]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/infiniband/hw/hfi1/user_exp_rcv.c
0d5330b7353d2e814b09ef54366153128434799a
[mirror_ubuntu-hirsute-kernel.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
1 /*
2 * Copyright(c) 2015-2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <asm/page.h>
48 #include <linux/string.h>
49
50 #include "mmu_rb.h"
51 #include "user_exp_rcv.h"
52 #include "trace.h"
53
54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
55 struct exp_tid_set *set,
56 struct hfi1_filedata *fd);
57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
58 static int set_rcvarray_entry(struct hfi1_filedata *fd,
59 struct tid_user_buf *tbuf,
60 u32 rcventry, struct tid_group *grp,
61 u16 pageidx, unsigned int npages);
62 static int tid_rb_insert(void *arg, struct mmu_rb_node *node);
63 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
64 struct tid_rb_node *tnode);
65 static void tid_rb_remove(void *arg, struct mmu_rb_node *node);
66 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode);
67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
68 struct tid_group *grp,
69 unsigned int start, u16 count,
70 u32 *tidlist, unsigned int *tididx,
71 unsigned int *pmapped);
72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
73 struct tid_group **grp);
74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
75
76 static struct mmu_rb_ops tid_rb_ops = {
77 .insert = tid_rb_insert,
78 .remove = tid_rb_remove,
79 .invalidate = tid_rb_invalidate
80 };
81
82 /*
83 * Initialize context and file private data needed for Expected
84 * receive caching. This needs to be done after the context has
85 * been configured with the eager/expected RcvEntry counts.
86 */
87 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
88 struct hfi1_ctxtdata *uctxt)
89 {
90 struct hfi1_devdata *dd = uctxt->dd;
91 int ret = 0;
92
93 spin_lock_init(&fd->tid_lock);
94 spin_lock_init(&fd->invalid_lock);
95
96 fd->entry_to_rb = kcalloc(uctxt->expected_count,
97 sizeof(struct rb_node *),
98 GFP_KERNEL);
99 if (!fd->entry_to_rb)
100 return -ENOMEM;
101
102 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
103 fd->invalid_tid_idx = 0;
104 fd->invalid_tids = kcalloc(uctxt->expected_count,
105 sizeof(*fd->invalid_tids),
106 GFP_KERNEL);
107 if (!fd->invalid_tids) {
108 kfree(fd->entry_to_rb);
109 fd->entry_to_rb = NULL;
110 return -ENOMEM;
111 }
112
113 /*
114 * Register MMU notifier callbacks. If the registration
115 * fails, continue without TID caching for this context.
116 */
117 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
118 dd->pport->hfi1_wq,
119 &fd->handler);
120 if (ret) {
121 dd_dev_info(dd,
122 "Failed MMU notifier registration %d\n",
123 ret);
124 ret = 0;
125 }
126 }
127
128 /*
129 * PSM does not have a good way to separate, count, and
130 * effectively enforce a limit on RcvArray entries used by
131 * subctxts (when context sharing is used) when TID caching
132 * is enabled. To help with that, we calculate a per-process
133 * RcvArray entry share and enforce that.
134 * If TID caching is not in use, PSM deals with usage on its
135 * own. In that case, we allow any subctxt to take all of the
136 * entries.
137 *
138 * Make sure that we set the tid counts only after successful
139 * init.
140 */
141 spin_lock(&fd->tid_lock);
142 if (uctxt->subctxt_cnt && fd->handler) {
143 u16 remainder;
144
145 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
146 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
147 if (remainder && fd->subctxt < remainder)
148 fd->tid_limit++;
149 } else {
150 fd->tid_limit = uctxt->expected_count;
151 }
152 spin_unlock(&fd->tid_lock);
153
154 return ret;
155 }
156
157 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
158 {
159 struct hfi1_ctxtdata *uctxt = fd->uctxt;
160
161 /*
162 * The notifier would have been removed when the process'es mm
163 * was freed.
164 */
165 if (fd->handler) {
166 hfi1_mmu_rb_unregister(fd->handler);
167 } else {
168 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
169 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
170 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
171 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
172 }
173
174 kfree(fd->invalid_tids);
175 fd->invalid_tids = NULL;
176
177 kfree(fd->entry_to_rb);
178 fd->entry_to_rb = NULL;
179 }
180
181 /**
182 * Release pinned receive buffer pages.
183 *
184 * @mapped - true if the pages have been DMA mapped. false otherwise.
185 * @idx - Index of the first page to unpin.
186 * @npages - No of pages to unpin.
187 *
188 * If the pages have been DMA mapped (indicated by mapped parameter), their
189 * info will be passed via a struct tid_rb_node. If they haven't been mapped,
190 * their info will be passed via a struct tid_user_buf.
191 */
192 static void unpin_rcv_pages(struct hfi1_filedata *fd,
193 struct tid_user_buf *tidbuf,
194 struct tid_rb_node *node,
195 unsigned int idx,
196 unsigned int npages,
197 bool mapped)
198 {
199 struct page **pages;
200 struct hfi1_devdata *dd = fd->uctxt->dd;
201
202 if (mapped) {
203 pci_unmap_single(dd->pcidev, node->dma_addr,
204 node->mmu.len, PCI_DMA_FROMDEVICE);
205 pages = &node->pages[idx];
206 } else {
207 pages = &tidbuf->pages[idx];
208 }
209 hfi1_release_user_pages(fd->mm, pages, npages, mapped);
210 fd->tid_n_pinned -= npages;
211 }
212
213 /**
214 * Pin receive buffer pages.
215 */
216 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
217 {
218 int pinned;
219 unsigned int npages;
220 unsigned long vaddr = tidbuf->vaddr;
221 struct page **pages = NULL;
222 struct hfi1_devdata *dd = fd->uctxt->dd;
223
224 /* Get the number of pages the user buffer spans */
225 npages = num_user_pages(vaddr, tidbuf->length);
226 if (!npages)
227 return -EINVAL;
228
229 if (npages > fd->uctxt->expected_count) {
230 dd_dev_err(dd, "Expected buffer too big\n");
231 return -EINVAL;
232 }
233
234 /* Verify that access is OK for the user buffer */
235 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
236 npages * PAGE_SIZE)) {
237 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
238 (void *)vaddr, npages);
239 return -EFAULT;
240 }
241 /* Allocate the array of struct page pointers needed for pinning */
242 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
243 if (!pages)
244 return -ENOMEM;
245
246 /*
247 * Pin all the pages of the user buffer. If we can't pin all the
248 * pages, accept the amount pinned so far and program only that.
249 * User space knows how to deal with partially programmed buffers.
250 */
251 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
252 kfree(pages);
253 return -ENOMEM;
254 }
255
256 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
257 if (pinned <= 0) {
258 kfree(pages);
259 return pinned;
260 }
261 tidbuf->pages = pages;
262 tidbuf->npages = npages;
263 fd->tid_n_pinned += pinned;
264 return pinned;
265 }
266
267 /*
268 * RcvArray entry allocation for Expected Receives is done by the
269 * following algorithm:
270 *
271 * The context keeps 3 lists of groups of RcvArray entries:
272 * 1. List of empty groups - tid_group_list
273 * This list is created during user context creation and
274 * contains elements which describe sets (of 8) of empty
275 * RcvArray entries.
276 * 2. List of partially used groups - tid_used_list
277 * This list contains sets of RcvArray entries which are
278 * not completely used up. Another mapping request could
279 * use some of all of the remaining entries.
280 * 3. List of full groups - tid_full_list
281 * This is the list where sets that are completely used
282 * up go.
283 *
284 * An attempt to optimize the usage of RcvArray entries is
285 * made by finding all sets of physically contiguous pages in a
286 * user's buffer.
287 * These physically contiguous sets are further split into
288 * sizes supported by the receive engine of the HFI. The
289 * resulting sets of pages are stored in struct tid_pageset,
290 * which describes the sets as:
291 * * .count - number of pages in this set
292 * * .idx - starting index into struct page ** array
293 * of this set
294 *
295 * From this point on, the algorithm deals with the page sets
296 * described above. The number of pagesets is divided by the
297 * RcvArray group size to produce the number of full groups
298 * needed.
299 *
300 * Groups from the 3 lists are manipulated using the following
301 * rules:
302 * 1. For each set of 8 pagesets, a complete group from
303 * tid_group_list is taken, programmed, and moved to
304 * the tid_full_list list.
305 * 2. For all remaining pagesets:
306 * 2.1 If the tid_used_list is empty and the tid_group_list
307 * is empty, stop processing pageset and return only
308 * what has been programmed up to this point.
309 * 2.2 If the tid_used_list is empty and the tid_group_list
310 * is not empty, move a group from tid_group_list to
311 * tid_used_list.
312 * 2.3 For each group is tid_used_group, program as much as
313 * can fit into the group. If the group becomes fully
314 * used, move it to tid_full_list.
315 */
316 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
317 struct hfi1_tid_info *tinfo)
318 {
319 int ret = 0, need_group = 0, pinned;
320 struct hfi1_ctxtdata *uctxt = fd->uctxt;
321 struct hfi1_devdata *dd = uctxt->dd;
322 unsigned int ngroups, pageidx = 0, pageset_count,
323 tididx = 0, mapped, mapped_pages = 0;
324 u32 *tidlist = NULL;
325 struct tid_user_buf *tidbuf;
326
327 tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
328 if (!tidbuf)
329 return -ENOMEM;
330
331 tidbuf->vaddr = tinfo->vaddr;
332 tidbuf->length = tinfo->length;
333 tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
334 GFP_KERNEL);
335 if (!tidbuf->psets) {
336 kfree(tidbuf);
337 return -ENOMEM;
338 }
339
340 pinned = pin_rcv_pages(fd, tidbuf);
341 if (pinned <= 0) {
342 kfree(tidbuf->psets);
343 kfree(tidbuf);
344 return pinned;
345 }
346
347 /* Find sets of physically contiguous pages */
348 tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
349
350 /*
351 * We don't need to access this under a lock since tid_used is per
352 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
353 * and hfi1_user_exp_rcv_setup() at the same time.
354 */
355 spin_lock(&fd->tid_lock);
356 if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
357 pageset_count = fd->tid_limit - fd->tid_used;
358 else
359 pageset_count = tidbuf->n_psets;
360 spin_unlock(&fd->tid_lock);
361
362 if (!pageset_count)
363 goto bail;
364
365 ngroups = pageset_count / dd->rcv_entries.group_size;
366 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
367 if (!tidlist) {
368 ret = -ENOMEM;
369 goto nomem;
370 }
371
372 tididx = 0;
373
374 /*
375 * From this point on, we are going to be using shared (between master
376 * and subcontexts) context resources. We need to take the lock.
377 */
378 mutex_lock(&uctxt->exp_lock);
379 /*
380 * The first step is to program the RcvArray entries which are complete
381 * groups.
382 */
383 while (ngroups && uctxt->tid_group_list.count) {
384 struct tid_group *grp =
385 tid_group_pop(&uctxt->tid_group_list);
386
387 ret = program_rcvarray(fd, tidbuf, grp,
388 pageidx, dd->rcv_entries.group_size,
389 tidlist, &tididx, &mapped);
390 /*
391 * If there was a failure to program the RcvArray
392 * entries for the entire group, reset the grp fields
393 * and add the grp back to the free group list.
394 */
395 if (ret <= 0) {
396 tid_group_add_tail(grp, &uctxt->tid_group_list);
397 hfi1_cdbg(TID,
398 "Failed to program RcvArray group %d", ret);
399 goto unlock;
400 }
401
402 tid_group_add_tail(grp, &uctxt->tid_full_list);
403 ngroups--;
404 pageidx += ret;
405 mapped_pages += mapped;
406 }
407
408 while (pageidx < pageset_count) {
409 struct tid_group *grp, *ptr;
410 /*
411 * If we don't have any partially used tid groups, check
412 * if we have empty groups. If so, take one from there and
413 * put in the partially used list.
414 */
415 if (!uctxt->tid_used_list.count || need_group) {
416 if (!uctxt->tid_group_list.count)
417 goto unlock;
418
419 grp = tid_group_pop(&uctxt->tid_group_list);
420 tid_group_add_tail(grp, &uctxt->tid_used_list);
421 need_group = 0;
422 }
423 /*
424 * There is an optimization opportunity here - instead of
425 * fitting as many page sets as we can, check for a group
426 * later on in the list that could fit all of them.
427 */
428 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
429 list) {
430 unsigned use = min_t(unsigned, pageset_count - pageidx,
431 grp->size - grp->used);
432
433 ret = program_rcvarray(fd, tidbuf, grp,
434 pageidx, use, tidlist,
435 &tididx, &mapped);
436 if (ret < 0) {
437 hfi1_cdbg(TID,
438 "Failed to program RcvArray entries %d",
439 ret);
440 ret = -EFAULT;
441 goto unlock;
442 } else if (ret > 0) {
443 if (grp->used == grp->size)
444 tid_group_move(grp,
445 &uctxt->tid_used_list,
446 &uctxt->tid_full_list);
447 pageidx += ret;
448 mapped_pages += mapped;
449 need_group = 0;
450 /* Check if we are done so we break out early */
451 if (pageidx >= pageset_count)
452 break;
453 } else if (WARN_ON(ret == 0)) {
454 /*
455 * If ret is 0, we did not program any entries
456 * into this group, which can only happen if
457 * we've screwed up the accounting somewhere.
458 * Warn and try to continue.
459 */
460 need_group = 1;
461 }
462 }
463 }
464 unlock:
465 mutex_unlock(&uctxt->exp_lock);
466 nomem:
467 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
468 mapped_pages, ret);
469 if (tididx) {
470 spin_lock(&fd->tid_lock);
471 fd->tid_used += tididx;
472 spin_unlock(&fd->tid_lock);
473 tinfo->tidcnt = tididx;
474 tinfo->length = mapped_pages * PAGE_SIZE;
475
476 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
477 tidlist, sizeof(tidlist[0]) * tididx)) {
478 /*
479 * On failure to copy to the user level, we need to undo
480 * everything done so far so we don't leak resources.
481 */
482 tinfo->tidlist = (unsigned long)&tidlist;
483 hfi1_user_exp_rcv_clear(fd, tinfo);
484 tinfo->tidlist = 0;
485 ret = -EFAULT;
486 goto bail;
487 }
488 }
489
490 /*
491 * If not everything was mapped (due to insufficient RcvArray entries,
492 * for example), unpin all unmapped pages so we can pin them nex time.
493 */
494 if (mapped_pages != pinned)
495 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
496 (pinned - mapped_pages), false);
497 bail:
498 kfree(tidbuf->psets);
499 kfree(tidlist);
500 kfree(tidbuf->pages);
501 kfree(tidbuf);
502 return ret > 0 ? 0 : ret;
503 }
504
505 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
506 struct hfi1_tid_info *tinfo)
507 {
508 int ret = 0;
509 struct hfi1_ctxtdata *uctxt = fd->uctxt;
510 u32 *tidinfo;
511 unsigned tididx;
512
513 if (unlikely(tinfo->tidcnt > fd->tid_used))
514 return -EINVAL;
515
516 tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
517 sizeof(tidinfo[0]) * tinfo->tidcnt);
518 if (IS_ERR(tidinfo))
519 return PTR_ERR(tidinfo);
520
521 mutex_lock(&uctxt->exp_lock);
522 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
523 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
524 if (ret) {
525 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
526 ret);
527 break;
528 }
529 }
530 spin_lock(&fd->tid_lock);
531 fd->tid_used -= tididx;
532 spin_unlock(&fd->tid_lock);
533 tinfo->tidcnt = tididx;
534 mutex_unlock(&uctxt->exp_lock);
535
536 kfree(tidinfo);
537 return ret;
538 }
539
540 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
541 struct hfi1_tid_info *tinfo)
542 {
543 struct hfi1_ctxtdata *uctxt = fd->uctxt;
544 unsigned long *ev = uctxt->dd->events +
545 (uctxt_offset(uctxt) + fd->subctxt);
546 u32 *array;
547 int ret = 0;
548
549 /*
550 * copy_to_user() can sleep, which will leave the invalid_lock
551 * locked and cause the MMU notifier to be blocked on the lock
552 * for a long time.
553 * Copy the data to a local buffer so we can release the lock.
554 */
555 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
556 if (!array)
557 return -EFAULT;
558
559 spin_lock(&fd->invalid_lock);
560 if (fd->invalid_tid_idx) {
561 memcpy(array, fd->invalid_tids, sizeof(*array) *
562 fd->invalid_tid_idx);
563 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
564 fd->invalid_tid_idx);
565 tinfo->tidcnt = fd->invalid_tid_idx;
566 fd->invalid_tid_idx = 0;
567 /*
568 * Reset the user flag while still holding the lock.
569 * Otherwise, PSM can miss events.
570 */
571 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
572 } else {
573 tinfo->tidcnt = 0;
574 }
575 spin_unlock(&fd->invalid_lock);
576
577 if (tinfo->tidcnt) {
578 if (copy_to_user((void __user *)tinfo->tidlist,
579 array, sizeof(*array) * tinfo->tidcnt))
580 ret = -EFAULT;
581 }
582 kfree(array);
583
584 return ret;
585 }
586
587 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
588 {
589 unsigned pagecount, pageidx, setcount = 0, i;
590 unsigned long pfn, this_pfn;
591 struct page **pages = tidbuf->pages;
592 struct tid_pageset *list = tidbuf->psets;
593
594 if (!npages)
595 return 0;
596
597 /*
598 * Look for sets of physically contiguous pages in the user buffer.
599 * This will allow us to optimize Expected RcvArray entry usage by
600 * using the bigger supported sizes.
601 */
602 pfn = page_to_pfn(pages[0]);
603 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
604 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
605
606 /*
607 * If the pfn's are not sequential, pages are not physically
608 * contiguous.
609 */
610 if (this_pfn != ++pfn) {
611 /*
612 * At this point we have to loop over the set of
613 * physically contiguous pages and break them down it
614 * sizes supported by the HW.
615 * There are two main constraints:
616 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
617 * If the total set size is bigger than that
618 * program only a MAX_EXPECTED_BUFFER chunk.
619 * 2. The buffer size has to be a power of two. If
620 * it is not, round down to the closes power of
621 * 2 and program that size.
622 */
623 while (pagecount) {
624 int maxpages = pagecount;
625 u32 bufsize = pagecount * PAGE_SIZE;
626
627 if (bufsize > MAX_EXPECTED_BUFFER)
628 maxpages =
629 MAX_EXPECTED_BUFFER >>
630 PAGE_SHIFT;
631 else if (!is_power_of_2(bufsize))
632 maxpages =
633 rounddown_pow_of_two(bufsize) >>
634 PAGE_SHIFT;
635
636 list[setcount].idx = pageidx;
637 list[setcount].count = maxpages;
638 pagecount -= maxpages;
639 pageidx += maxpages;
640 setcount++;
641 }
642 pageidx = i;
643 pagecount = 1;
644 pfn = this_pfn;
645 } else {
646 pagecount++;
647 }
648 }
649 return setcount;
650 }
651
652 /**
653 * program_rcvarray() - program an RcvArray group with receive buffers
654 * @fd: filedata pointer
655 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
656 * virtual address, buffer length, page pointers, pagesets (array of
657 * struct tid_pageset holding information on physically contiguous
658 * chunks from the user buffer), and other fields.
659 * @grp: RcvArray group
660 * @start: starting index into sets array
661 * @count: number of struct tid_pageset's to program
662 * @tidlist: the array of u32 elements when the information about the
663 * programmed RcvArray entries is to be encoded.
664 * @tididx: starting offset into tidlist
665 * @pmapped: (output parameter) number of pages programmed into the RcvArray
666 * entries.
667 *
668 * This function will program up to 'count' number of RcvArray entries from the
669 * group 'grp'. To make best use of write-combining writes, the function will
670 * perform writes to the unused RcvArray entries which will be ignored by the
671 * HW. Each RcvArray entry will be programmed with a physically contiguous
672 * buffer chunk from the user's virtual buffer.
673 *
674 * Return:
675 * -EINVAL if the requested count is larger than the size of the group,
676 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
677 * number of RcvArray entries programmed.
678 */
679 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
680 struct tid_group *grp,
681 unsigned int start, u16 count,
682 u32 *tidlist, unsigned int *tididx,
683 unsigned int *pmapped)
684 {
685 struct hfi1_ctxtdata *uctxt = fd->uctxt;
686 struct hfi1_devdata *dd = uctxt->dd;
687 u16 idx;
688 u32 tidinfo = 0, rcventry, useidx = 0;
689 int mapped = 0;
690
691 /* Count should never be larger than the group size */
692 if (count > grp->size)
693 return -EINVAL;
694
695 /* Find the first unused entry in the group */
696 for (idx = 0; idx < grp->size; idx++) {
697 if (!(grp->map & (1 << idx))) {
698 useidx = idx;
699 break;
700 }
701 rcv_array_wc_fill(dd, grp->base + idx);
702 }
703
704 idx = 0;
705 while (idx < count) {
706 u16 npages, pageidx, setidx = start + idx;
707 int ret = 0;
708
709 /*
710 * If this entry in the group is used, move to the next one.
711 * If we go past the end of the group, exit the loop.
712 */
713 if (useidx >= grp->size) {
714 break;
715 } else if (grp->map & (1 << useidx)) {
716 rcv_array_wc_fill(dd, grp->base + useidx);
717 useidx++;
718 continue;
719 }
720
721 rcventry = grp->base + useidx;
722 npages = tbuf->psets[setidx].count;
723 pageidx = tbuf->psets[setidx].idx;
724
725 ret = set_rcvarray_entry(fd, tbuf,
726 rcventry, grp, pageidx,
727 npages);
728 if (ret)
729 return ret;
730 mapped += npages;
731
732 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
733 EXP_TID_SET(LEN, npages);
734 tidlist[(*tididx)++] = tidinfo;
735 grp->used++;
736 grp->map |= 1 << useidx++;
737 idx++;
738 }
739
740 /* Fill the rest of the group with "blank" writes */
741 for (; useidx < grp->size; useidx++)
742 rcv_array_wc_fill(dd, grp->base + useidx);
743 *pmapped = mapped;
744 return idx;
745 }
746
747 static int set_rcvarray_entry(struct hfi1_filedata *fd,
748 struct tid_user_buf *tbuf,
749 u32 rcventry, struct tid_group *grp,
750 u16 pageidx, unsigned int npages)
751 {
752 int ret;
753 struct hfi1_ctxtdata *uctxt = fd->uctxt;
754 struct tid_rb_node *node;
755 struct hfi1_devdata *dd = uctxt->dd;
756 dma_addr_t phys;
757 struct page **pages = tbuf->pages + pageidx;
758
759 /*
760 * Allocate the node first so we can handle a potential
761 * failure before we've programmed anything.
762 */
763 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
764 GFP_KERNEL);
765 if (!node)
766 return -ENOMEM;
767
768 phys = pci_map_single(dd->pcidev,
769 __va(page_to_phys(pages[0])),
770 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
771 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
772 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
773 phys);
774 kfree(node);
775 return -EFAULT;
776 }
777
778 node->mmu.addr = tbuf->vaddr + (pageidx * PAGE_SIZE);
779 node->mmu.len = npages * PAGE_SIZE;
780 node->phys = page_to_phys(pages[0]);
781 node->npages = npages;
782 node->rcventry = rcventry;
783 node->dma_addr = phys;
784 node->grp = grp;
785 node->freed = false;
786 memcpy(node->pages, pages, sizeof(struct page *) * npages);
787
788 if (!fd->handler)
789 ret = tid_rb_insert(fd, &node->mmu);
790 else
791 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
792
793 if (ret) {
794 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
795 node->rcventry, node->mmu.addr, node->phys, ret);
796 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
797 PCI_DMA_FROMDEVICE);
798 kfree(node);
799 return -EFAULT;
800 }
801 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
802 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
803 node->mmu.addr, node->phys, phys);
804 return 0;
805 }
806
807 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
808 struct tid_group **grp)
809 {
810 struct hfi1_ctxtdata *uctxt = fd->uctxt;
811 struct hfi1_devdata *dd = uctxt->dd;
812 struct tid_rb_node *node;
813 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
814 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
815
816 if (tididx >= uctxt->expected_count) {
817 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
818 tididx, uctxt->ctxt);
819 return -EINVAL;
820 }
821
822 if (tidctrl == 0x3)
823 return -EINVAL;
824
825 rcventry = tididx + (tidctrl - 1);
826
827 node = fd->entry_to_rb[rcventry];
828 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
829 return -EBADF;
830
831 if (grp)
832 *grp = node->grp;
833
834 if (!fd->handler)
835 cacheless_tid_rb_remove(fd, node);
836 else
837 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
838
839 return 0;
840 }
841
842 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
843 {
844 struct hfi1_ctxtdata *uctxt = fd->uctxt;
845 struct hfi1_devdata *dd = uctxt->dd;
846
847 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
848 node->npages, node->mmu.addr, node->phys,
849 node->dma_addr);
850
851 /*
852 * Make sure device has seen the write before we unpin the
853 * pages.
854 */
855 hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
856
857 unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
858
859 node->grp->used--;
860 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
861
862 if (node->grp->used == node->grp->size - 1)
863 tid_group_move(node->grp, &uctxt->tid_full_list,
864 &uctxt->tid_used_list);
865 else if (!node->grp->used)
866 tid_group_move(node->grp, &uctxt->tid_used_list,
867 &uctxt->tid_group_list);
868 kfree(node);
869 }
870
871 /*
872 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
873 * clearing nodes in the non-cached case.
874 */
875 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
876 struct exp_tid_set *set,
877 struct hfi1_filedata *fd)
878 {
879 struct tid_group *grp, *ptr;
880 int i;
881
882 list_for_each_entry_safe(grp, ptr, &set->list, list) {
883 list_del_init(&grp->list);
884
885 for (i = 0; i < grp->size; i++) {
886 if (grp->map & (1 << i)) {
887 u16 rcventry = grp->base + i;
888 struct tid_rb_node *node;
889
890 node = fd->entry_to_rb[rcventry -
891 uctxt->expected_base];
892 if (!node || node->rcventry != rcventry)
893 continue;
894
895 cacheless_tid_rb_remove(fd, node);
896 }
897 }
898 }
899 }
900
901 /*
902 * Always return 0 from this function. A non-zero return indicates that the
903 * remove operation will be called and that memory should be unpinned.
904 * However, the driver cannot unpin out from under PSM. Instead, retain the
905 * memory (by returning 0) and inform PSM that the memory is going away. PSM
906 * will call back later when it has removed the memory from its list.
907 */
908 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
909 {
910 struct hfi1_filedata *fdata = arg;
911 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
912 struct tid_rb_node *node =
913 container_of(mnode, struct tid_rb_node, mmu);
914
915 if (node->freed)
916 return 0;
917
918 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
919 node->rcventry, node->npages, node->dma_addr);
920 node->freed = true;
921
922 spin_lock(&fdata->invalid_lock);
923 if (fdata->invalid_tid_idx < uctxt->expected_count) {
924 fdata->invalid_tids[fdata->invalid_tid_idx] =
925 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
926 fdata->invalid_tids[fdata->invalid_tid_idx] |=
927 EXP_TID_SET(LEN, node->npages);
928 if (!fdata->invalid_tid_idx) {
929 unsigned long *ev;
930
931 /*
932 * hfi1_set_uevent_bits() sets a user event flag
933 * for all processes. Because calling into the
934 * driver to process TID cache invalidations is
935 * expensive and TID cache invalidations are
936 * handled on a per-process basis, we can
937 * optimize this to set the flag only for the
938 * process in question.
939 */
940 ev = uctxt->dd->events +
941 (uctxt_offset(uctxt) + fdata->subctxt);
942 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
943 }
944 fdata->invalid_tid_idx++;
945 }
946 spin_unlock(&fdata->invalid_lock);
947 return 0;
948 }
949
950 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
951 {
952 struct hfi1_filedata *fdata = arg;
953 struct tid_rb_node *tnode =
954 container_of(node, struct tid_rb_node, mmu);
955 u32 base = fdata->uctxt->expected_base;
956
957 fdata->entry_to_rb[tnode->rcventry - base] = tnode;
958 return 0;
959 }
960
961 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
962 struct tid_rb_node *tnode)
963 {
964 u32 base = fdata->uctxt->expected_base;
965
966 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
967 clear_tid_node(fdata, tnode);
968 }
969
970 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
971 {
972 struct hfi1_filedata *fdata = arg;
973 struct tid_rb_node *tnode =
974 container_of(node, struct tid_rb_node, mmu);
975
976 cacheless_tid_rb_remove(fdata, tnode);
977 }