]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/infiniband/hw/hfi1/user_sdma.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[mirror_ubuntu-zesty-kernel.git] / drivers / infiniband / hw / hfi1 / user_sdma.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <linux/mm.h>
48 #include <linux/types.h>
49 #include <linux/device.h>
50 #include <linux/dmapool.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/highmem.h>
54 #include <linux/io.h>
55 #include <linux/uio.h>
56 #include <linux/rbtree.h>
57 #include <linux/spinlock.h>
58 #include <linux/delay.h>
59 #include <linux/kthread.h>
60 #include <linux/mmu_context.h>
61 #include <linux/module.h>
62 #include <linux/vmalloc.h>
63
64 #include "hfi.h"
65 #include "sdma.h"
66 #include "user_sdma.h"
67 #include "verbs.h" /* for the headers */
68 #include "common.h" /* for struct hfi1_tid_info */
69 #include "trace.h"
70 #include "mmu_rb.h"
71
72 static uint hfi1_sdma_comp_ring_size = 128;
73 module_param_named(sdma_comp_size, hfi1_sdma_comp_ring_size, uint, S_IRUGO);
74 MODULE_PARM_DESC(sdma_comp_size, "Size of User SDMA completion ring. Default: 128");
75
76 /* The maximum number of Data io vectors per message/request */
77 #define MAX_VECTORS_PER_REQ 8
78 /*
79 * Maximum number of packet to send from each message/request
80 * before moving to the next one.
81 */
82 #define MAX_PKTS_PER_QUEUE 16
83
84 #define num_pages(x) (1 + ((((x) - 1) & PAGE_MASK) >> PAGE_SHIFT))
85
86 #define req_opcode(x) \
87 (((x) >> HFI1_SDMA_REQ_OPCODE_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
88 #define req_version(x) \
89 (((x) >> HFI1_SDMA_REQ_VERSION_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
90 #define req_iovcnt(x) \
91 (((x) >> HFI1_SDMA_REQ_IOVCNT_SHIFT) & HFI1_SDMA_REQ_IOVCNT_MASK)
92
93 /* Number of BTH.PSN bits used for sequence number in expected rcvs */
94 #define BTH_SEQ_MASK 0x7ffull
95
96 /*
97 * Define fields in the KDETH header so we can update the header
98 * template.
99 */
100 #define KDETH_OFFSET_SHIFT 0
101 #define KDETH_OFFSET_MASK 0x7fff
102 #define KDETH_OM_SHIFT 15
103 #define KDETH_OM_MASK 0x1
104 #define KDETH_TID_SHIFT 16
105 #define KDETH_TID_MASK 0x3ff
106 #define KDETH_TIDCTRL_SHIFT 26
107 #define KDETH_TIDCTRL_MASK 0x3
108 #define KDETH_INTR_SHIFT 28
109 #define KDETH_INTR_MASK 0x1
110 #define KDETH_SH_SHIFT 29
111 #define KDETH_SH_MASK 0x1
112 #define KDETH_HCRC_UPPER_SHIFT 16
113 #define KDETH_HCRC_UPPER_MASK 0xff
114 #define KDETH_HCRC_LOWER_SHIFT 24
115 #define KDETH_HCRC_LOWER_MASK 0xff
116
117 #define AHG_KDETH_INTR_SHIFT 12
118 #define AHG_KDETH_SH_SHIFT 13
119
120 #define PBC2LRH(x) ((((x) & 0xfff) << 2) - 4)
121 #define LRH2PBC(x) ((((x) >> 2) + 1) & 0xfff)
122
123 #define KDETH_GET(val, field) \
124 (((le32_to_cpu((val))) >> KDETH_##field##_SHIFT) & KDETH_##field##_MASK)
125 #define KDETH_SET(dw, field, val) do { \
126 u32 dwval = le32_to_cpu(dw); \
127 dwval &= ~(KDETH_##field##_MASK << KDETH_##field##_SHIFT); \
128 dwval |= (((val) & KDETH_##field##_MASK) << \
129 KDETH_##field##_SHIFT); \
130 dw = cpu_to_le32(dwval); \
131 } while (0)
132
133 #define AHG_HEADER_SET(arr, idx, dw, bit, width, value) \
134 do { \
135 if ((idx) < ARRAY_SIZE((arr))) \
136 (arr)[(idx++)] = sdma_build_ahg_descriptor( \
137 (__force u16)(value), (dw), (bit), \
138 (width)); \
139 else \
140 return -ERANGE; \
141 } while (0)
142
143 /* KDETH OM multipliers and switch over point */
144 #define KDETH_OM_SMALL 4
145 #define KDETH_OM_LARGE 64
146 #define KDETH_OM_MAX_SIZE (1 << ((KDETH_OM_LARGE / KDETH_OM_SMALL) + 1))
147
148 /* Tx request flag bits */
149 #define TXREQ_FLAGS_REQ_ACK BIT(0) /* Set the ACK bit in the header */
150 #define TXREQ_FLAGS_REQ_DISABLE_SH BIT(1) /* Disable header suppression */
151
152 /* SDMA request flag bits */
153 #define SDMA_REQ_FOR_THREAD 1
154 #define SDMA_REQ_SEND_DONE 2
155 #define SDMA_REQ_HAVE_AHG 3
156 #define SDMA_REQ_HAS_ERROR 4
157 #define SDMA_REQ_DONE_ERROR 5
158
159 #define SDMA_PKT_Q_INACTIVE BIT(0)
160 #define SDMA_PKT_Q_ACTIVE BIT(1)
161 #define SDMA_PKT_Q_DEFERRED BIT(2)
162
163 /*
164 * Maximum retry attempts to submit a TX request
165 * before putting the process to sleep.
166 */
167 #define MAX_DEFER_RETRY_COUNT 1
168
169 static unsigned initial_pkt_count = 8;
170
171 #define SDMA_IOWAIT_TIMEOUT 1000 /* in milliseconds */
172
173 struct sdma_mmu_node;
174
175 struct user_sdma_iovec {
176 struct list_head list;
177 struct iovec iov;
178 /* number of pages in this vector */
179 unsigned npages;
180 /* array of pinned pages for this vector */
181 struct page **pages;
182 /*
183 * offset into the virtual address space of the vector at
184 * which we last left off.
185 */
186 u64 offset;
187 struct sdma_mmu_node *node;
188 };
189
190 struct sdma_mmu_node {
191 struct mmu_rb_node rb;
192 struct hfi1_user_sdma_pkt_q *pq;
193 atomic_t refcount;
194 struct page **pages;
195 unsigned npages;
196 };
197
198 /* evict operation argument */
199 struct evict_data {
200 u32 cleared; /* count evicted so far */
201 u32 target; /* target count to evict */
202 };
203
204 struct user_sdma_request {
205 struct sdma_req_info info;
206 struct hfi1_user_sdma_pkt_q *pq;
207 struct hfi1_user_sdma_comp_q *cq;
208 /* This is the original header from user space */
209 struct hfi1_pkt_header hdr;
210 /*
211 * Pointer to the SDMA engine for this request.
212 * Since different request could be on different VLs,
213 * each request will need it's own engine pointer.
214 */
215 struct sdma_engine *sde;
216 u8 ahg_idx;
217 u32 ahg[9];
218 /*
219 * KDETH.Offset (Eager) field
220 * We need to remember the initial value so the headers
221 * can be updated properly.
222 */
223 u32 koffset;
224 /*
225 * KDETH.OFFSET (TID) field
226 * The offset can cover multiple packets, depending on the
227 * size of the TID entry.
228 */
229 u32 tidoffset;
230 /*
231 * KDETH.OM
232 * Remember this because the header template always sets it
233 * to 0.
234 */
235 u8 omfactor;
236 /*
237 * We copy the iovs for this request (based on
238 * info.iovcnt). These are only the data vectors
239 */
240 unsigned data_iovs;
241 /* total length of the data in the request */
242 u32 data_len;
243 /* progress index moving along the iovs array */
244 unsigned iov_idx;
245 struct user_sdma_iovec iovs[MAX_VECTORS_PER_REQ];
246 /* number of elements copied to the tids array */
247 u16 n_tids;
248 /* TID array values copied from the tid_iov vector */
249 u32 *tids;
250 u16 tididx;
251 u32 sent;
252 u64 seqnum;
253 u64 seqcomp;
254 u64 seqsubmitted;
255 struct list_head txps;
256 unsigned long flags;
257 /* status of the last txreq completed */
258 int status;
259 };
260
261 /*
262 * A single txreq could span up to 3 physical pages when the MTU
263 * is sufficiently large (> 4K). Each of the IOV pointers also
264 * needs it's own set of flags so the vector has been handled
265 * independently of each other.
266 */
267 struct user_sdma_txreq {
268 /* Packet header for the txreq */
269 struct hfi1_pkt_header hdr;
270 struct sdma_txreq txreq;
271 struct list_head list;
272 struct user_sdma_request *req;
273 u16 flags;
274 unsigned busycount;
275 u64 seqnum;
276 };
277
278 #define SDMA_DBG(req, fmt, ...) \
279 hfi1_cdbg(SDMA, "[%u:%u:%u:%u] " fmt, (req)->pq->dd->unit, \
280 (req)->pq->ctxt, (req)->pq->subctxt, (req)->info.comp_idx, \
281 ##__VA_ARGS__)
282 #define SDMA_Q_DBG(pq, fmt, ...) \
283 hfi1_cdbg(SDMA, "[%u:%u:%u] " fmt, (pq)->dd->unit, (pq)->ctxt, \
284 (pq)->subctxt, ##__VA_ARGS__)
285
286 static int user_sdma_send_pkts(struct user_sdma_request *, unsigned);
287 static int num_user_pages(const struct iovec *);
288 static void user_sdma_txreq_cb(struct sdma_txreq *, int);
289 static inline void pq_update(struct hfi1_user_sdma_pkt_q *);
290 static void user_sdma_free_request(struct user_sdma_request *, bool);
291 static int pin_vector_pages(struct user_sdma_request *,
292 struct user_sdma_iovec *);
293 static void unpin_vector_pages(struct mm_struct *, struct page **, unsigned,
294 unsigned);
295 static int check_header_template(struct user_sdma_request *,
296 struct hfi1_pkt_header *, u32, u32);
297 static int set_txreq_header(struct user_sdma_request *,
298 struct user_sdma_txreq *, u32);
299 static int set_txreq_header_ahg(struct user_sdma_request *,
300 struct user_sdma_txreq *, u32);
301 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *,
302 struct hfi1_user_sdma_comp_q *,
303 u16, enum hfi1_sdma_comp_state, int);
304 static inline u32 set_pkt_bth_psn(__be32, u8, u32);
305 static inline u32 get_lrh_len(struct hfi1_pkt_header, u32 len);
306
307 static int defer_packet_queue(
308 struct sdma_engine *,
309 struct iowait *,
310 struct sdma_txreq *,
311 unsigned seq);
312 static void activate_packet_queue(struct iowait *, int);
313 static bool sdma_rb_filter(struct mmu_rb_node *, unsigned long, unsigned long);
314 static int sdma_rb_insert(void *, struct mmu_rb_node *);
315 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
316 void *arg2, bool *stop);
317 static void sdma_rb_remove(void *, struct mmu_rb_node *);
318 static int sdma_rb_invalidate(void *, struct mmu_rb_node *);
319
320 static struct mmu_rb_ops sdma_rb_ops = {
321 .filter = sdma_rb_filter,
322 .insert = sdma_rb_insert,
323 .evict = sdma_rb_evict,
324 .remove = sdma_rb_remove,
325 .invalidate = sdma_rb_invalidate
326 };
327
328 static int defer_packet_queue(
329 struct sdma_engine *sde,
330 struct iowait *wait,
331 struct sdma_txreq *txreq,
332 unsigned seq)
333 {
334 struct hfi1_user_sdma_pkt_q *pq =
335 container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
336 struct hfi1_ibdev *dev = &pq->dd->verbs_dev;
337 struct user_sdma_txreq *tx =
338 container_of(txreq, struct user_sdma_txreq, txreq);
339
340 if (sdma_progress(sde, seq, txreq)) {
341 if (tx->busycount++ < MAX_DEFER_RETRY_COUNT)
342 goto eagain;
343 }
344 /*
345 * We are assuming that if the list is enqueued somewhere, it
346 * is to the dmawait list since that is the only place where
347 * it is supposed to be enqueued.
348 */
349 xchg(&pq->state, SDMA_PKT_Q_DEFERRED);
350 write_seqlock(&dev->iowait_lock);
351 if (list_empty(&pq->busy.list))
352 list_add_tail(&pq->busy.list, &sde->dmawait);
353 write_sequnlock(&dev->iowait_lock);
354 return -EBUSY;
355 eagain:
356 return -EAGAIN;
357 }
358
359 static void activate_packet_queue(struct iowait *wait, int reason)
360 {
361 struct hfi1_user_sdma_pkt_q *pq =
362 container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
363 xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
364 wake_up(&wait->wait_dma);
365 };
366
367 static void sdma_kmem_cache_ctor(void *obj)
368 {
369 struct user_sdma_txreq *tx = obj;
370
371 memset(tx, 0, sizeof(*tx));
372 }
373
374 int hfi1_user_sdma_alloc_queues(struct hfi1_ctxtdata *uctxt, struct file *fp)
375 {
376 struct hfi1_filedata *fd;
377 int ret = 0;
378 unsigned memsize;
379 char buf[64];
380 struct hfi1_devdata *dd;
381 struct hfi1_user_sdma_comp_q *cq;
382 struct hfi1_user_sdma_pkt_q *pq;
383 unsigned long flags;
384
385 if (!uctxt || !fp) {
386 ret = -EBADF;
387 goto done;
388 }
389
390 fd = fp->private_data;
391
392 if (!hfi1_sdma_comp_ring_size) {
393 ret = -EINVAL;
394 goto done;
395 }
396
397 dd = uctxt->dd;
398
399 pq = kzalloc(sizeof(*pq), GFP_KERNEL);
400 if (!pq)
401 goto pq_nomem;
402
403 memsize = sizeof(*pq->reqs) * hfi1_sdma_comp_ring_size;
404 pq->reqs = kzalloc(memsize, GFP_KERNEL);
405 if (!pq->reqs)
406 goto pq_reqs_nomem;
407
408 memsize = BITS_TO_LONGS(hfi1_sdma_comp_ring_size) * sizeof(long);
409 pq->req_in_use = kzalloc(memsize, GFP_KERNEL);
410 if (!pq->req_in_use)
411 goto pq_reqs_no_in_use;
412
413 INIT_LIST_HEAD(&pq->list);
414 pq->dd = dd;
415 pq->ctxt = uctxt->ctxt;
416 pq->subctxt = fd->subctxt;
417 pq->n_max_reqs = hfi1_sdma_comp_ring_size;
418 pq->state = SDMA_PKT_Q_INACTIVE;
419 atomic_set(&pq->n_reqs, 0);
420 init_waitqueue_head(&pq->wait);
421 atomic_set(&pq->n_locked, 0);
422 pq->mm = fd->mm;
423
424 iowait_init(&pq->busy, 0, NULL, defer_packet_queue,
425 activate_packet_queue, NULL);
426 pq->reqidx = 0;
427 snprintf(buf, 64, "txreq-kmem-cache-%u-%u-%u", dd->unit, uctxt->ctxt,
428 fd->subctxt);
429 pq->txreq_cache = kmem_cache_create(buf,
430 sizeof(struct user_sdma_txreq),
431 L1_CACHE_BYTES,
432 SLAB_HWCACHE_ALIGN,
433 sdma_kmem_cache_ctor);
434 if (!pq->txreq_cache) {
435 dd_dev_err(dd, "[%u] Failed to allocate TxReq cache\n",
436 uctxt->ctxt);
437 goto pq_txreq_nomem;
438 }
439 fd->pq = pq;
440 cq = kzalloc(sizeof(*cq), GFP_KERNEL);
441 if (!cq)
442 goto cq_nomem;
443
444 memsize = PAGE_ALIGN(sizeof(*cq->comps) * hfi1_sdma_comp_ring_size);
445 cq->comps = vmalloc_user(memsize);
446 if (!cq->comps)
447 goto cq_comps_nomem;
448
449 cq->nentries = hfi1_sdma_comp_ring_size;
450 fd->cq = cq;
451
452 ret = hfi1_mmu_rb_register(pq, pq->mm, &sdma_rb_ops, dd->pport->hfi1_wq,
453 &pq->handler);
454 if (ret) {
455 dd_dev_err(dd, "Failed to register with MMU %d", ret);
456 goto done;
457 }
458
459 spin_lock_irqsave(&uctxt->sdma_qlock, flags);
460 list_add(&pq->list, &uctxt->sdma_queues);
461 spin_unlock_irqrestore(&uctxt->sdma_qlock, flags);
462 goto done;
463
464 cq_comps_nomem:
465 kfree(cq);
466 cq_nomem:
467 kmem_cache_destroy(pq->txreq_cache);
468 pq_txreq_nomem:
469 kfree(pq->req_in_use);
470 pq_reqs_no_in_use:
471 kfree(pq->reqs);
472 pq_reqs_nomem:
473 kfree(pq);
474 fd->pq = NULL;
475 pq_nomem:
476 ret = -ENOMEM;
477 done:
478 return ret;
479 }
480
481 int hfi1_user_sdma_free_queues(struct hfi1_filedata *fd)
482 {
483 struct hfi1_ctxtdata *uctxt = fd->uctxt;
484 struct hfi1_user_sdma_pkt_q *pq;
485 unsigned long flags;
486
487 hfi1_cdbg(SDMA, "[%u:%u:%u] Freeing user SDMA queues", uctxt->dd->unit,
488 uctxt->ctxt, fd->subctxt);
489 pq = fd->pq;
490 if (pq) {
491 if (pq->handler)
492 hfi1_mmu_rb_unregister(pq->handler);
493 spin_lock_irqsave(&uctxt->sdma_qlock, flags);
494 if (!list_empty(&pq->list))
495 list_del_init(&pq->list);
496 spin_unlock_irqrestore(&uctxt->sdma_qlock, flags);
497 iowait_sdma_drain(&pq->busy);
498 /* Wait until all requests have been freed. */
499 wait_event_interruptible(
500 pq->wait,
501 (ACCESS_ONCE(pq->state) == SDMA_PKT_Q_INACTIVE));
502 kfree(pq->reqs);
503 kfree(pq->req_in_use);
504 kmem_cache_destroy(pq->txreq_cache);
505 kfree(pq);
506 fd->pq = NULL;
507 }
508 if (fd->cq) {
509 vfree(fd->cq->comps);
510 kfree(fd->cq);
511 fd->cq = NULL;
512 }
513 return 0;
514 }
515
516 static u8 dlid_to_selector(u16 dlid)
517 {
518 static u8 mapping[256];
519 static int initialized;
520 static u8 next;
521 int hash;
522
523 if (!initialized) {
524 memset(mapping, 0xFF, 256);
525 initialized = 1;
526 }
527
528 hash = ((dlid >> 8) ^ dlid) & 0xFF;
529 if (mapping[hash] == 0xFF) {
530 mapping[hash] = next;
531 next = (next + 1) & 0x7F;
532 }
533
534 return mapping[hash];
535 }
536
537 int hfi1_user_sdma_process_request(struct file *fp, struct iovec *iovec,
538 unsigned long dim, unsigned long *count)
539 {
540 int ret = 0, i;
541 struct hfi1_filedata *fd = fp->private_data;
542 struct hfi1_ctxtdata *uctxt = fd->uctxt;
543 struct hfi1_user_sdma_pkt_q *pq = fd->pq;
544 struct hfi1_user_sdma_comp_q *cq = fd->cq;
545 struct hfi1_devdata *dd = pq->dd;
546 unsigned long idx = 0;
547 u8 pcount = initial_pkt_count;
548 struct sdma_req_info info;
549 struct user_sdma_request *req;
550 u8 opcode, sc, vl;
551 int req_queued = 0;
552 u16 dlid;
553 u32 selector;
554
555 if (iovec[idx].iov_len < sizeof(info) + sizeof(req->hdr)) {
556 hfi1_cdbg(
557 SDMA,
558 "[%u:%u:%u] First vector not big enough for header %lu/%lu",
559 dd->unit, uctxt->ctxt, fd->subctxt,
560 iovec[idx].iov_len, sizeof(info) + sizeof(req->hdr));
561 return -EINVAL;
562 }
563 ret = copy_from_user(&info, iovec[idx].iov_base, sizeof(info));
564 if (ret) {
565 hfi1_cdbg(SDMA, "[%u:%u:%u] Failed to copy info QW (%d)",
566 dd->unit, uctxt->ctxt, fd->subctxt, ret);
567 return -EFAULT;
568 }
569
570 trace_hfi1_sdma_user_reqinfo(dd, uctxt->ctxt, fd->subctxt,
571 (u16 *)&info);
572
573 if (info.comp_idx >= hfi1_sdma_comp_ring_size) {
574 hfi1_cdbg(SDMA,
575 "[%u:%u:%u:%u] Invalid comp index",
576 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
577 return -EINVAL;
578 }
579
580 /*
581 * Sanity check the header io vector count. Need at least 1 vector
582 * (header) and cannot be larger than the actual io vector count.
583 */
584 if (req_iovcnt(info.ctrl) < 1 || req_iovcnt(info.ctrl) > dim) {
585 hfi1_cdbg(SDMA,
586 "[%u:%u:%u:%u] Invalid iov count %d, dim %ld",
587 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx,
588 req_iovcnt(info.ctrl), dim);
589 return -EINVAL;
590 }
591
592 if (!info.fragsize) {
593 hfi1_cdbg(SDMA,
594 "[%u:%u:%u:%u] Request does not specify fragsize",
595 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
596 return -EINVAL;
597 }
598
599 /* Try to claim the request. */
600 if (test_and_set_bit(info.comp_idx, pq->req_in_use)) {
601 hfi1_cdbg(SDMA, "[%u:%u:%u] Entry %u is in use",
602 dd->unit, uctxt->ctxt, fd->subctxt,
603 info.comp_idx);
604 return -EBADSLT;
605 }
606 /*
607 * All safety checks have been done and this request has been claimed.
608 */
609 hfi1_cdbg(SDMA, "[%u:%u:%u] Using req/comp entry %u\n", dd->unit,
610 uctxt->ctxt, fd->subctxt, info.comp_idx);
611 req = pq->reqs + info.comp_idx;
612 memset(req, 0, sizeof(*req));
613 req->data_iovs = req_iovcnt(info.ctrl) - 1; /* subtract header vector */
614 req->pq = pq;
615 req->cq = cq;
616 req->status = -1;
617 INIT_LIST_HEAD(&req->txps);
618
619 memcpy(&req->info, &info, sizeof(info));
620
621 if (req_opcode(info.ctrl) == EXPECTED) {
622 /* expected must have a TID info and at least one data vector */
623 if (req->data_iovs < 2) {
624 SDMA_DBG(req,
625 "Not enough vectors for expected request");
626 ret = -EINVAL;
627 goto free_req;
628 }
629 req->data_iovs--;
630 }
631
632 if (!info.npkts || req->data_iovs > MAX_VECTORS_PER_REQ) {
633 SDMA_DBG(req, "Too many vectors (%u/%u)", req->data_iovs,
634 MAX_VECTORS_PER_REQ);
635 ret = -EINVAL;
636 goto free_req;
637 }
638 /* Copy the header from the user buffer */
639 ret = copy_from_user(&req->hdr, iovec[idx].iov_base + sizeof(info),
640 sizeof(req->hdr));
641 if (ret) {
642 SDMA_DBG(req, "Failed to copy header template (%d)", ret);
643 ret = -EFAULT;
644 goto free_req;
645 }
646
647 /* If Static rate control is not enabled, sanitize the header. */
648 if (!HFI1_CAP_IS_USET(STATIC_RATE_CTRL))
649 req->hdr.pbc[2] = 0;
650
651 /* Validate the opcode. Do not trust packets from user space blindly. */
652 opcode = (be32_to_cpu(req->hdr.bth[0]) >> 24) & 0xff;
653 if ((opcode & USER_OPCODE_CHECK_MASK) !=
654 USER_OPCODE_CHECK_VAL) {
655 SDMA_DBG(req, "Invalid opcode (%d)", opcode);
656 ret = -EINVAL;
657 goto free_req;
658 }
659 /*
660 * Validate the vl. Do not trust packets from user space blindly.
661 * VL comes from PBC, SC comes from LRH, and the VL needs to
662 * match the SC look up.
663 */
664 vl = (le16_to_cpu(req->hdr.pbc[0]) >> 12) & 0xF;
665 sc = (((be16_to_cpu(req->hdr.lrh[0]) >> 12) & 0xF) |
666 (((le16_to_cpu(req->hdr.pbc[1]) >> 14) & 0x1) << 4));
667 if (vl >= dd->pport->vls_operational ||
668 vl != sc_to_vlt(dd, sc)) {
669 SDMA_DBG(req, "Invalid SC(%u)/VL(%u)", sc, vl);
670 ret = -EINVAL;
671 goto free_req;
672 }
673
674 /* Checking P_KEY for requests from user-space */
675 if (egress_pkey_check(dd->pport, req->hdr.lrh, req->hdr.bth, sc,
676 PKEY_CHECK_INVALID)) {
677 ret = -EINVAL;
678 goto free_req;
679 }
680
681 /*
682 * Also should check the BTH.lnh. If it says the next header is GRH then
683 * the RXE parsing will be off and will land in the middle of the KDETH
684 * or miss it entirely.
685 */
686 if ((be16_to_cpu(req->hdr.lrh[0]) & 0x3) == HFI1_LRH_GRH) {
687 SDMA_DBG(req, "User tried to pass in a GRH");
688 ret = -EINVAL;
689 goto free_req;
690 }
691
692 req->koffset = le32_to_cpu(req->hdr.kdeth.swdata[6]);
693 /*
694 * Calculate the initial TID offset based on the values of
695 * KDETH.OFFSET and KDETH.OM that are passed in.
696 */
697 req->tidoffset = KDETH_GET(req->hdr.kdeth.ver_tid_offset, OFFSET) *
698 (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
699 KDETH_OM_LARGE : KDETH_OM_SMALL);
700 SDMA_DBG(req, "Initial TID offset %u", req->tidoffset);
701 idx++;
702
703 /* Save all the IO vector structures */
704 for (i = 0; i < req->data_iovs; i++) {
705 INIT_LIST_HEAD(&req->iovs[i].list);
706 memcpy(&req->iovs[i].iov, iovec + idx++, sizeof(struct iovec));
707 ret = pin_vector_pages(req, &req->iovs[i]);
708 if (ret) {
709 req->status = ret;
710 goto free_req;
711 }
712 req->data_len += req->iovs[i].iov.iov_len;
713 }
714 SDMA_DBG(req, "total data length %u", req->data_len);
715
716 if (pcount > req->info.npkts)
717 pcount = req->info.npkts;
718 /*
719 * Copy any TID info
720 * User space will provide the TID info only when the
721 * request type is EXPECTED. This is true even if there is
722 * only one packet in the request and the header is already
723 * setup. The reason for the singular TID case is that the
724 * driver needs to perform safety checks.
725 */
726 if (req_opcode(req->info.ctrl) == EXPECTED) {
727 u16 ntids = iovec[idx].iov_len / sizeof(*req->tids);
728
729 if (!ntids || ntids > MAX_TID_PAIR_ENTRIES) {
730 ret = -EINVAL;
731 goto free_req;
732 }
733 req->tids = kcalloc(ntids, sizeof(*req->tids), GFP_KERNEL);
734 if (!req->tids) {
735 ret = -ENOMEM;
736 goto free_req;
737 }
738 /*
739 * We have to copy all of the tids because they may vary
740 * in size and, therefore, the TID count might not be
741 * equal to the pkt count. However, there is no way to
742 * tell at this point.
743 */
744 ret = copy_from_user(req->tids, iovec[idx].iov_base,
745 ntids * sizeof(*req->tids));
746 if (ret) {
747 SDMA_DBG(req, "Failed to copy %d TIDs (%d)",
748 ntids, ret);
749 ret = -EFAULT;
750 goto free_req;
751 }
752 req->n_tids = ntids;
753 idx++;
754 }
755
756 dlid = be16_to_cpu(req->hdr.lrh[1]);
757 selector = dlid_to_selector(dlid);
758 selector += uctxt->ctxt + fd->subctxt;
759 req->sde = sdma_select_user_engine(dd, selector, vl);
760
761 if (!req->sde || !sdma_running(req->sde)) {
762 ret = -ECOMM;
763 goto free_req;
764 }
765
766 /* We don't need an AHG entry if the request contains only one packet */
767 if (req->info.npkts > 1 && HFI1_CAP_IS_USET(SDMA_AHG)) {
768 int ahg = sdma_ahg_alloc(req->sde);
769
770 if (likely(ahg >= 0)) {
771 req->ahg_idx = (u8)ahg;
772 set_bit(SDMA_REQ_HAVE_AHG, &req->flags);
773 }
774 }
775
776 set_comp_state(pq, cq, info.comp_idx, QUEUED, 0);
777 atomic_inc(&pq->n_reqs);
778 req_queued = 1;
779 /* Send the first N packets in the request to buy us some time */
780 ret = user_sdma_send_pkts(req, pcount);
781 if (unlikely(ret < 0 && ret != -EBUSY)) {
782 req->status = ret;
783 goto free_req;
784 }
785
786 /*
787 * It is possible that the SDMA engine would have processed all the
788 * submitted packets by the time we get here. Therefore, only set
789 * packet queue state to ACTIVE if there are still uncompleted
790 * requests.
791 */
792 if (atomic_read(&pq->n_reqs))
793 xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
794
795 /*
796 * This is a somewhat blocking send implementation.
797 * The driver will block the caller until all packets of the
798 * request have been submitted to the SDMA engine. However, it
799 * will not wait for send completions.
800 */
801 while (!test_bit(SDMA_REQ_SEND_DONE, &req->flags)) {
802 ret = user_sdma_send_pkts(req, pcount);
803 if (ret < 0) {
804 if (ret != -EBUSY) {
805 req->status = ret;
806 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
807 if (ACCESS_ONCE(req->seqcomp) ==
808 req->seqsubmitted - 1)
809 goto free_req;
810 return ret;
811 }
812 wait_event_interruptible_timeout(
813 pq->busy.wait_dma,
814 (pq->state == SDMA_PKT_Q_ACTIVE),
815 msecs_to_jiffies(
816 SDMA_IOWAIT_TIMEOUT));
817 }
818 }
819 *count += idx;
820 return 0;
821 free_req:
822 user_sdma_free_request(req, true);
823 if (req_queued)
824 pq_update(pq);
825 set_comp_state(pq, cq, info.comp_idx, ERROR, req->status);
826 return ret;
827 }
828
829 static inline u32 compute_data_length(struct user_sdma_request *req,
830 struct user_sdma_txreq *tx)
831 {
832 /*
833 * Determine the proper size of the packet data.
834 * The size of the data of the first packet is in the header
835 * template. However, it includes the header and ICRC, which need
836 * to be subtracted.
837 * The minimum representable packet data length in a header is 4 bytes,
838 * therefore, when the data length request is less than 4 bytes, there's
839 * only one packet, and the packet data length is equal to that of the
840 * request data length.
841 * The size of the remaining packets is the minimum of the frag
842 * size (MTU) or remaining data in the request.
843 */
844 u32 len;
845
846 if (!req->seqnum) {
847 if (req->data_len < sizeof(u32))
848 len = req->data_len;
849 else
850 len = ((be16_to_cpu(req->hdr.lrh[2]) << 2) -
851 (sizeof(tx->hdr) - 4));
852 } else if (req_opcode(req->info.ctrl) == EXPECTED) {
853 u32 tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) *
854 PAGE_SIZE;
855 /*
856 * Get the data length based on the remaining space in the
857 * TID pair.
858 */
859 len = min(tidlen - req->tidoffset, (u32)req->info.fragsize);
860 /* If we've filled up the TID pair, move to the next one. */
861 if (unlikely(!len) && ++req->tididx < req->n_tids &&
862 req->tids[req->tididx]) {
863 tidlen = EXP_TID_GET(req->tids[req->tididx],
864 LEN) * PAGE_SIZE;
865 req->tidoffset = 0;
866 len = min_t(u32, tidlen, req->info.fragsize);
867 }
868 /*
869 * Since the TID pairs map entire pages, make sure that we
870 * are not going to try to send more data that we have
871 * remaining.
872 */
873 len = min(len, req->data_len - req->sent);
874 } else {
875 len = min(req->data_len - req->sent, (u32)req->info.fragsize);
876 }
877 SDMA_DBG(req, "Data Length = %u", len);
878 return len;
879 }
880
881 static inline u32 pad_len(u32 len)
882 {
883 if (len & (sizeof(u32) - 1))
884 len += sizeof(u32) - (len & (sizeof(u32) - 1));
885 return len;
886 }
887
888 static inline u32 get_lrh_len(struct hfi1_pkt_header hdr, u32 len)
889 {
890 /* (Size of complete header - size of PBC) + 4B ICRC + data length */
891 return ((sizeof(hdr) - sizeof(hdr.pbc)) + 4 + len);
892 }
893
894 static int user_sdma_send_pkts(struct user_sdma_request *req, unsigned maxpkts)
895 {
896 int ret = 0, count;
897 unsigned npkts = 0;
898 struct user_sdma_txreq *tx = NULL;
899 struct hfi1_user_sdma_pkt_q *pq = NULL;
900 struct user_sdma_iovec *iovec = NULL;
901
902 if (!req->pq)
903 return -EINVAL;
904
905 pq = req->pq;
906
907 /* If tx completion has reported an error, we are done. */
908 if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) {
909 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
910 return -EFAULT;
911 }
912
913 /*
914 * Check if we might have sent the entire request already
915 */
916 if (unlikely(req->seqnum == req->info.npkts)) {
917 if (!list_empty(&req->txps))
918 goto dosend;
919 return ret;
920 }
921
922 if (!maxpkts || maxpkts > req->info.npkts - req->seqnum)
923 maxpkts = req->info.npkts - req->seqnum;
924
925 while (npkts < maxpkts) {
926 u32 datalen = 0, queued = 0, data_sent = 0;
927 u64 iov_offset = 0;
928
929 /*
930 * Check whether any of the completions have come back
931 * with errors. If so, we are not going to process any
932 * more packets from this request.
933 */
934 if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) {
935 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
936 return -EFAULT;
937 }
938
939 tx = kmem_cache_alloc(pq->txreq_cache, GFP_KERNEL);
940 if (!tx)
941 return -ENOMEM;
942
943 tx->flags = 0;
944 tx->req = req;
945 tx->busycount = 0;
946 INIT_LIST_HEAD(&tx->list);
947
948 /*
949 * For the last packet set the ACK request
950 * and disable header suppression.
951 */
952 if (req->seqnum == req->info.npkts - 1)
953 tx->flags |= (TXREQ_FLAGS_REQ_ACK |
954 TXREQ_FLAGS_REQ_DISABLE_SH);
955
956 /*
957 * Calculate the payload size - this is min of the fragment
958 * (MTU) size or the remaining bytes in the request but only
959 * if we have payload data.
960 */
961 if (req->data_len) {
962 iovec = &req->iovs[req->iov_idx];
963 if (ACCESS_ONCE(iovec->offset) == iovec->iov.iov_len) {
964 if (++req->iov_idx == req->data_iovs) {
965 ret = -EFAULT;
966 goto free_txreq;
967 }
968 iovec = &req->iovs[req->iov_idx];
969 WARN_ON(iovec->offset);
970 }
971
972 datalen = compute_data_length(req, tx);
973
974 /*
975 * Disable header suppression for the payload <= 8DWS.
976 * If there is an uncorrectable error in the receive
977 * data FIFO when the received payload size is less than
978 * or equal to 8DWS then the RxDmaDataFifoRdUncErr is
979 * not reported.There is set RHF.EccErr if the header
980 * is not suppressed.
981 */
982 if (!datalen) {
983 SDMA_DBG(req,
984 "Request has data but pkt len is 0");
985 ret = -EFAULT;
986 goto free_tx;
987 } else if (datalen <= 32) {
988 tx->flags |= TXREQ_FLAGS_REQ_DISABLE_SH;
989 }
990 }
991
992 if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags)) {
993 if (!req->seqnum) {
994 u16 pbclen = le16_to_cpu(req->hdr.pbc[0]);
995 u32 lrhlen = get_lrh_len(req->hdr,
996 pad_len(datalen));
997 /*
998 * Copy the request header into the tx header
999 * because the HW needs a cacheline-aligned
1000 * address.
1001 * This copy can be optimized out if the hdr
1002 * member of user_sdma_request were also
1003 * cacheline aligned.
1004 */
1005 memcpy(&tx->hdr, &req->hdr, sizeof(tx->hdr));
1006 if (PBC2LRH(pbclen) != lrhlen) {
1007 pbclen = (pbclen & 0xf000) |
1008 LRH2PBC(lrhlen);
1009 tx->hdr.pbc[0] = cpu_to_le16(pbclen);
1010 }
1011 ret = check_header_template(req, &tx->hdr,
1012 lrhlen, datalen);
1013 if (ret)
1014 goto free_tx;
1015 ret = sdma_txinit_ahg(&tx->txreq,
1016 SDMA_TXREQ_F_AHG_COPY,
1017 sizeof(tx->hdr) + datalen,
1018 req->ahg_idx, 0, NULL, 0,
1019 user_sdma_txreq_cb);
1020 if (ret)
1021 goto free_tx;
1022 ret = sdma_txadd_kvaddr(pq->dd, &tx->txreq,
1023 &tx->hdr,
1024 sizeof(tx->hdr));
1025 if (ret)
1026 goto free_txreq;
1027 } else {
1028 int changes;
1029
1030 changes = set_txreq_header_ahg(req, tx,
1031 datalen);
1032 if (changes < 0)
1033 goto free_tx;
1034 sdma_txinit_ahg(&tx->txreq,
1035 SDMA_TXREQ_F_USE_AHG,
1036 datalen, req->ahg_idx, changes,
1037 req->ahg, sizeof(req->hdr),
1038 user_sdma_txreq_cb);
1039 }
1040 } else {
1041 ret = sdma_txinit(&tx->txreq, 0, sizeof(req->hdr) +
1042 datalen, user_sdma_txreq_cb);
1043 if (ret)
1044 goto free_tx;
1045 /*
1046 * Modify the header for this packet. This only needs
1047 * to be done if we are not going to use AHG. Otherwise,
1048 * the HW will do it based on the changes we gave it
1049 * during sdma_txinit_ahg().
1050 */
1051 ret = set_txreq_header(req, tx, datalen);
1052 if (ret)
1053 goto free_txreq;
1054 }
1055
1056 /*
1057 * If the request contains any data vectors, add up to
1058 * fragsize bytes to the descriptor.
1059 */
1060 while (queued < datalen &&
1061 (req->sent + data_sent) < req->data_len) {
1062 unsigned long base, offset;
1063 unsigned pageidx, len;
1064
1065 base = (unsigned long)iovec->iov.iov_base;
1066 offset = offset_in_page(base + iovec->offset +
1067 iov_offset);
1068 pageidx = (((iovec->offset + iov_offset +
1069 base) - (base & PAGE_MASK)) >> PAGE_SHIFT);
1070 len = offset + req->info.fragsize > PAGE_SIZE ?
1071 PAGE_SIZE - offset : req->info.fragsize;
1072 len = min((datalen - queued), len);
1073 ret = sdma_txadd_page(pq->dd, &tx->txreq,
1074 iovec->pages[pageidx],
1075 offset, len);
1076 if (ret) {
1077 SDMA_DBG(req, "SDMA txreq add page failed %d\n",
1078 ret);
1079 goto free_txreq;
1080 }
1081 iov_offset += len;
1082 queued += len;
1083 data_sent += len;
1084 if (unlikely(queued < datalen &&
1085 pageidx == iovec->npages &&
1086 req->iov_idx < req->data_iovs - 1)) {
1087 iovec->offset += iov_offset;
1088 iovec = &req->iovs[++req->iov_idx];
1089 iov_offset = 0;
1090 }
1091 }
1092 /*
1093 * The txreq was submitted successfully so we can update
1094 * the counters.
1095 */
1096 req->koffset += datalen;
1097 if (req_opcode(req->info.ctrl) == EXPECTED)
1098 req->tidoffset += datalen;
1099 req->sent += data_sent;
1100 if (req->data_len)
1101 iovec->offset += iov_offset;
1102 list_add_tail(&tx->txreq.list, &req->txps);
1103 /*
1104 * It is important to increment this here as it is used to
1105 * generate the BTH.PSN and, therefore, can't be bulk-updated
1106 * outside of the loop.
1107 */
1108 tx->seqnum = req->seqnum++;
1109 npkts++;
1110 }
1111 dosend:
1112 ret = sdma_send_txlist(req->sde, &pq->busy, &req->txps, &count);
1113 req->seqsubmitted += count;
1114 if (req->seqsubmitted == req->info.npkts) {
1115 set_bit(SDMA_REQ_SEND_DONE, &req->flags);
1116 /*
1117 * The txreq has already been submitted to the HW queue
1118 * so we can free the AHG entry now. Corruption will not
1119 * happen due to the sequential manner in which
1120 * descriptors are processed.
1121 */
1122 if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags))
1123 sdma_ahg_free(req->sde, req->ahg_idx);
1124 }
1125 return ret;
1126
1127 free_txreq:
1128 sdma_txclean(pq->dd, &tx->txreq);
1129 free_tx:
1130 kmem_cache_free(pq->txreq_cache, tx);
1131 return ret;
1132 }
1133
1134 /*
1135 * How many pages in this iovec element?
1136 */
1137 static inline int num_user_pages(const struct iovec *iov)
1138 {
1139 const unsigned long addr = (unsigned long)iov->iov_base;
1140 const unsigned long len = iov->iov_len;
1141 const unsigned long spage = addr & PAGE_MASK;
1142 const unsigned long epage = (addr + len - 1) & PAGE_MASK;
1143
1144 return 1 + ((epage - spage) >> PAGE_SHIFT);
1145 }
1146
1147 static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages)
1148 {
1149 struct evict_data evict_data;
1150
1151 evict_data.cleared = 0;
1152 evict_data.target = npages;
1153 hfi1_mmu_rb_evict(pq->handler, &evict_data);
1154 return evict_data.cleared;
1155 }
1156
1157 static int pin_vector_pages(struct user_sdma_request *req,
1158 struct user_sdma_iovec *iovec)
1159 {
1160 int ret = 0, pinned, npages, cleared;
1161 struct page **pages;
1162 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1163 struct sdma_mmu_node *node = NULL;
1164 struct mmu_rb_node *rb_node;
1165
1166 rb_node = hfi1_mmu_rb_extract(pq->handler,
1167 (unsigned long)iovec->iov.iov_base,
1168 iovec->iov.iov_len);
1169 if (rb_node)
1170 node = container_of(rb_node, struct sdma_mmu_node, rb);
1171 else
1172 rb_node = NULL;
1173
1174 if (!node) {
1175 node = kzalloc(sizeof(*node), GFP_KERNEL);
1176 if (!node)
1177 return -ENOMEM;
1178
1179 node->rb.addr = (unsigned long)iovec->iov.iov_base;
1180 node->pq = pq;
1181 atomic_set(&node->refcount, 0);
1182 }
1183
1184 npages = num_user_pages(&iovec->iov);
1185 if (node->npages < npages) {
1186 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
1187 if (!pages) {
1188 SDMA_DBG(req, "Failed page array alloc");
1189 ret = -ENOMEM;
1190 goto bail;
1191 }
1192 memcpy(pages, node->pages, node->npages * sizeof(*pages));
1193
1194 npages -= node->npages;
1195
1196 retry:
1197 if (!hfi1_can_pin_pages(pq->dd, pq->mm,
1198 atomic_read(&pq->n_locked), npages)) {
1199 cleared = sdma_cache_evict(pq, npages);
1200 if (cleared >= npages)
1201 goto retry;
1202 }
1203 pinned = hfi1_acquire_user_pages(pq->mm,
1204 ((unsigned long)iovec->iov.iov_base +
1205 (node->npages * PAGE_SIZE)), npages, 0,
1206 pages + node->npages);
1207 if (pinned < 0) {
1208 kfree(pages);
1209 ret = pinned;
1210 goto bail;
1211 }
1212 if (pinned != npages) {
1213 unpin_vector_pages(pq->mm, pages, node->npages,
1214 pinned);
1215 ret = -EFAULT;
1216 goto bail;
1217 }
1218 kfree(node->pages);
1219 node->rb.len = iovec->iov.iov_len;
1220 node->pages = pages;
1221 node->npages += pinned;
1222 npages = node->npages;
1223 atomic_add(pinned, &pq->n_locked);
1224 }
1225 iovec->pages = node->pages;
1226 iovec->npages = npages;
1227 iovec->node = node;
1228
1229 ret = hfi1_mmu_rb_insert(req->pq->handler, &node->rb);
1230 if (ret) {
1231 atomic_sub(node->npages, &pq->n_locked);
1232 iovec->node = NULL;
1233 goto bail;
1234 }
1235 return 0;
1236 bail:
1237 if (rb_node)
1238 unpin_vector_pages(pq->mm, node->pages, 0, node->npages);
1239 kfree(node);
1240 return ret;
1241 }
1242
1243 static void unpin_vector_pages(struct mm_struct *mm, struct page **pages,
1244 unsigned start, unsigned npages)
1245 {
1246 hfi1_release_user_pages(mm, pages + start, npages, false);
1247 kfree(pages);
1248 }
1249
1250 static int check_header_template(struct user_sdma_request *req,
1251 struct hfi1_pkt_header *hdr, u32 lrhlen,
1252 u32 datalen)
1253 {
1254 /*
1255 * Perform safety checks for any type of packet:
1256 * - transfer size is multiple of 64bytes
1257 * - packet length is multiple of 4 bytes
1258 * - packet length is not larger than MTU size
1259 *
1260 * These checks are only done for the first packet of the
1261 * transfer since the header is "given" to us by user space.
1262 * For the remainder of the packets we compute the values.
1263 */
1264 if (req->info.fragsize % PIO_BLOCK_SIZE || lrhlen & 0x3 ||
1265 lrhlen > get_lrh_len(*hdr, req->info.fragsize))
1266 return -EINVAL;
1267
1268 if (req_opcode(req->info.ctrl) == EXPECTED) {
1269 /*
1270 * The header is checked only on the first packet. Furthermore,
1271 * we ensure that at least one TID entry is copied when the
1272 * request is submitted. Therefore, we don't have to verify that
1273 * tididx points to something sane.
1274 */
1275 u32 tidval = req->tids[req->tididx],
1276 tidlen = EXP_TID_GET(tidval, LEN) * PAGE_SIZE,
1277 tididx = EXP_TID_GET(tidval, IDX),
1278 tidctrl = EXP_TID_GET(tidval, CTRL),
1279 tidoff;
1280 __le32 kval = hdr->kdeth.ver_tid_offset;
1281
1282 tidoff = KDETH_GET(kval, OFFSET) *
1283 (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
1284 KDETH_OM_LARGE : KDETH_OM_SMALL);
1285 /*
1286 * Expected receive packets have the following
1287 * additional checks:
1288 * - offset is not larger than the TID size
1289 * - TIDCtrl values match between header and TID array
1290 * - TID indexes match between header and TID array
1291 */
1292 if ((tidoff + datalen > tidlen) ||
1293 KDETH_GET(kval, TIDCTRL) != tidctrl ||
1294 KDETH_GET(kval, TID) != tididx)
1295 return -EINVAL;
1296 }
1297 return 0;
1298 }
1299
1300 /*
1301 * Correctly set the BTH.PSN field based on type of
1302 * transfer - eager packets can just increment the PSN but
1303 * expected packets encode generation and sequence in the
1304 * BTH.PSN field so just incrementing will result in errors.
1305 */
1306 static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags)
1307 {
1308 u32 val = be32_to_cpu(bthpsn),
1309 mask = (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffffull :
1310 0xffffffull),
1311 psn = val & mask;
1312 if (expct)
1313 psn = (psn & ~BTH_SEQ_MASK) | ((psn + frags) & BTH_SEQ_MASK);
1314 else
1315 psn = psn + frags;
1316 return psn & mask;
1317 }
1318
1319 static int set_txreq_header(struct user_sdma_request *req,
1320 struct user_sdma_txreq *tx, u32 datalen)
1321 {
1322 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1323 struct hfi1_pkt_header *hdr = &tx->hdr;
1324 u16 pbclen;
1325 int ret;
1326 u32 tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen));
1327
1328 /* Copy the header template to the request before modification */
1329 memcpy(hdr, &req->hdr, sizeof(*hdr));
1330
1331 /*
1332 * Check if the PBC and LRH length are mismatched. If so
1333 * adjust both in the header.
1334 */
1335 pbclen = le16_to_cpu(hdr->pbc[0]);
1336 if (PBC2LRH(pbclen) != lrhlen) {
1337 pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen);
1338 hdr->pbc[0] = cpu_to_le16(pbclen);
1339 hdr->lrh[2] = cpu_to_be16(lrhlen >> 2);
1340 /*
1341 * Third packet
1342 * This is the first packet in the sequence that has
1343 * a "static" size that can be used for the rest of
1344 * the packets (besides the last one).
1345 */
1346 if (unlikely(req->seqnum == 2)) {
1347 /*
1348 * From this point on the lengths in both the
1349 * PBC and LRH are the same until the last
1350 * packet.
1351 * Adjust the template so we don't have to update
1352 * every packet
1353 */
1354 req->hdr.pbc[0] = hdr->pbc[0];
1355 req->hdr.lrh[2] = hdr->lrh[2];
1356 }
1357 }
1358 /*
1359 * We only have to modify the header if this is not the
1360 * first packet in the request. Otherwise, we use the
1361 * header given to us.
1362 */
1363 if (unlikely(!req->seqnum)) {
1364 ret = check_header_template(req, hdr, lrhlen, datalen);
1365 if (ret)
1366 return ret;
1367 goto done;
1368 }
1369
1370 hdr->bth[2] = cpu_to_be32(
1371 set_pkt_bth_psn(hdr->bth[2],
1372 (req_opcode(req->info.ctrl) == EXPECTED),
1373 req->seqnum));
1374
1375 /* Set ACK request on last packet */
1376 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_ACK))
1377 hdr->bth[2] |= cpu_to_be32(1UL << 31);
1378
1379 /* Set the new offset */
1380 hdr->kdeth.swdata[6] = cpu_to_le32(req->koffset);
1381 /* Expected packets have to fill in the new TID information */
1382 if (req_opcode(req->info.ctrl) == EXPECTED) {
1383 tidval = req->tids[req->tididx];
1384 /*
1385 * If the offset puts us at the end of the current TID,
1386 * advance everything.
1387 */
1388 if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
1389 PAGE_SIZE)) {
1390 req->tidoffset = 0;
1391 /*
1392 * Since we don't copy all the TIDs, all at once,
1393 * we have to check again.
1394 */
1395 if (++req->tididx > req->n_tids - 1 ||
1396 !req->tids[req->tididx]) {
1397 return -EINVAL;
1398 }
1399 tidval = req->tids[req->tididx];
1400 }
1401 req->omfactor = EXP_TID_GET(tidval, LEN) * PAGE_SIZE >=
1402 KDETH_OM_MAX_SIZE ? KDETH_OM_LARGE : KDETH_OM_SMALL;
1403 /* Set KDETH.TIDCtrl based on value for this TID. */
1404 KDETH_SET(hdr->kdeth.ver_tid_offset, TIDCTRL,
1405 EXP_TID_GET(tidval, CTRL));
1406 /* Set KDETH.TID based on value for this TID */
1407 KDETH_SET(hdr->kdeth.ver_tid_offset, TID,
1408 EXP_TID_GET(tidval, IDX));
1409 /* Clear KDETH.SH when DISABLE_SH flag is set */
1410 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_DISABLE_SH))
1411 KDETH_SET(hdr->kdeth.ver_tid_offset, SH, 0);
1412 /*
1413 * Set the KDETH.OFFSET and KDETH.OM based on size of
1414 * transfer.
1415 */
1416 SDMA_DBG(req, "TID offset %ubytes %uunits om%u",
1417 req->tidoffset, req->tidoffset / req->omfactor,
1418 req->omfactor != KDETH_OM_SMALL);
1419 KDETH_SET(hdr->kdeth.ver_tid_offset, OFFSET,
1420 req->tidoffset / req->omfactor);
1421 KDETH_SET(hdr->kdeth.ver_tid_offset, OM,
1422 req->omfactor != KDETH_OM_SMALL);
1423 }
1424 done:
1425 trace_hfi1_sdma_user_header(pq->dd, pq->ctxt, pq->subctxt,
1426 req->info.comp_idx, hdr, tidval);
1427 return sdma_txadd_kvaddr(pq->dd, &tx->txreq, hdr, sizeof(*hdr));
1428 }
1429
1430 static int set_txreq_header_ahg(struct user_sdma_request *req,
1431 struct user_sdma_txreq *tx, u32 len)
1432 {
1433 int diff = 0;
1434 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1435 struct hfi1_pkt_header *hdr = &req->hdr;
1436 u16 pbclen = le16_to_cpu(hdr->pbc[0]);
1437 u32 val32, tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(len));
1438
1439 if (PBC2LRH(pbclen) != lrhlen) {
1440 /* PBC.PbcLengthDWs */
1441 AHG_HEADER_SET(req->ahg, diff, 0, 0, 12,
1442 cpu_to_le16(LRH2PBC(lrhlen)));
1443 /* LRH.PktLen (we need the full 16 bits due to byte swap) */
1444 AHG_HEADER_SET(req->ahg, diff, 3, 0, 16,
1445 cpu_to_be16(lrhlen >> 2));
1446 }
1447
1448 /*
1449 * Do the common updates
1450 */
1451 /* BTH.PSN and BTH.A */
1452 val32 = (be32_to_cpu(hdr->bth[2]) + req->seqnum) &
1453 (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffff : 0xffffff);
1454 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_ACK))
1455 val32 |= 1UL << 31;
1456 AHG_HEADER_SET(req->ahg, diff, 6, 0, 16, cpu_to_be16(val32 >> 16));
1457 AHG_HEADER_SET(req->ahg, diff, 6, 16, 16, cpu_to_be16(val32 & 0xffff));
1458 /* KDETH.Offset */
1459 AHG_HEADER_SET(req->ahg, diff, 15, 0, 16,
1460 cpu_to_le16(req->koffset & 0xffff));
1461 AHG_HEADER_SET(req->ahg, diff, 15, 16, 16,
1462 cpu_to_le16(req->koffset >> 16));
1463 if (req_opcode(req->info.ctrl) == EXPECTED) {
1464 __le16 val;
1465
1466 tidval = req->tids[req->tididx];
1467
1468 /*
1469 * If the offset puts us at the end of the current TID,
1470 * advance everything.
1471 */
1472 if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
1473 PAGE_SIZE)) {
1474 req->tidoffset = 0;
1475 /*
1476 * Since we don't copy all the TIDs, all at once,
1477 * we have to check again.
1478 */
1479 if (++req->tididx > req->n_tids - 1 ||
1480 !req->tids[req->tididx]) {
1481 return -EINVAL;
1482 }
1483 tidval = req->tids[req->tididx];
1484 }
1485 req->omfactor = ((EXP_TID_GET(tidval, LEN) *
1486 PAGE_SIZE) >=
1487 KDETH_OM_MAX_SIZE) ? KDETH_OM_LARGE :
1488 KDETH_OM_SMALL;
1489 /* KDETH.OM and KDETH.OFFSET (TID) */
1490 AHG_HEADER_SET(req->ahg, diff, 7, 0, 16,
1491 ((!!(req->omfactor - KDETH_OM_SMALL)) << 15 |
1492 ((req->tidoffset / req->omfactor) & 0x7fff)));
1493 /* KDETH.TIDCtrl, KDETH.TID, KDETH.Intr, KDETH.SH */
1494 val = cpu_to_le16(((EXP_TID_GET(tidval, CTRL) & 0x3) << 10) |
1495 (EXP_TID_GET(tidval, IDX) & 0x3ff));
1496
1497 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_DISABLE_SH)) {
1498 val |= cpu_to_le16((KDETH_GET(hdr->kdeth.ver_tid_offset,
1499 INTR) <<
1500 AHG_KDETH_INTR_SHIFT));
1501 } else {
1502 val |= KDETH_GET(hdr->kdeth.ver_tid_offset, SH) ?
1503 cpu_to_le16(0x1 << AHG_KDETH_SH_SHIFT) :
1504 cpu_to_le16((KDETH_GET(hdr->kdeth.ver_tid_offset,
1505 INTR) <<
1506 AHG_KDETH_INTR_SHIFT));
1507 }
1508
1509 AHG_HEADER_SET(req->ahg, diff, 7, 16, 14, val);
1510 }
1511
1512 trace_hfi1_sdma_user_header_ahg(pq->dd, pq->ctxt, pq->subctxt,
1513 req->info.comp_idx, req->sde->this_idx,
1514 req->ahg_idx, req->ahg, diff, tidval);
1515 return diff;
1516 }
1517
1518 /*
1519 * SDMA tx request completion callback. Called when the SDMA progress
1520 * state machine gets notification that the SDMA descriptors for this
1521 * tx request have been processed by the DMA engine. Called in
1522 * interrupt context.
1523 */
1524 static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status)
1525 {
1526 struct user_sdma_txreq *tx =
1527 container_of(txreq, struct user_sdma_txreq, txreq);
1528 struct user_sdma_request *req;
1529 struct hfi1_user_sdma_pkt_q *pq;
1530 struct hfi1_user_sdma_comp_q *cq;
1531 u16 idx;
1532
1533 if (!tx->req)
1534 return;
1535
1536 req = tx->req;
1537 pq = req->pq;
1538 cq = req->cq;
1539
1540 if (status != SDMA_TXREQ_S_OK) {
1541 SDMA_DBG(req, "SDMA completion with error %d",
1542 status);
1543 set_bit(SDMA_REQ_HAS_ERROR, &req->flags);
1544 }
1545
1546 req->seqcomp = tx->seqnum;
1547 kmem_cache_free(pq->txreq_cache, tx);
1548 tx = NULL;
1549
1550 idx = req->info.comp_idx;
1551 if (req->status == -1 && status == SDMA_TXREQ_S_OK) {
1552 if (req->seqcomp == req->info.npkts - 1) {
1553 req->status = 0;
1554 user_sdma_free_request(req, false);
1555 pq_update(pq);
1556 set_comp_state(pq, cq, idx, COMPLETE, 0);
1557 }
1558 } else {
1559 if (status != SDMA_TXREQ_S_OK)
1560 req->status = status;
1561 if (req->seqcomp == (ACCESS_ONCE(req->seqsubmitted) - 1) &&
1562 (test_bit(SDMA_REQ_SEND_DONE, &req->flags) ||
1563 test_bit(SDMA_REQ_DONE_ERROR, &req->flags))) {
1564 user_sdma_free_request(req, false);
1565 pq_update(pq);
1566 set_comp_state(pq, cq, idx, ERROR, req->status);
1567 }
1568 }
1569 }
1570
1571 static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq)
1572 {
1573 if (atomic_dec_and_test(&pq->n_reqs)) {
1574 xchg(&pq->state, SDMA_PKT_Q_INACTIVE);
1575 wake_up(&pq->wait);
1576 }
1577 }
1578
1579 static void user_sdma_free_request(struct user_sdma_request *req, bool unpin)
1580 {
1581 if (!list_empty(&req->txps)) {
1582 struct sdma_txreq *t, *p;
1583
1584 list_for_each_entry_safe(t, p, &req->txps, list) {
1585 struct user_sdma_txreq *tx =
1586 container_of(t, struct user_sdma_txreq, txreq);
1587 list_del_init(&t->list);
1588 sdma_txclean(req->pq->dd, t);
1589 kmem_cache_free(req->pq->txreq_cache, tx);
1590 }
1591 }
1592 if (req->data_iovs) {
1593 struct sdma_mmu_node *node;
1594 int i;
1595
1596 for (i = 0; i < req->data_iovs; i++) {
1597 node = req->iovs[i].node;
1598 if (!node)
1599 continue;
1600
1601 if (unpin)
1602 hfi1_mmu_rb_remove(req->pq->handler,
1603 &node->rb);
1604 else
1605 atomic_dec(&node->refcount);
1606 }
1607 }
1608 kfree(req->tids);
1609 clear_bit(req->info.comp_idx, req->pq->req_in_use);
1610 }
1611
1612 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq,
1613 struct hfi1_user_sdma_comp_q *cq,
1614 u16 idx, enum hfi1_sdma_comp_state state,
1615 int ret)
1616 {
1617 hfi1_cdbg(SDMA, "[%u:%u:%u:%u] Setting completion status %u %d",
1618 pq->dd->unit, pq->ctxt, pq->subctxt, idx, state, ret);
1619 cq->comps[idx].status = state;
1620 if (state == ERROR)
1621 cq->comps[idx].errcode = -ret;
1622 trace_hfi1_sdma_user_completion(pq->dd, pq->ctxt, pq->subctxt,
1623 idx, state, ret);
1624 }
1625
1626 static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr,
1627 unsigned long len)
1628 {
1629 return (bool)(node->addr == addr);
1630 }
1631
1632 static int sdma_rb_insert(void *arg, struct mmu_rb_node *mnode)
1633 {
1634 struct sdma_mmu_node *node =
1635 container_of(mnode, struct sdma_mmu_node, rb);
1636
1637 atomic_inc(&node->refcount);
1638 return 0;
1639 }
1640
1641 /*
1642 * Return 1 to remove the node from the rb tree and call the remove op.
1643 *
1644 * Called with the rb tree lock held.
1645 */
1646 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
1647 void *evict_arg, bool *stop)
1648 {
1649 struct sdma_mmu_node *node =
1650 container_of(mnode, struct sdma_mmu_node, rb);
1651 struct evict_data *evict_data = evict_arg;
1652
1653 /* is this node still being used? */
1654 if (atomic_read(&node->refcount))
1655 return 0; /* keep this node */
1656
1657 /* this node will be evicted, add its pages to our count */
1658 evict_data->cleared += node->npages;
1659
1660 /* have enough pages been cleared? */
1661 if (evict_data->cleared >= evict_data->target)
1662 *stop = true;
1663
1664 return 1; /* remove this node */
1665 }
1666
1667 static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode)
1668 {
1669 struct sdma_mmu_node *node =
1670 container_of(mnode, struct sdma_mmu_node, rb);
1671
1672 atomic_sub(node->npages, &node->pq->n_locked);
1673
1674 unpin_vector_pages(node->pq->mm, node->pages, 0, node->npages);
1675
1676 kfree(node);
1677 }
1678
1679 static int sdma_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
1680 {
1681 struct sdma_mmu_node *node =
1682 container_of(mnode, struct sdma_mmu_node, rb);
1683
1684 if (!atomic_read(&node->refcount))
1685 return 1;
1686 return 0;
1687 }