]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/infiniband/hw/ipath/ipath_driver.c
Merge commit 'v2.6.33-rc5' into secretlab/test-devicetree
[mirror_ubuntu-hirsute-kernel.git] / drivers / infiniband / hw / ipath / ipath_driver.c
1 /*
2 * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/sched.h>
35 #include <linux/spinlock.h>
36 #include <linux/idr.h>
37 #include <linux/pci.h>
38 #include <linux/io.h>
39 #include <linux/delay.h>
40 #include <linux/netdevice.h>
41 #include <linux/vmalloc.h>
42 #include <linux/bitmap.h>
43
44 #include "ipath_kernel.h"
45 #include "ipath_verbs.h"
46
47 static void ipath_update_pio_bufs(struct ipath_devdata *);
48
49 const char *ipath_get_unit_name(int unit)
50 {
51 static char iname[16];
52 snprintf(iname, sizeof iname, "infinipath%u", unit);
53 return iname;
54 }
55
56 #define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: "
57 #define PFX IPATH_DRV_NAME ": "
58
59 /*
60 * The size has to be longer than this string, so we can append
61 * board/chip information to it in the init code.
62 */
63 const char ib_ipath_version[] = IPATH_IDSTR "\n";
64
65 static struct idr unit_table;
66 DEFINE_SPINLOCK(ipath_devs_lock);
67 LIST_HEAD(ipath_dev_list);
68
69 wait_queue_head_t ipath_state_wait;
70
71 unsigned ipath_debug = __IPATH_INFO;
72
73 module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
74 MODULE_PARM_DESC(debug, "mask for debug prints");
75 EXPORT_SYMBOL_GPL(ipath_debug);
76
77 unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */
78 module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO);
79 MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported");
80
81 static unsigned ipath_hol_timeout_ms = 13000;
82 module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO);
83 MODULE_PARM_DESC(hol_timeout_ms,
84 "duration of user app suspension after link failure");
85
86 unsigned ipath_linkrecovery = 1;
87 module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO);
88 MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue");
89
90 MODULE_LICENSE("GPL");
91 MODULE_AUTHOR("QLogic <support@qlogic.com>");
92 MODULE_DESCRIPTION("QLogic InfiniPath driver");
93
94 /*
95 * Table to translate the LINKTRAININGSTATE portion of
96 * IBCStatus to a human-readable form.
97 */
98 const char *ipath_ibcstatus_str[] = {
99 "Disabled",
100 "LinkUp",
101 "PollActive",
102 "PollQuiet",
103 "SleepDelay",
104 "SleepQuiet",
105 "LState6", /* unused */
106 "LState7", /* unused */
107 "CfgDebounce",
108 "CfgRcvfCfg",
109 "CfgWaitRmt",
110 "CfgIdle",
111 "RecovRetrain",
112 "CfgTxRevLane", /* unused before IBA7220 */
113 "RecovWaitRmt",
114 "RecovIdle",
115 /* below were added for IBA7220 */
116 "CfgEnhanced",
117 "CfgTest",
118 "CfgWaitRmtTest",
119 "CfgWaitCfgEnhanced",
120 "SendTS_T",
121 "SendTstIdles",
122 "RcvTS_T",
123 "SendTst_TS1s",
124 "LTState18", "LTState19", "LTState1A", "LTState1B",
125 "LTState1C", "LTState1D", "LTState1E", "LTState1F"
126 };
127
128 static void __devexit ipath_remove_one(struct pci_dev *);
129 static int __devinit ipath_init_one(struct pci_dev *,
130 const struct pci_device_id *);
131
132 /* Only needed for registration, nothing else needs this info */
133 #define PCI_VENDOR_ID_PATHSCALE 0x1fc1
134 #define PCI_VENDOR_ID_QLOGIC 0x1077
135 #define PCI_DEVICE_ID_INFINIPATH_HT 0xd
136 #define PCI_DEVICE_ID_INFINIPATH_PE800 0x10
137 #define PCI_DEVICE_ID_INFINIPATH_7220 0x7220
138
139 /* Number of seconds before our card status check... */
140 #define STATUS_TIMEOUT 60
141
142 static const struct pci_device_id ipath_pci_tbl[] = {
143 { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
144 { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_PE800) },
145 { PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_INFINIPATH_7220) },
146 { 0, }
147 };
148
149 MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
150
151 static struct pci_driver ipath_driver = {
152 .name = IPATH_DRV_NAME,
153 .probe = ipath_init_one,
154 .remove = __devexit_p(ipath_remove_one),
155 .id_table = ipath_pci_tbl,
156 .driver = {
157 .groups = ipath_driver_attr_groups,
158 },
159 };
160
161 static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
162 u32 *bar0, u32 *bar1)
163 {
164 int ret;
165
166 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
167 if (ret)
168 ipath_dev_err(dd, "failed to read bar0 before enable: "
169 "error %d\n", -ret);
170
171 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
172 if (ret)
173 ipath_dev_err(dd, "failed to read bar1 before enable: "
174 "error %d\n", -ret);
175
176 ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
177 }
178
179 static void ipath_free_devdata(struct pci_dev *pdev,
180 struct ipath_devdata *dd)
181 {
182 unsigned long flags;
183
184 pci_set_drvdata(pdev, NULL);
185
186 if (dd->ipath_unit != -1) {
187 spin_lock_irqsave(&ipath_devs_lock, flags);
188 idr_remove(&unit_table, dd->ipath_unit);
189 list_del(&dd->ipath_list);
190 spin_unlock_irqrestore(&ipath_devs_lock, flags);
191 }
192 vfree(dd);
193 }
194
195 static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
196 {
197 unsigned long flags;
198 struct ipath_devdata *dd;
199 int ret;
200
201 if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
202 dd = ERR_PTR(-ENOMEM);
203 goto bail;
204 }
205
206 dd = vmalloc(sizeof(*dd));
207 if (!dd) {
208 dd = ERR_PTR(-ENOMEM);
209 goto bail;
210 }
211 memset(dd, 0, sizeof(*dd));
212 dd->ipath_unit = -1;
213
214 spin_lock_irqsave(&ipath_devs_lock, flags);
215
216 ret = idr_get_new(&unit_table, dd, &dd->ipath_unit);
217 if (ret < 0) {
218 printk(KERN_ERR IPATH_DRV_NAME
219 ": Could not allocate unit ID: error %d\n", -ret);
220 ipath_free_devdata(pdev, dd);
221 dd = ERR_PTR(ret);
222 goto bail_unlock;
223 }
224
225 dd->pcidev = pdev;
226 pci_set_drvdata(pdev, dd);
227
228 list_add(&dd->ipath_list, &ipath_dev_list);
229
230 bail_unlock:
231 spin_unlock_irqrestore(&ipath_devs_lock, flags);
232
233 bail:
234 return dd;
235 }
236
237 static inline struct ipath_devdata *__ipath_lookup(int unit)
238 {
239 return idr_find(&unit_table, unit);
240 }
241
242 struct ipath_devdata *ipath_lookup(int unit)
243 {
244 struct ipath_devdata *dd;
245 unsigned long flags;
246
247 spin_lock_irqsave(&ipath_devs_lock, flags);
248 dd = __ipath_lookup(unit);
249 spin_unlock_irqrestore(&ipath_devs_lock, flags);
250
251 return dd;
252 }
253
254 int ipath_count_units(int *npresentp, int *nupp, int *maxportsp)
255 {
256 int nunits, npresent, nup;
257 struct ipath_devdata *dd;
258 unsigned long flags;
259 int maxports;
260
261 nunits = npresent = nup = maxports = 0;
262
263 spin_lock_irqsave(&ipath_devs_lock, flags);
264
265 list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
266 nunits++;
267 if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
268 npresent++;
269 if (dd->ipath_lid &&
270 !(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
271 | IPATH_LINKUNK)))
272 nup++;
273 if (dd->ipath_cfgports > maxports)
274 maxports = dd->ipath_cfgports;
275 }
276
277 spin_unlock_irqrestore(&ipath_devs_lock, flags);
278
279 if (npresentp)
280 *npresentp = npresent;
281 if (nupp)
282 *nupp = nup;
283 if (maxportsp)
284 *maxportsp = maxports;
285
286 return nunits;
287 }
288
289 /*
290 * These next two routines are placeholders in case we don't have per-arch
291 * code for controlling write combining. If explicit control of write
292 * combining is not available, performance will probably be awful.
293 */
294
295 int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
296 {
297 return -EOPNOTSUPP;
298 }
299
300 void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
301 {
302 }
303
304 /*
305 * Perform a PIO buffer bandwidth write test, to verify proper system
306 * configuration. Even when all the setup calls work, occasionally
307 * BIOS or other issues can prevent write combining from working, or
308 * can cause other bandwidth problems to the chip.
309 *
310 * This test simply writes the same buffer over and over again, and
311 * measures close to the peak bandwidth to the chip (not testing
312 * data bandwidth to the wire). On chips that use an address-based
313 * trigger to send packets to the wire, this is easy. On chips that
314 * use a count to trigger, we want to make sure that the packet doesn't
315 * go out on the wire, or trigger flow control checks.
316 */
317 static void ipath_verify_pioperf(struct ipath_devdata *dd)
318 {
319 u32 pbnum, cnt, lcnt;
320 u32 __iomem *piobuf;
321 u32 *addr;
322 u64 msecs, emsecs;
323
324 piobuf = ipath_getpiobuf(dd, 0, &pbnum);
325 if (!piobuf) {
326 dev_info(&dd->pcidev->dev,
327 "No PIObufs for checking perf, skipping\n");
328 return;
329 }
330
331 /*
332 * Enough to give us a reasonable test, less than piobuf size, and
333 * likely multiple of store buffer length.
334 */
335 cnt = 1024;
336
337 addr = vmalloc(cnt);
338 if (!addr) {
339 dev_info(&dd->pcidev->dev,
340 "Couldn't get memory for checking PIO perf,"
341 " skipping\n");
342 goto done;
343 }
344
345 preempt_disable(); /* we want reasonably accurate elapsed time */
346 msecs = 1 + jiffies_to_msecs(jiffies);
347 for (lcnt = 0; lcnt < 10000U; lcnt++) {
348 /* wait until we cross msec boundary */
349 if (jiffies_to_msecs(jiffies) >= msecs)
350 break;
351 udelay(1);
352 }
353
354 ipath_disable_armlaunch(dd);
355
356 /*
357 * length 0, no dwords actually sent, and mark as VL15
358 * on chips where that may matter (due to IB flowcontrol)
359 */
360 if ((dd->ipath_flags & IPATH_HAS_PBC_CNT))
361 writeq(1UL << 63, piobuf);
362 else
363 writeq(0, piobuf);
364 ipath_flush_wc();
365
366 /*
367 * this is only roughly accurate, since even with preempt we
368 * still take interrupts that could take a while. Running for
369 * >= 5 msec seems to get us "close enough" to accurate values
370 */
371 msecs = jiffies_to_msecs(jiffies);
372 for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) {
373 __iowrite32_copy(piobuf + 64, addr, cnt >> 2);
374 emsecs = jiffies_to_msecs(jiffies) - msecs;
375 }
376
377 /* 1 GiB/sec, slightly over IB SDR line rate */
378 if (lcnt < (emsecs * 1024U))
379 ipath_dev_err(dd,
380 "Performance problem: bandwidth to PIO buffers is "
381 "only %u MiB/sec\n",
382 lcnt / (u32) emsecs);
383 else
384 ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n",
385 lcnt / (u32) emsecs);
386
387 preempt_enable();
388
389 vfree(addr);
390
391 done:
392 /* disarm piobuf, so it's available again */
393 ipath_disarm_piobufs(dd, pbnum, 1);
394 ipath_enable_armlaunch(dd);
395 }
396
397 static int __devinit ipath_init_one(struct pci_dev *pdev,
398 const struct pci_device_id *ent)
399 {
400 int ret, len, j;
401 struct ipath_devdata *dd;
402 unsigned long long addr;
403 u32 bar0 = 0, bar1 = 0;
404 u8 rev;
405
406 dd = ipath_alloc_devdata(pdev);
407 if (IS_ERR(dd)) {
408 ret = PTR_ERR(dd);
409 printk(KERN_ERR IPATH_DRV_NAME
410 ": Could not allocate devdata: error %d\n", -ret);
411 goto bail;
412 }
413
414 ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
415
416 ret = pci_enable_device(pdev);
417 if (ret) {
418 /* This can happen iff:
419 *
420 * We did a chip reset, and then failed to reprogram the
421 * BAR, or the chip reset due to an internal error. We then
422 * unloaded the driver and reloaded it.
423 *
424 * Both reset cases set the BAR back to initial state. For
425 * the latter case, the AER sticky error bit at offset 0x718
426 * should be set, but the Linux kernel doesn't yet know
427 * about that, it appears. If the original BAR was retained
428 * in the kernel data structures, this may be OK.
429 */
430 ipath_dev_err(dd, "enable unit %d failed: error %d\n",
431 dd->ipath_unit, -ret);
432 goto bail_devdata;
433 }
434 addr = pci_resource_start(pdev, 0);
435 len = pci_resource_len(pdev, 0);
436 ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x "
437 "driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
438 ent->device, ent->driver_data);
439
440 read_bars(dd, pdev, &bar0, &bar1);
441
442 if (!bar1 && !(bar0 & ~0xf)) {
443 if (addr) {
444 dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
445 "rewriting as %llx\n", addr);
446 ret = pci_write_config_dword(
447 pdev, PCI_BASE_ADDRESS_0, addr);
448 if (ret) {
449 ipath_dev_err(dd, "rewrite of BAR0 "
450 "failed: err %d\n", -ret);
451 goto bail_disable;
452 }
453 ret = pci_write_config_dword(
454 pdev, PCI_BASE_ADDRESS_1, addr >> 32);
455 if (ret) {
456 ipath_dev_err(dd, "rewrite of BAR1 "
457 "failed: err %d\n", -ret);
458 goto bail_disable;
459 }
460 } else {
461 ipath_dev_err(dd, "BAR is 0 (probable RESET), "
462 "not usable until reboot\n");
463 ret = -ENODEV;
464 goto bail_disable;
465 }
466 }
467
468 ret = pci_request_regions(pdev, IPATH_DRV_NAME);
469 if (ret) {
470 dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
471 "err %d\n", dd->ipath_unit, -ret);
472 goto bail_disable;
473 }
474
475 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
476 if (ret) {
477 /*
478 * if the 64 bit setup fails, try 32 bit. Some systems
479 * do not setup 64 bit maps on systems with 2GB or less
480 * memory installed.
481 */
482 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
483 if (ret) {
484 dev_info(&pdev->dev,
485 "Unable to set DMA mask for unit %u: %d\n",
486 dd->ipath_unit, ret);
487 goto bail_regions;
488 }
489 else {
490 ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
491 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
492 if (ret)
493 dev_info(&pdev->dev,
494 "Unable to set DMA consistent mask "
495 "for unit %u: %d\n",
496 dd->ipath_unit, ret);
497
498 }
499 }
500 else {
501 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
502 if (ret)
503 dev_info(&pdev->dev,
504 "Unable to set DMA consistent mask "
505 "for unit %u: %d\n",
506 dd->ipath_unit, ret);
507 }
508
509 pci_set_master(pdev);
510
511 /*
512 * Save BARs to rewrite after device reset. Save all 64 bits of
513 * BAR, just in case.
514 */
515 dd->ipath_pcibar0 = addr;
516 dd->ipath_pcibar1 = addr >> 32;
517 dd->ipath_deviceid = ent->device; /* save for later use */
518 dd->ipath_vendorid = ent->vendor;
519
520 /* setup the chip-specific functions, as early as possible. */
521 switch (ent->device) {
522 case PCI_DEVICE_ID_INFINIPATH_HT:
523 #ifdef CONFIG_HT_IRQ
524 ipath_init_iba6110_funcs(dd);
525 break;
526 #else
527 ipath_dev_err(dd, "QLogic HT device 0x%x cannot work if "
528 "CONFIG_HT_IRQ is not enabled\n", ent->device);
529 return -ENODEV;
530 #endif
531 case PCI_DEVICE_ID_INFINIPATH_PE800:
532 #ifdef CONFIG_PCI_MSI
533 ipath_init_iba6120_funcs(dd);
534 break;
535 #else
536 ipath_dev_err(dd, "QLogic PCIE device 0x%x cannot work if "
537 "CONFIG_PCI_MSI is not enabled\n", ent->device);
538 return -ENODEV;
539 #endif
540 case PCI_DEVICE_ID_INFINIPATH_7220:
541 #ifndef CONFIG_PCI_MSI
542 ipath_dbg("CONFIG_PCI_MSI is not enabled, "
543 "using INTx for unit %u\n", dd->ipath_unit);
544 #endif
545 ipath_init_iba7220_funcs(dd);
546 break;
547 default:
548 ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, "
549 "failing\n", ent->device);
550 return -ENODEV;
551 }
552
553 for (j = 0; j < 6; j++) {
554 if (!pdev->resource[j].start)
555 continue;
556 ipath_cdbg(VERBOSE, "BAR %d start %llx, end %llx, len %llx\n",
557 j, (unsigned long long)pdev->resource[j].start,
558 (unsigned long long)pdev->resource[j].end,
559 (unsigned long long)pci_resource_len(pdev, j));
560 }
561
562 if (!addr) {
563 ipath_dev_err(dd, "No valid address in BAR 0!\n");
564 ret = -ENODEV;
565 goto bail_regions;
566 }
567
568 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
569 if (ret) {
570 ipath_dev_err(dd, "Failed to read PCI revision ID unit "
571 "%u: err %d\n", dd->ipath_unit, -ret);
572 goto bail_regions; /* shouldn't ever happen */
573 }
574 dd->ipath_pcirev = rev;
575
576 #if defined(__powerpc__)
577 /* There isn't a generic way to specify writethrough mappings */
578 dd->ipath_kregbase = __ioremap(addr, len,
579 (_PAGE_NO_CACHE|_PAGE_WRITETHRU));
580 #else
581 dd->ipath_kregbase = ioremap_nocache(addr, len);
582 #endif
583
584 if (!dd->ipath_kregbase) {
585 ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
586 addr);
587 ret = -ENOMEM;
588 goto bail_iounmap;
589 }
590 dd->ipath_kregend = (u64 __iomem *)
591 ((void __iomem *)dd->ipath_kregbase + len);
592 dd->ipath_physaddr = addr; /* used for io_remap, etc. */
593 /* for user mmap */
594 ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n",
595 addr, dd->ipath_kregbase);
596
597 if (dd->ipath_f_bus(dd, pdev))
598 ipath_dev_err(dd, "Failed to setup config space; "
599 "continuing anyway\n");
600
601 /*
602 * set up our interrupt handler; IRQF_SHARED probably not needed,
603 * since MSI interrupts shouldn't be shared but won't hurt for now.
604 * check 0 irq after we return from chip-specific bus setup, since
605 * that can affect this due to setup
606 */
607 if (!dd->ipath_irq)
608 ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
609 "work\n");
610 else {
611 ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED,
612 IPATH_DRV_NAME, dd);
613 if (ret) {
614 ipath_dev_err(dd, "Couldn't setup irq handler, "
615 "irq=%d: %d\n", dd->ipath_irq, ret);
616 goto bail_iounmap;
617 }
618 }
619
620 ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
621 if (ret)
622 goto bail_irqsetup;
623
624 ret = ipath_enable_wc(dd);
625
626 if (ret) {
627 ipath_dev_err(dd, "Write combining not enabled "
628 "(err %d): performance may be poor\n",
629 -ret);
630 ret = 0;
631 }
632
633 ipath_verify_pioperf(dd);
634
635 ipath_device_create_group(&pdev->dev, dd);
636 ipathfs_add_device(dd);
637 ipath_user_add(dd);
638 ipath_diag_add(dd);
639 ipath_register_ib_device(dd);
640
641 goto bail;
642
643 bail_irqsetup:
644 if (pdev->irq)
645 free_irq(pdev->irq, dd);
646
647 bail_iounmap:
648 iounmap((volatile void __iomem *) dd->ipath_kregbase);
649
650 bail_regions:
651 pci_release_regions(pdev);
652
653 bail_disable:
654 pci_disable_device(pdev);
655
656 bail_devdata:
657 ipath_free_devdata(pdev, dd);
658
659 bail:
660 return ret;
661 }
662
663 static void __devexit cleanup_device(struct ipath_devdata *dd)
664 {
665 int port;
666 struct ipath_portdata **tmp;
667 unsigned long flags;
668
669 if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
670 /* can't do anything more with chip; needs re-init */
671 *dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
672 if (dd->ipath_kregbase) {
673 /*
674 * if we haven't already cleaned up before these are
675 * to ensure any register reads/writes "fail" until
676 * re-init
677 */
678 dd->ipath_kregbase = NULL;
679 dd->ipath_uregbase = 0;
680 dd->ipath_sregbase = 0;
681 dd->ipath_cregbase = 0;
682 dd->ipath_kregsize = 0;
683 }
684 ipath_disable_wc(dd);
685 }
686
687 if (dd->ipath_spectriggerhit)
688 dev_info(&dd->pcidev->dev, "%lu special trigger hits\n",
689 dd->ipath_spectriggerhit);
690
691 if (dd->ipath_pioavailregs_dma) {
692 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
693 (void *) dd->ipath_pioavailregs_dma,
694 dd->ipath_pioavailregs_phys);
695 dd->ipath_pioavailregs_dma = NULL;
696 }
697 if (dd->ipath_dummy_hdrq) {
698 dma_free_coherent(&dd->pcidev->dev,
699 dd->ipath_pd[0]->port_rcvhdrq_size,
700 dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys);
701 dd->ipath_dummy_hdrq = NULL;
702 }
703
704 if (dd->ipath_pageshadow) {
705 struct page **tmpp = dd->ipath_pageshadow;
706 dma_addr_t *tmpd = dd->ipath_physshadow;
707 int i, cnt = 0;
708
709 ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
710 "locked\n");
711 for (port = 0; port < dd->ipath_cfgports; port++) {
712 int port_tidbase = port * dd->ipath_rcvtidcnt;
713 int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
714 for (i = port_tidbase; i < maxtid; i++) {
715 if (!tmpp[i])
716 continue;
717 pci_unmap_page(dd->pcidev, tmpd[i],
718 PAGE_SIZE, PCI_DMA_FROMDEVICE);
719 ipath_release_user_pages(&tmpp[i], 1);
720 tmpp[i] = NULL;
721 cnt++;
722 }
723 }
724 if (cnt) {
725 ipath_stats.sps_pageunlocks += cnt;
726 ipath_cdbg(VERBOSE, "There were still %u expTID "
727 "entries locked\n", cnt);
728 }
729 if (ipath_stats.sps_pagelocks ||
730 ipath_stats.sps_pageunlocks)
731 ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
732 "unlocked via ipath_m{un}lock\n",
733 (unsigned long long)
734 ipath_stats.sps_pagelocks,
735 (unsigned long long)
736 ipath_stats.sps_pageunlocks);
737
738 ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
739 dd->ipath_pageshadow);
740 tmpp = dd->ipath_pageshadow;
741 dd->ipath_pageshadow = NULL;
742 vfree(tmpp);
743
744 dd->ipath_egrtidbase = NULL;
745 }
746
747 /*
748 * free any resources still in use (usually just kernel ports)
749 * at unload; we do for portcnt, because that's what we allocate.
750 * We acquire lock to be really paranoid that ipath_pd isn't being
751 * accessed from some interrupt-related code (that should not happen,
752 * but best to be sure).
753 */
754 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
755 tmp = dd->ipath_pd;
756 dd->ipath_pd = NULL;
757 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
758 for (port = 0; port < dd->ipath_portcnt; port++) {
759 struct ipath_portdata *pd = tmp[port];
760 tmp[port] = NULL; /* debugging paranoia */
761 ipath_free_pddata(dd, pd);
762 }
763 kfree(tmp);
764 }
765
766 static void __devexit ipath_remove_one(struct pci_dev *pdev)
767 {
768 struct ipath_devdata *dd = pci_get_drvdata(pdev);
769
770 ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd);
771
772 /*
773 * disable the IB link early, to be sure no new packets arrive, which
774 * complicates the shutdown process
775 */
776 ipath_shutdown_device(dd);
777
778 flush_scheduled_work();
779
780 if (dd->verbs_dev)
781 ipath_unregister_ib_device(dd->verbs_dev);
782
783 ipath_diag_remove(dd);
784 ipath_user_remove(dd);
785 ipathfs_remove_device(dd);
786 ipath_device_remove_group(&pdev->dev, dd);
787
788 ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
789 "unit %u\n", dd, (u32) dd->ipath_unit);
790
791 cleanup_device(dd);
792
793 /*
794 * turn off rcv, send, and interrupts for all ports, all drivers
795 * should also hard reset the chip here?
796 * free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
797 * for all versions of the driver, if they were allocated
798 */
799 if (dd->ipath_irq) {
800 ipath_cdbg(VERBOSE, "unit %u free irq %d\n",
801 dd->ipath_unit, dd->ipath_irq);
802 dd->ipath_f_free_irq(dd);
803 } else
804 ipath_dbg("irq is 0, not doing free_irq "
805 "for unit %u\n", dd->ipath_unit);
806 /*
807 * we check for NULL here, because it's outside
808 * the kregbase check, and we need to call it
809 * after the free_irq. Thus it's possible that
810 * the function pointers were never initialized.
811 */
812 if (dd->ipath_f_cleanup)
813 /* clean up chip-specific stuff */
814 dd->ipath_f_cleanup(dd);
815
816 ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase);
817 iounmap((volatile void __iomem *) dd->ipath_kregbase);
818 pci_release_regions(pdev);
819 ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
820 pci_disable_device(pdev);
821
822 ipath_free_devdata(pdev, dd);
823 }
824
825 /* general driver use */
826 DEFINE_MUTEX(ipath_mutex);
827
828 static DEFINE_SPINLOCK(ipath_pioavail_lock);
829
830 /**
831 * ipath_disarm_piobufs - cancel a range of PIO buffers
832 * @dd: the infinipath device
833 * @first: the first PIO buffer to cancel
834 * @cnt: the number of PIO buffers to cancel
835 *
836 * cancel a range of PIO buffers, used when they might be armed, but
837 * not triggered. Used at init to ensure buffer state, and also user
838 * process close, in case it died while writing to a PIO buffer
839 * Also after errors.
840 */
841 void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
842 unsigned cnt)
843 {
844 unsigned i, last = first + cnt;
845 unsigned long flags;
846
847 ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
848 for (i = first; i < last; i++) {
849 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
850 /*
851 * The disarm-related bits are write-only, so it
852 * is ok to OR them in with our copy of sendctrl
853 * while we hold the lock.
854 */
855 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
856 dd->ipath_sendctrl | INFINIPATH_S_DISARM |
857 (i << INFINIPATH_S_DISARMPIOBUF_SHIFT));
858 /* can't disarm bufs back-to-back per iba7220 spec */
859 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
860 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
861 }
862 /* on some older chips, update may not happen after cancel */
863 ipath_force_pio_avail_update(dd);
864 }
865
866 /**
867 * ipath_wait_linkstate - wait for an IB link state change to occur
868 * @dd: the infinipath device
869 * @state: the state to wait for
870 * @msecs: the number of milliseconds to wait
871 *
872 * wait up to msecs milliseconds for IB link state change to occur for
873 * now, take the easy polling route. Currently used only by
874 * ipath_set_linkstate. Returns 0 if state reached, otherwise
875 * -ETIMEDOUT state can have multiple states set, for any of several
876 * transitions.
877 */
878 int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
879 {
880 dd->ipath_state_wanted = state;
881 wait_event_interruptible_timeout(ipath_state_wait,
882 (dd->ipath_flags & state),
883 msecs_to_jiffies(msecs));
884 dd->ipath_state_wanted = 0;
885
886 if (!(dd->ipath_flags & state)) {
887 u64 val;
888 ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u"
889 " ms\n",
890 /* test INIT ahead of DOWN, both can be set */
891 (state & IPATH_LINKINIT) ? "INIT" :
892 ((state & IPATH_LINKDOWN) ? "DOWN" :
893 ((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
894 msecs);
895 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
896 ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
897 (unsigned long long) ipath_read_kreg64(
898 dd, dd->ipath_kregs->kr_ibcctrl),
899 (unsigned long long) val,
900 ipath_ibcstatus_str[val & dd->ibcs_lts_mask]);
901 }
902 return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
903 }
904
905 static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err,
906 char *buf, size_t blen)
907 {
908 static const struct {
909 ipath_err_t err;
910 const char *msg;
911 } errs[] = {
912 { INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" },
913 { INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" },
914 { INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" },
915 { INFINIPATH_E_SDMABASE, "SDmaBase" },
916 { INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" },
917 { INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" },
918 { INFINIPATH_E_SDMADWEN, "SDmaDwEn" },
919 { INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" },
920 { INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" },
921 { INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" },
922 { INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" },
923 { INFINIPATH_E_SDMADISABLED, "SDmaDisabled" },
924 };
925 int i;
926 int expected;
927 size_t bidx = 0;
928
929 for (i = 0; i < ARRAY_SIZE(errs); i++) {
930 expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 :
931 test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status);
932 if ((err & errs[i].err) && !expected)
933 bidx += snprintf(buf + bidx, blen - bidx,
934 "%s ", errs[i].msg);
935 }
936 }
937
938 /*
939 * Decode the error status into strings, deciding whether to always
940 * print * it or not depending on "normal packet errors" vs everything
941 * else. Return 1 if "real" errors, otherwise 0 if only packet
942 * errors, so caller can decide what to print with the string.
943 */
944 int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen,
945 ipath_err_t err)
946 {
947 int iserr = 1;
948 *buf = '\0';
949 if (err & INFINIPATH_E_PKTERRS) {
950 if (!(err & ~INFINIPATH_E_PKTERRS))
951 iserr = 0; // if only packet errors.
952 if (ipath_debug & __IPATH_ERRPKTDBG) {
953 if (err & INFINIPATH_E_REBP)
954 strlcat(buf, "EBP ", blen);
955 if (err & INFINIPATH_E_RVCRC)
956 strlcat(buf, "VCRC ", blen);
957 if (err & INFINIPATH_E_RICRC) {
958 strlcat(buf, "CRC ", blen);
959 // clear for check below, so only once
960 err &= INFINIPATH_E_RICRC;
961 }
962 if (err & INFINIPATH_E_RSHORTPKTLEN)
963 strlcat(buf, "rshortpktlen ", blen);
964 if (err & INFINIPATH_E_SDROPPEDDATAPKT)
965 strlcat(buf, "sdroppeddatapkt ", blen);
966 if (err & INFINIPATH_E_SPKTLEN)
967 strlcat(buf, "spktlen ", blen);
968 }
969 if ((err & INFINIPATH_E_RICRC) &&
970 !(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP)))
971 strlcat(buf, "CRC ", blen);
972 if (!iserr)
973 goto done;
974 }
975 if (err & INFINIPATH_E_RHDRLEN)
976 strlcat(buf, "rhdrlen ", blen);
977 if (err & INFINIPATH_E_RBADTID)
978 strlcat(buf, "rbadtid ", blen);
979 if (err & INFINIPATH_E_RBADVERSION)
980 strlcat(buf, "rbadversion ", blen);
981 if (err & INFINIPATH_E_RHDR)
982 strlcat(buf, "rhdr ", blen);
983 if (err & INFINIPATH_E_SENDSPECIALTRIGGER)
984 strlcat(buf, "sendspecialtrigger ", blen);
985 if (err & INFINIPATH_E_RLONGPKTLEN)
986 strlcat(buf, "rlongpktlen ", blen);
987 if (err & INFINIPATH_E_RMAXPKTLEN)
988 strlcat(buf, "rmaxpktlen ", blen);
989 if (err & INFINIPATH_E_RMINPKTLEN)
990 strlcat(buf, "rminpktlen ", blen);
991 if (err & INFINIPATH_E_SMINPKTLEN)
992 strlcat(buf, "sminpktlen ", blen);
993 if (err & INFINIPATH_E_RFORMATERR)
994 strlcat(buf, "rformaterr ", blen);
995 if (err & INFINIPATH_E_RUNSUPVL)
996 strlcat(buf, "runsupvl ", blen);
997 if (err & INFINIPATH_E_RUNEXPCHAR)
998 strlcat(buf, "runexpchar ", blen);
999 if (err & INFINIPATH_E_RIBFLOW)
1000 strlcat(buf, "ribflow ", blen);
1001 if (err & INFINIPATH_E_SUNDERRUN)
1002 strlcat(buf, "sunderrun ", blen);
1003 if (err & INFINIPATH_E_SPIOARMLAUNCH)
1004 strlcat(buf, "spioarmlaunch ", blen);
1005 if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
1006 strlcat(buf, "sunexperrpktnum ", blen);
1007 if (err & INFINIPATH_E_SDROPPEDSMPPKT)
1008 strlcat(buf, "sdroppedsmppkt ", blen);
1009 if (err & INFINIPATH_E_SMAXPKTLEN)
1010 strlcat(buf, "smaxpktlen ", blen);
1011 if (err & INFINIPATH_E_SUNSUPVL)
1012 strlcat(buf, "sunsupVL ", blen);
1013 if (err & INFINIPATH_E_INVALIDADDR)
1014 strlcat(buf, "invalidaddr ", blen);
1015 if (err & INFINIPATH_E_RRCVEGRFULL)
1016 strlcat(buf, "rcvegrfull ", blen);
1017 if (err & INFINIPATH_E_RRCVHDRFULL)
1018 strlcat(buf, "rcvhdrfull ", blen);
1019 if (err & INFINIPATH_E_IBSTATUSCHANGED)
1020 strlcat(buf, "ibcstatuschg ", blen);
1021 if (err & INFINIPATH_E_RIBLOSTLINK)
1022 strlcat(buf, "riblostlink ", blen);
1023 if (err & INFINIPATH_E_HARDWARE)
1024 strlcat(buf, "hardware ", blen);
1025 if (err & INFINIPATH_E_RESET)
1026 strlcat(buf, "reset ", blen);
1027 if (err & INFINIPATH_E_SDMAERRS)
1028 decode_sdma_errs(dd, err, buf, blen);
1029 if (err & INFINIPATH_E_INVALIDEEPCMD)
1030 strlcat(buf, "invalideepromcmd ", blen);
1031 done:
1032 return iserr;
1033 }
1034
1035 /**
1036 * get_rhf_errstring - decode RHF errors
1037 * @err: the err number
1038 * @msg: the output buffer
1039 * @len: the length of the output buffer
1040 *
1041 * only used one place now, may want more later
1042 */
1043 static void get_rhf_errstring(u32 err, char *msg, size_t len)
1044 {
1045 /* if no errors, and so don't need to check what's first */
1046 *msg = '\0';
1047
1048 if (err & INFINIPATH_RHF_H_ICRCERR)
1049 strlcat(msg, "icrcerr ", len);
1050 if (err & INFINIPATH_RHF_H_VCRCERR)
1051 strlcat(msg, "vcrcerr ", len);
1052 if (err & INFINIPATH_RHF_H_PARITYERR)
1053 strlcat(msg, "parityerr ", len);
1054 if (err & INFINIPATH_RHF_H_LENERR)
1055 strlcat(msg, "lenerr ", len);
1056 if (err & INFINIPATH_RHF_H_MTUERR)
1057 strlcat(msg, "mtuerr ", len);
1058 if (err & INFINIPATH_RHF_H_IHDRERR)
1059 /* infinipath hdr checksum error */
1060 strlcat(msg, "ipathhdrerr ", len);
1061 if (err & INFINIPATH_RHF_H_TIDERR)
1062 strlcat(msg, "tiderr ", len);
1063 if (err & INFINIPATH_RHF_H_MKERR)
1064 /* bad port, offset, etc. */
1065 strlcat(msg, "invalid ipathhdr ", len);
1066 if (err & INFINIPATH_RHF_H_IBERR)
1067 strlcat(msg, "iberr ", len);
1068 if (err & INFINIPATH_RHF_L_SWA)
1069 strlcat(msg, "swA ", len);
1070 if (err & INFINIPATH_RHF_L_SWB)
1071 strlcat(msg, "swB ", len);
1072 }
1073
1074 /**
1075 * ipath_get_egrbuf - get an eager buffer
1076 * @dd: the infinipath device
1077 * @bufnum: the eager buffer to get
1078 *
1079 * must only be called if ipath_pd[port] is known to be allocated
1080 */
1081 static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum)
1082 {
1083 return dd->ipath_port0_skbinfo ?
1084 (void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL;
1085 }
1086
1087 /**
1088 * ipath_alloc_skb - allocate an skb and buffer with possible constraints
1089 * @dd: the infinipath device
1090 * @gfp_mask: the sk_buff SFP mask
1091 */
1092 struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
1093 gfp_t gfp_mask)
1094 {
1095 struct sk_buff *skb;
1096 u32 len;
1097
1098 /*
1099 * Only fully supported way to handle this is to allocate lots
1100 * extra, align as needed, and then do skb_reserve(). That wastes
1101 * a lot of memory... I'll have to hack this into infinipath_copy
1102 * also.
1103 */
1104
1105 /*
1106 * We need 2 extra bytes for ipath_ether data sent in the
1107 * key header. In order to keep everything dword aligned,
1108 * we'll reserve 4 bytes.
1109 */
1110 len = dd->ipath_ibmaxlen + 4;
1111
1112 if (dd->ipath_flags & IPATH_4BYTE_TID) {
1113 /* We need a 2KB multiple alignment, and there is no way
1114 * to do it except to allocate extra and then skb_reserve
1115 * enough to bring it up to the right alignment.
1116 */
1117 len += 2047;
1118 }
1119
1120 skb = __dev_alloc_skb(len, gfp_mask);
1121 if (!skb) {
1122 ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
1123 len);
1124 goto bail;
1125 }
1126
1127 skb_reserve(skb, 4);
1128
1129 if (dd->ipath_flags & IPATH_4BYTE_TID) {
1130 u32 una = (unsigned long)skb->data & 2047;
1131 if (una)
1132 skb_reserve(skb, 2048 - una);
1133 }
1134
1135 bail:
1136 return skb;
1137 }
1138
1139 static void ipath_rcv_hdrerr(struct ipath_devdata *dd,
1140 u32 eflags,
1141 u32 l,
1142 u32 etail,
1143 __le32 *rhf_addr,
1144 struct ipath_message_header *hdr)
1145 {
1146 char emsg[128];
1147
1148 get_rhf_errstring(eflags, emsg, sizeof emsg);
1149 ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
1150 "tlen=%x opcode=%x egridx=%x: %s\n",
1151 eflags, l,
1152 ipath_hdrget_rcv_type(rhf_addr),
1153 ipath_hdrget_length_in_bytes(rhf_addr),
1154 be32_to_cpu(hdr->bth[0]) >> 24,
1155 etail, emsg);
1156
1157 /* Count local link integrity errors. */
1158 if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) {
1159 u8 n = (dd->ipath_ibcctrl >>
1160 INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) &
1161 INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK;
1162
1163 if (++dd->ipath_lli_counter > n) {
1164 dd->ipath_lli_counter = 0;
1165 dd->ipath_lli_errors++;
1166 }
1167 }
1168 }
1169
1170 /*
1171 * ipath_kreceive - receive a packet
1172 * @pd: the infinipath port
1173 *
1174 * called from interrupt handler for errors or receive interrupt
1175 */
1176 void ipath_kreceive(struct ipath_portdata *pd)
1177 {
1178 struct ipath_devdata *dd = pd->port_dd;
1179 __le32 *rhf_addr;
1180 void *ebuf;
1181 const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
1182 const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
1183 u32 etail = -1, l, hdrqtail;
1184 struct ipath_message_header *hdr;
1185 u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0;
1186 static u64 totcalls; /* stats, may eventually remove */
1187 int last;
1188
1189 l = pd->port_head;
1190 rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset;
1191 if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1192 u32 seq = ipath_hdrget_seq(rhf_addr);
1193
1194 if (seq != pd->port_seq_cnt)
1195 goto bail;
1196 hdrqtail = 0;
1197 } else {
1198 hdrqtail = ipath_get_rcvhdrtail(pd);
1199 if (l == hdrqtail)
1200 goto bail;
1201 smp_rmb();
1202 }
1203
1204 reloop:
1205 for (last = 0, i = 1; !last; i += !last) {
1206 hdr = dd->ipath_f_get_msgheader(dd, rhf_addr);
1207 eflags = ipath_hdrget_err_flags(rhf_addr);
1208 etype = ipath_hdrget_rcv_type(rhf_addr);
1209 /* total length */
1210 tlen = ipath_hdrget_length_in_bytes(rhf_addr);
1211 ebuf = NULL;
1212 if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ?
1213 ipath_hdrget_use_egr_buf(rhf_addr) :
1214 (etype != RCVHQ_RCV_TYPE_EXPECTED)) {
1215 /*
1216 * It turns out that the chip uses an eager buffer
1217 * for all non-expected packets, whether it "needs"
1218 * one or not. So always get the index, but don't
1219 * set ebuf (so we try to copy data) unless the
1220 * length requires it.
1221 */
1222 etail = ipath_hdrget_index(rhf_addr);
1223 updegr = 1;
1224 if (tlen > sizeof(*hdr) ||
1225 etype == RCVHQ_RCV_TYPE_NON_KD)
1226 ebuf = ipath_get_egrbuf(dd, etail);
1227 }
1228
1229 /*
1230 * both tiderr and ipathhdrerr are set for all plain IB
1231 * packets; only ipathhdrerr should be set.
1232 */
1233
1234 if (etype != RCVHQ_RCV_TYPE_NON_KD &&
1235 etype != RCVHQ_RCV_TYPE_ERROR &&
1236 ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) !=
1237 IPS_PROTO_VERSION)
1238 ipath_cdbg(PKT, "Bad InfiniPath protocol version "
1239 "%x\n", etype);
1240
1241 if (unlikely(eflags))
1242 ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr);
1243 else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
1244 ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen);
1245 if (dd->ipath_lli_counter)
1246 dd->ipath_lli_counter--;
1247 } else if (etype == RCVHQ_RCV_TYPE_EAGER) {
1248 u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24;
1249 u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff;
1250 ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
1251 "qp=%x), len %x; ignored\n",
1252 etype, opcode, qp, tlen);
1253 }
1254 else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
1255 ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
1256 be32_to_cpu(hdr->bth[0]) >> 24);
1257 else {
1258 /*
1259 * error packet, type of error unknown.
1260 * Probably type 3, but we don't know, so don't
1261 * even try to print the opcode, etc.
1262 * Usually caused by a "bad packet", that has no
1263 * BTH, when the LRH says it should.
1264 */
1265 ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf"
1266 " %x, len %x hdrq+%x rhf: %Lx\n",
1267 etail, tlen, l, (unsigned long long)
1268 le64_to_cpu(*(__le64 *) rhf_addr));
1269 if (ipath_debug & __IPATH_ERRPKTDBG) {
1270 u32 j, *d, dw = rsize-2;
1271 if (rsize > (tlen>>2))
1272 dw = tlen>>2;
1273 d = (u32 *)hdr;
1274 printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n",
1275 dw);
1276 for (j = 0; j < dw; j++)
1277 printk(KERN_DEBUG "%8x%s", d[j],
1278 (j%8) == 7 ? "\n" : " ");
1279 printk(KERN_DEBUG ".\n");
1280 }
1281 }
1282 l += rsize;
1283 if (l >= maxcnt)
1284 l = 0;
1285 rhf_addr = (__le32 *) pd->port_rcvhdrq +
1286 l + dd->ipath_rhf_offset;
1287 if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1288 u32 seq = ipath_hdrget_seq(rhf_addr);
1289
1290 if (++pd->port_seq_cnt > 13)
1291 pd->port_seq_cnt = 1;
1292 if (seq != pd->port_seq_cnt)
1293 last = 1;
1294 } else if (l == hdrqtail)
1295 last = 1;
1296 /*
1297 * update head regs on last packet, and every 16 packets.
1298 * Reduce bus traffic, while still trying to prevent
1299 * rcvhdrq overflows, for when the queue is nearly full
1300 */
1301 if (last || !(i & 0xf)) {
1302 u64 lval = l;
1303
1304 /* request IBA6120 and 7220 interrupt only on last */
1305 if (last)
1306 lval |= dd->ipath_rhdrhead_intr_off;
1307 ipath_write_ureg(dd, ur_rcvhdrhead, lval,
1308 pd->port_port);
1309 if (updegr) {
1310 ipath_write_ureg(dd, ur_rcvegrindexhead,
1311 etail, pd->port_port);
1312 updegr = 0;
1313 }
1314 }
1315 }
1316
1317 if (!dd->ipath_rhdrhead_intr_off && !reloop &&
1318 !(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1319 /* IBA6110 workaround; we can have a race clearing chip
1320 * interrupt with another interrupt about to be delivered,
1321 * and can clear it before it is delivered on the GPIO
1322 * workaround. By doing the extra check here for the
1323 * in-memory tail register updating while we were doing
1324 * earlier packets, we "almost" guarantee we have covered
1325 * that case.
1326 */
1327 u32 hqtail = ipath_get_rcvhdrtail(pd);
1328 if (hqtail != hdrqtail) {
1329 hdrqtail = hqtail;
1330 reloop = 1; /* loop 1 extra time at most */
1331 goto reloop;
1332 }
1333 }
1334
1335 pkttot += i;
1336
1337 pd->port_head = l;
1338
1339 if (pkttot > ipath_stats.sps_maxpkts_call)
1340 ipath_stats.sps_maxpkts_call = pkttot;
1341 ipath_stats.sps_port0pkts += pkttot;
1342 ipath_stats.sps_avgpkts_call =
1343 ipath_stats.sps_port0pkts / ++totcalls;
1344
1345 bail:;
1346 }
1347
1348 /**
1349 * ipath_update_pio_bufs - update shadow copy of the PIO availability map
1350 * @dd: the infinipath device
1351 *
1352 * called whenever our local copy indicates we have run out of send buffers
1353 * NOTE: This can be called from interrupt context by some code
1354 * and from non-interrupt context by ipath_getpiobuf().
1355 */
1356
1357 static void ipath_update_pio_bufs(struct ipath_devdata *dd)
1358 {
1359 unsigned long flags;
1360 int i;
1361 const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
1362
1363 /* If the generation (check) bits have changed, then we update the
1364 * busy bit for the corresponding PIO buffer. This algorithm will
1365 * modify positions to the value they already have in some cases
1366 * (i.e., no change), but it's faster than changing only the bits
1367 * that have changed.
1368 *
1369 * We would like to do this atomicly, to avoid spinlocks in the
1370 * critical send path, but that's not really possible, given the
1371 * type of changes, and that this routine could be called on
1372 * multiple cpu's simultaneously, so we lock in this routine only,
1373 * to avoid conflicting updates; all we change is the shadow, and
1374 * it's a single 64 bit memory location, so by definition the update
1375 * is atomic in terms of what other cpu's can see in testing the
1376 * bits. The spin_lock overhead isn't too bad, since it only
1377 * happens when all buffers are in use, so only cpu overhead, not
1378 * latency or bandwidth is affected.
1379 */
1380 if (!dd->ipath_pioavailregs_dma) {
1381 ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
1382 return;
1383 }
1384 if (ipath_debug & __IPATH_VERBDBG) {
1385 /* only if packet debug and verbose */
1386 volatile __le64 *dma = dd->ipath_pioavailregs_dma;
1387 unsigned long *shadow = dd->ipath_pioavailshadow;
1388
1389 ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
1390 "d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
1391 "s3=%lx\n",
1392 (unsigned long long) le64_to_cpu(dma[0]),
1393 shadow[0],
1394 (unsigned long long) le64_to_cpu(dma[1]),
1395 shadow[1],
1396 (unsigned long long) le64_to_cpu(dma[2]),
1397 shadow[2],
1398 (unsigned long long) le64_to_cpu(dma[3]),
1399 shadow[3]);
1400 if (piobregs > 4)
1401 ipath_cdbg(
1402 PKT, "2nd group, dma4=%llx shad4=%lx, "
1403 "d5=%llx s5=%lx, d6=%llx s6=%lx, "
1404 "d7=%llx s7=%lx\n",
1405 (unsigned long long) le64_to_cpu(dma[4]),
1406 shadow[4],
1407 (unsigned long long) le64_to_cpu(dma[5]),
1408 shadow[5],
1409 (unsigned long long) le64_to_cpu(dma[6]),
1410 shadow[6],
1411 (unsigned long long) le64_to_cpu(dma[7]),
1412 shadow[7]);
1413 }
1414 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1415 for (i = 0; i < piobregs; i++) {
1416 u64 pchbusy, pchg, piov, pnew;
1417 /*
1418 * Chip Errata: bug 6641; even and odd qwords>3 are swapped
1419 */
1420 if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS))
1421 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]);
1422 else
1423 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
1424 pchg = dd->ipath_pioavailkernel[i] &
1425 ~(dd->ipath_pioavailshadow[i] ^ piov);
1426 pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
1427 if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
1428 pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
1429 pnew |= piov & pchbusy;
1430 dd->ipath_pioavailshadow[i] = pnew;
1431 }
1432 }
1433 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1434 }
1435
1436 /*
1437 * used to force update of pioavailshadow if we can't get a pio buffer.
1438 * Needed primarily due to exitting freeze mode after recovering
1439 * from errors. Done lazily, because it's safer (known to not
1440 * be writing pio buffers).
1441 */
1442 static void ipath_reset_availshadow(struct ipath_devdata *dd)
1443 {
1444 int i, im;
1445 unsigned long flags;
1446
1447 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1448 for (i = 0; i < dd->ipath_pioavregs; i++) {
1449 u64 val, oldval;
1450 /* deal with 6110 chip bug on high register #s */
1451 im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1452 i ^ 1 : i;
1453 val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]);
1454 /*
1455 * busy out the buffers not in the kernel avail list,
1456 * without changing the generation bits.
1457 */
1458 oldval = dd->ipath_pioavailshadow[i];
1459 dd->ipath_pioavailshadow[i] = val |
1460 ((~dd->ipath_pioavailkernel[i] <<
1461 INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) &
1462 0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */
1463 if (oldval != dd->ipath_pioavailshadow[i])
1464 ipath_dbg("shadow[%d] was %Lx, now %lx\n",
1465 i, (unsigned long long) oldval,
1466 dd->ipath_pioavailshadow[i]);
1467 }
1468 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1469 }
1470
1471 /**
1472 * ipath_setrcvhdrsize - set the receive header size
1473 * @dd: the infinipath device
1474 * @rhdrsize: the receive header size
1475 *
1476 * called from user init code, and also layered driver init
1477 */
1478 int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
1479 {
1480 int ret = 0;
1481
1482 if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
1483 if (dd->ipath_rcvhdrsize != rhdrsize) {
1484 dev_info(&dd->pcidev->dev,
1485 "Error: can't set protocol header "
1486 "size %u, already %u\n",
1487 rhdrsize, dd->ipath_rcvhdrsize);
1488 ret = -EAGAIN;
1489 } else
1490 ipath_cdbg(VERBOSE, "Reuse same protocol header "
1491 "size %u\n", dd->ipath_rcvhdrsize);
1492 } else if (rhdrsize > (dd->ipath_rcvhdrentsize -
1493 (sizeof(u64) / sizeof(u32)))) {
1494 ipath_dbg("Error: can't set protocol header size %u "
1495 "(> max %u)\n", rhdrsize,
1496 dd->ipath_rcvhdrentsize -
1497 (u32) (sizeof(u64) / sizeof(u32)));
1498 ret = -EOVERFLOW;
1499 } else {
1500 dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
1501 dd->ipath_rcvhdrsize = rhdrsize;
1502 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
1503 dd->ipath_rcvhdrsize);
1504 ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
1505 dd->ipath_rcvhdrsize);
1506 }
1507 return ret;
1508 }
1509
1510 /*
1511 * debugging code and stats updates if no pio buffers available.
1512 */
1513 static noinline void no_pio_bufs(struct ipath_devdata *dd)
1514 {
1515 unsigned long *shadow = dd->ipath_pioavailshadow;
1516 __le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma;
1517
1518 dd->ipath_upd_pio_shadow = 1;
1519
1520 /*
1521 * not atomic, but if we lose a stat count in a while, that's OK
1522 */
1523 ipath_stats.sps_nopiobufs++;
1524 if (!(++dd->ipath_consec_nopiobuf % 100000)) {
1525 ipath_force_pio_avail_update(dd); /* at start */
1526 ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: "
1527 "%llx %llx %llx %llx\n"
1528 "ipath shadow: %lx %lx %lx %lx\n",
1529 dd->ipath_consec_nopiobuf,
1530 (unsigned long)get_cycles(),
1531 (unsigned long long) le64_to_cpu(dma[0]),
1532 (unsigned long long) le64_to_cpu(dma[1]),
1533 (unsigned long long) le64_to_cpu(dma[2]),
1534 (unsigned long long) le64_to_cpu(dma[3]),
1535 shadow[0], shadow[1], shadow[2], shadow[3]);
1536 /*
1537 * 4 buffers per byte, 4 registers above, cover rest
1538 * below
1539 */
1540 if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
1541 (sizeof(shadow[0]) * 4 * 4))
1542 ipath_dbg("2nd group: dmacopy: "
1543 "%llx %llx %llx %llx\n"
1544 "ipath shadow: %lx %lx %lx %lx\n",
1545 (unsigned long long)le64_to_cpu(dma[4]),
1546 (unsigned long long)le64_to_cpu(dma[5]),
1547 (unsigned long long)le64_to_cpu(dma[6]),
1548 (unsigned long long)le64_to_cpu(dma[7]),
1549 shadow[4], shadow[5], shadow[6], shadow[7]);
1550
1551 /* at end, so update likely happened */
1552 ipath_reset_availshadow(dd);
1553 }
1554 }
1555
1556 /*
1557 * common code for normal driver pio buffer allocation, and reserved
1558 * allocation.
1559 *
1560 * do appropriate marking as busy, etc.
1561 * returns buffer number if one found (>=0), negative number is error.
1562 */
1563 static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd,
1564 u32 *pbufnum, u32 first, u32 last, u32 firsti)
1565 {
1566 int i, j, updated = 0;
1567 unsigned piobcnt;
1568 unsigned long flags;
1569 unsigned long *shadow = dd->ipath_pioavailshadow;
1570 u32 __iomem *buf;
1571
1572 piobcnt = last - first;
1573 if (dd->ipath_upd_pio_shadow) {
1574 /*
1575 * Minor optimization. If we had no buffers on last call,
1576 * start out by doing the update; continue and do scan even
1577 * if no buffers were updated, to be paranoid
1578 */
1579 ipath_update_pio_bufs(dd);
1580 updated++;
1581 i = first;
1582 } else
1583 i = firsti;
1584 rescan:
1585 /*
1586 * while test_and_set_bit() is atomic, we do that and then the
1587 * change_bit(), and the pair is not. See if this is the cause
1588 * of the remaining armlaunch errors.
1589 */
1590 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1591 for (j = 0; j < piobcnt; j++, i++) {
1592 if (i >= last)
1593 i = first;
1594 if (__test_and_set_bit((2 * i) + 1, shadow))
1595 continue;
1596 /* flip generation bit */
1597 __change_bit(2 * i, shadow);
1598 break;
1599 }
1600 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1601
1602 if (j == piobcnt) {
1603 if (!updated) {
1604 /*
1605 * first time through; shadow exhausted, but may be
1606 * buffers available, try an update and then rescan.
1607 */
1608 ipath_update_pio_bufs(dd);
1609 updated++;
1610 i = first;
1611 goto rescan;
1612 } else if (updated == 1 && piobcnt <=
1613 ((dd->ipath_sendctrl
1614 >> INFINIPATH_S_UPDTHRESH_SHIFT) &
1615 INFINIPATH_S_UPDTHRESH_MASK)) {
1616 /*
1617 * for chips supporting and using the update
1618 * threshold we need to force an update of the
1619 * in-memory copy if the count is less than the
1620 * thershold, then check one more time.
1621 */
1622 ipath_force_pio_avail_update(dd);
1623 ipath_update_pio_bufs(dd);
1624 updated++;
1625 i = first;
1626 goto rescan;
1627 }
1628
1629 no_pio_bufs(dd);
1630 buf = NULL;
1631 } else {
1632 if (i < dd->ipath_piobcnt2k)
1633 buf = (u32 __iomem *) (dd->ipath_pio2kbase +
1634 i * dd->ipath_palign);
1635 else
1636 buf = (u32 __iomem *)
1637 (dd->ipath_pio4kbase +
1638 (i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
1639 if (pbufnum)
1640 *pbufnum = i;
1641 }
1642
1643 return buf;
1644 }
1645
1646 /**
1647 * ipath_getpiobuf - find an available pio buffer
1648 * @dd: the infinipath device
1649 * @plen: the size of the PIO buffer needed in 32-bit words
1650 * @pbufnum: the buffer number is placed here
1651 */
1652 u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum)
1653 {
1654 u32 __iomem *buf;
1655 u32 pnum, nbufs;
1656 u32 first, lasti;
1657
1658 if (plen + 1 >= IPATH_SMALLBUF_DWORDS) {
1659 first = dd->ipath_piobcnt2k;
1660 lasti = dd->ipath_lastpioindexl;
1661 } else {
1662 first = 0;
1663 lasti = dd->ipath_lastpioindex;
1664 }
1665 nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k;
1666 buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti);
1667
1668 if (buf) {
1669 /*
1670 * Set next starting place. It's just an optimization,
1671 * it doesn't matter who wins on this, so no locking
1672 */
1673 if (plen + 1 >= IPATH_SMALLBUF_DWORDS)
1674 dd->ipath_lastpioindexl = pnum + 1;
1675 else
1676 dd->ipath_lastpioindex = pnum + 1;
1677 if (dd->ipath_upd_pio_shadow)
1678 dd->ipath_upd_pio_shadow = 0;
1679 if (dd->ipath_consec_nopiobuf)
1680 dd->ipath_consec_nopiobuf = 0;
1681 ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
1682 pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf);
1683 if (pbufnum)
1684 *pbufnum = pnum;
1685
1686 }
1687 return buf;
1688 }
1689
1690 /**
1691 * ipath_chg_pioavailkernel - change which send buffers are available for kernel
1692 * @dd: the infinipath device
1693 * @start: the starting send buffer number
1694 * @len: the number of send buffers
1695 * @avail: true if the buffers are available for kernel use, false otherwise
1696 */
1697 void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start,
1698 unsigned len, int avail)
1699 {
1700 unsigned long flags;
1701 unsigned end, cnt = 0;
1702
1703 /* There are two bits per send buffer (busy and generation) */
1704 start *= 2;
1705 end = start + len * 2;
1706
1707 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1708 /* Set or clear the busy bit in the shadow. */
1709 while (start < end) {
1710 if (avail) {
1711 unsigned long dma;
1712 int i, im;
1713 /*
1714 * the BUSY bit will never be set, because we disarm
1715 * the user buffers before we hand them back to the
1716 * kernel. We do have to make sure the generation
1717 * bit is set correctly in shadow, since it could
1718 * have changed many times while allocated to user.
1719 * We can't use the bitmap functions on the full
1720 * dma array because it is always little-endian, so
1721 * we have to flip to host-order first.
1722 * BITS_PER_LONG is slightly wrong, since it's
1723 * always 64 bits per register in chip...
1724 * We only work on 64 bit kernels, so that's OK.
1725 */
1726 /* deal with 6110 chip bug on high register #s */
1727 i = start / BITS_PER_LONG;
1728 im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1729 i ^ 1 : i;
1730 __clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT
1731 + start, dd->ipath_pioavailshadow);
1732 dma = (unsigned long) le64_to_cpu(
1733 dd->ipath_pioavailregs_dma[im]);
1734 if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1735 + start) % BITS_PER_LONG, &dma))
1736 __set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1737 + start, dd->ipath_pioavailshadow);
1738 else
1739 __clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1740 + start, dd->ipath_pioavailshadow);
1741 __set_bit(start, dd->ipath_pioavailkernel);
1742 } else {
1743 __set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT,
1744 dd->ipath_pioavailshadow);
1745 __clear_bit(start, dd->ipath_pioavailkernel);
1746 }
1747 start += 2;
1748 }
1749
1750 if (dd->ipath_pioupd_thresh) {
1751 end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1752 cnt = bitmap_weight(dd->ipath_pioavailkernel, end);
1753 }
1754 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1755
1756 /*
1757 * When moving buffers from kernel to user, if number assigned to
1758 * the user is less than the pio update threshold, and threshold
1759 * is supported (cnt was computed > 0), drop the update threshold
1760 * so we update at least once per allocated number of buffers.
1761 * In any case, if the kernel buffers are less than the threshold,
1762 * drop the threshold. We don't bother increasing it, having once
1763 * decreased it, since it would typically just cycle back and forth.
1764 * If we don't decrease below buffers in use, we can wait a long
1765 * time for an update, until some other context uses PIO buffers.
1766 */
1767 if (!avail && len < cnt)
1768 cnt = len;
1769 if (cnt < dd->ipath_pioupd_thresh) {
1770 dd->ipath_pioupd_thresh = cnt;
1771 ipath_dbg("Decreased pio update threshold to %u\n",
1772 dd->ipath_pioupd_thresh);
1773 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1774 dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK
1775 << INFINIPATH_S_UPDTHRESH_SHIFT);
1776 dd->ipath_sendctrl |= dd->ipath_pioupd_thresh
1777 << INFINIPATH_S_UPDTHRESH_SHIFT;
1778 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1779 dd->ipath_sendctrl);
1780 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1781 }
1782 }
1783
1784 /**
1785 * ipath_create_rcvhdrq - create a receive header queue
1786 * @dd: the infinipath device
1787 * @pd: the port data
1788 *
1789 * this must be contiguous memory (from an i/o perspective), and must be
1790 * DMA'able (which means for some systems, it will go through an IOMMU,
1791 * or be forced into a low address range).
1792 */
1793 int ipath_create_rcvhdrq(struct ipath_devdata *dd,
1794 struct ipath_portdata *pd)
1795 {
1796 int ret = 0;
1797
1798 if (!pd->port_rcvhdrq) {
1799 dma_addr_t phys_hdrqtail;
1800 gfp_t gfp_flags = GFP_USER | __GFP_COMP;
1801 int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
1802 sizeof(u32), PAGE_SIZE);
1803
1804 pd->port_rcvhdrq = dma_alloc_coherent(
1805 &dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
1806 gfp_flags);
1807
1808 if (!pd->port_rcvhdrq) {
1809 ipath_dev_err(dd, "attempt to allocate %d bytes "
1810 "for port %u rcvhdrq failed\n",
1811 amt, pd->port_port);
1812 ret = -ENOMEM;
1813 goto bail;
1814 }
1815
1816 if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1817 pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent(
1818 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1819 GFP_KERNEL);
1820 if (!pd->port_rcvhdrtail_kvaddr) {
1821 ipath_dev_err(dd, "attempt to allocate 1 page "
1822 "for port %u rcvhdrqtailaddr "
1823 "failed\n", pd->port_port);
1824 ret = -ENOMEM;
1825 dma_free_coherent(&dd->pcidev->dev, amt,
1826 pd->port_rcvhdrq,
1827 pd->port_rcvhdrq_phys);
1828 pd->port_rcvhdrq = NULL;
1829 goto bail;
1830 }
1831 pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail;
1832 ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx "
1833 "physical\n", pd->port_port,
1834 (unsigned long long) phys_hdrqtail);
1835 }
1836
1837 pd->port_rcvhdrq_size = amt;
1838
1839 ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
1840 "for port %u rcvhdr Q\n",
1841 amt >> PAGE_SHIFT, pd->port_rcvhdrq,
1842 (unsigned long) pd->port_rcvhdrq_phys,
1843 (unsigned long) pd->port_rcvhdrq_size,
1844 pd->port_port);
1845 }
1846 else
1847 ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; "
1848 "hdrtailaddr@%p %llx physical\n",
1849 pd->port_port, pd->port_rcvhdrq,
1850 (unsigned long long) pd->port_rcvhdrq_phys,
1851 pd->port_rcvhdrtail_kvaddr, (unsigned long long)
1852 pd->port_rcvhdrqtailaddr_phys);
1853
1854 /* clear for security and sanity on each use */
1855 memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size);
1856 if (pd->port_rcvhdrtail_kvaddr)
1857 memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE);
1858
1859 /*
1860 * tell chip each time we init it, even if we are re-using previous
1861 * memory (we zero the register at process close)
1862 */
1863 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr,
1864 pd->port_port, pd->port_rcvhdrqtailaddr_phys);
1865 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
1866 pd->port_port, pd->port_rcvhdrq_phys);
1867
1868 bail:
1869 return ret;
1870 }
1871
1872
1873 /*
1874 * Flush all sends that might be in the ready to send state, as well as any
1875 * that are in the process of being sent. Used whenever we need to be
1876 * sure the send side is idle. Cleans up all buffer state by canceling
1877 * all pio buffers, and issuing an abort, which cleans up anything in the
1878 * launch fifo. The cancel is superfluous on some chip versions, but
1879 * it's safer to always do it.
1880 * PIOAvail bits are updated by the chip as if normal send had happened.
1881 */
1882 void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl)
1883 {
1884 unsigned long flags;
1885
1886 if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) {
1887 ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n");
1888 goto bail;
1889 }
1890 /*
1891 * If we have SDMA, and it's not disabled, we have to kick off the
1892 * abort state machine, provided we aren't already aborting.
1893 * If we are in the process of aborting SDMA (!DISABLED, but ABORTING),
1894 * we skip the rest of this routine. It is already "in progress"
1895 */
1896 if (dd->ipath_flags & IPATH_HAS_SEND_DMA) {
1897 int skip_cancel;
1898 unsigned long *statp = &dd->ipath_sdma_status;
1899
1900 spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1901 skip_cancel =
1902 test_and_set_bit(IPATH_SDMA_ABORTING, statp)
1903 && !test_bit(IPATH_SDMA_DISABLED, statp);
1904 spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1905 if (skip_cancel)
1906 goto bail;
1907 }
1908
1909 ipath_dbg("Cancelling all in-progress send buffers\n");
1910
1911 /* skip armlaunch errs for a while */
1912 dd->ipath_lastcancel = jiffies + HZ / 2;
1913
1914 /*
1915 * The abort bit is auto-clearing. We also don't want pioavail
1916 * update happening during this, and we don't want any other
1917 * sends going out, so turn those off for the duration. We read
1918 * the scratch register to be sure that cancels and the abort
1919 * have taken effect in the chip. Otherwise two parts are same
1920 * as ipath_force_pio_avail_update()
1921 */
1922 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1923 dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD
1924 | INFINIPATH_S_PIOENABLE);
1925 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1926 dd->ipath_sendctrl | INFINIPATH_S_ABORT);
1927 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1928 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1929
1930 /* disarm all send buffers */
1931 ipath_disarm_piobufs(dd, 0,
1932 dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1933
1934 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
1935 set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status);
1936
1937 if (restore_sendctrl) {
1938 /* else done by caller later if needed */
1939 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1940 dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD |
1941 INFINIPATH_S_PIOENABLE;
1942 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1943 dd->ipath_sendctrl);
1944 /* and again, be sure all have hit the chip */
1945 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1946 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1947 }
1948
1949 if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) &&
1950 !test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) &&
1951 test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) {
1952 spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1953 /* only wait so long for intr */
1954 dd->ipath_sdma_abort_intr_timeout = jiffies + HZ;
1955 dd->ipath_sdma_reset_wait = 200;
1956 if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status))
1957 tasklet_hi_schedule(&dd->ipath_sdma_abort_task);
1958 spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1959 }
1960 bail:;
1961 }
1962
1963 /*
1964 * Force an update of in-memory copy of the pioavail registers, when
1965 * needed for any of a variety of reasons. We read the scratch register
1966 * to make it highly likely that the update will have happened by the
1967 * time we return. If already off (as in cancel_sends above), this
1968 * routine is a nop, on the assumption that the caller will "do the
1969 * right thing".
1970 */
1971 void ipath_force_pio_avail_update(struct ipath_devdata *dd)
1972 {
1973 unsigned long flags;
1974
1975 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1976 if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) {
1977 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1978 dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD);
1979 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1980 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1981 dd->ipath_sendctrl);
1982 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1983 }
1984 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1985 }
1986
1987 static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd,
1988 int linitcmd)
1989 {
1990 u64 mod_wd;
1991 static const char *what[4] = {
1992 [0] = "NOP",
1993 [INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN",
1994 [INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
1995 [INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
1996 };
1997
1998 if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) {
1999 /*
2000 * If we are told to disable, note that so link-recovery
2001 * code does not attempt to bring us back up.
2002 */
2003 preempt_disable();
2004 dd->ipath_flags |= IPATH_IB_LINK_DISABLED;
2005 preempt_enable();
2006 } else if (linitcmd) {
2007 /*
2008 * Any other linkinitcmd will lead to LINKDOWN and then
2009 * to INIT (if all is well), so clear flag to let
2010 * link-recovery code attempt to bring us back up.
2011 */
2012 preempt_disable();
2013 dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED;
2014 preempt_enable();
2015 }
2016
2017 mod_wd = (linkcmd << dd->ibcc_lc_shift) |
2018 (linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT);
2019 ipath_cdbg(VERBOSE,
2020 "Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n",
2021 dd->ipath_unit, what[linkcmd], linitcmd,
2022 ipath_ibcstatus_str[ipath_ib_linktrstate(dd,
2023 ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]);
2024
2025 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2026 dd->ipath_ibcctrl | mod_wd);
2027 /* read from chip so write is flushed */
2028 (void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2029 }
2030
2031 int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate)
2032 {
2033 u32 lstate;
2034 int ret;
2035
2036 switch (newstate) {
2037 case IPATH_IB_LINKDOWN_ONLY:
2038 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0);
2039 /* don't wait */
2040 ret = 0;
2041 goto bail;
2042
2043 case IPATH_IB_LINKDOWN:
2044 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2045 INFINIPATH_IBCC_LINKINITCMD_POLL);
2046 /* don't wait */
2047 ret = 0;
2048 goto bail;
2049
2050 case IPATH_IB_LINKDOWN_SLEEP:
2051 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2052 INFINIPATH_IBCC_LINKINITCMD_SLEEP);
2053 /* don't wait */
2054 ret = 0;
2055 goto bail;
2056
2057 case IPATH_IB_LINKDOWN_DISABLE:
2058 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2059 INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2060 /* don't wait */
2061 ret = 0;
2062 goto bail;
2063
2064 case IPATH_IB_LINKARM:
2065 if (dd->ipath_flags & IPATH_LINKARMED) {
2066 ret = 0;
2067 goto bail;
2068 }
2069 if (!(dd->ipath_flags &
2070 (IPATH_LINKINIT | IPATH_LINKACTIVE))) {
2071 ret = -EINVAL;
2072 goto bail;
2073 }
2074 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0);
2075
2076 /*
2077 * Since the port can transition to ACTIVE by receiving
2078 * a non VL 15 packet, wait for either state.
2079 */
2080 lstate = IPATH_LINKARMED | IPATH_LINKACTIVE;
2081 break;
2082
2083 case IPATH_IB_LINKACTIVE:
2084 if (dd->ipath_flags & IPATH_LINKACTIVE) {
2085 ret = 0;
2086 goto bail;
2087 }
2088 if (!(dd->ipath_flags & IPATH_LINKARMED)) {
2089 ret = -EINVAL;
2090 goto bail;
2091 }
2092 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0);
2093 lstate = IPATH_LINKACTIVE;
2094 break;
2095
2096 case IPATH_IB_LINK_LOOPBACK:
2097 dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n");
2098 dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK;
2099 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2100 dd->ipath_ibcctrl);
2101
2102 /* turn heartbeat off, as it causes loopback to fail */
2103 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2104 IPATH_IB_HRTBT_OFF);
2105 /* don't wait */
2106 ret = 0;
2107 goto bail;
2108
2109 case IPATH_IB_LINK_EXTERNAL:
2110 dev_info(&dd->pcidev->dev,
2111 "Disabling IB local loopback (normal)\n");
2112 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2113 IPATH_IB_HRTBT_ON);
2114 dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK;
2115 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2116 dd->ipath_ibcctrl);
2117 /* don't wait */
2118 ret = 0;
2119 goto bail;
2120
2121 /*
2122 * Heartbeat can be explicitly enabled by the user via
2123 * "hrtbt_enable" "file", and if disabled, trying to enable here
2124 * will have no effect. Implicit changes (heartbeat off when
2125 * loopback on, and vice versa) are included to ease testing.
2126 */
2127 case IPATH_IB_LINK_HRTBT:
2128 ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2129 IPATH_IB_HRTBT_ON);
2130 goto bail;
2131
2132 case IPATH_IB_LINK_NO_HRTBT:
2133 ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2134 IPATH_IB_HRTBT_OFF);
2135 goto bail;
2136
2137 default:
2138 ipath_dbg("Invalid linkstate 0x%x requested\n", newstate);
2139 ret = -EINVAL;
2140 goto bail;
2141 }
2142 ret = ipath_wait_linkstate(dd, lstate, 2000);
2143
2144 bail:
2145 return ret;
2146 }
2147
2148 /**
2149 * ipath_set_mtu - set the MTU
2150 * @dd: the infinipath device
2151 * @arg: the new MTU
2152 *
2153 * we can handle "any" incoming size, the issue here is whether we
2154 * need to restrict our outgoing size. For now, we don't do any
2155 * sanity checking on this, and we don't deal with what happens to
2156 * programs that are already running when the size changes.
2157 * NOTE: changing the MTU will usually cause the IBC to go back to
2158 * link INIT state...
2159 */
2160 int ipath_set_mtu(struct ipath_devdata *dd, u16 arg)
2161 {
2162 u32 piosize;
2163 int changed = 0;
2164 int ret;
2165
2166 /*
2167 * mtu is IB data payload max. It's the largest power of 2 less
2168 * than piosize (or even larger, since it only really controls the
2169 * largest we can receive; we can send the max of the mtu and
2170 * piosize). We check that it's one of the valid IB sizes.
2171 */
2172 if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 &&
2173 (arg != 4096 || !ipath_mtu4096)) {
2174 ipath_dbg("Trying to set invalid mtu %u, failing\n", arg);
2175 ret = -EINVAL;
2176 goto bail;
2177 }
2178 if (dd->ipath_ibmtu == arg) {
2179 ret = 0; /* same as current */
2180 goto bail;
2181 }
2182
2183 piosize = dd->ipath_ibmaxlen;
2184 dd->ipath_ibmtu = arg;
2185
2186 if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) {
2187 /* Only if it's not the initial value (or reset to it) */
2188 if (piosize != dd->ipath_init_ibmaxlen) {
2189 if (arg > piosize && arg <= dd->ipath_init_ibmaxlen)
2190 piosize = dd->ipath_init_ibmaxlen;
2191 dd->ipath_ibmaxlen = piosize;
2192 changed = 1;
2193 }
2194 } else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) {
2195 piosize = arg + IPATH_PIO_MAXIBHDR;
2196 ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x "
2197 "(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize,
2198 arg);
2199 dd->ipath_ibmaxlen = piosize;
2200 changed = 1;
2201 }
2202
2203 if (changed) {
2204 u64 ibc = dd->ipath_ibcctrl, ibdw;
2205 /*
2206 * update our housekeeping variables, and set IBC max
2207 * size, same as init code; max IBC is max we allow in
2208 * buffer, less the qword pbc, plus 1 for ICRC, in dwords
2209 */
2210 dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32);
2211 ibdw = (dd->ipath_ibmaxlen >> 2) + 1;
2212 ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK <<
2213 dd->ibcc_mpl_shift);
2214 ibc |= ibdw << dd->ibcc_mpl_shift;
2215 dd->ipath_ibcctrl = ibc;
2216 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2217 dd->ipath_ibcctrl);
2218 dd->ipath_f_tidtemplate(dd);
2219 }
2220
2221 ret = 0;
2222
2223 bail:
2224 return ret;
2225 }
2226
2227 int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc)
2228 {
2229 dd->ipath_lid = lid;
2230 dd->ipath_lmc = lmc;
2231
2232 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid |
2233 (~((1U << lmc) - 1)) << 16);
2234
2235 dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid);
2236
2237 return 0;
2238 }
2239
2240
2241 /**
2242 * ipath_write_kreg_port - write a device's per-port 64-bit kernel register
2243 * @dd: the infinipath device
2244 * @regno: the register number to write
2245 * @port: the port containing the register
2246 * @value: the value to write
2247 *
2248 * Registers that vary with the chip implementation constants (port)
2249 * use this routine.
2250 */
2251 void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
2252 unsigned port, u64 value)
2253 {
2254 u16 where;
2255
2256 if (port < dd->ipath_portcnt &&
2257 (regno == dd->ipath_kregs->kr_rcvhdraddr ||
2258 regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
2259 where = regno + port;
2260 else
2261 where = -1;
2262
2263 ipath_write_kreg(dd, where, value);
2264 }
2265
2266 /*
2267 * Following deal with the "obviously simple" task of overriding the state
2268 * of the LEDS, which normally indicate link physical and logical status.
2269 * The complications arise in dealing with different hardware mappings
2270 * and the board-dependent routine being called from interrupts.
2271 * and then there's the requirement to _flash_ them.
2272 */
2273 #define LED_OVER_FREQ_SHIFT 8
2274 #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
2275 /* Below is "non-zero" to force override, but both actual LEDs are off */
2276 #define LED_OVER_BOTH_OFF (8)
2277
2278 static void ipath_run_led_override(unsigned long opaque)
2279 {
2280 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2281 int timeoff;
2282 int pidx;
2283 u64 lstate, ltstate, val;
2284
2285 if (!(dd->ipath_flags & IPATH_INITTED))
2286 return;
2287
2288 pidx = dd->ipath_led_override_phase++ & 1;
2289 dd->ipath_led_override = dd->ipath_led_override_vals[pidx];
2290 timeoff = dd->ipath_led_override_timeoff;
2291
2292 /*
2293 * below potentially restores the LED values per current status,
2294 * should also possibly setup the traffic-blink register,
2295 * but leave that to per-chip functions.
2296 */
2297 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2298 ltstate = ipath_ib_linktrstate(dd, val);
2299 lstate = ipath_ib_linkstate(dd, val);
2300
2301 dd->ipath_f_setextled(dd, lstate, ltstate);
2302 mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff);
2303 }
2304
2305 void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val)
2306 {
2307 int timeoff, freq;
2308
2309 if (!(dd->ipath_flags & IPATH_INITTED))
2310 return;
2311
2312 /* First check if we are blinking. If not, use 1HZ polling */
2313 timeoff = HZ;
2314 freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
2315
2316 if (freq) {
2317 /* For blink, set each phase from one nybble of val */
2318 dd->ipath_led_override_vals[0] = val & 0xF;
2319 dd->ipath_led_override_vals[1] = (val >> 4) & 0xF;
2320 timeoff = (HZ << 4)/freq;
2321 } else {
2322 /* Non-blink set both phases the same. */
2323 dd->ipath_led_override_vals[0] = val & 0xF;
2324 dd->ipath_led_override_vals[1] = val & 0xF;
2325 }
2326 dd->ipath_led_override_timeoff = timeoff;
2327
2328 /*
2329 * If the timer has not already been started, do so. Use a "quick"
2330 * timeout so the function will be called soon, to look at our request.
2331 */
2332 if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) {
2333 /* Need to start timer */
2334 init_timer(&dd->ipath_led_override_timer);
2335 dd->ipath_led_override_timer.function =
2336 ipath_run_led_override;
2337 dd->ipath_led_override_timer.data = (unsigned long) dd;
2338 dd->ipath_led_override_timer.expires = jiffies + 1;
2339 add_timer(&dd->ipath_led_override_timer);
2340 } else
2341 atomic_dec(&dd->ipath_led_override_timer_active);
2342 }
2343
2344 /**
2345 * ipath_shutdown_device - shut down a device
2346 * @dd: the infinipath device
2347 *
2348 * This is called to make the device quiet when we are about to
2349 * unload the driver, and also when the device is administratively
2350 * disabled. It does not free any data structures.
2351 * Everything it does has to be setup again by ipath_init_chip(dd,1)
2352 */
2353 void ipath_shutdown_device(struct ipath_devdata *dd)
2354 {
2355 unsigned long flags;
2356
2357 ipath_dbg("Shutting down the device\n");
2358
2359 ipath_hol_up(dd); /* make sure user processes aren't suspended */
2360
2361 dd->ipath_flags |= IPATH_LINKUNK;
2362 dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
2363 IPATH_LINKINIT | IPATH_LINKARMED |
2364 IPATH_LINKACTIVE);
2365 *dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
2366 IPATH_STATUS_IB_READY);
2367
2368 /* mask interrupts, but not errors */
2369 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2370
2371 dd->ipath_rcvctrl = 0;
2372 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
2373 dd->ipath_rcvctrl);
2374
2375 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2376 teardown_sdma(dd);
2377
2378 /*
2379 * gracefully stop all sends allowing any in progress to trickle out
2380 * first.
2381 */
2382 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
2383 dd->ipath_sendctrl = 0;
2384 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl);
2385 /* flush it */
2386 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
2387 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
2388
2389 /*
2390 * enough for anything that's going to trickle out to have actually
2391 * done so.
2392 */
2393 udelay(5);
2394
2395 dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */
2396
2397 ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2398 ipath_cancel_sends(dd, 0);
2399
2400 /*
2401 * we are shutting down, so tell components that care. We don't do
2402 * this on just a link state change, much like ethernet, a cable
2403 * unplug, etc. doesn't change driver state
2404 */
2405 signal_ib_event(dd, IB_EVENT_PORT_ERR);
2406
2407 /* disable IBC */
2408 dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
2409 ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
2410 dd->ipath_control | INFINIPATH_C_FREEZEMODE);
2411
2412 /*
2413 * clear SerdesEnable and turn the leds off; do this here because
2414 * we are unloading, so don't count on interrupts to move along
2415 * Turn the LEDs off explictly for the same reason.
2416 */
2417 dd->ipath_f_quiet_serdes(dd);
2418
2419 /* stop all the timers that might still be running */
2420 del_timer_sync(&dd->ipath_hol_timer);
2421 if (dd->ipath_stats_timer_active) {
2422 del_timer_sync(&dd->ipath_stats_timer);
2423 dd->ipath_stats_timer_active = 0;
2424 }
2425 if (dd->ipath_intrchk_timer.data) {
2426 del_timer_sync(&dd->ipath_intrchk_timer);
2427 dd->ipath_intrchk_timer.data = 0;
2428 }
2429 if (atomic_read(&dd->ipath_led_override_timer_active)) {
2430 del_timer_sync(&dd->ipath_led_override_timer);
2431 atomic_set(&dd->ipath_led_override_timer_active, 0);
2432 }
2433
2434 /*
2435 * clear all interrupts and errors, so that the next time the driver
2436 * is loaded or device is enabled, we know that whatever is set
2437 * happened while we were unloaded
2438 */
2439 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
2440 ~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
2441 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
2442 ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
2443
2444 ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n");
2445 ipath_update_eeprom_log(dd);
2446 }
2447
2448 /**
2449 * ipath_free_pddata - free a port's allocated data
2450 * @dd: the infinipath device
2451 * @pd: the portdata structure
2452 *
2453 * free up any allocated data for a port
2454 * This should not touch anything that would affect a simultaneous
2455 * re-allocation of port data, because it is called after ipath_mutex
2456 * is released (and can be called from reinit as well).
2457 * It should never change any chip state, or global driver state.
2458 * (The only exception to global state is freeing the port0 port0_skbs.)
2459 */
2460 void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd)
2461 {
2462 if (!pd)
2463 return;
2464
2465 if (pd->port_rcvhdrq) {
2466 ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
2467 "(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
2468 (unsigned long) pd->port_rcvhdrq_size);
2469 dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
2470 pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
2471 pd->port_rcvhdrq = NULL;
2472 if (pd->port_rcvhdrtail_kvaddr) {
2473 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
2474 pd->port_rcvhdrtail_kvaddr,
2475 pd->port_rcvhdrqtailaddr_phys);
2476 pd->port_rcvhdrtail_kvaddr = NULL;
2477 }
2478 }
2479 if (pd->port_port && pd->port_rcvegrbuf) {
2480 unsigned e;
2481
2482 for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
2483 void *base = pd->port_rcvegrbuf[e];
2484 size_t size = pd->port_rcvegrbuf_size;
2485
2486 ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
2487 "chunk %u/%u\n", base,
2488 (unsigned long) size,
2489 e, pd->port_rcvegrbuf_chunks);
2490 dma_free_coherent(&dd->pcidev->dev, size,
2491 base, pd->port_rcvegrbuf_phys[e]);
2492 }
2493 kfree(pd->port_rcvegrbuf);
2494 pd->port_rcvegrbuf = NULL;
2495 kfree(pd->port_rcvegrbuf_phys);
2496 pd->port_rcvegrbuf_phys = NULL;
2497 pd->port_rcvegrbuf_chunks = 0;
2498 } else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) {
2499 unsigned e;
2500 struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo;
2501
2502 dd->ipath_port0_skbinfo = NULL;
2503 ipath_cdbg(VERBOSE, "free closed port %d "
2504 "ipath_port0_skbinfo @ %p\n", pd->port_port,
2505 skbinfo);
2506 for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++)
2507 if (skbinfo[e].skb) {
2508 pci_unmap_single(dd->pcidev, skbinfo[e].phys,
2509 dd->ipath_ibmaxlen,
2510 PCI_DMA_FROMDEVICE);
2511 dev_kfree_skb(skbinfo[e].skb);
2512 }
2513 vfree(skbinfo);
2514 }
2515 kfree(pd->port_tid_pg_list);
2516 vfree(pd->subport_uregbase);
2517 vfree(pd->subport_rcvegrbuf);
2518 vfree(pd->subport_rcvhdr_base);
2519 kfree(pd);
2520 }
2521
2522 static int __init infinipath_init(void)
2523 {
2524 int ret;
2525
2526 if (ipath_debug & __IPATH_DBG)
2527 printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version);
2528
2529 /*
2530 * These must be called before the driver is registered with
2531 * the PCI subsystem.
2532 */
2533 idr_init(&unit_table);
2534 if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
2535 printk(KERN_ERR IPATH_DRV_NAME ": idr_pre_get() failed\n");
2536 ret = -ENOMEM;
2537 goto bail;
2538 }
2539
2540 ret = pci_register_driver(&ipath_driver);
2541 if (ret < 0) {
2542 printk(KERN_ERR IPATH_DRV_NAME
2543 ": Unable to register driver: error %d\n", -ret);
2544 goto bail_unit;
2545 }
2546
2547 ret = ipath_init_ipathfs();
2548 if (ret < 0) {
2549 printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
2550 "ipathfs: error %d\n", -ret);
2551 goto bail_pci;
2552 }
2553
2554 goto bail;
2555
2556 bail_pci:
2557 pci_unregister_driver(&ipath_driver);
2558
2559 bail_unit:
2560 idr_destroy(&unit_table);
2561
2562 bail:
2563 return ret;
2564 }
2565
2566 static void __exit infinipath_cleanup(void)
2567 {
2568 ipath_exit_ipathfs();
2569
2570 ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
2571 pci_unregister_driver(&ipath_driver);
2572
2573 idr_destroy(&unit_table);
2574 }
2575
2576 /**
2577 * ipath_reset_device - reset the chip if possible
2578 * @unit: the device to reset
2579 *
2580 * Whether or not reset is successful, we attempt to re-initialize the chip
2581 * (that is, much like a driver unload/reload). We clear the INITTED flag
2582 * so that the various entry points will fail until we reinitialize. For
2583 * now, we only allow this if no user ports are open that use chip resources
2584 */
2585 int ipath_reset_device(int unit)
2586 {
2587 int ret, i;
2588 struct ipath_devdata *dd = ipath_lookup(unit);
2589 unsigned long flags;
2590
2591 if (!dd) {
2592 ret = -ENODEV;
2593 goto bail;
2594 }
2595
2596 if (atomic_read(&dd->ipath_led_override_timer_active)) {
2597 /* Need to stop LED timer, _then_ shut off LEDs */
2598 del_timer_sync(&dd->ipath_led_override_timer);
2599 atomic_set(&dd->ipath_led_override_timer_active, 0);
2600 }
2601
2602 /* Shut off LEDs after we are sure timer is not running */
2603 dd->ipath_led_override = LED_OVER_BOTH_OFF;
2604 dd->ipath_f_setextled(dd, 0, 0);
2605
2606 dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
2607
2608 if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
2609 dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
2610 "not initialized or not present\n", unit);
2611 ret = -ENXIO;
2612 goto bail;
2613 }
2614
2615 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
2616 if (dd->ipath_pd)
2617 for (i = 1; i < dd->ipath_cfgports; i++) {
2618 if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2619 continue;
2620 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2621 ipath_dbg("unit %u port %d is in use "
2622 "(PID %u cmd %s), can't reset\n",
2623 unit, i,
2624 pid_nr(dd->ipath_pd[i]->port_pid),
2625 dd->ipath_pd[i]->port_comm);
2626 ret = -EBUSY;
2627 goto bail;
2628 }
2629 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2630
2631 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2632 teardown_sdma(dd);
2633
2634 dd->ipath_flags &= ~IPATH_INITTED;
2635 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2636 ret = dd->ipath_f_reset(dd);
2637 if (ret == 1) {
2638 ipath_dbg("Reinitializing unit %u after reset attempt\n",
2639 unit);
2640 ret = ipath_init_chip(dd, 1);
2641 } else
2642 ret = -EAGAIN;
2643 if (ret)
2644 ipath_dev_err(dd, "Reinitialize unit %u after "
2645 "reset failed with %d\n", unit, ret);
2646 else
2647 dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
2648 "resetting\n", unit);
2649
2650 bail:
2651 return ret;
2652 }
2653
2654 /*
2655 * send a signal to all the processes that have the driver open
2656 * through the normal interfaces (i.e., everything other than diags
2657 * interface). Returns number of signalled processes.
2658 */
2659 static int ipath_signal_procs(struct ipath_devdata *dd, int sig)
2660 {
2661 int i, sub, any = 0;
2662 struct pid *pid;
2663 unsigned long flags;
2664
2665 if (!dd->ipath_pd)
2666 return 0;
2667
2668 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
2669 for (i = 1; i < dd->ipath_cfgports; i++) {
2670 if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2671 continue;
2672 pid = dd->ipath_pd[i]->port_pid;
2673 if (!pid)
2674 continue;
2675
2676 dev_info(&dd->pcidev->dev, "context %d in use "
2677 "(PID %u), sending signal %d\n",
2678 i, pid_nr(pid), sig);
2679 kill_pid(pid, sig, 1);
2680 any++;
2681 for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) {
2682 pid = dd->ipath_pd[i]->port_subpid[sub];
2683 if (!pid)
2684 continue;
2685 dev_info(&dd->pcidev->dev, "sub-context "
2686 "%d:%d in use (PID %u), sending "
2687 "signal %d\n", i, sub, pid_nr(pid), sig);
2688 kill_pid(pid, sig, 1);
2689 any++;
2690 }
2691 }
2692 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2693 return any;
2694 }
2695
2696 static void ipath_hol_signal_down(struct ipath_devdata *dd)
2697 {
2698 if (ipath_signal_procs(dd, SIGSTOP))
2699 ipath_dbg("Stopped some processes\n");
2700 ipath_cancel_sends(dd, 1);
2701 }
2702
2703
2704 static void ipath_hol_signal_up(struct ipath_devdata *dd)
2705 {
2706 if (ipath_signal_procs(dd, SIGCONT))
2707 ipath_dbg("Continued some processes\n");
2708 }
2709
2710 /*
2711 * link is down, stop any users processes, and flush pending sends
2712 * to prevent HoL blocking, then start the HoL timer that
2713 * periodically continues, then stop procs, so they can detect
2714 * link down if they want, and do something about it.
2715 * Timer may already be running, so use mod_timer, not add_timer.
2716 */
2717 void ipath_hol_down(struct ipath_devdata *dd)
2718 {
2719 dd->ipath_hol_state = IPATH_HOL_DOWN;
2720 ipath_hol_signal_down(dd);
2721 dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2722 dd->ipath_hol_timer.expires = jiffies +
2723 msecs_to_jiffies(ipath_hol_timeout_ms);
2724 mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
2725 }
2726
2727 /*
2728 * link is up, continue any user processes, and ensure timer
2729 * is a nop, if running. Let timer keep running, if set; it
2730 * will nop when it sees the link is up
2731 */
2732 void ipath_hol_up(struct ipath_devdata *dd)
2733 {
2734 ipath_hol_signal_up(dd);
2735 dd->ipath_hol_state = IPATH_HOL_UP;
2736 }
2737
2738 /*
2739 * toggle the running/not running state of user proceses
2740 * to prevent HoL blocking on chip resources, but still allow
2741 * user processes to do link down special case handling.
2742 * Should only be called via the timer
2743 */
2744 void ipath_hol_event(unsigned long opaque)
2745 {
2746 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2747
2748 if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP
2749 && dd->ipath_hol_state != IPATH_HOL_UP) {
2750 dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2751 ipath_dbg("Stopping processes\n");
2752 ipath_hol_signal_down(dd);
2753 } else { /* may do "extra" if also in ipath_hol_up() */
2754 dd->ipath_hol_next = IPATH_HOL_DOWNSTOP;
2755 ipath_dbg("Continuing processes\n");
2756 ipath_hol_signal_up(dd);
2757 }
2758 if (dd->ipath_hol_state == IPATH_HOL_UP)
2759 ipath_dbg("link's up, don't resched timer\n");
2760 else {
2761 dd->ipath_hol_timer.expires = jiffies +
2762 msecs_to_jiffies(ipath_hol_timeout_ms);
2763 mod_timer(&dd->ipath_hol_timer,
2764 dd->ipath_hol_timer.expires);
2765 }
2766 }
2767
2768 int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv)
2769 {
2770 u64 val;
2771
2772 if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK)
2773 return -1;
2774 if (dd->ipath_rx_pol_inv != new_pol_inv) {
2775 dd->ipath_rx_pol_inv = new_pol_inv;
2776 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig);
2777 val &= ~(INFINIPATH_XGXS_RX_POL_MASK <<
2778 INFINIPATH_XGXS_RX_POL_SHIFT);
2779 val |= ((u64)dd->ipath_rx_pol_inv) <<
2780 INFINIPATH_XGXS_RX_POL_SHIFT;
2781 ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val);
2782 }
2783 return 0;
2784 }
2785
2786 /*
2787 * Disable and enable the armlaunch error. Used for PIO bandwidth testing on
2788 * the 7220, which is count-based, rather than trigger-based. Safe for the
2789 * driver check, since it's at init. Not completely safe when used for
2790 * user-mode checking, since some error checking can be lost, but not
2791 * particularly risky, and only has problematic side-effects in the face of
2792 * very buggy user code. There is no reference counting, but that's also
2793 * fine, given the intended use.
2794 */
2795 void ipath_enable_armlaunch(struct ipath_devdata *dd)
2796 {
2797 dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH;
2798 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear,
2799 INFINIPATH_E_SPIOARMLAUNCH);
2800 dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH;
2801 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2802 dd->ipath_errormask);
2803 }
2804
2805 void ipath_disable_armlaunch(struct ipath_devdata *dd)
2806 {
2807 /* so don't re-enable if already set */
2808 dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH;
2809 dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH;
2810 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2811 dd->ipath_errormask);
2812 }
2813
2814 module_init(infinipath_init);
2815 module_exit(infinipath_cleanup);