]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/infiniband/hw/hfi1/user_sdma.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / infiniband / hw / hfi1 / user_sdma.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <linux/mm.h>
48 #include <linux/types.h>
49 #include <linux/device.h>
50 #include <linux/dmapool.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/highmem.h>
54 #include <linux/io.h>
55 #include <linux/uio.h>
56 #include <linux/rbtree.h>
57 #include <linux/spinlock.h>
58 #include <linux/delay.h>
59 #include <linux/kthread.h>
60 #include <linux/mmu_context.h>
61 #include <linux/module.h>
62 #include <linux/vmalloc.h>
63
64 #include "hfi.h"
65 #include "sdma.h"
66 #include "user_sdma.h"
67 #include "verbs.h" /* for the headers */
68 #include "common.h" /* for struct hfi1_tid_info */
69 #include "trace.h"
70 #include "mmu_rb.h"
71
72 static uint hfi1_sdma_comp_ring_size = 128;
73 module_param_named(sdma_comp_size, hfi1_sdma_comp_ring_size, uint, S_IRUGO);
74 MODULE_PARM_DESC(sdma_comp_size, "Size of User SDMA completion ring. Default: 128");
75
76 /* The maximum number of Data io vectors per message/request */
77 #define MAX_VECTORS_PER_REQ 8
78 /*
79 * Maximum number of packet to send from each message/request
80 * before moving to the next one.
81 */
82 #define MAX_PKTS_PER_QUEUE 16
83
84 #define num_pages(x) (1 + ((((x) - 1) & PAGE_MASK) >> PAGE_SHIFT))
85
86 #define req_opcode(x) \
87 (((x) >> HFI1_SDMA_REQ_OPCODE_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
88 #define req_version(x) \
89 (((x) >> HFI1_SDMA_REQ_VERSION_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
90 #define req_iovcnt(x) \
91 (((x) >> HFI1_SDMA_REQ_IOVCNT_SHIFT) & HFI1_SDMA_REQ_IOVCNT_MASK)
92
93 /* Number of BTH.PSN bits used for sequence number in expected rcvs */
94 #define BTH_SEQ_MASK 0x7ffull
95
96 /*
97 * Define fields in the KDETH header so we can update the header
98 * template.
99 */
100 #define KDETH_OFFSET_SHIFT 0
101 #define KDETH_OFFSET_MASK 0x7fff
102 #define KDETH_OM_SHIFT 15
103 #define KDETH_OM_MASK 0x1
104 #define KDETH_TID_SHIFT 16
105 #define KDETH_TID_MASK 0x3ff
106 #define KDETH_TIDCTRL_SHIFT 26
107 #define KDETH_TIDCTRL_MASK 0x3
108 #define KDETH_INTR_SHIFT 28
109 #define KDETH_INTR_MASK 0x1
110 #define KDETH_SH_SHIFT 29
111 #define KDETH_SH_MASK 0x1
112 #define KDETH_HCRC_UPPER_SHIFT 16
113 #define KDETH_HCRC_UPPER_MASK 0xff
114 #define KDETH_HCRC_LOWER_SHIFT 24
115 #define KDETH_HCRC_LOWER_MASK 0xff
116
117 #define AHG_KDETH_INTR_SHIFT 12
118
119 #define PBC2LRH(x) ((((x) & 0xfff) << 2) - 4)
120 #define LRH2PBC(x) ((((x) >> 2) + 1) & 0xfff)
121
122 #define KDETH_GET(val, field) \
123 (((le32_to_cpu((val))) >> KDETH_##field##_SHIFT) & KDETH_##field##_MASK)
124 #define KDETH_SET(dw, field, val) do { \
125 u32 dwval = le32_to_cpu(dw); \
126 dwval &= ~(KDETH_##field##_MASK << KDETH_##field##_SHIFT); \
127 dwval |= (((val) & KDETH_##field##_MASK) << \
128 KDETH_##field##_SHIFT); \
129 dw = cpu_to_le32(dwval); \
130 } while (0)
131
132 #define AHG_HEADER_SET(arr, idx, dw, bit, width, value) \
133 do { \
134 if ((idx) < ARRAY_SIZE((arr))) \
135 (arr)[(idx++)] = sdma_build_ahg_descriptor( \
136 (__force u16)(value), (dw), (bit), \
137 (width)); \
138 else \
139 return -ERANGE; \
140 } while (0)
141
142 /* KDETH OM multipliers and switch over point */
143 #define KDETH_OM_SMALL 4
144 #define KDETH_OM_LARGE 64
145 #define KDETH_OM_MAX_SIZE (1 << ((KDETH_OM_LARGE / KDETH_OM_SMALL) + 1))
146
147 /* Last packet in the request */
148 #define TXREQ_FLAGS_REQ_LAST_PKT BIT(0)
149
150 /* SDMA request flag bits */
151 #define SDMA_REQ_FOR_THREAD 1
152 #define SDMA_REQ_SEND_DONE 2
153 #define SDMA_REQ_HAVE_AHG 3
154 #define SDMA_REQ_HAS_ERROR 4
155 #define SDMA_REQ_DONE_ERROR 5
156
157 #define SDMA_PKT_Q_INACTIVE BIT(0)
158 #define SDMA_PKT_Q_ACTIVE BIT(1)
159 #define SDMA_PKT_Q_DEFERRED BIT(2)
160
161 /*
162 * Maximum retry attempts to submit a TX request
163 * before putting the process to sleep.
164 */
165 #define MAX_DEFER_RETRY_COUNT 1
166
167 static unsigned initial_pkt_count = 8;
168
169 #define SDMA_IOWAIT_TIMEOUT 1000 /* in milliseconds */
170
171 struct sdma_mmu_node;
172
173 struct user_sdma_iovec {
174 struct list_head list;
175 struct iovec iov;
176 /* number of pages in this vector */
177 unsigned npages;
178 /* array of pinned pages for this vector */
179 struct page **pages;
180 /*
181 * offset into the virtual address space of the vector at
182 * which we last left off.
183 */
184 u64 offset;
185 struct sdma_mmu_node *node;
186 };
187
188 struct sdma_mmu_node {
189 struct mmu_rb_node rb;
190 struct hfi1_user_sdma_pkt_q *pq;
191 atomic_t refcount;
192 struct page **pages;
193 unsigned npages;
194 };
195
196 /* evict operation argument */
197 struct evict_data {
198 u32 cleared; /* count evicted so far */
199 u32 target; /* target count to evict */
200 };
201
202 struct user_sdma_request {
203 struct sdma_req_info info;
204 struct hfi1_user_sdma_pkt_q *pq;
205 struct hfi1_user_sdma_comp_q *cq;
206 /* This is the original header from user space */
207 struct hfi1_pkt_header hdr;
208 /*
209 * Pointer to the SDMA engine for this request.
210 * Since different request could be on different VLs,
211 * each request will need it's own engine pointer.
212 */
213 struct sdma_engine *sde;
214 u8 ahg_idx;
215 u32 ahg[9];
216 /*
217 * KDETH.Offset (Eager) field
218 * We need to remember the initial value so the headers
219 * can be updated properly.
220 */
221 u32 koffset;
222 /*
223 * KDETH.OFFSET (TID) field
224 * The offset can cover multiple packets, depending on the
225 * size of the TID entry.
226 */
227 u32 tidoffset;
228 /*
229 * KDETH.OM
230 * Remember this because the header template always sets it
231 * to 0.
232 */
233 u8 omfactor;
234 /*
235 * We copy the iovs for this request (based on
236 * info.iovcnt). These are only the data vectors
237 */
238 unsigned data_iovs;
239 /* total length of the data in the request */
240 u32 data_len;
241 /* progress index moving along the iovs array */
242 unsigned iov_idx;
243 struct user_sdma_iovec iovs[MAX_VECTORS_PER_REQ];
244 /* number of elements copied to the tids array */
245 u16 n_tids;
246 /* TID array values copied from the tid_iov vector */
247 u32 *tids;
248 u16 tididx;
249 u32 sent;
250 u64 seqnum;
251 u64 seqcomp;
252 u64 seqsubmitted;
253 struct list_head txps;
254 unsigned long flags;
255 /* status of the last txreq completed */
256 int status;
257 };
258
259 /*
260 * A single txreq could span up to 3 physical pages when the MTU
261 * is sufficiently large (> 4K). Each of the IOV pointers also
262 * needs it's own set of flags so the vector has been handled
263 * independently of each other.
264 */
265 struct user_sdma_txreq {
266 /* Packet header for the txreq */
267 struct hfi1_pkt_header hdr;
268 struct sdma_txreq txreq;
269 struct list_head list;
270 struct user_sdma_request *req;
271 u16 flags;
272 unsigned busycount;
273 u64 seqnum;
274 };
275
276 #define SDMA_DBG(req, fmt, ...) \
277 hfi1_cdbg(SDMA, "[%u:%u:%u:%u] " fmt, (req)->pq->dd->unit, \
278 (req)->pq->ctxt, (req)->pq->subctxt, (req)->info.comp_idx, \
279 ##__VA_ARGS__)
280 #define SDMA_Q_DBG(pq, fmt, ...) \
281 hfi1_cdbg(SDMA, "[%u:%u:%u] " fmt, (pq)->dd->unit, (pq)->ctxt, \
282 (pq)->subctxt, ##__VA_ARGS__)
283
284 static int user_sdma_send_pkts(struct user_sdma_request *, unsigned);
285 static int num_user_pages(const struct iovec *);
286 static void user_sdma_txreq_cb(struct sdma_txreq *, int);
287 static inline void pq_update(struct hfi1_user_sdma_pkt_q *);
288 static void user_sdma_free_request(struct user_sdma_request *, bool);
289 static int pin_vector_pages(struct user_sdma_request *,
290 struct user_sdma_iovec *);
291 static void unpin_vector_pages(struct mm_struct *, struct page **, unsigned,
292 unsigned);
293 static int check_header_template(struct user_sdma_request *,
294 struct hfi1_pkt_header *, u32, u32);
295 static int set_txreq_header(struct user_sdma_request *,
296 struct user_sdma_txreq *, u32);
297 static int set_txreq_header_ahg(struct user_sdma_request *,
298 struct user_sdma_txreq *, u32);
299 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *,
300 struct hfi1_user_sdma_comp_q *,
301 u16, enum hfi1_sdma_comp_state, int);
302 static inline u32 set_pkt_bth_psn(__be32, u8, u32);
303 static inline u32 get_lrh_len(struct hfi1_pkt_header, u32 len);
304
305 static int defer_packet_queue(
306 struct sdma_engine *,
307 struct iowait *,
308 struct sdma_txreq *,
309 unsigned seq);
310 static void activate_packet_queue(struct iowait *, int);
311 static bool sdma_rb_filter(struct mmu_rb_node *, unsigned long, unsigned long);
312 static int sdma_rb_insert(void *, struct mmu_rb_node *);
313 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
314 void *arg2, bool *stop);
315 static void sdma_rb_remove(void *, struct mmu_rb_node *);
316 static int sdma_rb_invalidate(void *, struct mmu_rb_node *);
317
318 static struct mmu_rb_ops sdma_rb_ops = {
319 .filter = sdma_rb_filter,
320 .insert = sdma_rb_insert,
321 .evict = sdma_rb_evict,
322 .remove = sdma_rb_remove,
323 .invalidate = sdma_rb_invalidate
324 };
325
326 static int defer_packet_queue(
327 struct sdma_engine *sde,
328 struct iowait *wait,
329 struct sdma_txreq *txreq,
330 unsigned seq)
331 {
332 struct hfi1_user_sdma_pkt_q *pq =
333 container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
334 struct hfi1_ibdev *dev = &pq->dd->verbs_dev;
335 struct user_sdma_txreq *tx =
336 container_of(txreq, struct user_sdma_txreq, txreq);
337
338 if (sdma_progress(sde, seq, txreq)) {
339 if (tx->busycount++ < MAX_DEFER_RETRY_COUNT)
340 goto eagain;
341 }
342 /*
343 * We are assuming that if the list is enqueued somewhere, it
344 * is to the dmawait list since that is the only place where
345 * it is supposed to be enqueued.
346 */
347 xchg(&pq->state, SDMA_PKT_Q_DEFERRED);
348 write_seqlock(&dev->iowait_lock);
349 if (list_empty(&pq->busy.list))
350 list_add_tail(&pq->busy.list, &sde->dmawait);
351 write_sequnlock(&dev->iowait_lock);
352 return -EBUSY;
353 eagain:
354 return -EAGAIN;
355 }
356
357 static void activate_packet_queue(struct iowait *wait, int reason)
358 {
359 struct hfi1_user_sdma_pkt_q *pq =
360 container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
361 xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
362 wake_up(&wait->wait_dma);
363 };
364
365 static void sdma_kmem_cache_ctor(void *obj)
366 {
367 struct user_sdma_txreq *tx = obj;
368
369 memset(tx, 0, sizeof(*tx));
370 }
371
372 int hfi1_user_sdma_alloc_queues(struct hfi1_ctxtdata *uctxt, struct file *fp)
373 {
374 struct hfi1_filedata *fd;
375 int ret = 0;
376 unsigned memsize;
377 char buf[64];
378 struct hfi1_devdata *dd;
379 struct hfi1_user_sdma_comp_q *cq;
380 struct hfi1_user_sdma_pkt_q *pq;
381 unsigned long flags;
382
383 if (!uctxt || !fp) {
384 ret = -EBADF;
385 goto done;
386 }
387
388 fd = fp->private_data;
389
390 if (!hfi1_sdma_comp_ring_size) {
391 ret = -EINVAL;
392 goto done;
393 }
394
395 dd = uctxt->dd;
396
397 pq = kzalloc(sizeof(*pq), GFP_KERNEL);
398 if (!pq)
399 goto pq_nomem;
400
401 memsize = sizeof(*pq->reqs) * hfi1_sdma_comp_ring_size;
402 pq->reqs = kzalloc(memsize, GFP_KERNEL);
403 if (!pq->reqs)
404 goto pq_reqs_nomem;
405
406 memsize = BITS_TO_LONGS(hfi1_sdma_comp_ring_size) * sizeof(long);
407 pq->req_in_use = kzalloc(memsize, GFP_KERNEL);
408 if (!pq->req_in_use)
409 goto pq_reqs_no_in_use;
410
411 INIT_LIST_HEAD(&pq->list);
412 pq->dd = dd;
413 pq->ctxt = uctxt->ctxt;
414 pq->subctxt = fd->subctxt;
415 pq->n_max_reqs = hfi1_sdma_comp_ring_size;
416 pq->state = SDMA_PKT_Q_INACTIVE;
417 atomic_set(&pq->n_reqs, 0);
418 init_waitqueue_head(&pq->wait);
419 atomic_set(&pq->n_locked, 0);
420 pq->mm = fd->mm;
421
422 iowait_init(&pq->busy, 0, NULL, defer_packet_queue,
423 activate_packet_queue, NULL);
424 pq->reqidx = 0;
425 snprintf(buf, 64, "txreq-kmem-cache-%u-%u-%u", dd->unit, uctxt->ctxt,
426 fd->subctxt);
427 pq->txreq_cache = kmem_cache_create(buf,
428 sizeof(struct user_sdma_txreq),
429 L1_CACHE_BYTES,
430 SLAB_HWCACHE_ALIGN,
431 sdma_kmem_cache_ctor);
432 if (!pq->txreq_cache) {
433 dd_dev_err(dd, "[%u] Failed to allocate TxReq cache\n",
434 uctxt->ctxt);
435 goto pq_txreq_nomem;
436 }
437 fd->pq = pq;
438 cq = kzalloc(sizeof(*cq), GFP_KERNEL);
439 if (!cq)
440 goto cq_nomem;
441
442 memsize = PAGE_ALIGN(sizeof(*cq->comps) * hfi1_sdma_comp_ring_size);
443 cq->comps = vmalloc_user(memsize);
444 if (!cq->comps)
445 goto cq_comps_nomem;
446
447 cq->nentries = hfi1_sdma_comp_ring_size;
448 fd->cq = cq;
449
450 ret = hfi1_mmu_rb_register(pq, pq->mm, &sdma_rb_ops, dd->pport->hfi1_wq,
451 &pq->handler);
452 if (ret) {
453 dd_dev_err(dd, "Failed to register with MMU %d", ret);
454 goto done;
455 }
456
457 spin_lock_irqsave(&uctxt->sdma_qlock, flags);
458 list_add(&pq->list, &uctxt->sdma_queues);
459 spin_unlock_irqrestore(&uctxt->sdma_qlock, flags);
460 goto done;
461
462 cq_comps_nomem:
463 kfree(cq);
464 cq_nomem:
465 kmem_cache_destroy(pq->txreq_cache);
466 pq_txreq_nomem:
467 kfree(pq->req_in_use);
468 pq_reqs_no_in_use:
469 kfree(pq->reqs);
470 pq_reqs_nomem:
471 kfree(pq);
472 fd->pq = NULL;
473 pq_nomem:
474 ret = -ENOMEM;
475 done:
476 return ret;
477 }
478
479 int hfi1_user_sdma_free_queues(struct hfi1_filedata *fd)
480 {
481 struct hfi1_ctxtdata *uctxt = fd->uctxt;
482 struct hfi1_user_sdma_pkt_q *pq;
483 unsigned long flags;
484
485 hfi1_cdbg(SDMA, "[%u:%u:%u] Freeing user SDMA queues", uctxt->dd->unit,
486 uctxt->ctxt, fd->subctxt);
487 pq = fd->pq;
488 if (pq) {
489 if (pq->handler)
490 hfi1_mmu_rb_unregister(pq->handler);
491 spin_lock_irqsave(&uctxt->sdma_qlock, flags);
492 if (!list_empty(&pq->list))
493 list_del_init(&pq->list);
494 spin_unlock_irqrestore(&uctxt->sdma_qlock, flags);
495 iowait_sdma_drain(&pq->busy);
496 /* Wait until all requests have been freed. */
497 wait_event_interruptible(
498 pq->wait,
499 (ACCESS_ONCE(pq->state) == SDMA_PKT_Q_INACTIVE));
500 kfree(pq->reqs);
501 kfree(pq->req_in_use);
502 kmem_cache_destroy(pq->txreq_cache);
503 kfree(pq);
504 fd->pq = NULL;
505 }
506 if (fd->cq) {
507 vfree(fd->cq->comps);
508 kfree(fd->cq);
509 fd->cq = NULL;
510 }
511 return 0;
512 }
513
514 static u8 dlid_to_selector(u16 dlid)
515 {
516 static u8 mapping[256];
517 static int initialized;
518 static u8 next;
519 int hash;
520
521 if (!initialized) {
522 memset(mapping, 0xFF, 256);
523 initialized = 1;
524 }
525
526 hash = ((dlid >> 8) ^ dlid) & 0xFF;
527 if (mapping[hash] == 0xFF) {
528 mapping[hash] = next;
529 next = (next + 1) & 0x7F;
530 }
531
532 return mapping[hash];
533 }
534
535 int hfi1_user_sdma_process_request(struct file *fp, struct iovec *iovec,
536 unsigned long dim, unsigned long *count)
537 {
538 int ret = 0, i;
539 struct hfi1_filedata *fd = fp->private_data;
540 struct hfi1_ctxtdata *uctxt = fd->uctxt;
541 struct hfi1_user_sdma_pkt_q *pq = fd->pq;
542 struct hfi1_user_sdma_comp_q *cq = fd->cq;
543 struct hfi1_devdata *dd = pq->dd;
544 unsigned long idx = 0;
545 u8 pcount = initial_pkt_count;
546 struct sdma_req_info info;
547 struct user_sdma_request *req;
548 u8 opcode, sc, vl;
549 int req_queued = 0;
550 u16 dlid;
551 u8 selector;
552
553 if (iovec[idx].iov_len < sizeof(info) + sizeof(req->hdr)) {
554 hfi1_cdbg(
555 SDMA,
556 "[%u:%u:%u] First vector not big enough for header %lu/%lu",
557 dd->unit, uctxt->ctxt, fd->subctxt,
558 iovec[idx].iov_len, sizeof(info) + sizeof(req->hdr));
559 return -EINVAL;
560 }
561 ret = copy_from_user(&info, iovec[idx].iov_base, sizeof(info));
562 if (ret) {
563 hfi1_cdbg(SDMA, "[%u:%u:%u] Failed to copy info QW (%d)",
564 dd->unit, uctxt->ctxt, fd->subctxt, ret);
565 return -EFAULT;
566 }
567
568 trace_hfi1_sdma_user_reqinfo(dd, uctxt->ctxt, fd->subctxt,
569 (u16 *)&info);
570
571 if (info.comp_idx >= hfi1_sdma_comp_ring_size) {
572 hfi1_cdbg(SDMA,
573 "[%u:%u:%u:%u] Invalid comp index",
574 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
575 return -EINVAL;
576 }
577
578 /*
579 * Sanity check the header io vector count. Need at least 1 vector
580 * (header) and cannot be larger than the actual io vector count.
581 */
582 if (req_iovcnt(info.ctrl) < 1 || req_iovcnt(info.ctrl) > dim) {
583 hfi1_cdbg(SDMA,
584 "[%u:%u:%u:%u] Invalid iov count %d, dim %ld",
585 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx,
586 req_iovcnt(info.ctrl), dim);
587 return -EINVAL;
588 }
589
590 if (!info.fragsize) {
591 hfi1_cdbg(SDMA,
592 "[%u:%u:%u:%u] Request does not specify fragsize",
593 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
594 return -EINVAL;
595 }
596
597 /* Try to claim the request. */
598 if (test_and_set_bit(info.comp_idx, pq->req_in_use)) {
599 hfi1_cdbg(SDMA, "[%u:%u:%u] Entry %u is in use",
600 dd->unit, uctxt->ctxt, fd->subctxt,
601 info.comp_idx);
602 return -EBADSLT;
603 }
604 /*
605 * All safety checks have been done and this request has been claimed.
606 */
607 hfi1_cdbg(SDMA, "[%u:%u:%u] Using req/comp entry %u\n", dd->unit,
608 uctxt->ctxt, fd->subctxt, info.comp_idx);
609 req = pq->reqs + info.comp_idx;
610 memset(req, 0, sizeof(*req));
611 req->data_iovs = req_iovcnt(info.ctrl) - 1; /* subtract header vector */
612 req->pq = pq;
613 req->cq = cq;
614 req->status = -1;
615 INIT_LIST_HEAD(&req->txps);
616
617 memcpy(&req->info, &info, sizeof(info));
618
619 if (req_opcode(info.ctrl) == EXPECTED) {
620 /* expected must have a TID info and at least one data vector */
621 if (req->data_iovs < 2) {
622 SDMA_DBG(req,
623 "Not enough vectors for expected request");
624 ret = -EINVAL;
625 goto free_req;
626 }
627 req->data_iovs--;
628 }
629
630 if (!info.npkts || req->data_iovs > MAX_VECTORS_PER_REQ) {
631 SDMA_DBG(req, "Too many vectors (%u/%u)", req->data_iovs,
632 MAX_VECTORS_PER_REQ);
633 ret = -EINVAL;
634 goto free_req;
635 }
636 /* Copy the header from the user buffer */
637 ret = copy_from_user(&req->hdr, iovec[idx].iov_base + sizeof(info),
638 sizeof(req->hdr));
639 if (ret) {
640 SDMA_DBG(req, "Failed to copy header template (%d)", ret);
641 ret = -EFAULT;
642 goto free_req;
643 }
644
645 /* If Static rate control is not enabled, sanitize the header. */
646 if (!HFI1_CAP_IS_USET(STATIC_RATE_CTRL))
647 req->hdr.pbc[2] = 0;
648
649 /* Validate the opcode. Do not trust packets from user space blindly. */
650 opcode = (be32_to_cpu(req->hdr.bth[0]) >> 24) & 0xff;
651 if ((opcode & USER_OPCODE_CHECK_MASK) !=
652 USER_OPCODE_CHECK_VAL) {
653 SDMA_DBG(req, "Invalid opcode (%d)", opcode);
654 ret = -EINVAL;
655 goto free_req;
656 }
657 /*
658 * Validate the vl. Do not trust packets from user space blindly.
659 * VL comes from PBC, SC comes from LRH, and the VL needs to
660 * match the SC look up.
661 */
662 vl = (le16_to_cpu(req->hdr.pbc[0]) >> 12) & 0xF;
663 sc = (((be16_to_cpu(req->hdr.lrh[0]) >> 12) & 0xF) |
664 (((le16_to_cpu(req->hdr.pbc[1]) >> 14) & 0x1) << 4));
665 if (vl >= dd->pport->vls_operational ||
666 vl != sc_to_vlt(dd, sc)) {
667 SDMA_DBG(req, "Invalid SC(%u)/VL(%u)", sc, vl);
668 ret = -EINVAL;
669 goto free_req;
670 }
671
672 /* Checking P_KEY for requests from user-space */
673 if (egress_pkey_check(dd->pport, req->hdr.lrh, req->hdr.bth, sc,
674 PKEY_CHECK_INVALID)) {
675 ret = -EINVAL;
676 goto free_req;
677 }
678
679 /*
680 * Also should check the BTH.lnh. If it says the next header is GRH then
681 * the RXE parsing will be off and will land in the middle of the KDETH
682 * or miss it entirely.
683 */
684 if ((be16_to_cpu(req->hdr.lrh[0]) & 0x3) == HFI1_LRH_GRH) {
685 SDMA_DBG(req, "User tried to pass in a GRH");
686 ret = -EINVAL;
687 goto free_req;
688 }
689
690 req->koffset = le32_to_cpu(req->hdr.kdeth.swdata[6]);
691 /*
692 * Calculate the initial TID offset based on the values of
693 * KDETH.OFFSET and KDETH.OM that are passed in.
694 */
695 req->tidoffset = KDETH_GET(req->hdr.kdeth.ver_tid_offset, OFFSET) *
696 (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
697 KDETH_OM_LARGE : KDETH_OM_SMALL);
698 SDMA_DBG(req, "Initial TID offset %u", req->tidoffset);
699 idx++;
700
701 /* Save all the IO vector structures */
702 for (i = 0; i < req->data_iovs; i++) {
703 INIT_LIST_HEAD(&req->iovs[i].list);
704 memcpy(&req->iovs[i].iov, iovec + idx++, sizeof(struct iovec));
705 ret = pin_vector_pages(req, &req->iovs[i]);
706 if (ret) {
707 req->status = ret;
708 goto free_req;
709 }
710 req->data_len += req->iovs[i].iov.iov_len;
711 }
712 SDMA_DBG(req, "total data length %u", req->data_len);
713
714 if (pcount > req->info.npkts)
715 pcount = req->info.npkts;
716 /*
717 * Copy any TID info
718 * User space will provide the TID info only when the
719 * request type is EXPECTED. This is true even if there is
720 * only one packet in the request and the header is already
721 * setup. The reason for the singular TID case is that the
722 * driver needs to perform safety checks.
723 */
724 if (req_opcode(req->info.ctrl) == EXPECTED) {
725 u16 ntids = iovec[idx].iov_len / sizeof(*req->tids);
726
727 if (!ntids || ntids > MAX_TID_PAIR_ENTRIES) {
728 ret = -EINVAL;
729 goto free_req;
730 }
731 req->tids = kcalloc(ntids, sizeof(*req->tids), GFP_KERNEL);
732 if (!req->tids) {
733 ret = -ENOMEM;
734 goto free_req;
735 }
736 /*
737 * We have to copy all of the tids because they may vary
738 * in size and, therefore, the TID count might not be
739 * equal to the pkt count. However, there is no way to
740 * tell at this point.
741 */
742 ret = copy_from_user(req->tids, iovec[idx].iov_base,
743 ntids * sizeof(*req->tids));
744 if (ret) {
745 SDMA_DBG(req, "Failed to copy %d TIDs (%d)",
746 ntids, ret);
747 ret = -EFAULT;
748 goto free_req;
749 }
750 req->n_tids = ntids;
751 idx++;
752 }
753
754 dlid = be16_to_cpu(req->hdr.lrh[1]);
755 selector = dlid_to_selector(dlid);
756
757 /* Have to select the engine */
758 req->sde = sdma_select_engine_vl(dd,
759 (u32)(uctxt->ctxt + fd->subctxt +
760 selector),
761 vl);
762 if (!req->sde || !sdma_running(req->sde)) {
763 ret = -ECOMM;
764 goto free_req;
765 }
766
767 /* We don't need an AHG entry if the request contains only one packet */
768 if (req->info.npkts > 1 && HFI1_CAP_IS_USET(SDMA_AHG)) {
769 int ahg = sdma_ahg_alloc(req->sde);
770
771 if (likely(ahg >= 0)) {
772 req->ahg_idx = (u8)ahg;
773 set_bit(SDMA_REQ_HAVE_AHG, &req->flags);
774 }
775 }
776
777 set_comp_state(pq, cq, info.comp_idx, QUEUED, 0);
778 atomic_inc(&pq->n_reqs);
779 req_queued = 1;
780 /* Send the first N packets in the request to buy us some time */
781 ret = user_sdma_send_pkts(req, pcount);
782 if (unlikely(ret < 0 && ret != -EBUSY)) {
783 req->status = ret;
784 goto free_req;
785 }
786
787 /*
788 * It is possible that the SDMA engine would have processed all the
789 * submitted packets by the time we get here. Therefore, only set
790 * packet queue state to ACTIVE if there are still uncompleted
791 * requests.
792 */
793 if (atomic_read(&pq->n_reqs))
794 xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
795
796 /*
797 * This is a somewhat blocking send implementation.
798 * The driver will block the caller until all packets of the
799 * request have been submitted to the SDMA engine. However, it
800 * will not wait for send completions.
801 */
802 while (!test_bit(SDMA_REQ_SEND_DONE, &req->flags)) {
803 ret = user_sdma_send_pkts(req, pcount);
804 if (ret < 0) {
805 if (ret != -EBUSY) {
806 req->status = ret;
807 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
808 if (ACCESS_ONCE(req->seqcomp) ==
809 req->seqsubmitted - 1)
810 goto free_req;
811 return ret;
812 }
813 wait_event_interruptible_timeout(
814 pq->busy.wait_dma,
815 (pq->state == SDMA_PKT_Q_ACTIVE),
816 msecs_to_jiffies(
817 SDMA_IOWAIT_TIMEOUT));
818 }
819 }
820 *count += idx;
821 return 0;
822 free_req:
823 user_sdma_free_request(req, true);
824 if (req_queued)
825 pq_update(pq);
826 set_comp_state(pq, cq, info.comp_idx, ERROR, req->status);
827 return ret;
828 }
829
830 static inline u32 compute_data_length(struct user_sdma_request *req,
831 struct user_sdma_txreq *tx)
832 {
833 /*
834 * Determine the proper size of the packet data.
835 * The size of the data of the first packet is in the header
836 * template. However, it includes the header and ICRC, which need
837 * to be subtracted.
838 * The minimum representable packet data length in a header is 4 bytes,
839 * therefore, when the data length request is less than 4 bytes, there's
840 * only one packet, and the packet data length is equal to that of the
841 * request data length.
842 * The size of the remaining packets is the minimum of the frag
843 * size (MTU) or remaining data in the request.
844 */
845 u32 len;
846
847 if (!req->seqnum) {
848 if (req->data_len < sizeof(u32))
849 len = req->data_len;
850 else
851 len = ((be16_to_cpu(req->hdr.lrh[2]) << 2) -
852 (sizeof(tx->hdr) - 4));
853 } else if (req_opcode(req->info.ctrl) == EXPECTED) {
854 u32 tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) *
855 PAGE_SIZE;
856 /*
857 * Get the data length based on the remaining space in the
858 * TID pair.
859 */
860 len = min(tidlen - req->tidoffset, (u32)req->info.fragsize);
861 /* If we've filled up the TID pair, move to the next one. */
862 if (unlikely(!len) && ++req->tididx < req->n_tids &&
863 req->tids[req->tididx]) {
864 tidlen = EXP_TID_GET(req->tids[req->tididx],
865 LEN) * PAGE_SIZE;
866 req->tidoffset = 0;
867 len = min_t(u32, tidlen, req->info.fragsize);
868 }
869 /*
870 * Since the TID pairs map entire pages, make sure that we
871 * are not going to try to send more data that we have
872 * remaining.
873 */
874 len = min(len, req->data_len - req->sent);
875 } else {
876 len = min(req->data_len - req->sent, (u32)req->info.fragsize);
877 }
878 SDMA_DBG(req, "Data Length = %u", len);
879 return len;
880 }
881
882 static inline u32 pad_len(u32 len)
883 {
884 if (len & (sizeof(u32) - 1))
885 len += sizeof(u32) - (len & (sizeof(u32) - 1));
886 return len;
887 }
888
889 static inline u32 get_lrh_len(struct hfi1_pkt_header hdr, u32 len)
890 {
891 /* (Size of complete header - size of PBC) + 4B ICRC + data length */
892 return ((sizeof(hdr) - sizeof(hdr.pbc)) + 4 + len);
893 }
894
895 static int user_sdma_send_pkts(struct user_sdma_request *req, unsigned maxpkts)
896 {
897 int ret = 0;
898 unsigned npkts = 0;
899 struct user_sdma_txreq *tx = NULL;
900 struct hfi1_user_sdma_pkt_q *pq = NULL;
901 struct user_sdma_iovec *iovec = NULL;
902
903 if (!req->pq)
904 return -EINVAL;
905
906 pq = req->pq;
907
908 /* If tx completion has reported an error, we are done. */
909 if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) {
910 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
911 return -EFAULT;
912 }
913
914 /*
915 * Check if we might have sent the entire request already
916 */
917 if (unlikely(req->seqnum == req->info.npkts)) {
918 if (!list_empty(&req->txps))
919 goto dosend;
920 return ret;
921 }
922
923 if (!maxpkts || maxpkts > req->info.npkts - req->seqnum)
924 maxpkts = req->info.npkts - req->seqnum;
925
926 while (npkts < maxpkts) {
927 u32 datalen = 0, queued = 0, data_sent = 0;
928 u64 iov_offset = 0;
929
930 /*
931 * Check whether any of the completions have come back
932 * with errors. If so, we are not going to process any
933 * more packets from this request.
934 */
935 if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) {
936 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
937 return -EFAULT;
938 }
939
940 tx = kmem_cache_alloc(pq->txreq_cache, GFP_KERNEL);
941 if (!tx)
942 return -ENOMEM;
943
944 tx->flags = 0;
945 tx->req = req;
946 tx->busycount = 0;
947 INIT_LIST_HEAD(&tx->list);
948
949 if (req->seqnum == req->info.npkts - 1)
950 tx->flags |= TXREQ_FLAGS_REQ_LAST_PKT;
951
952 /*
953 * Calculate the payload size - this is min of the fragment
954 * (MTU) size or the remaining bytes in the request but only
955 * if we have payload data.
956 */
957 if (req->data_len) {
958 iovec = &req->iovs[req->iov_idx];
959 if (ACCESS_ONCE(iovec->offset) == iovec->iov.iov_len) {
960 if (++req->iov_idx == req->data_iovs) {
961 ret = -EFAULT;
962 goto free_txreq;
963 }
964 iovec = &req->iovs[req->iov_idx];
965 WARN_ON(iovec->offset);
966 }
967
968 datalen = compute_data_length(req, tx);
969 if (!datalen) {
970 SDMA_DBG(req,
971 "Request has data but pkt len is 0");
972 ret = -EFAULT;
973 goto free_tx;
974 }
975 }
976
977 if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags)) {
978 if (!req->seqnum) {
979 u16 pbclen = le16_to_cpu(req->hdr.pbc[0]);
980 u32 lrhlen = get_lrh_len(req->hdr,
981 pad_len(datalen));
982 /*
983 * Copy the request header into the tx header
984 * because the HW needs a cacheline-aligned
985 * address.
986 * This copy can be optimized out if the hdr
987 * member of user_sdma_request were also
988 * cacheline aligned.
989 */
990 memcpy(&tx->hdr, &req->hdr, sizeof(tx->hdr));
991 if (PBC2LRH(pbclen) != lrhlen) {
992 pbclen = (pbclen & 0xf000) |
993 LRH2PBC(lrhlen);
994 tx->hdr.pbc[0] = cpu_to_le16(pbclen);
995 }
996 ret = sdma_txinit_ahg(&tx->txreq,
997 SDMA_TXREQ_F_AHG_COPY,
998 sizeof(tx->hdr) + datalen,
999 req->ahg_idx, 0, NULL, 0,
1000 user_sdma_txreq_cb);
1001 if (ret)
1002 goto free_tx;
1003 ret = sdma_txadd_kvaddr(pq->dd, &tx->txreq,
1004 &tx->hdr,
1005 sizeof(tx->hdr));
1006 if (ret)
1007 goto free_txreq;
1008 } else {
1009 int changes;
1010
1011 changes = set_txreq_header_ahg(req, tx,
1012 datalen);
1013 if (changes < 0)
1014 goto free_tx;
1015 sdma_txinit_ahg(&tx->txreq,
1016 SDMA_TXREQ_F_USE_AHG,
1017 datalen, req->ahg_idx, changes,
1018 req->ahg, sizeof(req->hdr),
1019 user_sdma_txreq_cb);
1020 }
1021 } else {
1022 ret = sdma_txinit(&tx->txreq, 0, sizeof(req->hdr) +
1023 datalen, user_sdma_txreq_cb);
1024 if (ret)
1025 goto free_tx;
1026 /*
1027 * Modify the header for this packet. This only needs
1028 * to be done if we are not going to use AHG. Otherwise,
1029 * the HW will do it based on the changes we gave it
1030 * during sdma_txinit_ahg().
1031 */
1032 ret = set_txreq_header(req, tx, datalen);
1033 if (ret)
1034 goto free_txreq;
1035 }
1036
1037 /*
1038 * If the request contains any data vectors, add up to
1039 * fragsize bytes to the descriptor.
1040 */
1041 while (queued < datalen &&
1042 (req->sent + data_sent) < req->data_len) {
1043 unsigned long base, offset;
1044 unsigned pageidx, len;
1045
1046 base = (unsigned long)iovec->iov.iov_base;
1047 offset = offset_in_page(base + iovec->offset +
1048 iov_offset);
1049 pageidx = (((iovec->offset + iov_offset +
1050 base) - (base & PAGE_MASK)) >> PAGE_SHIFT);
1051 len = offset + req->info.fragsize > PAGE_SIZE ?
1052 PAGE_SIZE - offset : req->info.fragsize;
1053 len = min((datalen - queued), len);
1054 ret = sdma_txadd_page(pq->dd, &tx->txreq,
1055 iovec->pages[pageidx],
1056 offset, len);
1057 if (ret) {
1058 SDMA_DBG(req, "SDMA txreq add page failed %d\n",
1059 ret);
1060 goto free_txreq;
1061 }
1062 iov_offset += len;
1063 queued += len;
1064 data_sent += len;
1065 if (unlikely(queued < datalen &&
1066 pageidx == iovec->npages &&
1067 req->iov_idx < req->data_iovs - 1)) {
1068 iovec->offset += iov_offset;
1069 iovec = &req->iovs[++req->iov_idx];
1070 iov_offset = 0;
1071 }
1072 }
1073 /*
1074 * The txreq was submitted successfully so we can update
1075 * the counters.
1076 */
1077 req->koffset += datalen;
1078 if (req_opcode(req->info.ctrl) == EXPECTED)
1079 req->tidoffset += datalen;
1080 req->sent += data_sent;
1081 if (req->data_len)
1082 iovec->offset += iov_offset;
1083 list_add_tail(&tx->txreq.list, &req->txps);
1084 /*
1085 * It is important to increment this here as it is used to
1086 * generate the BTH.PSN and, therefore, can't be bulk-updated
1087 * outside of the loop.
1088 */
1089 tx->seqnum = req->seqnum++;
1090 npkts++;
1091 }
1092 dosend:
1093 ret = sdma_send_txlist(req->sde, &pq->busy, &req->txps);
1094 if (list_empty(&req->txps)) {
1095 req->seqsubmitted = req->seqnum;
1096 if (req->seqnum == req->info.npkts) {
1097 set_bit(SDMA_REQ_SEND_DONE, &req->flags);
1098 /*
1099 * The txreq has already been submitted to the HW queue
1100 * so we can free the AHG entry now. Corruption will not
1101 * happen due to the sequential manner in which
1102 * descriptors are processed.
1103 */
1104 if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags))
1105 sdma_ahg_free(req->sde, req->ahg_idx);
1106 }
1107 } else if (ret > 0) {
1108 req->seqsubmitted += ret;
1109 ret = 0;
1110 }
1111 return ret;
1112
1113 free_txreq:
1114 sdma_txclean(pq->dd, &tx->txreq);
1115 free_tx:
1116 kmem_cache_free(pq->txreq_cache, tx);
1117 return ret;
1118 }
1119
1120 /*
1121 * How many pages in this iovec element?
1122 */
1123 static inline int num_user_pages(const struct iovec *iov)
1124 {
1125 const unsigned long addr = (unsigned long)iov->iov_base;
1126 const unsigned long len = iov->iov_len;
1127 const unsigned long spage = addr & PAGE_MASK;
1128 const unsigned long epage = (addr + len - 1) & PAGE_MASK;
1129
1130 return 1 + ((epage - spage) >> PAGE_SHIFT);
1131 }
1132
1133 static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages)
1134 {
1135 struct evict_data evict_data;
1136
1137 evict_data.cleared = 0;
1138 evict_data.target = npages;
1139 hfi1_mmu_rb_evict(pq->handler, &evict_data);
1140 return evict_data.cleared;
1141 }
1142
1143 static int pin_vector_pages(struct user_sdma_request *req,
1144 struct user_sdma_iovec *iovec)
1145 {
1146 int ret = 0, pinned, npages, cleared;
1147 struct page **pages;
1148 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1149 struct sdma_mmu_node *node = NULL;
1150 struct mmu_rb_node *rb_node;
1151
1152 rb_node = hfi1_mmu_rb_extract(pq->handler,
1153 (unsigned long)iovec->iov.iov_base,
1154 iovec->iov.iov_len);
1155 if (rb_node && !IS_ERR(rb_node))
1156 node = container_of(rb_node, struct sdma_mmu_node, rb);
1157 else
1158 rb_node = NULL;
1159
1160 if (!node) {
1161 node = kzalloc(sizeof(*node), GFP_KERNEL);
1162 if (!node)
1163 return -ENOMEM;
1164
1165 node->rb.addr = (unsigned long)iovec->iov.iov_base;
1166 node->pq = pq;
1167 atomic_set(&node->refcount, 0);
1168 }
1169
1170 npages = num_user_pages(&iovec->iov);
1171 if (node->npages < npages) {
1172 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
1173 if (!pages) {
1174 SDMA_DBG(req, "Failed page array alloc");
1175 ret = -ENOMEM;
1176 goto bail;
1177 }
1178 memcpy(pages, node->pages, node->npages * sizeof(*pages));
1179
1180 npages -= node->npages;
1181
1182 retry:
1183 if (!hfi1_can_pin_pages(pq->dd, pq->mm,
1184 atomic_read(&pq->n_locked), npages)) {
1185 cleared = sdma_cache_evict(pq, npages);
1186 if (cleared >= npages)
1187 goto retry;
1188 }
1189 pinned = hfi1_acquire_user_pages(pq->mm,
1190 ((unsigned long)iovec->iov.iov_base +
1191 (node->npages * PAGE_SIZE)), npages, 0,
1192 pages + node->npages);
1193 if (pinned < 0) {
1194 kfree(pages);
1195 ret = pinned;
1196 goto bail;
1197 }
1198 if (pinned != npages) {
1199 unpin_vector_pages(pq->mm, pages, node->npages,
1200 pinned);
1201 ret = -EFAULT;
1202 goto bail;
1203 }
1204 kfree(node->pages);
1205 node->rb.len = iovec->iov.iov_len;
1206 node->pages = pages;
1207 node->npages += pinned;
1208 npages = node->npages;
1209 atomic_add(pinned, &pq->n_locked);
1210 }
1211 iovec->pages = node->pages;
1212 iovec->npages = npages;
1213 iovec->node = node;
1214
1215 ret = hfi1_mmu_rb_insert(req->pq->handler, &node->rb);
1216 if (ret) {
1217 atomic_sub(node->npages, &pq->n_locked);
1218 iovec->node = NULL;
1219 goto bail;
1220 }
1221 return 0;
1222 bail:
1223 if (rb_node)
1224 unpin_vector_pages(pq->mm, node->pages, 0, node->npages);
1225 kfree(node);
1226 return ret;
1227 }
1228
1229 static void unpin_vector_pages(struct mm_struct *mm, struct page **pages,
1230 unsigned start, unsigned npages)
1231 {
1232 hfi1_release_user_pages(mm, pages + start, npages, false);
1233 kfree(pages);
1234 }
1235
1236 static int check_header_template(struct user_sdma_request *req,
1237 struct hfi1_pkt_header *hdr, u32 lrhlen,
1238 u32 datalen)
1239 {
1240 /*
1241 * Perform safety checks for any type of packet:
1242 * - transfer size is multiple of 64bytes
1243 * - packet length is multiple of 4 bytes
1244 * - packet length is not larger than MTU size
1245 *
1246 * These checks are only done for the first packet of the
1247 * transfer since the header is "given" to us by user space.
1248 * For the remainder of the packets we compute the values.
1249 */
1250 if (req->info.fragsize % PIO_BLOCK_SIZE || lrhlen & 0x3 ||
1251 lrhlen > get_lrh_len(*hdr, req->info.fragsize))
1252 return -EINVAL;
1253
1254 if (req_opcode(req->info.ctrl) == EXPECTED) {
1255 /*
1256 * The header is checked only on the first packet. Furthermore,
1257 * we ensure that at least one TID entry is copied when the
1258 * request is submitted. Therefore, we don't have to verify that
1259 * tididx points to something sane.
1260 */
1261 u32 tidval = req->tids[req->tididx],
1262 tidlen = EXP_TID_GET(tidval, LEN) * PAGE_SIZE,
1263 tididx = EXP_TID_GET(tidval, IDX),
1264 tidctrl = EXP_TID_GET(tidval, CTRL),
1265 tidoff;
1266 __le32 kval = hdr->kdeth.ver_tid_offset;
1267
1268 tidoff = KDETH_GET(kval, OFFSET) *
1269 (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
1270 KDETH_OM_LARGE : KDETH_OM_SMALL);
1271 /*
1272 * Expected receive packets have the following
1273 * additional checks:
1274 * - offset is not larger than the TID size
1275 * - TIDCtrl values match between header and TID array
1276 * - TID indexes match between header and TID array
1277 */
1278 if ((tidoff + datalen > tidlen) ||
1279 KDETH_GET(kval, TIDCTRL) != tidctrl ||
1280 KDETH_GET(kval, TID) != tididx)
1281 return -EINVAL;
1282 }
1283 return 0;
1284 }
1285
1286 /*
1287 * Correctly set the BTH.PSN field based on type of
1288 * transfer - eager packets can just increment the PSN but
1289 * expected packets encode generation and sequence in the
1290 * BTH.PSN field so just incrementing will result in errors.
1291 */
1292 static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags)
1293 {
1294 u32 val = be32_to_cpu(bthpsn),
1295 mask = (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffffull :
1296 0xffffffull),
1297 psn = val & mask;
1298 if (expct)
1299 psn = (psn & ~BTH_SEQ_MASK) | ((psn + frags) & BTH_SEQ_MASK);
1300 else
1301 psn = psn + frags;
1302 return psn & mask;
1303 }
1304
1305 static int set_txreq_header(struct user_sdma_request *req,
1306 struct user_sdma_txreq *tx, u32 datalen)
1307 {
1308 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1309 struct hfi1_pkt_header *hdr = &tx->hdr;
1310 u16 pbclen;
1311 int ret;
1312 u32 tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen));
1313
1314 /* Copy the header template to the request before modification */
1315 memcpy(hdr, &req->hdr, sizeof(*hdr));
1316
1317 /*
1318 * Check if the PBC and LRH length are mismatched. If so
1319 * adjust both in the header.
1320 */
1321 pbclen = le16_to_cpu(hdr->pbc[0]);
1322 if (PBC2LRH(pbclen) != lrhlen) {
1323 pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen);
1324 hdr->pbc[0] = cpu_to_le16(pbclen);
1325 hdr->lrh[2] = cpu_to_be16(lrhlen >> 2);
1326 /*
1327 * Third packet
1328 * This is the first packet in the sequence that has
1329 * a "static" size that can be used for the rest of
1330 * the packets (besides the last one).
1331 */
1332 if (unlikely(req->seqnum == 2)) {
1333 /*
1334 * From this point on the lengths in both the
1335 * PBC and LRH are the same until the last
1336 * packet.
1337 * Adjust the template so we don't have to update
1338 * every packet
1339 */
1340 req->hdr.pbc[0] = hdr->pbc[0];
1341 req->hdr.lrh[2] = hdr->lrh[2];
1342 }
1343 }
1344 /*
1345 * We only have to modify the header if this is not the
1346 * first packet in the request. Otherwise, we use the
1347 * header given to us.
1348 */
1349 if (unlikely(!req->seqnum)) {
1350 ret = check_header_template(req, hdr, lrhlen, datalen);
1351 if (ret)
1352 return ret;
1353 goto done;
1354 }
1355
1356 hdr->bth[2] = cpu_to_be32(
1357 set_pkt_bth_psn(hdr->bth[2],
1358 (req_opcode(req->info.ctrl) == EXPECTED),
1359 req->seqnum));
1360
1361 /* Set ACK request on last packet */
1362 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
1363 hdr->bth[2] |= cpu_to_be32(1UL << 31);
1364
1365 /* Set the new offset */
1366 hdr->kdeth.swdata[6] = cpu_to_le32(req->koffset);
1367 /* Expected packets have to fill in the new TID information */
1368 if (req_opcode(req->info.ctrl) == EXPECTED) {
1369 tidval = req->tids[req->tididx];
1370 /*
1371 * If the offset puts us at the end of the current TID,
1372 * advance everything.
1373 */
1374 if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
1375 PAGE_SIZE)) {
1376 req->tidoffset = 0;
1377 /*
1378 * Since we don't copy all the TIDs, all at once,
1379 * we have to check again.
1380 */
1381 if (++req->tididx > req->n_tids - 1 ||
1382 !req->tids[req->tididx]) {
1383 return -EINVAL;
1384 }
1385 tidval = req->tids[req->tididx];
1386 }
1387 req->omfactor = EXP_TID_GET(tidval, LEN) * PAGE_SIZE >=
1388 KDETH_OM_MAX_SIZE ? KDETH_OM_LARGE : KDETH_OM_SMALL;
1389 /* Set KDETH.TIDCtrl based on value for this TID. */
1390 KDETH_SET(hdr->kdeth.ver_tid_offset, TIDCTRL,
1391 EXP_TID_GET(tidval, CTRL));
1392 /* Set KDETH.TID based on value for this TID */
1393 KDETH_SET(hdr->kdeth.ver_tid_offset, TID,
1394 EXP_TID_GET(tidval, IDX));
1395 /* Clear KDETH.SH only on the last packet */
1396 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
1397 KDETH_SET(hdr->kdeth.ver_tid_offset, SH, 0);
1398 /*
1399 * Set the KDETH.OFFSET and KDETH.OM based on size of
1400 * transfer.
1401 */
1402 SDMA_DBG(req, "TID offset %ubytes %uunits om%u",
1403 req->tidoffset, req->tidoffset / req->omfactor,
1404 req->omfactor != KDETH_OM_SMALL);
1405 KDETH_SET(hdr->kdeth.ver_tid_offset, OFFSET,
1406 req->tidoffset / req->omfactor);
1407 KDETH_SET(hdr->kdeth.ver_tid_offset, OM,
1408 req->omfactor != KDETH_OM_SMALL);
1409 }
1410 done:
1411 trace_hfi1_sdma_user_header(pq->dd, pq->ctxt, pq->subctxt,
1412 req->info.comp_idx, hdr, tidval);
1413 return sdma_txadd_kvaddr(pq->dd, &tx->txreq, hdr, sizeof(*hdr));
1414 }
1415
1416 static int set_txreq_header_ahg(struct user_sdma_request *req,
1417 struct user_sdma_txreq *tx, u32 len)
1418 {
1419 int diff = 0;
1420 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1421 struct hfi1_pkt_header *hdr = &req->hdr;
1422 u16 pbclen = le16_to_cpu(hdr->pbc[0]);
1423 u32 val32, tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(len));
1424
1425 if (PBC2LRH(pbclen) != lrhlen) {
1426 /* PBC.PbcLengthDWs */
1427 AHG_HEADER_SET(req->ahg, diff, 0, 0, 12,
1428 cpu_to_le16(LRH2PBC(lrhlen)));
1429 /* LRH.PktLen (we need the full 16 bits due to byte swap) */
1430 AHG_HEADER_SET(req->ahg, diff, 3, 0, 16,
1431 cpu_to_be16(lrhlen >> 2));
1432 }
1433
1434 /*
1435 * Do the common updates
1436 */
1437 /* BTH.PSN and BTH.A */
1438 val32 = (be32_to_cpu(hdr->bth[2]) + req->seqnum) &
1439 (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffff : 0xffffff);
1440 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
1441 val32 |= 1UL << 31;
1442 AHG_HEADER_SET(req->ahg, diff, 6, 0, 16, cpu_to_be16(val32 >> 16));
1443 AHG_HEADER_SET(req->ahg, diff, 6, 16, 16, cpu_to_be16(val32 & 0xffff));
1444 /* KDETH.Offset */
1445 AHG_HEADER_SET(req->ahg, diff, 15, 0, 16,
1446 cpu_to_le16(req->koffset & 0xffff));
1447 AHG_HEADER_SET(req->ahg, diff, 15, 16, 16,
1448 cpu_to_le16(req->koffset >> 16));
1449 if (req_opcode(req->info.ctrl) == EXPECTED) {
1450 __le16 val;
1451
1452 tidval = req->tids[req->tididx];
1453
1454 /*
1455 * If the offset puts us at the end of the current TID,
1456 * advance everything.
1457 */
1458 if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
1459 PAGE_SIZE)) {
1460 req->tidoffset = 0;
1461 /*
1462 * Since we don't copy all the TIDs, all at once,
1463 * we have to check again.
1464 */
1465 if (++req->tididx > req->n_tids - 1 ||
1466 !req->tids[req->tididx]) {
1467 return -EINVAL;
1468 }
1469 tidval = req->tids[req->tididx];
1470 }
1471 req->omfactor = ((EXP_TID_GET(tidval, LEN) *
1472 PAGE_SIZE) >=
1473 KDETH_OM_MAX_SIZE) ? KDETH_OM_LARGE :
1474 KDETH_OM_SMALL;
1475 /* KDETH.OM and KDETH.OFFSET (TID) */
1476 AHG_HEADER_SET(req->ahg, diff, 7, 0, 16,
1477 ((!!(req->omfactor - KDETH_OM_SMALL)) << 15 |
1478 ((req->tidoffset / req->omfactor) & 0x7fff)));
1479 /* KDETH.TIDCtrl, KDETH.TID */
1480 val = cpu_to_le16(((EXP_TID_GET(tidval, CTRL) & 0x3) << 10) |
1481 (EXP_TID_GET(tidval, IDX) & 0x3ff));
1482 /* Clear KDETH.SH on last packet */
1483 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT)) {
1484 val |= cpu_to_le16(KDETH_GET(hdr->kdeth.ver_tid_offset,
1485 INTR) <<
1486 AHG_KDETH_INTR_SHIFT);
1487 val &= cpu_to_le16(~(1U << 13));
1488 AHG_HEADER_SET(req->ahg, diff, 7, 16, 14, val);
1489 } else {
1490 AHG_HEADER_SET(req->ahg, diff, 7, 16, 12, val);
1491 }
1492 }
1493
1494 trace_hfi1_sdma_user_header_ahg(pq->dd, pq->ctxt, pq->subctxt,
1495 req->info.comp_idx, req->sde->this_idx,
1496 req->ahg_idx, req->ahg, diff, tidval);
1497 return diff;
1498 }
1499
1500 /*
1501 * SDMA tx request completion callback. Called when the SDMA progress
1502 * state machine gets notification that the SDMA descriptors for this
1503 * tx request have been processed by the DMA engine. Called in
1504 * interrupt context.
1505 */
1506 static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status)
1507 {
1508 struct user_sdma_txreq *tx =
1509 container_of(txreq, struct user_sdma_txreq, txreq);
1510 struct user_sdma_request *req;
1511 struct hfi1_user_sdma_pkt_q *pq;
1512 struct hfi1_user_sdma_comp_q *cq;
1513 u16 idx;
1514
1515 if (!tx->req)
1516 return;
1517
1518 req = tx->req;
1519 pq = req->pq;
1520 cq = req->cq;
1521
1522 if (status != SDMA_TXREQ_S_OK) {
1523 SDMA_DBG(req, "SDMA completion with error %d",
1524 status);
1525 set_bit(SDMA_REQ_HAS_ERROR, &req->flags);
1526 }
1527
1528 req->seqcomp = tx->seqnum;
1529 kmem_cache_free(pq->txreq_cache, tx);
1530 tx = NULL;
1531
1532 idx = req->info.comp_idx;
1533 if (req->status == -1 && status == SDMA_TXREQ_S_OK) {
1534 if (req->seqcomp == req->info.npkts - 1) {
1535 req->status = 0;
1536 user_sdma_free_request(req, false);
1537 pq_update(pq);
1538 set_comp_state(pq, cq, idx, COMPLETE, 0);
1539 }
1540 } else {
1541 if (status != SDMA_TXREQ_S_OK)
1542 req->status = status;
1543 if (req->seqcomp == (ACCESS_ONCE(req->seqsubmitted) - 1) &&
1544 (test_bit(SDMA_REQ_SEND_DONE, &req->flags) ||
1545 test_bit(SDMA_REQ_DONE_ERROR, &req->flags))) {
1546 user_sdma_free_request(req, false);
1547 pq_update(pq);
1548 set_comp_state(pq, cq, idx, ERROR, req->status);
1549 }
1550 }
1551 }
1552
1553 static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq)
1554 {
1555 if (atomic_dec_and_test(&pq->n_reqs)) {
1556 xchg(&pq->state, SDMA_PKT_Q_INACTIVE);
1557 wake_up(&pq->wait);
1558 }
1559 }
1560
1561 static void user_sdma_free_request(struct user_sdma_request *req, bool unpin)
1562 {
1563 if (!list_empty(&req->txps)) {
1564 struct sdma_txreq *t, *p;
1565
1566 list_for_each_entry_safe(t, p, &req->txps, list) {
1567 struct user_sdma_txreq *tx =
1568 container_of(t, struct user_sdma_txreq, txreq);
1569 list_del_init(&t->list);
1570 sdma_txclean(req->pq->dd, t);
1571 kmem_cache_free(req->pq->txreq_cache, tx);
1572 }
1573 }
1574 if (req->data_iovs) {
1575 struct sdma_mmu_node *node;
1576 int i;
1577
1578 for (i = 0; i < req->data_iovs; i++) {
1579 node = req->iovs[i].node;
1580 if (!node)
1581 continue;
1582
1583 if (unpin)
1584 hfi1_mmu_rb_remove(req->pq->handler,
1585 &node->rb);
1586 else
1587 atomic_dec(&node->refcount);
1588 }
1589 }
1590 kfree(req->tids);
1591 clear_bit(req->info.comp_idx, req->pq->req_in_use);
1592 }
1593
1594 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq,
1595 struct hfi1_user_sdma_comp_q *cq,
1596 u16 idx, enum hfi1_sdma_comp_state state,
1597 int ret)
1598 {
1599 hfi1_cdbg(SDMA, "[%u:%u:%u:%u] Setting completion status %u %d",
1600 pq->dd->unit, pq->ctxt, pq->subctxt, idx, state, ret);
1601 cq->comps[idx].status = state;
1602 if (state == ERROR)
1603 cq->comps[idx].errcode = -ret;
1604 trace_hfi1_sdma_user_completion(pq->dd, pq->ctxt, pq->subctxt,
1605 idx, state, ret);
1606 }
1607
1608 static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr,
1609 unsigned long len)
1610 {
1611 return (bool)(node->addr == addr);
1612 }
1613
1614 static int sdma_rb_insert(void *arg, struct mmu_rb_node *mnode)
1615 {
1616 struct sdma_mmu_node *node =
1617 container_of(mnode, struct sdma_mmu_node, rb);
1618
1619 atomic_inc(&node->refcount);
1620 return 0;
1621 }
1622
1623 /*
1624 * Return 1 to remove the node from the rb tree and call the remove op.
1625 *
1626 * Called with the rb tree lock held.
1627 */
1628 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
1629 void *evict_arg, bool *stop)
1630 {
1631 struct sdma_mmu_node *node =
1632 container_of(mnode, struct sdma_mmu_node, rb);
1633 struct evict_data *evict_data = evict_arg;
1634
1635 /* is this node still being used? */
1636 if (atomic_read(&node->refcount))
1637 return 0; /* keep this node */
1638
1639 /* this node will be evicted, add its pages to our count */
1640 evict_data->cleared += node->npages;
1641
1642 /* have enough pages been cleared? */
1643 if (evict_data->cleared >= evict_data->target)
1644 *stop = true;
1645
1646 return 1; /* remove this node */
1647 }
1648
1649 static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode)
1650 {
1651 struct sdma_mmu_node *node =
1652 container_of(mnode, struct sdma_mmu_node, rb);
1653
1654 atomic_sub(node->npages, &node->pq->n_locked);
1655
1656 unpin_vector_pages(node->pq->mm, node->pages, 0, node->npages);
1657
1658 kfree(node);
1659 }
1660
1661 static int sdma_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
1662 {
1663 struct sdma_mmu_node *node =
1664 container_of(mnode, struct sdma_mmu_node, rb);
1665
1666 if (!atomic_read(&node->refcount))
1667 return 1;
1668 return 0;
1669 }