
4725 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4726 flow);
4727 req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4728 req->cur_seg = req->ack_seg;
4729 qpriv->s_tid_tail = qp->s_acked;
4730 qpriv->s_state = TID_OP(WRITE_REQ);
4731 qpriv->s_retry = qp->s_retry_cnt;
4732 hfi1_schedule_tid_send(qp);
4733 break;
4734
4735 default:
4736 break;
4737 }
4738 break;
4739
4740 default:
4741 break;
4742 }
4743
4744 ack_op_err:
4745 spin_unlock_irqrestore(&qp->s_lock, flags);
4746 }
4747
4748 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4749 {
4750 struct hfi1_qp_priv *priv = qp->priv;
4751 struct ib_qp *ibqp = &qp->ibqp;
4752 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4753
4754 lockdep_assert_held(&qp->s_lock);
4755 if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4756 priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4757 priv->s_tid_retry_timer.expires = jiffies +
4758 priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4759 add_timer(&priv->s_tid_retry_timer);
4760 }
4761 }
4762
4763 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4764 {
4765 struct hfi1_qp_priv *priv = qp->priv;
4766 struct ib_qp *ibqp = &qp->ibqp;
4767 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4768
4769 lockdep_assert_held(&qp->s_lock);
4770 priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4771 mod_timer(&priv->s_tid_retry_timer, jiffies +
4772 priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4773 }
4774
4775 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4776 {
4777 struct hfi1_qp_priv *priv = qp->priv;
4778 int rval = 0;
4779
4780 lockdep_assert_held(&qp->s_lock);
4781 if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4782 rval = del_timer(&priv->s_tid_retry_timer);
4783 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4784 }
4785 return rval;
4786 }
4787
4788 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4789 {
4790 struct hfi1_qp_priv *priv = qp->priv;
4791
4792 del_timer_sync(&priv->s_tid_retry_timer);
4793 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4794 }
4795
4796 static void hfi1_tid_retry_timeout(struct timer_list *t)
4797 {
4798 struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4799 struct rvt_qp *qp = priv->owner;
4800 struct rvt_swqe *wqe;
4801 unsigned long flags;
4802 struct tid_rdma_request *req;
4803
4804 spin_lock_irqsave(&qp->r_lock, flags);
4805 spin_lock(&qp->s_lock);
4806 trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4807 if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4808 hfi1_stop_tid_retry_timer(qp);
4809 if (!priv->s_retry) {
4810 trace_hfi1_msg_tid_retry_timeout(/* msg */
4811 qp,
4812 "Exhausted retries. Tid retry timeout = ",
4813 (u64)priv->tid_retry_timeout_jiffies);
4814
4815 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4816 hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4817 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4818 } else {
4819 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4820 req = wqe_to_tid_req(wqe);
4821 trace_hfi1_tid_req_tid_retry_timeout(/* req */
4822 qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4823
4824 priv->s_flags &= ~RVT_S_WAIT_ACK;
4825 /* Only send one packet (the RESYNC) */
4826 priv->s_flags |= RVT_S_SEND_ONE;
4827 /*
4828 * No additional request shall be made by this QP until
4829 * the RESYNC has been complete.
4830 */
4831 qp->s_flags |= HFI1_S_WAIT_HALT;
4832 priv->s_state = TID_OP(RESYNC);
4833 priv->s_retry--;
4834 hfi1_schedule_tid_send(qp);
4835 }
4836 }
4837 spin_unlock(&qp->s_lock);
4838 spin_unlock_irqrestore(&qp->r_lock, flags);
4839 }
4840
4841 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4842 struct ib_other_headers *ohdr, u32 *bth1,
4843 u32 *bth2, u16 fidx)
4844 {
4845 struct hfi1_qp_priv *qpriv = qp->priv;
4846 struct tid_rdma_params *remote;
4847 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4848 struct tid_rdma_flow *flow = &req->flows[fidx];
4849 u32 generation;
4850
4851 rcu_read_lock();
4852 remote = rcu_dereference(qpriv->tid_rdma.remote);
4853 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4854 ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4855 *bth1 = remote->qp;
4856 rcu_read_unlock();
4857
4858 generation = kern_flow_generation_next(flow->flow_state.generation);
4859 *bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4860 qpriv->s_resync_psn = *bth2;
4861 *bth2 |= IB_BTH_REQ_ACK;
4862 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4863
4864 return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4865 }
4866
4867 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4868 {
4869 struct ib_other_headers *ohdr = packet->ohdr;
4870 struct rvt_qp *qp = packet->qp;
4871 struct hfi1_qp_priv *qpriv = qp->priv;
4872 struct hfi1_ctxtdata *rcd = qpriv->rcd;
4873 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4874 struct rvt_ack_entry *e;
4875 struct tid_rdma_request *req;
4876 struct tid_rdma_flow *flow;
4877 struct tid_flow_state *fs = &qpriv->flow_state;
4878 u32 psn, generation, idx, gen_next;
4879 bool fecn;
4880 unsigned long flags;
4881
4882 fecn = process_ecn(qp, packet);
4883 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4884
4885 generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4886 spin_lock_irqsave(&qp->s_lock, flags);
4887
4888 gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4889 generation : kern_flow_generation_next(fs->generation);
4890 /*
4891 * RESYNC packet contains the "next" generation and can only be
4892 * from the current or previous generations
4893 */
4894 if (generation != mask_generation(gen_next - 1) &&
4895 generation != gen_next)
4896 goto bail;
4897 /* Already processing a resync */
4898 if (qpriv->resync)
4899 goto bail;
4900
4901 spin_lock(&rcd->exp_lock);
4902 if (fs->index >= RXE_NUM_TID_FLOWS) {
4903 /*
4904 * If we don't have a flow, save the generation so it can be
4905 * applied when a new flow is allocated
4906 */
4907 fs->generation = generation;
4908 } else {
4909 /* Reprogram the QP flow with new generation */
4910 rcd->flows[fs->index].generation = generation;
4911 fs->generation = kern_setup_hw_flow(rcd, fs->index);
4912 }
4913 fs->psn = 0;
4914 /*
4915 * Disable SW PSN checking since a RESYNC is equivalent to a
4916 * sync point and the flow has/will be reprogrammed
4917 */
4918 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4919 trace_hfi1_tid_write_rsp_rcv_resync(qp);
4920
4921 /*
4922 * Reset all TID flow information with the new generation.
4923 * This is done for all requests and segments after the
4924 * last received segment
4925 */
4926 for (idx = qpriv->r_tid_tail; ; idx++) {
4927 u16 flow_idx;
4928
4929 if (idx > rvt_size_atomic(&dev->rdi))
4930 idx = 0;
4931 e = &qp->s_ack_queue[idx];
4932 if (e->opcode == TID_OP(WRITE_REQ)) {
4933 req = ack_to_tid_req(e);
4934 trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4935 e->lpsn, req);
4936
4937 /* start from last unacked segment */
4938 for (flow_idx = req->clear_tail;
4939 CIRC_CNT(req->setup_head, flow_idx,
4940 MAX_FLOWS);
4941 flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4942 u32 lpsn;
4943 u32 next;
4944
4945 flow = &req->flows[flow_idx];
4946 lpsn = full_flow_psn(flow,
4947 flow->flow_state.lpsn);
4948 next = flow->flow_state.r_next_psn;
4949 flow->npkts = delta_psn(lpsn, next - 1);
4950 flow->flow_state.generation = fs->generation;
4951 flow->flow_state.spsn = fs->psn;
4952 flow->flow_state.lpsn =
4953 flow->flow_state.spsn + flow->npkts - 1;
4954 flow->flow_state.r_next_psn =
4955 full_flow_psn(flow,
4956 flow->flow_state.spsn);
4957 fs->psn += flow->npkts;
4958 trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4959 flow);
4960 }
4961 }
4962 if (idx == qp->s_tail_ack_queue)
4963 break;
4964 }
4965
4966 spin_unlock(&rcd->exp_lock);
4967 qpriv->resync = true;
4968 /* RESYNC request always gets a TID RDMA ACK. */
4969 qpriv->s_nak_state = 0;
4970 qpriv->s_flags |= RVT_S_ACK_PENDING;
4971 hfi1_schedule_tid_send(qp);
4972 bail:
4973 if (fecn)
4974 qp->s_flags |= RVT_S_ECN;
4975 spin_unlock_irqrestore(&qp->s_lock, flags);
4976 }
4977
4978 /*
4979 * Call this function when the last TID RDMA WRITE DATA packet for a request
4980 * is built.
4981 */
4982 static void update_tid_tail(struct rvt_qp *qp)
4983 __must_hold(&qp->s_lock)
4984 {
4985 struct hfi1_qp_priv *priv = qp->priv;
4986 u32 i;
4987 struct rvt_swqe *wqe;
4988
4989 lockdep_assert_held(&qp->s_lock);
4990 /* Can't move beyond s_tid_cur */
4991 if (priv->s_tid_tail == priv->s_tid_cur)
4992 return;
4993 for (i = priv->s_tid_tail + 1; ; i++) {
4994 if (i == qp->s_size)
4995 i = 0;
4996
4997 if (i == priv->s_tid_cur)
4998 break;
4999 wqe = rvt_get_swqe_ptr(qp, i);
5000 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
5001 break;
5002 }
5003 priv->s_tid_tail = i;
5004 priv->s_state = TID_OP(WRITE_RESP);
5005 }
5006
5007 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
5008 __must_hold(&qp->s_lock)
5009 {
5010 struct hfi1_qp_priv *priv = qp->priv;
5011 struct rvt_swqe *wqe;
5012 u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5013 struct ib_other_headers *ohdr;
5014 struct rvt_sge_state *ss = &qp->s_sge;
5015 struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5016 struct tid_rdma_request *req = ack_to_tid_req(e);
5017 bool last = false;
5018 u8 opcode = TID_OP(WRITE_DATA);
5019
5020 lockdep_assert_held(&qp->s_lock);
5021 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5022 /*
5023 * Prioritize the sending of the requests and responses over the
5024 * sending of the TID RDMA data packets.
5025 */
5026 if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5027 atomic_read(&priv->n_requests) &&
5028 !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5029 HFI1_S_ANY_WAIT_IO))) ||
5030 (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5031 !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5032 struct iowait_work *iowork;
5033
5034 iowork = iowait_get_ib_work(&priv->s_iowait);
5035 ps->s_txreq = get_waiting_verbs_txreq(iowork);
5036 if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5037 priv->s_flags |= HFI1_S_TID_BUSY_SET;
5038 return 1;
5039 }
5040 }
5041
5042 ps->s_txreq = get_txreq(ps->dev, qp);
5043 if (!ps->s_txreq)
5044 goto bail_no_tx;
5045
5046 ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5047
5048 if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5049 make_tid_rdma_ack(qp, ohdr, ps))
5050 return 1;
5051
5052 /*
5053 * Bail out if we can't send data.
5054 * Be reminded that this check must been done after the call to
5055 * make_tid_rdma_ack() because the responding QP could be in
5056 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5057 */
5058 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5059 goto bail;
5060
5061 if (priv->s_flags & RVT_S_WAIT_ACK)
5062 goto bail;
5063
5064 /* Check whether there is anything to do. */
5065 if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5066 goto bail;
5067 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5068 req = wqe_to_tid_req(wqe);
5069 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5070 wqe->lpsn, req);
5071 switch (priv->s_state) {
5072 case TID_OP(WRITE_REQ):
5073 case TID_OP(WRITE_RESP):
5074 priv->tid_ss.sge = wqe->sg_list[0];
5075 priv->tid_ss.sg_list = wqe->sg_list + 1;
5076 priv->tid_ss.num_sge = wqe->wr.num_sge;
5077 priv->tid_ss.total_len = wqe->length;
5078
5079 if (priv->s_state == TID_OP(WRITE_REQ))
5080 hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5081 priv->s_state = TID_OP(WRITE_DATA);
5082 /* fall through */
5083
5084 case TID_OP(WRITE_DATA):
5085 /*
5086 * 1. Check whether TID RDMA WRITE RESP available.
5087 * 2. If no:
5088 * 2.1 If have more segments and no TID RDMA WRITE RESP,
5089 * set HFI1_S_WAIT_TID_RESP
5090 * 2.2 Return indicating no progress made.
5091 * 3. If yes:
5092 * 3.1 Build TID RDMA WRITE DATA packet.
5093 * 3.2 If last packet in segment:
5094 * 3.2.1 Change KDETH header bits
5095 * 3.2.2 Advance RESP pointers.
5096 * 3.3 Return indicating progress made.
5097 */
5098 trace_hfi1_sender_make_tid_pkt(qp);
5099 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5100 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5101 req = wqe_to_tid_req(wqe);
5102 len = wqe->length;
5103
5104 if (!req->comp_seg || req->cur_seg == req->comp_seg)
5105 goto bail;
5106
5107 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5108 wqe->psn, wqe->lpsn, req);
5109 last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5110 &len);
5111
5112 if (last) {
5113 /* move pointer to next flow */
5114 req->clear_tail = CIRC_NEXT(req->clear_tail,
5115 MAX_FLOWS);
5116 if (++req->cur_seg < req->total_segs) {
5117 if (!CIRC_CNT(req->setup_head, req->clear_tail,
5118 MAX_FLOWS))
5119 qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5120 } else {
5121 priv->s_state = TID_OP(WRITE_DATA_LAST);
5122 opcode = TID_OP(WRITE_DATA_LAST);
5123
5124 /* Advance the s_tid_tail now */
5125 update_tid_tail(qp);
5126 }
5127 }
5128 hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5129 ss = &priv->tid_ss;
5130 break;
5131
5132 case TID_OP(RESYNC):
5133 trace_hfi1_sender_make_tid_pkt(qp);
5134 /* Use generation from the most recently received response */
5135 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5136 req = wqe_to_tid_req(wqe);
5137 /* If no responses for this WQE look at the previous one */
5138 if (!req->comp_seg) {
5139 wqe = rvt_get_swqe_ptr(qp,
5140 (!priv->s_tid_cur ? qp->s_size :
5141 priv->s_tid_cur) - 1);
5142 req = wqe_to_tid_req(wqe);
5143 }
5144 hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5145 &bth2,
5146 CIRC_PREV(req->setup_head,
5147 MAX_FLOWS));
5148 ss = NULL;
5149 len = 0;
5150 opcode = TID_OP(RESYNC);
5151 break;
5152
5153 default:
5154 goto bail;
5155 }
5156 if (priv->s_flags & RVT_S_SEND_ONE) {
5157 priv->s_flags &= ~RVT_S_SEND_ONE;
5158 priv->s_flags |= RVT_S_WAIT_ACK;
5159 bth2 |= IB_BTH_REQ_ACK;
5160 }
5161 qp->s_len -= len;
5162 ps->s_txreq->hdr_dwords = hwords;
5163 ps->s_txreq->sde = priv->s_sde;
5164 ps->s_txreq->ss = ss;
5165 ps->s_txreq->s_cur_size = len;
5166 hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5167 middle, ps);
5168 return 1;
5169 bail:
5170 hfi1_put_txreq(ps->s_txreq);
5171 bail_no_tx:
5172 ps->s_txreq = NULL;
5173 priv->s_flags &= ~RVT_S_BUSY;
5174 /*
5175 * If we didn't get a txreq, the QP will be woken up later to try
5176 * again, set the flags to the the wake up which work item to wake
5177 * up.
5178 * (A better algorithm should be found to do this and generalize the
5179 * sleep/wakeup flags.)
5180 */
5181 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5182 return 0;
5183 }
5184
5185 static int make_tid_rdma_ack(struct rvt_qp *qp,
5186 struct ib_other_headers *ohdr,
5187 struct hfi1_pkt_state *ps)
5188 {
5189 struct rvt_ack_entry *e;
5190 struct hfi1_qp_priv *qpriv = qp->priv;
5191 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5192 u32 hwords, next;
5193 u32 len = 0;
5194 u32 bth1 = 0, bth2 = 0;
5195 int middle = 0;
5196 u16 flow;
5197 struct tid_rdma_request *req, *nreq;
5198
5199 trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5200 /* Don't send an ACK if we aren't supposed to. */
5201 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5202 goto bail;
5203
5204 /* header size in 32-bit words LRH+BTH = (8+12)/4. */
5205 hwords = 5;
5206
5207 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5208 req = ack_to_tid_req(e);
5209 /*
5210 * In the RESYNC case, we are exactly one segment past the
5211 * previously sent ack or at the previously sent NAK. So to send
5212 * the resync ack, we go back one segment (which might be part of
5213 * the previous request) and let the do-while loop execute again.
5214 * The advantage of executing the do-while loop is that any data
5215 * received after the previous ack is automatically acked in the
5216 * RESYNC ack. It turns out that for the do-while loop we only need
5217 * to pull back qpriv->r_tid_ack, not the segment
5218 * indices/counters. The scheme works even if the previous request
5219 * was not a TID WRITE request.
5220 */
5221 if (qpriv->resync) {
5222 if (!req->ack_seg || req->ack_seg == req->total_segs)
5223 qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5224 rvt_size_atomic(&dev->rdi) :
5225 qpriv->r_tid_ack - 1;
5226 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5227 req = ack_to_tid_req(e);
5228 }
5229
5230 trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5231 trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5232 req);
5233 /*
5234 * If we've sent all the ACKs that we can, we are done
5235 * until we get more segments...
5236 */
5237 if (!qpriv->s_nak_state && !qpriv->resync &&
5238 req->ack_seg == req->comp_seg)
5239 goto bail;
5240
5241 do {
5242 /*
5243 * To deal with coalesced ACKs, the acked_tail pointer
5244 * into the flow array is used. The distance between it
5245 * and the clear_tail is the number of flows that are
5246 * being ACK'ed.
5247 */
5248 req->ack_seg +=
5249 /* Get up-to-date value */
5250 CIRC_CNT(req->clear_tail, req->acked_tail,
5251 MAX_FLOWS);
5252 /* Advance acked index */
5253 req->acked_tail = req->clear_tail;
5254
5255 /*
5256 * req->clear_tail points to the segment currently being
5257 * received. So, when sending an ACK, the previous
5258 * segment is being ACK'ed.
5259 */
5260 flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5261 if (req->ack_seg != req->total_segs)
5262 break;
5263 req->state = TID_REQUEST_COMPLETE;
5264
5265 next = qpriv->r_tid_ack + 1;
5266 if (next > rvt_size_atomic(&dev->rdi))
5267 next = 0;
5268 qpriv->r_tid_ack = next;
5269 if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5270 break;
5271 nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5272 if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5273 break;
5274
5275 /* Move to the next ack entry now */
5276 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5277 req = ack_to_tid_req(e);
5278 } while (1);
5279
5280 /*
5281 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5282 * req could be pointing at the previous ack queue entry
5283 */
5284 if (qpriv->s_nak_state ||
5285 (qpriv->resync &&
5286 !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5287 (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5288 full_flow_psn(&req->flows[flow],
5289 req->flows[flow].flow_state.lpsn)) > 0))) {
5290 /*
5291 * A NAK will implicitly acknowledge all previous TID RDMA
5292 * requests. Therefore, we NAK with the req->acked_tail
5293 * segment for the request at qpriv->r_tid_ack (same at
5294 * this point as the req->clear_tail segment for the
5295 * qpriv->r_tid_tail request)
5296 */
5297 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5298 req = ack_to_tid_req(e);
5299 flow = req->acked_tail;
5300 } else if (req->ack_seg == req->total_segs &&
5301 qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5302 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5303
5304 trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5305 trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5306 req);
5307 hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5308 &bth2);
5309 len = 0;
5310 qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5311 ps->s_txreq->hdr_dwords = hwords;
5312 ps->s_txreq->sde = qpriv->s_sde;
5313 ps->s_txreq->s_cur_size = len;
5314 ps->s_txreq->ss = NULL;
5315 hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5316 ps);
5317 ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5318 return 1;
5319 bail:
5320 /*
5321 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5322 * RVT_S_RESP_PENDING
5323 */
5324 smp_wmb();
5325 qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5326 return 0;
5327 }
5328
5329 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5330 {
5331 struct hfi1_qp_priv *priv = qp->priv;
5332
5333 return !(priv->s_flags & RVT_S_BUSY ||
5334 qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5335 (verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5336 (priv->s_flags & RVT_S_RESP_PENDING) ||
5337 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5338 }
5339
5340 void _hfi1_do_tid_send(struct work_struct *work)
5341 {
5342 struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5343 struct rvt_qp *qp = iowait_to_qp(w->iow);
5344
5345 hfi1_do_tid_send(qp);
5346 }
5347
5348 static void hfi1_do_tid_send(struct rvt_qp *qp)
5349 {
5350 struct hfi1_pkt_state ps;
5351 struct hfi1_qp_priv *priv = qp->priv;
5352
5353 ps.dev = to_idev(qp->ibqp.device);
5354 ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5355 ps.ppd = ppd_from_ibp(ps.ibp);
5356 ps.wait = iowait_get_tid_work(&priv->s_iowait);
5357 ps.in_thread = false;
5358 ps.timeout_int = qp->timeout_jiffies / 8;
5359
5360 trace_hfi1_rc_do_tid_send(qp, false);
5361 spin_lock_irqsave(&qp->s_lock, ps.flags);
5362
5363 /* Return if we are already busy processing a work request. */
5364 if (!hfi1_send_tid_ok(qp)) {
5365 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5366 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5367 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5368 return;
5369 }
5370
5371 priv->s_flags |= RVT_S_BUSY;
5372
5373 ps.timeout = jiffies + ps.timeout_int;
5374 ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5375 cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5376 ps.pkts_sent = false;
5377
5378 /* insure a pre-built packet is handled */
5379 ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5380 do {
5381 /* Check for a constructed packet to be sent. */
5382 if (ps.s_txreq) {
5383 if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5384 qp->s_flags |= RVT_S_BUSY;
5385 ps.wait = iowait_get_ib_work(&priv->s_iowait);
5386 }
5387 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5388
5389 /*
5390 * If the packet cannot be sent now, return and
5391 * the send tasklet will be woken up later.
5392 */
5393 if (hfi1_verbs_send(qp, &ps))
5394 return;
5395
5396 /* allow other tasks to run */
5397 if (hfi1_schedule_send_yield(qp, &ps, true))
5398 return;
5399
5400 spin_lock_irqsave(&qp->s_lock, ps.flags);
5401 if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5402 qp->s_flags &= ~RVT_S_BUSY;
5403 priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5404 ps.wait = iowait_get_tid_work(&priv->s_iowait);
5405 if (iowait_flag_set(&priv->s_iowait,
5406 IOWAIT_PENDING_IB))
5407 hfi1_schedule_send(qp);
5408 }
5409 }
5410 } while (hfi1_make_tid_rdma_pkt(qp, &ps));
5411 iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5412 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5413 }
5414
5415 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5416 {
5417 struct hfi1_qp_priv *priv = qp->priv;
5418 struct hfi1_ibport *ibp =
5419 to_iport(qp->ibqp.device, qp->port_num);
5420 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5421 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
5422
5423 return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5424 priv->s_sde ?
5425 priv->s_sde->cpu :
5426 cpumask_first(cpumask_of_node(dd->node)));
5427 }
5428
5429 /**
5430 * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5431 * @qp: the QP
5432 *
5433 * This schedules qp progress on the TID RDMA state machine. Caller
5434 * should hold the s_lock.
5435 * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5436 * the two state machines can step on each other with respect to the
5437 * RVT_S_BUSY flag.
5438 * Therefore, a modified test is used.
5439 * @return true if the second leg is scheduled;
5440 * false if the second leg is not scheduled.
5441 */
5442 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5443 {
5444 lockdep_assert_held(&qp->s_lock);
5445 if (hfi1_send_tid_ok(qp)) {
5446 /*
5447 * The following call returns true if the qp is not on the
5448 * queue and false if the qp is already on the queue before
5449 * this call. Either way, the qp will be on the queue when the
5450 * call returns.
5451 */
5452 _hfi1_schedule_tid_send(qp);
5453 return true;
5454 }
5455 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5456 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5457 IOWAIT_PENDING_TID);
5458 return false;
5459 }
5460
5461 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5462 {
5463 struct rvt_ack_entry *prev;
5464 struct tid_rdma_request *req;
5465 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5466 struct hfi1_qp_priv *priv = qp->priv;
5467 u32 s_prev;
5468
5469 s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5470 (qp->s_tail_ack_queue - 1);
5471 prev = &qp->s_ack_queue[s_prev];
5472
5473 if ((e->opcode == TID_OP(READ_REQ) ||
5474 e->opcode == OP(RDMA_READ_REQUEST)) &&
5475 prev->opcode == TID_OP(WRITE_REQ)) {
5476 req = ack_to_tid_req(prev);
5477 if (req->ack_seg != req->total_segs) {
5478 priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5479 return true;
5480 }
5481 }
5482 return false;
5483 }
5484
5485 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5486 {
5487 u64 reg;
5488
5489 /*
5490 * The only sane way to get the amount of
5491 * progress is to read the HW flow state.
5492 */
5493 reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5494 return mask_psn(reg);
5495 }
5496
5497 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5498 struct ib_other_headers *ohdr,
5499 struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5500 {
5501 unsigned long flags;
5502
5503 tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5504 if (fecn) {
5505 spin_lock_irqsave(&qp->s_lock, flags);
5506 qp->s_flags |= RVT_S_ECN;
5507 spin_unlock_irqrestore(&qp->s_lock, flags);
5508 }
5509 }
5510
5511 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5512 struct hfi1_qp_priv *priv,
5513 struct hfi1_ctxtdata *rcd,
5514 struct tid_rdma_flow *flow,
5515 bool fecn)
5516 {
5517 /*
5518 * If a start/middle packet is delivered here due to
5519 * RSM rule and FECN, we need to update the r_next_psn.
5520 */
5521 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5522 !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5523 struct hfi1_devdata *dd = rcd->dd;
5524
5525 flow->flow_state.r_next_psn =
5526 read_r_next_psn(dd, rcd->ctxt, flow->idx);
5527 }
5528 }