]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/infiniband/hw/mlx4/mr.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / hw / mlx4 / mr.c
1 /*
2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/slab.h>
35 #include <rdma/ib_user_verbs.h>
36
37 #include "mlx4_ib.h"
38
39 static u32 convert_access(int acc)
40 {
41 return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) |
42 (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) |
43 (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) |
44 (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) |
45 (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) |
46 MLX4_PERM_LOCAL_READ;
47 }
48
49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
50 {
51 switch (type) {
52 case IB_MW_TYPE_1: return MLX4_MW_TYPE_1;
53 case IB_MW_TYPE_2: return MLX4_MW_TYPE_2;
54 default: return -1;
55 }
56 }
57
58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
59 {
60 struct mlx4_ib_mr *mr;
61 int err;
62
63 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
64 if (!mr)
65 return ERR_PTR(-ENOMEM);
66
67 err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
68 ~0ull, convert_access(acc), 0, 0, &mr->mmr);
69 if (err)
70 goto err_free;
71
72 err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
73 if (err)
74 goto err_mr;
75
76 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
77 mr->umem = NULL;
78
79 return &mr->ibmr;
80
81 err_mr:
82 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
83
84 err_free:
85 kfree(mr);
86
87 return ERR_PTR(err);
88 }
89
90 enum {
91 MLX4_MAX_MTT_SHIFT = 31
92 };
93
94 static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
95 struct mlx4_mtt *mtt,
96 u64 mtt_size, u64 mtt_shift, u64 len,
97 u64 cur_start_addr, u64 *pages,
98 int *start_index, int *npages)
99 {
100 u64 cur_end_addr = cur_start_addr + len;
101 u64 cur_end_addr_aligned = 0;
102 u64 mtt_entries;
103 int err = 0;
104 int k;
105
106 len += (cur_start_addr & (mtt_size - 1ULL));
107 cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
108 len += (cur_end_addr_aligned - cur_end_addr);
109 if (len & (mtt_size - 1ULL)) {
110 pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
111 len, mtt_size);
112 return -EINVAL;
113 }
114
115 mtt_entries = (len >> mtt_shift);
116
117 /*
118 * Align the MTT start address to the mtt_size.
119 * Required to handle cases when the MR starts in the middle of an MTT
120 * record. Was not required in old code since the physical addresses
121 * provided by the dma subsystem were page aligned, which was also the
122 * MTT size.
123 */
124 cur_start_addr = round_down(cur_start_addr, mtt_size);
125 /* A new block is started ... */
126 for (k = 0; k < mtt_entries; ++k) {
127 pages[*npages] = cur_start_addr + (mtt_size * k);
128 (*npages)++;
129 /*
130 * Be friendly to mlx4_write_mtt() and pass it chunks of
131 * appropriate size.
132 */
133 if (*npages == PAGE_SIZE / sizeof(u64)) {
134 err = mlx4_write_mtt(dev->dev, mtt, *start_index,
135 *npages, pages);
136 if (err)
137 return err;
138
139 (*start_index) += *npages;
140 *npages = 0;
141 }
142 }
143
144 return 0;
145 }
146
147 static inline u64 alignment_of(u64 ptr)
148 {
149 return ilog2(ptr & (~(ptr - 1)));
150 }
151
152 static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
153 u64 current_block_end,
154 u64 block_shift)
155 {
156 /* Check whether the alignment of the new block is aligned as well as
157 * the previous block.
158 * Block address must start with zeros till size of entity_size.
159 */
160 if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
161 /*
162 * It is not as well aligned as the previous block-reduce the
163 * mtt size accordingly. Here we take the last right bit which
164 * is 1.
165 */
166 block_shift = alignment_of(next_block_start);
167
168 /*
169 * Check whether the alignment of the end of previous block - is it
170 * aligned as well as the start of the block
171 */
172 if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
173 /*
174 * It is not as well aligned as the start of the block -
175 * reduce the mtt size accordingly.
176 */
177 block_shift = alignment_of(current_block_end);
178
179 return block_shift;
180 }
181
182 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
183 struct ib_umem *umem)
184 {
185 u64 *pages;
186 u64 len = 0;
187 int err = 0;
188 u64 mtt_size;
189 u64 cur_start_addr = 0;
190 u64 mtt_shift;
191 int start_index = 0;
192 int npages = 0;
193 struct scatterlist *sg;
194 int i;
195
196 pages = (u64 *) __get_free_page(GFP_KERNEL);
197 if (!pages)
198 return -ENOMEM;
199
200 mtt_shift = mtt->page_shift;
201 mtt_size = 1ULL << mtt_shift;
202
203 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
204 if (cur_start_addr + len == sg_dma_address(sg)) {
205 /* still the same block */
206 len += sg_dma_len(sg);
207 continue;
208 }
209 /*
210 * A new block is started ...
211 * If len is malaligned, write an extra mtt entry to cover the
212 * misaligned area (round up the division)
213 */
214 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
215 mtt_shift, len,
216 cur_start_addr,
217 pages, &start_index,
218 &npages);
219 if (err)
220 goto out;
221
222 cur_start_addr = sg_dma_address(sg);
223 len = sg_dma_len(sg);
224 }
225
226 /* Handle the last block */
227 if (len > 0) {
228 /*
229 * If len is malaligned, write an extra mtt entry to cover
230 * the misaligned area (round up the division)
231 */
232 err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
233 mtt_shift, len,
234 cur_start_addr, pages,
235 &start_index, &npages);
236 if (err)
237 goto out;
238 }
239
240 if (npages)
241 err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
242
243 out:
244 free_page((unsigned long) pages);
245 return err;
246 }
247
248 /*
249 * Calculate optimal mtt size based on contiguous pages.
250 * Function will return also the number of pages that are not aligned to the
251 * calculated mtt_size to be added to total number of pages. For that we should
252 * check the first chunk length & last chunk length and if not aligned to
253 * mtt_size we should increment the non_aligned_pages number. All chunks in the
254 * middle already handled as part of mtt shift calculation for both their start
255 * & end addresses.
256 */
257 int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
258 int *num_of_mtts)
259 {
260 u64 block_shift = MLX4_MAX_MTT_SHIFT;
261 u64 min_shift = umem->page_shift;
262 u64 last_block_aligned_end = 0;
263 u64 current_block_start = 0;
264 u64 first_block_start = 0;
265 u64 current_block_len = 0;
266 u64 last_block_end = 0;
267 struct scatterlist *sg;
268 u64 current_block_end;
269 u64 misalignment_bits;
270 u64 next_block_start;
271 u64 total_len = 0;
272 int i;
273
274 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
275 /*
276 * Initialization - save the first chunk start as the
277 * current_block_start - block means contiguous pages.
278 */
279 if (current_block_len == 0 && current_block_start == 0) {
280 current_block_start = sg_dma_address(sg);
281 first_block_start = current_block_start;
282 /*
283 * Find the bits that are different between the physical
284 * address and the virtual address for the start of the
285 * MR.
286 * umem_get aligned the start_va to a page boundary.
287 * Therefore, we need to align the start va to the same
288 * boundary.
289 * misalignment_bits is needed to handle the case of a
290 * single memory region. In this case, the rest of the
291 * logic will not reduce the block size. If we use a
292 * block size which is bigger than the alignment of the
293 * misalignment bits, we might use the virtual page
294 * number instead of the physical page number, resulting
295 * in access to the wrong data.
296 */
297 misalignment_bits =
298 (start_va & (~(((u64)(BIT(umem->page_shift))) - 1ULL)))
299 ^ current_block_start;
300 block_shift = min(alignment_of(misalignment_bits),
301 block_shift);
302 }
303
304 /*
305 * Go over the scatter entries and check if they continue the
306 * previous scatter entry.
307 */
308 next_block_start = sg_dma_address(sg);
309 current_block_end = current_block_start + current_block_len;
310 /* If we have a split (non-contig.) between two blocks */
311 if (current_block_end != next_block_start) {
312 block_shift = mlx4_ib_umem_calc_block_mtt
313 (next_block_start,
314 current_block_end,
315 block_shift);
316
317 /*
318 * If we reached the minimum shift for 4k page we stop
319 * the loop.
320 */
321 if (block_shift <= min_shift)
322 goto end;
323
324 /*
325 * If not saved yet we are in first block - we save the
326 * length of first block to calculate the
327 * non_aligned_pages number at the end.
328 */
329 total_len += current_block_len;
330
331 /* Start a new block */
332 current_block_start = next_block_start;
333 current_block_len = sg_dma_len(sg);
334 continue;
335 }
336 /* The scatter entry is another part of the current block,
337 * increase the block size.
338 * An entry in the scatter can be larger than 4k (page) as of
339 * dma mapping which merge some blocks together.
340 */
341 current_block_len += sg_dma_len(sg);
342 }
343
344 /* Account for the last block in the total len */
345 total_len += current_block_len;
346 /* Add to the first block the misalignment that it suffers from. */
347 total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
348 last_block_end = current_block_start + current_block_len;
349 last_block_aligned_end = round_up(last_block_end, 1 << block_shift);
350 total_len += (last_block_aligned_end - last_block_end);
351
352 if (total_len & ((1ULL << block_shift) - 1ULL))
353 pr_warn("misaligned total length detected (%llu, %llu)!",
354 total_len, block_shift);
355
356 *num_of_mtts = total_len >> block_shift;
357 end:
358 if (block_shift < min_shift) {
359 /*
360 * If shift is less than the min we set a warning and return the
361 * min shift.
362 */
363 pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
364
365 block_shift = min_shift;
366 }
367 return block_shift;
368 }
369
370 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
371 u64 virt_addr, int access_flags,
372 struct ib_udata *udata)
373 {
374 struct mlx4_ib_dev *dev = to_mdev(pd->device);
375 struct mlx4_ib_mr *mr;
376 int shift;
377 int err;
378 int n;
379
380 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
381 if (!mr)
382 return ERR_PTR(-ENOMEM);
383
384 /* Force registering the memory as writable. */
385 /* Used for memory re-registeration. HCA protects the access */
386 mr->umem = ib_umem_get(pd->uobject->context, start, length,
387 access_flags | IB_ACCESS_LOCAL_WRITE, 0);
388 if (IS_ERR(mr->umem)) {
389 err = PTR_ERR(mr->umem);
390 goto err_free;
391 }
392
393 n = ib_umem_page_count(mr->umem);
394 shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
395
396 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
397 convert_access(access_flags), n, shift, &mr->mmr);
398 if (err)
399 goto err_umem;
400
401 err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
402 if (err)
403 goto err_mr;
404
405 err = mlx4_mr_enable(dev->dev, &mr->mmr);
406 if (err)
407 goto err_mr;
408
409 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
410
411 return &mr->ibmr;
412
413 err_mr:
414 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
415
416 err_umem:
417 ib_umem_release(mr->umem);
418
419 err_free:
420 kfree(mr);
421
422 return ERR_PTR(err);
423 }
424
425 int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags,
426 u64 start, u64 length, u64 virt_addr,
427 int mr_access_flags, struct ib_pd *pd,
428 struct ib_udata *udata)
429 {
430 struct mlx4_ib_dev *dev = to_mdev(mr->device);
431 struct mlx4_ib_mr *mmr = to_mmr(mr);
432 struct mlx4_mpt_entry *mpt_entry;
433 struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
434 int err;
435
436 /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
437 * we assume that the calls can't run concurrently. Otherwise, a
438 * race exists.
439 */
440 err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
441
442 if (err)
443 return err;
444
445 if (flags & IB_MR_REREG_PD) {
446 err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
447 to_mpd(pd)->pdn);
448
449 if (err)
450 goto release_mpt_entry;
451 }
452
453 if (flags & IB_MR_REREG_ACCESS) {
454 err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
455 convert_access(mr_access_flags));
456
457 if (err)
458 goto release_mpt_entry;
459 }
460
461 if (flags & IB_MR_REREG_TRANS) {
462 int shift;
463 int n;
464
465 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
466 ib_umem_release(mmr->umem);
467 mmr->umem = ib_umem_get(mr->uobject->context, start, length,
468 mr_access_flags |
469 IB_ACCESS_LOCAL_WRITE,
470 0);
471 if (IS_ERR(mmr->umem)) {
472 err = PTR_ERR(mmr->umem);
473 /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
474 mmr->umem = NULL;
475 goto release_mpt_entry;
476 }
477 n = ib_umem_page_count(mmr->umem);
478 shift = mmr->umem->page_shift;
479
480 err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
481 virt_addr, length, n, shift,
482 *pmpt_entry);
483 if (err) {
484 ib_umem_release(mmr->umem);
485 goto release_mpt_entry;
486 }
487 mmr->mmr.iova = virt_addr;
488 mmr->mmr.size = length;
489
490 err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
491 if (err) {
492 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
493 ib_umem_release(mmr->umem);
494 goto release_mpt_entry;
495 }
496 }
497
498 /* If we couldn't transfer the MR to the HCA, just remember to
499 * return a failure. But dereg_mr will free the resources.
500 */
501 err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
502 if (!err && flags & IB_MR_REREG_ACCESS)
503 mmr->mmr.access = mr_access_flags;
504
505 release_mpt_entry:
506 mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
507
508 return err;
509 }
510
511 static int
512 mlx4_alloc_priv_pages(struct ib_device *device,
513 struct mlx4_ib_mr *mr,
514 int max_pages)
515 {
516 int ret;
517
518 /* Ensure that size is aligned to DMA cacheline
519 * requirements.
520 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
521 * so page_map_size will never cross PAGE_SIZE.
522 */
523 mr->page_map_size = roundup(max_pages * sizeof(u64),
524 MLX4_MR_PAGES_ALIGN);
525
526 /* Prevent cross page boundary allocation. */
527 mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
528 if (!mr->pages)
529 return -ENOMEM;
530
531 mr->page_map = dma_map_single(device->dev.parent, mr->pages,
532 mr->page_map_size, DMA_TO_DEVICE);
533
534 if (dma_mapping_error(device->dev.parent, mr->page_map)) {
535 ret = -ENOMEM;
536 goto err;
537 }
538
539 return 0;
540
541 err:
542 free_page((unsigned long)mr->pages);
543 return ret;
544 }
545
546 static void
547 mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
548 {
549 if (mr->pages) {
550 struct ib_device *device = mr->ibmr.device;
551
552 dma_unmap_single(device->dev.parent, mr->page_map,
553 mr->page_map_size, DMA_TO_DEVICE);
554 free_page((unsigned long)mr->pages);
555 mr->pages = NULL;
556 }
557 }
558
559 int mlx4_ib_dereg_mr(struct ib_mr *ibmr)
560 {
561 struct mlx4_ib_mr *mr = to_mmr(ibmr);
562 int ret;
563
564 mlx4_free_priv_pages(mr);
565
566 ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
567 if (ret)
568 return ret;
569 if (mr->umem)
570 ib_umem_release(mr->umem);
571 kfree(mr);
572
573 return 0;
574 }
575
576 struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
577 struct ib_udata *udata)
578 {
579 struct mlx4_ib_dev *dev = to_mdev(pd->device);
580 struct mlx4_ib_mw *mw;
581 int err;
582
583 mw = kmalloc(sizeof(*mw), GFP_KERNEL);
584 if (!mw)
585 return ERR_PTR(-ENOMEM);
586
587 err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn,
588 to_mlx4_type(type), &mw->mmw);
589 if (err)
590 goto err_free;
591
592 err = mlx4_mw_enable(dev->dev, &mw->mmw);
593 if (err)
594 goto err_mw;
595
596 mw->ibmw.rkey = mw->mmw.key;
597
598 return &mw->ibmw;
599
600 err_mw:
601 mlx4_mw_free(dev->dev, &mw->mmw);
602
603 err_free:
604 kfree(mw);
605
606 return ERR_PTR(err);
607 }
608
609 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
610 {
611 struct mlx4_ib_mw *mw = to_mmw(ibmw);
612
613 mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
614 kfree(mw);
615
616 return 0;
617 }
618
619 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd,
620 enum ib_mr_type mr_type,
621 u32 max_num_sg)
622 {
623 struct mlx4_ib_dev *dev = to_mdev(pd->device);
624 struct mlx4_ib_mr *mr;
625 int err;
626
627 if (mr_type != IB_MR_TYPE_MEM_REG ||
628 max_num_sg > MLX4_MAX_FAST_REG_PAGES)
629 return ERR_PTR(-EINVAL);
630
631 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
632 if (!mr)
633 return ERR_PTR(-ENOMEM);
634
635 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
636 max_num_sg, 0, &mr->mmr);
637 if (err)
638 goto err_free;
639
640 err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
641 if (err)
642 goto err_free_mr;
643
644 mr->max_pages = max_num_sg;
645 err = mlx4_mr_enable(dev->dev, &mr->mmr);
646 if (err)
647 goto err_free_pl;
648
649 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
650 mr->umem = NULL;
651
652 return &mr->ibmr;
653
654 err_free_pl:
655 mr->ibmr.device = pd->device;
656 mlx4_free_priv_pages(mr);
657 err_free_mr:
658 (void) mlx4_mr_free(dev->dev, &mr->mmr);
659 err_free:
660 kfree(mr);
661 return ERR_PTR(err);
662 }
663
664 struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc,
665 struct ib_fmr_attr *fmr_attr)
666 {
667 struct mlx4_ib_dev *dev = to_mdev(pd->device);
668 struct mlx4_ib_fmr *fmr;
669 int err = -ENOMEM;
670
671 fmr = kmalloc(sizeof *fmr, GFP_KERNEL);
672 if (!fmr)
673 return ERR_PTR(-ENOMEM);
674
675 err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc),
676 fmr_attr->max_pages, fmr_attr->max_maps,
677 fmr_attr->page_shift, &fmr->mfmr);
678 if (err)
679 goto err_free;
680
681 err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr);
682 if (err)
683 goto err_mr;
684
685 fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key;
686
687 return &fmr->ibfmr;
688
689 err_mr:
690 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr);
691
692 err_free:
693 kfree(fmr);
694
695 return ERR_PTR(err);
696 }
697
698 int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
699 int npages, u64 iova)
700 {
701 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
702 struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device);
703
704 return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova,
705 &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
706 }
707
708 int mlx4_ib_unmap_fmr(struct list_head *fmr_list)
709 {
710 struct ib_fmr *ibfmr;
711 int err;
712 struct mlx4_dev *mdev = NULL;
713
714 list_for_each_entry(ibfmr, fmr_list, list) {
715 if (mdev && to_mdev(ibfmr->device)->dev != mdev)
716 return -EINVAL;
717 mdev = to_mdev(ibfmr->device)->dev;
718 }
719
720 if (!mdev)
721 return 0;
722
723 list_for_each_entry(ibfmr, fmr_list, list) {
724 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
725
726 mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
727 }
728
729 /*
730 * Make sure all MPT status updates are visible before issuing
731 * SYNC_TPT firmware command.
732 */
733 wmb();
734
735 err = mlx4_SYNC_TPT(mdev);
736 if (err)
737 pr_warn("SYNC_TPT error %d when "
738 "unmapping FMRs\n", err);
739
740 return 0;
741 }
742
743 int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr)
744 {
745 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
746 struct mlx4_ib_dev *dev = to_mdev(ibfmr->device);
747 int err;
748
749 err = mlx4_fmr_free(dev->dev, &ifmr->mfmr);
750
751 if (!err)
752 kfree(ifmr);
753
754 return err;
755 }
756
757 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
758 {
759 struct mlx4_ib_mr *mr = to_mmr(ibmr);
760
761 if (unlikely(mr->npages == mr->max_pages))
762 return -ENOMEM;
763
764 mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
765
766 return 0;
767 }
768
769 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
770 unsigned int *sg_offset)
771 {
772 struct mlx4_ib_mr *mr = to_mmr(ibmr);
773 int rc;
774
775 mr->npages = 0;
776
777 ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
778 mr->page_map_size, DMA_TO_DEVICE);
779
780 rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
781
782 ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
783 mr->page_map_size, DMA_TO_DEVICE);
784
785 return rc;
786 }