]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/infiniband/hw/hfi1/verbs.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57
58 #include "hfi.h"
59 #include "common.h"
60 #include "device.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "verbs_txreq.h"
64 #include "debugfs.h"
65 #include "vnic.h"
66 #include "fault.h"
67 #include "affinity.h"
68
69 static unsigned int hfi1_lkey_table_size = 16;
70 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
71 S_IRUGO);
72 MODULE_PARM_DESC(lkey_table_size,
73 "LKEY table size in bits (2^n, 1 <= n <= 23)");
74
75 static unsigned int hfi1_max_pds = 0xFFFF;
76 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_pds,
78 "Maximum number of protection domains to support");
79
80 static unsigned int hfi1_max_ahs = 0xFFFF;
81 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
82 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
83
84 unsigned int hfi1_max_cqes = 0x2FFFFF;
85 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqes,
87 "Maximum number of completion queue entries to support");
88
89 unsigned int hfi1_max_cqs = 0x1FFFF;
90 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
91 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
92
93 unsigned int hfi1_max_qp_wrs = 0x3FFF;
94 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
95 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
96
97 unsigned int hfi1_max_qps = 32768;
98 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
99 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
100
101 unsigned int hfi1_max_sges = 0x60;
102 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
103 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
104
105 unsigned int hfi1_max_mcast_grps = 16384;
106 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
107 MODULE_PARM_DESC(max_mcast_grps,
108 "Maximum number of multicast groups to support");
109
110 unsigned int hfi1_max_mcast_qp_attached = 16;
111 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
112 uint, S_IRUGO);
113 MODULE_PARM_DESC(max_mcast_qp_attached,
114 "Maximum number of attached QPs to support");
115
116 unsigned int hfi1_max_srqs = 1024;
117 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
118 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
119
120 unsigned int hfi1_max_srq_sges = 128;
121 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
122 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
123
124 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
125 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
126 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
127
128 unsigned short piothreshold = 256;
129 module_param(piothreshold, ushort, S_IRUGO);
130 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
131
132 static unsigned int sge_copy_mode;
133 module_param(sge_copy_mode, uint, S_IRUGO);
134 MODULE_PARM_DESC(sge_copy_mode,
135 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
136
137 static void verbs_sdma_complete(
138 struct sdma_txreq *cookie,
139 int status);
140
141 static int pio_wait(struct rvt_qp *qp,
142 struct send_context *sc,
143 struct hfi1_pkt_state *ps,
144 u32 flag);
145
146 /* Length of buffer to create verbs txreq cache name */
147 #define TXREQ_NAME_LEN 24
148
149 /* 16B trailing buffer */
150 static const u8 trail_buf[MAX_16B_PADDING];
151
152 static uint wss_threshold = 80;
153 module_param(wss_threshold, uint, S_IRUGO);
154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
155 static uint wss_clean_period = 256;
156 module_param(wss_clean_period, uint, S_IRUGO);
157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
158
159 /*
160 * Translate ib_wr_opcode into ib_wc_opcode.
161 */
162 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
163 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
164 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
165 [IB_WR_SEND] = IB_WC_SEND,
166 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
167 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
168 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
169 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
170 [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
171 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
172 [IB_WR_REG_MR] = IB_WC_REG_MR
173 };
174
175 /*
176 * Length of header by opcode, 0 --> not supported
177 */
178 const u8 hdr_len_by_opcode[256] = {
179 /* RC */
180 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
181 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
182 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
183 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
184 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
185 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
186 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
187 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
188 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
189 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
190 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
191 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
192 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
193 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
194 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
195 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
197 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
198 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8,
199 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
200 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
201 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
202 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
203 /* UC */
204 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
205 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
206 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
207 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
208 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
209 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
210 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
211 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
212 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
213 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
214 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
215 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
216 /* UD */
217 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
218 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
219 };
220
221 static const opcode_handler opcode_handler_tbl[256] = {
222 /* RC */
223 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
224 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
225 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
226 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
227 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
228 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
229 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
230 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
231 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
232 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
233 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
234 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
235 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
236 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
237 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
238 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
239 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
240 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
241 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
242 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
243 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
244 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv,
245 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv,
246 /* UC */
247 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
248 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
249 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
250 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
251 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
252 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
253 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
254 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
255 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
256 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
257 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
258 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
259 /* UD */
260 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
261 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
262 /* CNP */
263 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
264 };
265
266 #define OPMASK 0x1f
267
268 static const u32 pio_opmask[BIT(3)] = {
269 /* RC */
270 [IB_OPCODE_RC >> 5] =
271 BIT(RC_OP(SEND_ONLY) & OPMASK) |
272 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
273 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
274 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
275 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
276 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
277 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
278 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
279 BIT(RC_OP(FETCH_ADD) & OPMASK),
280 /* UC */
281 [IB_OPCODE_UC >> 5] =
282 BIT(UC_OP(SEND_ONLY) & OPMASK) |
283 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
284 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
285 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
286 };
287
288 /*
289 * System image GUID.
290 */
291 __be64 ib_hfi1_sys_image_guid;
292
293 /*
294 * Make sure the QP is ready and able to accept the given opcode.
295 */
296 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
297 {
298 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
299 return NULL;
300 if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
301 packet->qp->allowed_ops) ||
302 (packet->opcode == IB_OPCODE_CNP))
303 return opcode_handler_tbl[packet->opcode];
304
305 return NULL;
306 }
307
308 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
309 {
310 #ifdef CONFIG_FAULT_INJECTION
311 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
312 /*
313 * In order to drop non-IB traffic we
314 * set PbcInsertHrc to NONE (0x2).
315 * The packet will still be delivered
316 * to the receiving node but a
317 * KHdrHCRCErr (KDETH packet with a bad
318 * HCRC) will be triggered and the
319 * packet will not be delivered to the
320 * correct context.
321 */
322 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
323 else
324 /*
325 * In order to drop regular verbs
326 * traffic we set the PbcTestEbp
327 * flag. The packet will still be
328 * delivered to the receiving node but
329 * a 'late ebp error' will be
330 * triggered and will be dropped.
331 */
332 pbc |= PBC_TEST_EBP;
333 #endif
334 return pbc;
335 }
336
337 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
338 {
339 struct hfi1_ctxtdata *rcd = packet->rcd;
340 struct hfi1_pportdata *ppd = rcd->ppd;
341 struct hfi1_16b_header *hdr = packet->hdr;
342 u16 pkey;
343
344 /* Pkey check needed only for bypass packets */
345 if (packet->etype != RHF_RCV_TYPE_BYPASS)
346 return 0;
347
348 /* Perform pkey check */
349 pkey = hfi1_16B_get_pkey(hdr);
350 return ingress_pkey_check(ppd, pkey, packet->sc,
351 packet->qp->s_pkey_index,
352 packet->slid, true);
353 }
354
355 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
356 bool is_mcast)
357 {
358 u32 qp_num;
359 struct hfi1_ctxtdata *rcd = packet->rcd;
360 struct hfi1_pportdata *ppd = rcd->ppd;
361 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
362 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
363 opcode_handler packet_handler;
364 unsigned long flags;
365
366 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
367
368 if (unlikely(is_mcast)) {
369 struct rvt_mcast *mcast;
370 struct rvt_mcast_qp *p;
371
372 if (!packet->grh)
373 goto drop;
374 mcast = rvt_mcast_find(&ibp->rvp,
375 &packet->grh->dgid,
376 opa_get_lid(packet->dlid, 9B));
377 if (!mcast)
378 goto drop;
379 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
380 packet->qp = p->qp;
381 if (hfi1_do_pkey_check(packet))
382 goto drop;
383 spin_lock_irqsave(&packet->qp->r_lock, flags);
384 packet_handler = qp_ok(packet);
385 if (likely(packet_handler))
386 packet_handler(packet);
387 else
388 ibp->rvp.n_pkt_drops++;
389 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
390 }
391 /*
392 * Notify rvt_multicast_detach() if it is waiting for us
393 * to finish.
394 */
395 if (atomic_dec_return(&mcast->refcount) <= 1)
396 wake_up(&mcast->wait);
397 } else {
398 /* Get the destination QP number. */
399 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
400 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
401 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
402 else
403 qp_num = ib_bth_get_qpn(packet->ohdr);
404
405 rcu_read_lock();
406 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
407 if (!packet->qp)
408 goto unlock_drop;
409
410 if (hfi1_do_pkey_check(packet))
411 goto unlock_drop;
412
413 spin_lock_irqsave(&packet->qp->r_lock, flags);
414 packet_handler = qp_ok(packet);
415 if (likely(packet_handler))
416 packet_handler(packet);
417 else
418 ibp->rvp.n_pkt_drops++;
419 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
420 rcu_read_unlock();
421 }
422 return;
423 unlock_drop:
424 rcu_read_unlock();
425 drop:
426 ibp->rvp.n_pkt_drops++;
427 }
428
429 /**
430 * hfi1_ib_rcv - process an incoming packet
431 * @packet: data packet information
432 *
433 * This is called to process an incoming packet at interrupt level.
434 */
435 void hfi1_ib_rcv(struct hfi1_packet *packet)
436 {
437 struct hfi1_ctxtdata *rcd = packet->rcd;
438
439 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
440 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
441 }
442
443 void hfi1_16B_rcv(struct hfi1_packet *packet)
444 {
445 struct hfi1_ctxtdata *rcd = packet->rcd;
446
447 trace_input_ibhdr(rcd->dd, packet, false);
448 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
449 }
450
451 /*
452 * This is called from a timer to check for QPs
453 * which need kernel memory in order to send a packet.
454 */
455 static void mem_timer(struct timer_list *t)
456 {
457 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
458 struct list_head *list = &dev->memwait;
459 struct rvt_qp *qp = NULL;
460 struct iowait *wait;
461 unsigned long flags;
462 struct hfi1_qp_priv *priv;
463
464 write_seqlock_irqsave(&dev->iowait_lock, flags);
465 if (!list_empty(list)) {
466 wait = list_first_entry(list, struct iowait, list);
467 qp = iowait_to_qp(wait);
468 priv = qp->priv;
469 list_del_init(&priv->s_iowait.list);
470 priv->s_iowait.lock = NULL;
471 /* refcount held until actual wake up */
472 if (!list_empty(list))
473 mod_timer(&dev->mem_timer, jiffies + 1);
474 }
475 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
476
477 if (qp)
478 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
479 }
480
481 /*
482 * This is called with progress side lock held.
483 */
484 /* New API */
485 static void verbs_sdma_complete(
486 struct sdma_txreq *cookie,
487 int status)
488 {
489 struct verbs_txreq *tx =
490 container_of(cookie, struct verbs_txreq, txreq);
491 struct rvt_qp *qp = tx->qp;
492
493 spin_lock(&qp->s_lock);
494 if (tx->wqe) {
495 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
496 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
497 struct hfi1_opa_header *hdr;
498
499 hdr = &tx->phdr.hdr;
500 hfi1_rc_send_complete(qp, hdr);
501 }
502 spin_unlock(&qp->s_lock);
503
504 hfi1_put_txreq(tx);
505 }
506
507 static int wait_kmem(struct hfi1_ibdev *dev,
508 struct rvt_qp *qp,
509 struct hfi1_pkt_state *ps)
510 {
511 struct hfi1_qp_priv *priv = qp->priv;
512 unsigned long flags;
513 int ret = 0;
514
515 spin_lock_irqsave(&qp->s_lock, flags);
516 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
517 write_seqlock(&dev->iowait_lock);
518 list_add_tail(&ps->s_txreq->txreq.list,
519 &ps->wait->tx_head);
520 if (list_empty(&priv->s_iowait.list)) {
521 if (list_empty(&dev->memwait))
522 mod_timer(&dev->mem_timer, jiffies + 1);
523 qp->s_flags |= RVT_S_WAIT_KMEM;
524 list_add_tail(&priv->s_iowait.list, &dev->memwait);
525 priv->s_iowait.lock = &dev->iowait_lock;
526 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
527 rvt_get_qp(qp);
528 }
529 write_sequnlock(&dev->iowait_lock);
530 hfi1_qp_unbusy(qp, ps->wait);
531 ret = -EBUSY;
532 }
533 spin_unlock_irqrestore(&qp->s_lock, flags);
534
535 return ret;
536 }
537
538 /*
539 * This routine calls txadds for each sg entry.
540 *
541 * Add failures will revert the sge cursor
542 */
543 static noinline int build_verbs_ulp_payload(
544 struct sdma_engine *sde,
545 u32 length,
546 struct verbs_txreq *tx)
547 {
548 struct rvt_sge_state *ss = tx->ss;
549 struct rvt_sge *sg_list = ss->sg_list;
550 struct rvt_sge sge = ss->sge;
551 u8 num_sge = ss->num_sge;
552 u32 len;
553 int ret = 0;
554
555 while (length) {
556 len = ss->sge.length;
557 if (len > length)
558 len = length;
559 if (len > ss->sge.sge_length)
560 len = ss->sge.sge_length;
561 WARN_ON_ONCE(len == 0);
562 ret = sdma_txadd_kvaddr(
563 sde->dd,
564 &tx->txreq,
565 ss->sge.vaddr,
566 len);
567 if (ret)
568 goto bail_txadd;
569 rvt_update_sge(ss, len, false);
570 length -= len;
571 }
572 return ret;
573 bail_txadd:
574 /* unwind cursor */
575 ss->sge = sge;
576 ss->num_sge = num_sge;
577 ss->sg_list = sg_list;
578 return ret;
579 }
580
581 /**
582 * update_tx_opstats - record stats by opcode
583 * @qp; the qp
584 * @ps: transmit packet state
585 * @plen: the plen in dwords
586 *
587 * This is a routine to record the tx opstats after a
588 * packet has been presented to the egress mechanism.
589 */
590 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
591 u32 plen)
592 {
593 #ifdef CONFIG_DEBUG_FS
594 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
595 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
596
597 inc_opstats(plen * 4, &s->stats[ps->opcode]);
598 put_cpu_ptr(s);
599 #endif
600 }
601
602 /*
603 * Build the number of DMA descriptors needed to send length bytes of data.
604 *
605 * NOTE: DMA mapping is held in the tx until completed in the ring or
606 * the tx desc is freed without having been submitted to the ring
607 *
608 * This routine ensures all the helper routine calls succeed.
609 */
610 /* New API */
611 static int build_verbs_tx_desc(
612 struct sdma_engine *sde,
613 u32 length,
614 struct verbs_txreq *tx,
615 struct hfi1_ahg_info *ahg_info,
616 u64 pbc)
617 {
618 int ret = 0;
619 struct hfi1_sdma_header *phdr = &tx->phdr;
620 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
621 u8 extra_bytes = 0;
622
623 if (tx->phdr.hdr.hdr_type) {
624 /*
625 * hdrbytes accounts for PBC. Need to subtract 8 bytes
626 * before calculating padding.
627 */
628 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
629 (SIZE_OF_CRC << 2) + SIZE_OF_LT;
630 }
631 if (!ahg_info->ahgcount) {
632 ret = sdma_txinit_ahg(
633 &tx->txreq,
634 ahg_info->tx_flags,
635 hdrbytes + length +
636 extra_bytes,
637 ahg_info->ahgidx,
638 0,
639 NULL,
640 0,
641 verbs_sdma_complete);
642 if (ret)
643 goto bail_txadd;
644 phdr->pbc = cpu_to_le64(pbc);
645 ret = sdma_txadd_kvaddr(
646 sde->dd,
647 &tx->txreq,
648 phdr,
649 hdrbytes);
650 if (ret)
651 goto bail_txadd;
652 } else {
653 ret = sdma_txinit_ahg(
654 &tx->txreq,
655 ahg_info->tx_flags,
656 length,
657 ahg_info->ahgidx,
658 ahg_info->ahgcount,
659 ahg_info->ahgdesc,
660 hdrbytes,
661 verbs_sdma_complete);
662 if (ret)
663 goto bail_txadd;
664 }
665 /* add the ulp payload - if any. tx->ss can be NULL for acks */
666 if (tx->ss) {
667 ret = build_verbs_ulp_payload(sde, length, tx);
668 if (ret)
669 goto bail_txadd;
670 }
671
672 /* add icrc, lt byte, and padding to flit */
673 if (extra_bytes)
674 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
675 (void *)trail_buf, extra_bytes);
676
677 bail_txadd:
678 return ret;
679 }
680
681 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
682 u64 pbc)
683 {
684 struct hfi1_qp_priv *priv = qp->priv;
685 struct hfi1_ahg_info *ahg_info = priv->s_ahg;
686 u32 hdrwords = ps->s_txreq->hdr_dwords;
687 u32 len = ps->s_txreq->s_cur_size;
688 u32 plen;
689 struct hfi1_ibdev *dev = ps->dev;
690 struct hfi1_pportdata *ppd = ps->ppd;
691 struct verbs_txreq *tx;
692 u8 sc5 = priv->s_sc;
693 int ret;
694 u32 dwords;
695
696 if (ps->s_txreq->phdr.hdr.hdr_type) {
697 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
698
699 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
700 SIZE_OF_LT) >> 2;
701 } else {
702 dwords = (len + 3) >> 2;
703 }
704 plen = hdrwords + dwords + sizeof(pbc) / 4;
705
706 tx = ps->s_txreq;
707 if (!sdma_txreq_built(&tx->txreq)) {
708 if (likely(pbc == 0)) {
709 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
710
711 /* No vl15 here */
712 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
713 if (ps->s_txreq->phdr.hdr.hdr_type)
714 pbc |= PBC_PACKET_BYPASS |
715 PBC_INSERT_BYPASS_ICRC;
716 else
717 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
718
719 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
720 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
721 pbc = create_pbc(ppd,
722 pbc,
723 qp->srate_mbps,
724 vl,
725 plen);
726 }
727 tx->wqe = qp->s_wqe;
728 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
729 if (unlikely(ret))
730 goto bail_build;
731 }
732 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
733 if (unlikely(ret < 0)) {
734 if (ret == -ECOMM)
735 goto bail_ecomm;
736 return ret;
737 }
738
739 update_tx_opstats(qp, ps, plen);
740 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
741 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
742 return ret;
743
744 bail_ecomm:
745 /* The current one got "sent" */
746 return 0;
747 bail_build:
748 ret = wait_kmem(dev, qp, ps);
749 if (!ret) {
750 /* free txreq - bad state */
751 hfi1_put_txreq(ps->s_txreq);
752 ps->s_txreq = NULL;
753 }
754 return ret;
755 }
756
757 /*
758 * If we are now in the error state, return zero to flush the
759 * send work request.
760 */
761 static int pio_wait(struct rvt_qp *qp,
762 struct send_context *sc,
763 struct hfi1_pkt_state *ps,
764 u32 flag)
765 {
766 struct hfi1_qp_priv *priv = qp->priv;
767 struct hfi1_devdata *dd = sc->dd;
768 unsigned long flags;
769 int ret = 0;
770
771 /*
772 * Note that as soon as want_buffer() is called and
773 * possibly before it returns, sc_piobufavail()
774 * could be called. Therefore, put QP on the I/O wait list before
775 * enabling the PIO avail interrupt.
776 */
777 spin_lock_irqsave(&qp->s_lock, flags);
778 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
779 write_seqlock(&sc->waitlock);
780 list_add_tail(&ps->s_txreq->txreq.list,
781 &ps->wait->tx_head);
782 if (list_empty(&priv->s_iowait.list)) {
783 struct hfi1_ibdev *dev = &dd->verbs_dev;
784 int was_empty;
785
786 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
787 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
788 qp->s_flags |= flag;
789 was_empty = list_empty(&sc->piowait);
790 iowait_queue(ps->pkts_sent, &priv->s_iowait,
791 &sc->piowait);
792 priv->s_iowait.lock = &sc->waitlock;
793 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
794 rvt_get_qp(qp);
795 /* counting: only call wantpiobuf_intr if first user */
796 if (was_empty)
797 hfi1_sc_wantpiobuf_intr(sc, 1);
798 }
799 write_sequnlock(&sc->waitlock);
800 hfi1_qp_unbusy(qp, ps->wait);
801 ret = -EBUSY;
802 }
803 spin_unlock_irqrestore(&qp->s_lock, flags);
804 return ret;
805 }
806
807 static void verbs_pio_complete(void *arg, int code)
808 {
809 struct rvt_qp *qp = (struct rvt_qp *)arg;
810 struct hfi1_qp_priv *priv = qp->priv;
811
812 if (iowait_pio_dec(&priv->s_iowait))
813 iowait_drain_wakeup(&priv->s_iowait);
814 }
815
816 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
817 u64 pbc)
818 {
819 struct hfi1_qp_priv *priv = qp->priv;
820 u32 hdrwords = ps->s_txreq->hdr_dwords;
821 struct rvt_sge_state *ss = ps->s_txreq->ss;
822 u32 len = ps->s_txreq->s_cur_size;
823 u32 dwords;
824 u32 plen;
825 struct hfi1_pportdata *ppd = ps->ppd;
826 u32 *hdr;
827 u8 sc5;
828 unsigned long flags = 0;
829 struct send_context *sc;
830 struct pio_buf *pbuf;
831 int wc_status = IB_WC_SUCCESS;
832 int ret = 0;
833 pio_release_cb cb = NULL;
834 u8 extra_bytes = 0;
835
836 if (ps->s_txreq->phdr.hdr.hdr_type) {
837 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
838
839 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
840 dwords = (len + extra_bytes) >> 2;
841 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
842 } else {
843 dwords = (len + 3) >> 2;
844 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
845 }
846 plen = hdrwords + dwords + sizeof(pbc) / 4;
847
848 /* only RC/UC use complete */
849 switch (qp->ibqp.qp_type) {
850 case IB_QPT_RC:
851 case IB_QPT_UC:
852 cb = verbs_pio_complete;
853 break;
854 default:
855 break;
856 }
857
858 /* vl15 special case taken care of in ud.c */
859 sc5 = priv->s_sc;
860 sc = ps->s_txreq->psc;
861
862 if (likely(pbc == 0)) {
863 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
864
865 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
866 if (ps->s_txreq->phdr.hdr.hdr_type)
867 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
868 else
869 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
870
871 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
872 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
873 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
874 }
875 if (cb)
876 iowait_pio_inc(&priv->s_iowait);
877 pbuf = sc_buffer_alloc(sc, plen, cb, qp);
878 if (unlikely(!pbuf)) {
879 if (cb)
880 verbs_pio_complete(qp, 0);
881 if (ppd->host_link_state != HLS_UP_ACTIVE) {
882 /*
883 * If we have filled the PIO buffers to capacity and are
884 * not in an active state this request is not going to
885 * go out to so just complete it with an error or else a
886 * ULP or the core may be stuck waiting.
887 */
888 hfi1_cdbg(
889 PIO,
890 "alloc failed. state not active, completing");
891 wc_status = IB_WC_GENERAL_ERR;
892 goto pio_bail;
893 } else {
894 /*
895 * This is a normal occurrence. The PIO buffs are full
896 * up but we are still happily sending, well we could be
897 * so lets continue to queue the request.
898 */
899 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
900 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
901 if (!ret)
902 /* txreq not queued - free */
903 goto bail;
904 /* tx consumed in wait */
905 return ret;
906 }
907 }
908
909 if (dwords == 0) {
910 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
911 } else {
912 seg_pio_copy_start(pbuf, pbc,
913 hdr, hdrwords * 4);
914 if (ss) {
915 while (len) {
916 void *addr = ss->sge.vaddr;
917 u32 slen = ss->sge.length;
918
919 if (slen > len)
920 slen = len;
921 if (slen > ss->sge.sge_length)
922 slen = ss->sge.sge_length;
923 rvt_update_sge(ss, slen, false);
924 seg_pio_copy_mid(pbuf, addr, slen);
925 len -= slen;
926 }
927 }
928 /* add icrc, lt byte, and padding to flit */
929 if (extra_bytes)
930 seg_pio_copy_mid(pbuf, trail_buf, extra_bytes);
931
932 seg_pio_copy_end(pbuf);
933 }
934
935 update_tx_opstats(qp, ps, plen);
936 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
937 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
938
939 pio_bail:
940 if (qp->s_wqe) {
941 spin_lock_irqsave(&qp->s_lock, flags);
942 rvt_send_complete(qp, qp->s_wqe, wc_status);
943 spin_unlock_irqrestore(&qp->s_lock, flags);
944 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
945 spin_lock_irqsave(&qp->s_lock, flags);
946 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
947 spin_unlock_irqrestore(&qp->s_lock, flags);
948 }
949
950 ret = 0;
951
952 bail:
953 hfi1_put_txreq(ps->s_txreq);
954 return ret;
955 }
956
957 /*
958 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
959 * being an entry from the partition key table), return 0
960 * otherwise. Use the matching criteria for egress partition keys
961 * specified in the OPAv1 spec., section 9.1l.7.
962 */
963 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
964 {
965 u16 mkey = pkey & PKEY_LOW_15_MASK;
966 u16 mentry = ent & PKEY_LOW_15_MASK;
967
968 if (mkey == mentry) {
969 /*
970 * If pkey[15] is set (full partition member),
971 * is bit 15 in the corresponding table element
972 * clear (limited member)?
973 */
974 if (pkey & PKEY_MEMBER_MASK)
975 return !!(ent & PKEY_MEMBER_MASK);
976 return 1;
977 }
978 return 0;
979 }
980
981 /**
982 * egress_pkey_check - check P_KEY of a packet
983 * @ppd: Physical IB port data
984 * @slid: SLID for packet
985 * @bkey: PKEY for header
986 * @sc5: SC for packet
987 * @s_pkey_index: It will be used for look up optimization for kernel contexts
988 * only. If it is negative value, then it means user contexts is calling this
989 * function.
990 *
991 * It checks if hdr's pkey is valid.
992 *
993 * Return: 0 on success, otherwise, 1
994 */
995 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
996 u8 sc5, int8_t s_pkey_index)
997 {
998 struct hfi1_devdata *dd;
999 int i;
1000 int is_user_ctxt_mechanism = (s_pkey_index < 0);
1001
1002 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1003 return 0;
1004
1005 /* If SC15, pkey[0:14] must be 0x7fff */
1006 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1007 goto bad;
1008
1009 /* Is the pkey = 0x0, or 0x8000? */
1010 if ((pkey & PKEY_LOW_15_MASK) == 0)
1011 goto bad;
1012
1013 /*
1014 * For the kernel contexts only, if a qp is passed into the function,
1015 * the most likely matching pkey has index qp->s_pkey_index
1016 */
1017 if (!is_user_ctxt_mechanism &&
1018 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1019 return 0;
1020 }
1021
1022 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1023 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1024 return 0;
1025 }
1026 bad:
1027 /*
1028 * For the user-context mechanism, the P_KEY check would only happen
1029 * once per SDMA request, not once per packet. Therefore, there's no
1030 * need to increment the counter for the user-context mechanism.
1031 */
1032 if (!is_user_ctxt_mechanism) {
1033 incr_cntr64(&ppd->port_xmit_constraint_errors);
1034 dd = ppd->dd;
1035 if (!(dd->err_info_xmit_constraint.status &
1036 OPA_EI_STATUS_SMASK)) {
1037 dd->err_info_xmit_constraint.status |=
1038 OPA_EI_STATUS_SMASK;
1039 dd->err_info_xmit_constraint.slid = slid;
1040 dd->err_info_xmit_constraint.pkey = pkey;
1041 }
1042 }
1043 return 1;
1044 }
1045
1046 /**
1047 * get_send_routine - choose an egress routine
1048 *
1049 * Choose an egress routine based on QP type
1050 * and size
1051 */
1052 static inline send_routine get_send_routine(struct rvt_qp *qp,
1053 struct hfi1_pkt_state *ps)
1054 {
1055 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1056 struct hfi1_qp_priv *priv = qp->priv;
1057 struct verbs_txreq *tx = ps->s_txreq;
1058
1059 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1060 return dd->process_pio_send;
1061 switch (qp->ibqp.qp_type) {
1062 case IB_QPT_SMI:
1063 return dd->process_pio_send;
1064 case IB_QPT_GSI:
1065 case IB_QPT_UD:
1066 break;
1067 case IB_QPT_UC:
1068 case IB_QPT_RC: {
1069 if (piothreshold &&
1070 tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1071 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1072 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1073 !sdma_txreq_built(&tx->txreq))
1074 return dd->process_pio_send;
1075 break;
1076 }
1077 default:
1078 break;
1079 }
1080 return dd->process_dma_send;
1081 }
1082
1083 /**
1084 * hfi1_verbs_send - send a packet
1085 * @qp: the QP to send on
1086 * @ps: the state of the packet to send
1087 *
1088 * Return zero if packet is sent or queued OK.
1089 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1090 */
1091 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1092 {
1093 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1094 struct hfi1_qp_priv *priv = qp->priv;
1095 struct ib_other_headers *ohdr = NULL;
1096 send_routine sr;
1097 int ret;
1098 u16 pkey;
1099 u32 slid;
1100 u8 l4 = 0;
1101
1102 /* locate the pkey within the headers */
1103 if (ps->s_txreq->phdr.hdr.hdr_type) {
1104 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1105
1106 l4 = hfi1_16B_get_l4(hdr);
1107 if (l4 == OPA_16B_L4_IB_LOCAL)
1108 ohdr = &hdr->u.oth;
1109 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1110 ohdr = &hdr->u.l.oth;
1111
1112 slid = hfi1_16B_get_slid(hdr);
1113 pkey = hfi1_16B_get_pkey(hdr);
1114 } else {
1115 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1116 u8 lnh = ib_get_lnh(hdr);
1117
1118 if (lnh == HFI1_LRH_GRH)
1119 ohdr = &hdr->u.l.oth;
1120 else
1121 ohdr = &hdr->u.oth;
1122 slid = ib_get_slid(hdr);
1123 pkey = ib_bth_get_pkey(ohdr);
1124 }
1125
1126 if (likely(l4 != OPA_16B_L4_FM))
1127 ps->opcode = ib_bth_get_opcode(ohdr);
1128 else
1129 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1130
1131 sr = get_send_routine(qp, ps);
1132 ret = egress_pkey_check(dd->pport, slid, pkey,
1133 priv->s_sc, qp->s_pkey_index);
1134 if (unlikely(ret)) {
1135 /*
1136 * The value we are returning here does not get propagated to
1137 * the verbs caller. Thus we need to complete the request with
1138 * error otherwise the caller could be sitting waiting on the
1139 * completion event. Only do this for PIO. SDMA has its own
1140 * mechanism for handling the errors. So for SDMA we can just
1141 * return.
1142 */
1143 if (sr == dd->process_pio_send) {
1144 unsigned long flags;
1145
1146 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1147 __func__);
1148 spin_lock_irqsave(&qp->s_lock, flags);
1149 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1150 spin_unlock_irqrestore(&qp->s_lock, flags);
1151 }
1152 return -EINVAL;
1153 }
1154 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1155 return pio_wait(qp,
1156 ps->s_txreq->psc,
1157 ps,
1158 HFI1_S_WAIT_PIO_DRAIN);
1159 return sr(qp, ps, 0);
1160 }
1161
1162 /**
1163 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1164 * @dd: the device data structure
1165 */
1166 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1167 {
1168 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1169 u32 ver = dd->dc8051_ver;
1170
1171 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1172
1173 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1174 ((u64)(dc8051_ver_min(ver)) << 16) |
1175 (u64)dc8051_ver_patch(ver);
1176
1177 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1178 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1179 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1180 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1181 IB_DEVICE_MEM_MGT_EXTENSIONS |
1182 IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1183 rdi->dparms.props.page_size_cap = PAGE_SIZE;
1184 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1185 rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1186 rdi->dparms.props.hw_ver = dd->minrev;
1187 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1188 rdi->dparms.props.max_mr_size = U64_MAX;
1189 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1190 rdi->dparms.props.max_qp = hfi1_max_qps;
1191 rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1192 rdi->dparms.props.max_send_sge = hfi1_max_sges;
1193 rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1194 rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1195 rdi->dparms.props.max_cq = hfi1_max_cqs;
1196 rdi->dparms.props.max_ah = hfi1_max_ahs;
1197 rdi->dparms.props.max_cqe = hfi1_max_cqes;
1198 rdi->dparms.props.max_mr = rdi->lkey_table.max;
1199 rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1200 rdi->dparms.props.max_map_per_fmr = 32767;
1201 rdi->dparms.props.max_pd = hfi1_max_pds;
1202 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1203 rdi->dparms.props.max_qp_init_rd_atom = 255;
1204 rdi->dparms.props.max_srq = hfi1_max_srqs;
1205 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1206 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1207 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1208 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1209 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1210 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1211 rdi->dparms.props.max_total_mcast_qp_attach =
1212 rdi->dparms.props.max_mcast_qp_attach *
1213 rdi->dparms.props.max_mcast_grp;
1214 }
1215
1216 static inline u16 opa_speed_to_ib(u16 in)
1217 {
1218 u16 out = 0;
1219
1220 if (in & OPA_LINK_SPEED_25G)
1221 out |= IB_SPEED_EDR;
1222 if (in & OPA_LINK_SPEED_12_5G)
1223 out |= IB_SPEED_FDR;
1224
1225 return out;
1226 }
1227
1228 /*
1229 * Convert a single OPA link width (no multiple flags) to an IB value.
1230 * A zero OPA link width means link down, which means the IB width value
1231 * is a don't care.
1232 */
1233 static inline u16 opa_width_to_ib(u16 in)
1234 {
1235 switch (in) {
1236 case OPA_LINK_WIDTH_1X:
1237 /* map 2x and 3x to 1x as they don't exist in IB */
1238 case OPA_LINK_WIDTH_2X:
1239 case OPA_LINK_WIDTH_3X:
1240 return IB_WIDTH_1X;
1241 default: /* link down or unknown, return our largest width */
1242 case OPA_LINK_WIDTH_4X:
1243 return IB_WIDTH_4X;
1244 }
1245 }
1246
1247 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1248 struct ib_port_attr *props)
1249 {
1250 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1251 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1252 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1253 u32 lid = ppd->lid;
1254
1255 /* props being zeroed by the caller, avoid zeroing it here */
1256 props->lid = lid ? lid : 0;
1257 props->lmc = ppd->lmc;
1258 /* OPA logical states match IB logical states */
1259 props->state = driver_lstate(ppd);
1260 props->phys_state = driver_pstate(ppd);
1261 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1262 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1263 /* see rate_show() in ib core/sysfs.c */
1264 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1265 props->max_vl_num = ppd->vls_supported;
1266
1267 /* Once we are a "first class" citizen and have added the OPA MTUs to
1268 * the core we can advertise the larger MTU enum to the ULPs, for now
1269 * advertise only 4K.
1270 *
1271 * Those applications which are either OPA aware or pass the MTU enum
1272 * from the Path Records to us will get the new 8k MTU. Those that
1273 * attempt to process the MTU enum may fail in various ways.
1274 */
1275 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1276 4096 : hfi1_max_mtu), IB_MTU_4096);
1277 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1278 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1279
1280 return 0;
1281 }
1282
1283 static int modify_device(struct ib_device *device,
1284 int device_modify_mask,
1285 struct ib_device_modify *device_modify)
1286 {
1287 struct hfi1_devdata *dd = dd_from_ibdev(device);
1288 unsigned i;
1289 int ret;
1290
1291 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1292 IB_DEVICE_MODIFY_NODE_DESC)) {
1293 ret = -EOPNOTSUPP;
1294 goto bail;
1295 }
1296
1297 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1298 memcpy(device->node_desc, device_modify->node_desc,
1299 IB_DEVICE_NODE_DESC_MAX);
1300 for (i = 0; i < dd->num_pports; i++) {
1301 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1302
1303 hfi1_node_desc_chg(ibp);
1304 }
1305 }
1306
1307 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1308 ib_hfi1_sys_image_guid =
1309 cpu_to_be64(device_modify->sys_image_guid);
1310 for (i = 0; i < dd->num_pports; i++) {
1311 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1312
1313 hfi1_sys_guid_chg(ibp);
1314 }
1315 }
1316
1317 ret = 0;
1318
1319 bail:
1320 return ret;
1321 }
1322
1323 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1324 {
1325 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1326 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1327 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1328 int ret;
1329
1330 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1331 OPA_LINKDOWN_REASON_UNKNOWN);
1332 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1333 return ret;
1334 }
1335
1336 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1337 int guid_index, __be64 *guid)
1338 {
1339 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1340
1341 if (guid_index >= HFI1_GUIDS_PER_PORT)
1342 return -EINVAL;
1343
1344 *guid = get_sguid(ibp, guid_index);
1345 return 0;
1346 }
1347
1348 /*
1349 * convert ah port,sl to sc
1350 */
1351 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1352 {
1353 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1354
1355 return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1356 }
1357
1358 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1359 {
1360 struct hfi1_ibport *ibp;
1361 struct hfi1_pportdata *ppd;
1362 struct hfi1_devdata *dd;
1363 u8 sc5;
1364 u8 sl;
1365
1366 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1367 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1368 return -EINVAL;
1369
1370 /* test the mapping for validity */
1371 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1372 ppd = ppd_from_ibp(ibp);
1373 dd = dd_from_ppd(ppd);
1374
1375 sl = rdma_ah_get_sl(ah_attr);
1376 if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1377 return -EINVAL;
1378
1379 sc5 = ibp->sl_to_sc[sl];
1380 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1381 return -EINVAL;
1382 return 0;
1383 }
1384
1385 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1386 struct rdma_ah_attr *ah_attr,
1387 struct rvt_ah *ah)
1388 {
1389 struct hfi1_ibport *ibp;
1390 struct hfi1_pportdata *ppd;
1391 struct hfi1_devdata *dd;
1392 u8 sc5;
1393 struct rdma_ah_attr *attr = &ah->attr;
1394
1395 /*
1396 * Do not trust reading anything from rvt_ah at this point as it is not
1397 * done being setup. We can however modify things which we need to set.
1398 */
1399
1400 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1401 ppd = ppd_from_ibp(ibp);
1402 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1403 hfi1_update_ah_attr(ibdev, attr);
1404 hfi1_make_opa_lid(attr);
1405 dd = dd_from_ppd(ppd);
1406 ah->vl = sc_to_vlt(dd, sc5);
1407 if (ah->vl < num_vls || ah->vl == 15)
1408 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1409 }
1410
1411 /**
1412 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1413 * @dd: the hfi1_ib device
1414 */
1415 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1416 {
1417 return ARRAY_SIZE(dd->pport[0].pkeys);
1418 }
1419
1420 static void init_ibport(struct hfi1_pportdata *ppd)
1421 {
1422 struct hfi1_ibport *ibp = &ppd->ibport_data;
1423 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1424 int i;
1425
1426 for (i = 0; i < sz; i++) {
1427 ibp->sl_to_sc[i] = i;
1428 ibp->sc_to_sl[i] = i;
1429 }
1430
1431 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1432 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1433 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1434
1435 spin_lock_init(&ibp->rvp.lock);
1436 /* Set the prefix to the default value (see ch. 4.1.1) */
1437 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1438 ibp->rvp.sm_lid = 0;
1439 /*
1440 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1441 * and PortInfo.CapabilityMask3
1442 */
1443 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1444 IB_PORT_CAP_MASK_NOTICE_SUP;
1445 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1446 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1447 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1448 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1449 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1450 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1451
1452 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1453 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1454 }
1455
1456 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1457 {
1458 struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1459 struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1460 u32 ver = dd_from_dev(dev)->dc8051_ver;
1461
1462 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1463 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1464 }
1465
1466 static const char * const driver_cntr_names[] = {
1467 /* must be element 0*/
1468 "DRIVER_KernIntr",
1469 "DRIVER_ErrorIntr",
1470 "DRIVER_Tx_Errs",
1471 "DRIVER_Rcv_Errs",
1472 "DRIVER_HW_Errs",
1473 "DRIVER_NoPIOBufs",
1474 "DRIVER_CtxtsOpen",
1475 "DRIVER_RcvLen_Errs",
1476 "DRIVER_EgrBufFull",
1477 "DRIVER_EgrHdrFull"
1478 };
1479
1480 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1481 static const char **dev_cntr_names;
1482 static const char **port_cntr_names;
1483 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1484 static int num_dev_cntrs;
1485 static int num_port_cntrs;
1486 static int cntr_names_initialized;
1487
1488 /*
1489 * Convert a list of names separated by '\n' into an array of NULL terminated
1490 * strings. Optionally some entries can be reserved in the array to hold extra
1491 * external strings.
1492 */
1493 static int init_cntr_names(const char *names_in,
1494 const size_t names_len,
1495 int num_extra_names,
1496 int *num_cntrs,
1497 const char ***cntr_names)
1498 {
1499 char *names_out, *p, **q;
1500 int i, n;
1501
1502 n = 0;
1503 for (i = 0; i < names_len; i++)
1504 if (names_in[i] == '\n')
1505 n++;
1506
1507 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1508 GFP_KERNEL);
1509 if (!names_out) {
1510 *num_cntrs = 0;
1511 *cntr_names = NULL;
1512 return -ENOMEM;
1513 }
1514
1515 p = names_out + (n + num_extra_names) * sizeof(char *);
1516 memcpy(p, names_in, names_len);
1517
1518 q = (char **)names_out;
1519 for (i = 0; i < n; i++) {
1520 q[i] = p;
1521 p = strchr(p, '\n');
1522 *p++ = '\0';
1523 }
1524
1525 *num_cntrs = n;
1526 *cntr_names = (const char **)names_out;
1527 return 0;
1528 }
1529
1530 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1531 u8 port_num)
1532 {
1533 int i, err;
1534
1535 mutex_lock(&cntr_names_lock);
1536 if (!cntr_names_initialized) {
1537 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1538
1539 err = init_cntr_names(dd->cntrnames,
1540 dd->cntrnameslen,
1541 num_driver_cntrs,
1542 &num_dev_cntrs,
1543 &dev_cntr_names);
1544 if (err) {
1545 mutex_unlock(&cntr_names_lock);
1546 return NULL;
1547 }
1548
1549 for (i = 0; i < num_driver_cntrs; i++)
1550 dev_cntr_names[num_dev_cntrs + i] =
1551 driver_cntr_names[i];
1552
1553 err = init_cntr_names(dd->portcntrnames,
1554 dd->portcntrnameslen,
1555 0,
1556 &num_port_cntrs,
1557 &port_cntr_names);
1558 if (err) {
1559 kfree(dev_cntr_names);
1560 dev_cntr_names = NULL;
1561 mutex_unlock(&cntr_names_lock);
1562 return NULL;
1563 }
1564 cntr_names_initialized = 1;
1565 }
1566 mutex_unlock(&cntr_names_lock);
1567
1568 if (!port_num)
1569 return rdma_alloc_hw_stats_struct(
1570 dev_cntr_names,
1571 num_dev_cntrs + num_driver_cntrs,
1572 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1573 else
1574 return rdma_alloc_hw_stats_struct(
1575 port_cntr_names,
1576 num_port_cntrs,
1577 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1578 }
1579
1580 static u64 hfi1_sps_ints(void)
1581 {
1582 unsigned long flags;
1583 struct hfi1_devdata *dd;
1584 u64 sps_ints = 0;
1585
1586 spin_lock_irqsave(&hfi1_devs_lock, flags);
1587 list_for_each_entry(dd, &hfi1_dev_list, list) {
1588 sps_ints += get_all_cpu_total(dd->int_counter);
1589 }
1590 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1591 return sps_ints;
1592 }
1593
1594 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1595 u8 port, int index)
1596 {
1597 u64 *values;
1598 int count;
1599
1600 if (!port) {
1601 u64 *stats = (u64 *)&hfi1_stats;
1602 int i;
1603
1604 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1605 values[num_dev_cntrs] = hfi1_sps_ints();
1606 for (i = 1; i < num_driver_cntrs; i++)
1607 values[num_dev_cntrs + i] = stats[i];
1608 count = num_dev_cntrs + num_driver_cntrs;
1609 } else {
1610 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1611
1612 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1613 count = num_port_cntrs;
1614 }
1615
1616 memcpy(stats->value, values, count * sizeof(u64));
1617 return count;
1618 }
1619
1620 static const struct ib_device_ops hfi1_dev_ops = {
1621 .alloc_hw_stats = alloc_hw_stats,
1622 .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1623 .get_dev_fw_str = hfi1_get_dev_fw_str,
1624 .get_hw_stats = get_hw_stats,
1625 .modify_device = modify_device,
1626 /* keep process mad in the driver */
1627 .process_mad = hfi1_process_mad,
1628 };
1629
1630 /**
1631 * hfi1_register_ib_device - register our device with the infiniband core
1632 * @dd: the device data structure
1633 * Return 0 if successful, errno if unsuccessful.
1634 */
1635 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1636 {
1637 struct hfi1_ibdev *dev = &dd->verbs_dev;
1638 struct ib_device *ibdev = &dev->rdi.ibdev;
1639 struct hfi1_pportdata *ppd = dd->pport;
1640 struct hfi1_ibport *ibp = &ppd->ibport_data;
1641 unsigned i;
1642 int ret;
1643
1644 for (i = 0; i < dd->num_pports; i++)
1645 init_ibport(ppd + i);
1646
1647 /* Only need to initialize non-zero fields. */
1648
1649 timer_setup(&dev->mem_timer, mem_timer, 0);
1650
1651 seqlock_init(&dev->iowait_lock);
1652 seqlock_init(&dev->txwait_lock);
1653 INIT_LIST_HEAD(&dev->txwait);
1654 INIT_LIST_HEAD(&dev->memwait);
1655
1656 ret = verbs_txreq_init(dev);
1657 if (ret)
1658 goto err_verbs_txreq;
1659
1660 /* Use first-port GUID as node guid */
1661 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1662
1663 /*
1664 * The system image GUID is supposed to be the same for all
1665 * HFIs in a single system but since there can be other
1666 * device types in the system, we can't be sure this is unique.
1667 */
1668 if (!ib_hfi1_sys_image_guid)
1669 ib_hfi1_sys_image_guid = ibdev->node_guid;
1670 ibdev->owner = THIS_MODULE;
1671 ibdev->phys_port_cnt = dd->num_pports;
1672 ibdev->dev.parent = &dd->pcidev->dev;
1673
1674 ib_set_device_ops(ibdev, &hfi1_dev_ops);
1675
1676 strlcpy(ibdev->node_desc, init_utsname()->nodename,
1677 sizeof(ibdev->node_desc));
1678
1679 /*
1680 * Fill in rvt info object.
1681 */
1682 dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1683 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1684 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1685 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1686 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1687 dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1688 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1689 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1690 /*
1691 * Fill in rvt info device attributes.
1692 */
1693 hfi1_fill_device_attr(dd);
1694
1695 /* queue pair */
1696 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1697 dd->verbs_dev.rdi.dparms.qpn_start = 0;
1698 dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1699 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1700 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1701 dd->verbs_dev.rdi.dparms.qpn_res_end =
1702 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1703 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1704 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1705 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1706 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1707 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1708 RDMA_CORE_CAP_OPA_AH;
1709 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1710
1711 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1712 dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1713 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1714 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1715 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1716 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1717 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1718 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1719 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1720 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1721 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1722 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1723 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1724 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1725 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1726 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1727 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1728 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1729 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1730 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1731 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1732 hfi1_comp_vect_mappings_lookup;
1733
1734 /* completeion queue */
1735 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1736 dd->verbs_dev.rdi.dparms.node = dd->node;
1737
1738 /* misc settings */
1739 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1740 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1741 dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1742 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1743 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1744 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1745 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1746
1747 /* post send table */
1748 dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1749
1750 /* opcode translation table */
1751 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1752
1753 ppd = dd->pport;
1754 for (i = 0; i < dd->num_pports; i++, ppd++)
1755 rvt_init_port(&dd->verbs_dev.rdi,
1756 &ppd->ibport_data.rvp,
1757 i,
1758 ppd->pkeys);
1759
1760 rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1761 &ib_hfi1_attr_group);
1762
1763 ret = rvt_register_device(&dd->verbs_dev.rdi, RDMA_DRIVER_HFI1);
1764 if (ret)
1765 goto err_verbs_txreq;
1766
1767 ret = hfi1_verbs_register_sysfs(dd);
1768 if (ret)
1769 goto err_class;
1770
1771 return ret;
1772
1773 err_class:
1774 rvt_unregister_device(&dd->verbs_dev.rdi);
1775 err_verbs_txreq:
1776 verbs_txreq_exit(dev);
1777 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1778 return ret;
1779 }
1780
1781 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1782 {
1783 struct hfi1_ibdev *dev = &dd->verbs_dev;
1784
1785 hfi1_verbs_unregister_sysfs(dd);
1786
1787 rvt_unregister_device(&dd->verbs_dev.rdi);
1788
1789 if (!list_empty(&dev->txwait))
1790 dd_dev_err(dd, "txwait list not empty!\n");
1791 if (!list_empty(&dev->memwait))
1792 dd_dev_err(dd, "memwait list not empty!\n");
1793
1794 del_timer_sync(&dev->mem_timer);
1795 verbs_txreq_exit(dev);
1796
1797 mutex_lock(&cntr_names_lock);
1798 kfree(dev_cntr_names);
1799 kfree(port_cntr_names);
1800 dev_cntr_names = NULL;
1801 port_cntr_names = NULL;
1802 cntr_names_initialized = 0;
1803 mutex_unlock(&cntr_names_lock);
1804 }
1805
1806 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1807 {
1808 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1809 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1810 struct ib_header *hdr = packet->hdr;
1811 struct rvt_qp *qp = packet->qp;
1812 u32 lqpn, rqpn = 0;
1813 u16 rlid = 0;
1814 u8 sl, sc5, svc_type;
1815
1816 switch (packet->qp->ibqp.qp_type) {
1817 case IB_QPT_UC:
1818 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1819 rqpn = qp->remote_qpn;
1820 svc_type = IB_CC_SVCTYPE_UC;
1821 break;
1822 case IB_QPT_RC:
1823 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1824 rqpn = qp->remote_qpn;
1825 svc_type = IB_CC_SVCTYPE_RC;
1826 break;
1827 case IB_QPT_SMI:
1828 case IB_QPT_GSI:
1829 case IB_QPT_UD:
1830 svc_type = IB_CC_SVCTYPE_UD;
1831 break;
1832 default:
1833 ibp->rvp.n_pkt_drops++;
1834 return;
1835 }
1836
1837 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
1838 sl = ibp->sc_to_sl[sc5];
1839 lqpn = qp->ibqp.qp_num;
1840
1841 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1842 }