]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/infiniband/hw/mlx5/mr.c
Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block
[mirror_ubuntu-kernels.git] / drivers / infiniband / hw / mlx5 / mr.c
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2020, Intel Corporation. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem.h>
43 #include <rdma/ib_umem_odp.h>
44 #include <rdma/ib_verbs.h>
45 #include "dm.h"
46 #include "mlx5_ib.h"
47
48 /*
49 * We can't use an array for xlt_emergency_page because dma_map_single doesn't
50 * work on kernel modules memory
51 */
52 void *xlt_emergency_page;
53 static DEFINE_MUTEX(xlt_emergency_page_mutex);
54
55 enum {
56 MAX_PENDING_REG_MR = 8,
57 };
58
59 #define MLX5_UMR_ALIGN 2048
60
61 static void
62 create_mkey_callback(int status, struct mlx5_async_work *context);
63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
64 u64 iova, int access_flags,
65 unsigned int page_size, bool populate);
66
67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
68 struct ib_pd *pd)
69 {
70 struct mlx5_ib_dev *dev = to_mdev(pd->device);
71 bool ro_pci_enabled = pcie_relaxed_ordering_enabled(dev->mdev->pdev);
72
73 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
74 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
75 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
76 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
77 MLX5_SET(mkc, mkc, lr, 1);
78
79 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
80 MLX5_SET(mkc, mkc, relaxed_ordering_write,
81 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled);
82 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
83 MLX5_SET(mkc, mkc, relaxed_ordering_read,
84 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled);
85
86 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
87 MLX5_SET(mkc, mkc, qpn, 0xffffff);
88 MLX5_SET64(mkc, mkc, start_addr, start_addr);
89 }
90
91 static void
92 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
93 u32 *in)
94 {
95 u8 key = atomic_inc_return(&dev->mkey_var);
96 void *mkc;
97
98 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
99 MLX5_SET(mkc, mkc, mkey_7_0, key);
100 mkey->key = key;
101 }
102
103 static int
104 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
105 u32 *in, int inlen)
106 {
107 assign_mkey_variant(dev, mkey, in);
108 return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
109 }
110
111 static int
112 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
113 struct mlx5_core_mkey *mkey,
114 struct mlx5_async_ctx *async_ctx,
115 u32 *in, int inlen, u32 *out, int outlen,
116 struct mlx5_async_work *context)
117 {
118 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
119 assign_mkey_variant(dev, mkey, in);
120 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
121 create_mkey_callback, context);
122 }
123
124 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
125 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
126
127 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
128 {
129 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
130 }
131
132 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
133 {
134 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
135
136 return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
137 }
138
139 static void create_mkey_callback(int status, struct mlx5_async_work *context)
140 {
141 struct mlx5_ib_mr *mr =
142 container_of(context, struct mlx5_ib_mr, cb_work);
143 struct mlx5_cache_ent *ent = mr->cache_ent;
144 struct mlx5_ib_dev *dev = ent->dev;
145 unsigned long flags;
146
147 if (status) {
148 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
149 kfree(mr);
150 spin_lock_irqsave(&ent->lock, flags);
151 ent->pending--;
152 WRITE_ONCE(dev->fill_delay, 1);
153 spin_unlock_irqrestore(&ent->lock, flags);
154 mod_timer(&dev->delay_timer, jiffies + HZ);
155 return;
156 }
157
158 mr->mmkey.type = MLX5_MKEY_MR;
159 mr->mmkey.key |= mlx5_idx_to_mkey(
160 MLX5_GET(create_mkey_out, mr->out, mkey_index));
161 init_waitqueue_head(&mr->mmkey.wait);
162
163 WRITE_ONCE(dev->cache.last_add, jiffies);
164
165 spin_lock_irqsave(&ent->lock, flags);
166 list_add_tail(&mr->list, &ent->head);
167 ent->available_mrs++;
168 ent->total_mrs++;
169 /* If we are doing fill_to_high_water then keep going. */
170 queue_adjust_cache_locked(ent);
171 ent->pending--;
172 spin_unlock_irqrestore(&ent->lock, flags);
173 }
174
175 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
176 {
177 struct mlx5_ib_mr *mr;
178
179 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
180 if (!mr)
181 return NULL;
182 mr->cache_ent = ent;
183
184 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
185 MLX5_SET(mkc, mkc, free, 1);
186 MLX5_SET(mkc, mkc, umr_en, 1);
187 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
188 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
189
190 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
191 MLX5_SET(mkc, mkc, log_page_size, ent->page);
192 return mr;
193 }
194
195 /* Asynchronously schedule new MRs to be populated in the cache. */
196 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
197 {
198 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
199 struct mlx5_ib_mr *mr;
200 void *mkc;
201 u32 *in;
202 int err = 0;
203 int i;
204
205 in = kzalloc(inlen, GFP_KERNEL);
206 if (!in)
207 return -ENOMEM;
208
209 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
210 for (i = 0; i < num; i++) {
211 mr = alloc_cache_mr(ent, mkc);
212 if (!mr) {
213 err = -ENOMEM;
214 break;
215 }
216 spin_lock_irq(&ent->lock);
217 if (ent->pending >= MAX_PENDING_REG_MR) {
218 err = -EAGAIN;
219 spin_unlock_irq(&ent->lock);
220 kfree(mr);
221 break;
222 }
223 ent->pending++;
224 spin_unlock_irq(&ent->lock);
225 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
226 &ent->dev->async_ctx, in, inlen,
227 mr->out, sizeof(mr->out),
228 &mr->cb_work);
229 if (err) {
230 spin_lock_irq(&ent->lock);
231 ent->pending--;
232 spin_unlock_irq(&ent->lock);
233 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
234 kfree(mr);
235 break;
236 }
237 }
238
239 kfree(in);
240 return err;
241 }
242
243 /* Synchronously create a MR in the cache */
244 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
245 {
246 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
247 struct mlx5_ib_mr *mr;
248 void *mkc;
249 u32 *in;
250 int err;
251
252 in = kzalloc(inlen, GFP_KERNEL);
253 if (!in)
254 return ERR_PTR(-ENOMEM);
255 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
256
257 mr = alloc_cache_mr(ent, mkc);
258 if (!mr) {
259 err = -ENOMEM;
260 goto free_in;
261 }
262
263 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
264 if (err)
265 goto free_mr;
266
267 mr->mmkey.type = MLX5_MKEY_MR;
268 WRITE_ONCE(ent->dev->cache.last_add, jiffies);
269 spin_lock_irq(&ent->lock);
270 ent->total_mrs++;
271 spin_unlock_irq(&ent->lock);
272 kfree(in);
273 return mr;
274 free_mr:
275 kfree(mr);
276 free_in:
277 kfree(in);
278 return ERR_PTR(err);
279 }
280
281 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
282 {
283 struct mlx5_ib_mr *mr;
284
285 lockdep_assert_held(&ent->lock);
286 if (list_empty(&ent->head))
287 return;
288 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
289 list_del(&mr->list);
290 ent->available_mrs--;
291 ent->total_mrs--;
292 spin_unlock_irq(&ent->lock);
293 mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
294 kfree(mr);
295 spin_lock_irq(&ent->lock);
296 }
297
298 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
299 bool limit_fill)
300 {
301 int err;
302
303 lockdep_assert_held(&ent->lock);
304
305 while (true) {
306 if (limit_fill)
307 target = ent->limit * 2;
308 if (target == ent->available_mrs + ent->pending)
309 return 0;
310 if (target > ent->available_mrs + ent->pending) {
311 u32 todo = target - (ent->available_mrs + ent->pending);
312
313 spin_unlock_irq(&ent->lock);
314 err = add_keys(ent, todo);
315 if (err == -EAGAIN)
316 usleep_range(3000, 5000);
317 spin_lock_irq(&ent->lock);
318 if (err) {
319 if (err != -EAGAIN)
320 return err;
321 } else
322 return 0;
323 } else {
324 remove_cache_mr_locked(ent);
325 }
326 }
327 }
328
329 static ssize_t size_write(struct file *filp, const char __user *buf,
330 size_t count, loff_t *pos)
331 {
332 struct mlx5_cache_ent *ent = filp->private_data;
333 u32 target;
334 int err;
335
336 err = kstrtou32_from_user(buf, count, 0, &target);
337 if (err)
338 return err;
339
340 /*
341 * Target is the new value of total_mrs the user requests, however we
342 * cannot free MRs that are in use. Compute the target value for
343 * available_mrs.
344 */
345 spin_lock_irq(&ent->lock);
346 if (target < ent->total_mrs - ent->available_mrs) {
347 err = -EINVAL;
348 goto err_unlock;
349 }
350 target = target - (ent->total_mrs - ent->available_mrs);
351 if (target < ent->limit || target > ent->limit*2) {
352 err = -EINVAL;
353 goto err_unlock;
354 }
355 err = resize_available_mrs(ent, target, false);
356 if (err)
357 goto err_unlock;
358 spin_unlock_irq(&ent->lock);
359
360 return count;
361
362 err_unlock:
363 spin_unlock_irq(&ent->lock);
364 return err;
365 }
366
367 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
368 loff_t *pos)
369 {
370 struct mlx5_cache_ent *ent = filp->private_data;
371 char lbuf[20];
372 int err;
373
374 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
375 if (err < 0)
376 return err;
377
378 return simple_read_from_buffer(buf, count, pos, lbuf, err);
379 }
380
381 static const struct file_operations size_fops = {
382 .owner = THIS_MODULE,
383 .open = simple_open,
384 .write = size_write,
385 .read = size_read,
386 };
387
388 static ssize_t limit_write(struct file *filp, const char __user *buf,
389 size_t count, loff_t *pos)
390 {
391 struct mlx5_cache_ent *ent = filp->private_data;
392 u32 var;
393 int err;
394
395 err = kstrtou32_from_user(buf, count, 0, &var);
396 if (err)
397 return err;
398
399 /*
400 * Upon set we immediately fill the cache to high water mark implied by
401 * the limit.
402 */
403 spin_lock_irq(&ent->lock);
404 ent->limit = var;
405 err = resize_available_mrs(ent, 0, true);
406 spin_unlock_irq(&ent->lock);
407 if (err)
408 return err;
409 return count;
410 }
411
412 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
413 loff_t *pos)
414 {
415 struct mlx5_cache_ent *ent = filp->private_data;
416 char lbuf[20];
417 int err;
418
419 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
420 if (err < 0)
421 return err;
422
423 return simple_read_from_buffer(buf, count, pos, lbuf, err);
424 }
425
426 static const struct file_operations limit_fops = {
427 .owner = THIS_MODULE,
428 .open = simple_open,
429 .write = limit_write,
430 .read = limit_read,
431 };
432
433 static bool someone_adding(struct mlx5_mr_cache *cache)
434 {
435 unsigned int i;
436
437 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
438 struct mlx5_cache_ent *ent = &cache->ent[i];
439 bool ret;
440
441 spin_lock_irq(&ent->lock);
442 ret = ent->available_mrs < ent->limit;
443 spin_unlock_irq(&ent->lock);
444 if (ret)
445 return true;
446 }
447 return false;
448 }
449
450 /*
451 * Check if the bucket is outside the high/low water mark and schedule an async
452 * update. The cache refill has hysteresis, once the low water mark is hit it is
453 * refilled up to the high mark.
454 */
455 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
456 {
457 lockdep_assert_held(&ent->lock);
458
459 if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
460 return;
461 if (ent->available_mrs < ent->limit) {
462 ent->fill_to_high_water = true;
463 queue_work(ent->dev->cache.wq, &ent->work);
464 } else if (ent->fill_to_high_water &&
465 ent->available_mrs + ent->pending < 2 * ent->limit) {
466 /*
467 * Once we start populating due to hitting a low water mark
468 * continue until we pass the high water mark.
469 */
470 queue_work(ent->dev->cache.wq, &ent->work);
471 } else if (ent->available_mrs == 2 * ent->limit) {
472 ent->fill_to_high_water = false;
473 } else if (ent->available_mrs > 2 * ent->limit) {
474 /* Queue deletion of excess entries */
475 ent->fill_to_high_water = false;
476 if (ent->pending)
477 queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
478 msecs_to_jiffies(1000));
479 else
480 queue_work(ent->dev->cache.wq, &ent->work);
481 }
482 }
483
484 static void __cache_work_func(struct mlx5_cache_ent *ent)
485 {
486 struct mlx5_ib_dev *dev = ent->dev;
487 struct mlx5_mr_cache *cache = &dev->cache;
488 int err;
489
490 spin_lock_irq(&ent->lock);
491 if (ent->disabled)
492 goto out;
493
494 if (ent->fill_to_high_water &&
495 ent->available_mrs + ent->pending < 2 * ent->limit &&
496 !READ_ONCE(dev->fill_delay)) {
497 spin_unlock_irq(&ent->lock);
498 err = add_keys(ent, 1);
499 spin_lock_irq(&ent->lock);
500 if (ent->disabled)
501 goto out;
502 if (err) {
503 /*
504 * EAGAIN only happens if pending is positive, so we
505 * will be rescheduled from reg_mr_callback(). The only
506 * failure path here is ENOMEM.
507 */
508 if (err != -EAGAIN) {
509 mlx5_ib_warn(
510 dev,
511 "command failed order %d, err %d\n",
512 ent->order, err);
513 queue_delayed_work(cache->wq, &ent->dwork,
514 msecs_to_jiffies(1000));
515 }
516 }
517 } else if (ent->available_mrs > 2 * ent->limit) {
518 bool need_delay;
519
520 /*
521 * The remove_cache_mr() logic is performed as garbage
522 * collection task. Such task is intended to be run when no
523 * other active processes are running.
524 *
525 * The need_resched() will return TRUE if there are user tasks
526 * to be activated in near future.
527 *
528 * In such case, we don't execute remove_cache_mr() and postpone
529 * the garbage collection work to try to run in next cycle, in
530 * order to free CPU resources to other tasks.
531 */
532 spin_unlock_irq(&ent->lock);
533 need_delay = need_resched() || someone_adding(cache) ||
534 !time_after(jiffies,
535 READ_ONCE(cache->last_add) + 300 * HZ);
536 spin_lock_irq(&ent->lock);
537 if (ent->disabled)
538 goto out;
539 if (need_delay)
540 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
541 remove_cache_mr_locked(ent);
542 queue_adjust_cache_locked(ent);
543 }
544 out:
545 spin_unlock_irq(&ent->lock);
546 }
547
548 static void delayed_cache_work_func(struct work_struct *work)
549 {
550 struct mlx5_cache_ent *ent;
551
552 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
553 __cache_work_func(ent);
554 }
555
556 static void cache_work_func(struct work_struct *work)
557 {
558 struct mlx5_cache_ent *ent;
559
560 ent = container_of(work, struct mlx5_cache_ent, work);
561 __cache_work_func(ent);
562 }
563
564 /* Allocate a special entry from the cache */
565 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
566 unsigned int entry, int access_flags)
567 {
568 struct mlx5_mr_cache *cache = &dev->cache;
569 struct mlx5_cache_ent *ent;
570 struct mlx5_ib_mr *mr;
571
572 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
573 entry >= ARRAY_SIZE(cache->ent)))
574 return ERR_PTR(-EINVAL);
575
576 /* Matches access in alloc_cache_mr() */
577 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
578 return ERR_PTR(-EOPNOTSUPP);
579
580 ent = &cache->ent[entry];
581 spin_lock_irq(&ent->lock);
582 if (list_empty(&ent->head)) {
583 spin_unlock_irq(&ent->lock);
584 mr = create_cache_mr(ent);
585 if (IS_ERR(mr))
586 return mr;
587 } else {
588 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
589 list_del(&mr->list);
590 ent->available_mrs--;
591 queue_adjust_cache_locked(ent);
592 spin_unlock_irq(&ent->lock);
593
594 mlx5_clear_mr(mr);
595 }
596 mr->access_flags = access_flags;
597 return mr;
598 }
599
600 /* Return a MR already available in the cache */
601 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
602 {
603 struct mlx5_ib_dev *dev = req_ent->dev;
604 struct mlx5_ib_mr *mr = NULL;
605 struct mlx5_cache_ent *ent = req_ent;
606
607 /* Try larger MR pools from the cache to satisfy the allocation */
608 for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
609 mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
610 ent - dev->cache.ent);
611
612 spin_lock_irq(&ent->lock);
613 if (!list_empty(&ent->head)) {
614 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
615 list);
616 list_del(&mr->list);
617 ent->available_mrs--;
618 queue_adjust_cache_locked(ent);
619 spin_unlock_irq(&ent->lock);
620 mlx5_clear_mr(mr);
621 return mr;
622 }
623 queue_adjust_cache_locked(ent);
624 spin_unlock_irq(&ent->lock);
625 }
626 req_ent->miss++;
627 return NULL;
628 }
629
630 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
631 {
632 struct mlx5_cache_ent *ent = mr->cache_ent;
633
634 spin_lock_irq(&ent->lock);
635 list_add_tail(&mr->list, &ent->head);
636 ent->available_mrs++;
637 queue_adjust_cache_locked(ent);
638 spin_unlock_irq(&ent->lock);
639 }
640
641 static void clean_keys(struct mlx5_ib_dev *dev, int c)
642 {
643 struct mlx5_mr_cache *cache = &dev->cache;
644 struct mlx5_cache_ent *ent = &cache->ent[c];
645 struct mlx5_ib_mr *tmp_mr;
646 struct mlx5_ib_mr *mr;
647 LIST_HEAD(del_list);
648
649 cancel_delayed_work(&ent->dwork);
650 while (1) {
651 spin_lock_irq(&ent->lock);
652 if (list_empty(&ent->head)) {
653 spin_unlock_irq(&ent->lock);
654 break;
655 }
656 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
657 list_move(&mr->list, &del_list);
658 ent->available_mrs--;
659 ent->total_mrs--;
660 spin_unlock_irq(&ent->lock);
661 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
662 }
663
664 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
665 list_del(&mr->list);
666 kfree(mr);
667 }
668 }
669
670 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
671 {
672 if (!mlx5_debugfs_root || dev->is_rep)
673 return;
674
675 debugfs_remove_recursive(dev->cache.root);
676 dev->cache.root = NULL;
677 }
678
679 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
680 {
681 struct mlx5_mr_cache *cache = &dev->cache;
682 struct mlx5_cache_ent *ent;
683 struct dentry *dir;
684 int i;
685
686 if (!mlx5_debugfs_root || dev->is_rep)
687 return;
688
689 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
690
691 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
692 ent = &cache->ent[i];
693 sprintf(ent->name, "%d", ent->order);
694 dir = debugfs_create_dir(ent->name, cache->root);
695 debugfs_create_file("size", 0600, dir, ent, &size_fops);
696 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
697 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
698 debugfs_create_u32("miss", 0600, dir, &ent->miss);
699 }
700 }
701
702 static void delay_time_func(struct timer_list *t)
703 {
704 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
705
706 WRITE_ONCE(dev->fill_delay, 0);
707 }
708
709 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
710 {
711 struct mlx5_mr_cache *cache = &dev->cache;
712 struct mlx5_cache_ent *ent;
713 int i;
714
715 mutex_init(&dev->slow_path_mutex);
716 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
717 if (!cache->wq) {
718 mlx5_ib_warn(dev, "failed to create work queue\n");
719 return -ENOMEM;
720 }
721
722 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
723 timer_setup(&dev->delay_timer, delay_time_func, 0);
724 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
725 ent = &cache->ent[i];
726 INIT_LIST_HEAD(&ent->head);
727 spin_lock_init(&ent->lock);
728 ent->order = i + 2;
729 ent->dev = dev;
730 ent->limit = 0;
731
732 INIT_WORK(&ent->work, cache_work_func);
733 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
734
735 if (i > MR_CACHE_LAST_STD_ENTRY) {
736 mlx5_odp_init_mr_cache_entry(ent);
737 continue;
738 }
739
740 if (ent->order > mr_cache_max_order(dev))
741 continue;
742
743 ent->page = PAGE_SHIFT;
744 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
745 MLX5_IB_UMR_OCTOWORD;
746 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
747 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
748 !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
749 mlx5_ib_can_load_pas_with_umr(dev, 0))
750 ent->limit = dev->mdev->profile.mr_cache[i].limit;
751 else
752 ent->limit = 0;
753 spin_lock_irq(&ent->lock);
754 queue_adjust_cache_locked(ent);
755 spin_unlock_irq(&ent->lock);
756 }
757
758 mlx5_mr_cache_debugfs_init(dev);
759
760 return 0;
761 }
762
763 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
764 {
765 unsigned int i;
766
767 if (!dev->cache.wq)
768 return 0;
769
770 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
771 struct mlx5_cache_ent *ent = &dev->cache.ent[i];
772
773 spin_lock_irq(&ent->lock);
774 ent->disabled = true;
775 spin_unlock_irq(&ent->lock);
776 cancel_work_sync(&ent->work);
777 cancel_delayed_work_sync(&ent->dwork);
778 }
779
780 mlx5_mr_cache_debugfs_cleanup(dev);
781 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
782
783 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
784 clean_keys(dev, i);
785
786 destroy_workqueue(dev->cache.wq);
787 del_timer_sync(&dev->delay_timer);
788
789 return 0;
790 }
791
792 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
793 {
794 struct mlx5_ib_dev *dev = to_mdev(pd->device);
795 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
796 struct mlx5_ib_mr *mr;
797 void *mkc;
798 u32 *in;
799 int err;
800
801 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
802 if (!mr)
803 return ERR_PTR(-ENOMEM);
804
805 in = kzalloc(inlen, GFP_KERNEL);
806 if (!in) {
807 err = -ENOMEM;
808 goto err_free;
809 }
810
811 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
812
813 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
814 MLX5_SET(mkc, mkc, length64, 1);
815 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
816 pd);
817
818 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
819 if (err)
820 goto err_in;
821
822 kfree(in);
823 mr->mmkey.type = MLX5_MKEY_MR;
824 mr->ibmr.lkey = mr->mmkey.key;
825 mr->ibmr.rkey = mr->mmkey.key;
826 mr->umem = NULL;
827
828 return &mr->ibmr;
829
830 err_in:
831 kfree(in);
832
833 err_free:
834 kfree(mr);
835
836 return ERR_PTR(err);
837 }
838
839 static int get_octo_len(u64 addr, u64 len, int page_shift)
840 {
841 u64 page_size = 1ULL << page_shift;
842 u64 offset;
843 int npages;
844
845 offset = addr & (page_size - 1);
846 npages = ALIGN(len + offset, page_size) >> page_shift;
847 return (npages + 1) / 2;
848 }
849
850 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
851 {
852 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
853 return MR_CACHE_LAST_STD_ENTRY + 2;
854 return MLX5_MAX_UMR_SHIFT;
855 }
856
857 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
858 {
859 struct mlx5_ib_umr_context *context =
860 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
861
862 context->status = wc->status;
863 complete(&context->done);
864 }
865
866 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
867 {
868 context->cqe.done = mlx5_ib_umr_done;
869 context->status = -1;
870 init_completion(&context->done);
871 }
872
873 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
874 struct mlx5_umr_wr *umrwr)
875 {
876 struct umr_common *umrc = &dev->umrc;
877 const struct ib_send_wr *bad;
878 int err;
879 struct mlx5_ib_umr_context umr_context;
880
881 mlx5_ib_init_umr_context(&umr_context);
882 umrwr->wr.wr_cqe = &umr_context.cqe;
883
884 down(&umrc->sem);
885 err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
886 if (err) {
887 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
888 } else {
889 wait_for_completion(&umr_context.done);
890 if (umr_context.status != IB_WC_SUCCESS) {
891 mlx5_ib_warn(dev, "reg umr failed (%u)\n",
892 umr_context.status);
893 err = -EFAULT;
894 }
895 }
896 up(&umrc->sem);
897 return err;
898 }
899
900 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
901 unsigned int order)
902 {
903 struct mlx5_mr_cache *cache = &dev->cache;
904
905 if (order < cache->ent[0].order)
906 return &cache->ent[0];
907 order = order - cache->ent[0].order;
908 if (order > MR_CACHE_LAST_STD_ENTRY)
909 return NULL;
910 return &cache->ent[order];
911 }
912
913 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
914 u64 length, int access_flags)
915 {
916 mr->ibmr.lkey = mr->mmkey.key;
917 mr->ibmr.rkey = mr->mmkey.key;
918 mr->ibmr.length = length;
919 mr->ibmr.device = &dev->ib_dev;
920 mr->access_flags = access_flags;
921 }
922
923 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
924 u64 iova)
925 {
926 /*
927 * The alignment of iova has already been checked upon entering
928 * UVERBS_METHOD_REG_DMABUF_MR
929 */
930 umem->iova = iova;
931 return PAGE_SIZE;
932 }
933
934 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
935 struct ib_umem *umem, u64 iova,
936 int access_flags)
937 {
938 struct mlx5_ib_dev *dev = to_mdev(pd->device);
939 struct mlx5_cache_ent *ent;
940 struct mlx5_ib_mr *mr;
941 unsigned int page_size;
942
943 if (umem->is_dmabuf)
944 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
945 else
946 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
947 0, iova);
948 if (WARN_ON(!page_size))
949 return ERR_PTR(-EINVAL);
950 ent = mr_cache_ent_from_order(
951 dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
952 /*
953 * Matches access in alloc_cache_mr(). If the MR can't come from the
954 * cache then synchronously create an uncached one.
955 */
956 if (!ent || ent->limit == 0 ||
957 !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) {
958 mutex_lock(&dev->slow_path_mutex);
959 mr = reg_create(pd, umem, iova, access_flags, page_size, false);
960 mutex_unlock(&dev->slow_path_mutex);
961 return mr;
962 }
963
964 mr = get_cache_mr(ent);
965 if (!mr) {
966 mr = create_cache_mr(ent);
967 /*
968 * The above already tried to do the same stuff as reg_create(),
969 * no reason to try it again.
970 */
971 if (IS_ERR(mr))
972 return mr;
973 }
974
975 mr->ibmr.pd = pd;
976 mr->umem = umem;
977 mr->mmkey.iova = iova;
978 mr->mmkey.size = umem->length;
979 mr->mmkey.pd = to_mpd(pd)->pdn;
980 mr->page_shift = order_base_2(page_size);
981 set_mr_fields(dev, mr, umem->length, access_flags);
982
983 return mr;
984 }
985
986 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
987 MLX5_UMR_MTT_ALIGNMENT)
988 #define MLX5_SPARE_UMR_CHUNK 0x10000
989
990 /*
991 * Allocate a temporary buffer to hold the per-page information to transfer to
992 * HW. For efficiency this should be as large as it can be, but buffer
993 * allocation failure is not allowed, so try smaller sizes.
994 */
995 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask)
996 {
997 const size_t xlt_chunk_align =
998 MLX5_UMR_MTT_ALIGNMENT / ent_size;
999 size_t size;
1000 void *res = NULL;
1001
1002 static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0);
1003
1004 /*
1005 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the
1006 * allocation can't trigger any kind of reclaim.
1007 */
1008 might_sleep();
1009
1010 gfp_mask |= __GFP_ZERO | __GFP_NORETRY;
1011
1012 /*
1013 * If the system already has a suitable high order page then just use
1014 * that, but don't try hard to create one. This max is about 1M, so a
1015 * free x86 huge page will satisfy it.
1016 */
1017 size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align),
1018 MLX5_MAX_UMR_CHUNK);
1019 *nents = size / ent_size;
1020 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1021 get_order(size));
1022 if (res)
1023 return res;
1024
1025 if (size > MLX5_SPARE_UMR_CHUNK) {
1026 size = MLX5_SPARE_UMR_CHUNK;
1027 *nents = size / ent_size;
1028 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1029 get_order(size));
1030 if (res)
1031 return res;
1032 }
1033
1034 *nents = PAGE_SIZE / ent_size;
1035 res = (void *)__get_free_page(gfp_mask);
1036 if (res)
1037 return res;
1038
1039 mutex_lock(&xlt_emergency_page_mutex);
1040 memset(xlt_emergency_page, 0, PAGE_SIZE);
1041 return xlt_emergency_page;
1042 }
1043
1044 static void mlx5_ib_free_xlt(void *xlt, size_t length)
1045 {
1046 if (xlt == xlt_emergency_page) {
1047 mutex_unlock(&xlt_emergency_page_mutex);
1048 return;
1049 }
1050
1051 free_pages((unsigned long)xlt, get_order(length));
1052 }
1053
1054 /*
1055 * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for
1056 * submission.
1057 */
1058 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr,
1059 struct mlx5_umr_wr *wr, struct ib_sge *sg,
1060 size_t nents, size_t ent_size,
1061 unsigned int flags)
1062 {
1063 struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1064 struct device *ddev = &dev->mdev->pdev->dev;
1065 dma_addr_t dma;
1066 void *xlt;
1067
1068 xlt = mlx5_ib_alloc_xlt(&nents, ent_size,
1069 flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC :
1070 GFP_KERNEL);
1071 sg->length = nents * ent_size;
1072 dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE);
1073 if (dma_mapping_error(ddev, dma)) {
1074 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1075 mlx5_ib_free_xlt(xlt, sg->length);
1076 return NULL;
1077 }
1078 sg->addr = dma;
1079 sg->lkey = dev->umrc.pd->local_dma_lkey;
1080
1081 memset(wr, 0, sizeof(*wr));
1082 wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1083 if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1084 wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1085 wr->wr.sg_list = sg;
1086 wr->wr.num_sge = 1;
1087 wr->wr.opcode = MLX5_IB_WR_UMR;
1088 wr->pd = mr->ibmr.pd;
1089 wr->mkey = mr->mmkey.key;
1090 wr->length = mr->mmkey.size;
1091 wr->virt_addr = mr->mmkey.iova;
1092 wr->access_flags = mr->access_flags;
1093 wr->page_shift = mr->page_shift;
1094 wr->xlt_size = sg->length;
1095 return xlt;
1096 }
1097
1098 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt,
1099 struct ib_sge *sg)
1100 {
1101 struct device *ddev = &dev->mdev->pdev->dev;
1102
1103 dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE);
1104 mlx5_ib_free_xlt(xlt, sg->length);
1105 }
1106
1107 static unsigned int xlt_wr_final_send_flags(unsigned int flags)
1108 {
1109 unsigned int res = 0;
1110
1111 if (flags & MLX5_IB_UPD_XLT_ENABLE)
1112 res |= MLX5_IB_SEND_UMR_ENABLE_MR |
1113 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1114 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1115 if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS)
1116 res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1117 if (flags & MLX5_IB_UPD_XLT_ADDR)
1118 res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1119 return res;
1120 }
1121
1122 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
1123 int page_shift, int flags)
1124 {
1125 struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1126 struct device *ddev = &dev->mdev->pdev->dev;
1127 void *xlt;
1128 struct mlx5_umr_wr wr;
1129 struct ib_sge sg;
1130 int err = 0;
1131 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
1132 ? sizeof(struct mlx5_klm)
1133 : sizeof(struct mlx5_mtt);
1134 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
1135 const int page_mask = page_align - 1;
1136 size_t pages_mapped = 0;
1137 size_t pages_to_map = 0;
1138 size_t pages_iter;
1139 size_t size_to_map = 0;
1140 size_t orig_sg_length;
1141
1142 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
1143 !umr_can_use_indirect_mkey(dev))
1144 return -EPERM;
1145
1146 if (WARN_ON(!mr->umem->is_odp))
1147 return -EINVAL;
1148
1149 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
1150 * so we need to align the offset and length accordingly
1151 */
1152 if (idx & page_mask) {
1153 npages += idx & page_mask;
1154 idx &= ~page_mask;
1155 }
1156 pages_to_map = ALIGN(npages, page_align);
1157
1158 xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags);
1159 if (!xlt)
1160 return -ENOMEM;
1161 pages_iter = sg.length / desc_size;
1162 orig_sg_length = sg.length;
1163
1164 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
1165 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
1166 size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
1167
1168 pages_to_map = min_t(size_t, pages_to_map, max_pages);
1169 }
1170
1171 wr.page_shift = page_shift;
1172
1173 for (pages_mapped = 0;
1174 pages_mapped < pages_to_map && !err;
1175 pages_mapped += pages_iter, idx += pages_iter) {
1176 npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1177 size_to_map = npages * desc_size;
1178 dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1179 DMA_TO_DEVICE);
1180 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
1181 dma_sync_single_for_device(ddev, sg.addr, sg.length,
1182 DMA_TO_DEVICE);
1183
1184 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
1185
1186 if (pages_mapped + pages_iter >= pages_to_map)
1187 wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1188
1189 wr.offset = idx * desc_size;
1190 wr.xlt_size = sg.length;
1191
1192 err = mlx5_ib_post_send_wait(dev, &wr);
1193 }
1194 sg.length = orig_sg_length;
1195 mlx5_ib_unmap_free_xlt(dev, xlt, &sg);
1196 return err;
1197 }
1198
1199 /*
1200 * Send the DMA list to the HW for a normal MR using UMR.
1201 * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP
1202 * flag may be used.
1203 */
1204 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags)
1205 {
1206 struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1207 struct device *ddev = &dev->mdev->pdev->dev;
1208 struct ib_block_iter biter;
1209 struct mlx5_mtt *cur_mtt;
1210 struct mlx5_umr_wr wr;
1211 size_t orig_sg_length;
1212 struct mlx5_mtt *mtt;
1213 size_t final_size;
1214 struct ib_sge sg;
1215 int err = 0;
1216
1217 if (WARN_ON(mr->umem->is_odp))
1218 return -EINVAL;
1219
1220 mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg,
1221 ib_umem_num_dma_blocks(mr->umem,
1222 1 << mr->page_shift),
1223 sizeof(*mtt), flags);
1224 if (!mtt)
1225 return -ENOMEM;
1226 orig_sg_length = sg.length;
1227
1228 cur_mtt = mtt;
1229 rdma_for_each_block (mr->umem->sgt_append.sgt.sgl, &biter,
1230 mr->umem->sgt_append.sgt.nents,
1231 BIT(mr->page_shift)) {
1232 if (cur_mtt == (void *)mtt + sg.length) {
1233 dma_sync_single_for_device(ddev, sg.addr, sg.length,
1234 DMA_TO_DEVICE);
1235 err = mlx5_ib_post_send_wait(dev, &wr);
1236 if (err)
1237 goto err;
1238 dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1239 DMA_TO_DEVICE);
1240 wr.offset += sg.length;
1241 cur_mtt = mtt;
1242 }
1243
1244 cur_mtt->ptag =
1245 cpu_to_be64(rdma_block_iter_dma_address(&biter) |
1246 MLX5_IB_MTT_PRESENT);
1247
1248 if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP))
1249 cur_mtt->ptag = 0;
1250
1251 cur_mtt++;
1252 }
1253
1254 final_size = (void *)cur_mtt - (void *)mtt;
1255 sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT);
1256 memset(cur_mtt, 0, sg.length - final_size);
1257 wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1258 wr.xlt_size = sg.length;
1259
1260 dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE);
1261 err = mlx5_ib_post_send_wait(dev, &wr);
1262
1263 err:
1264 sg.length = orig_sg_length;
1265 mlx5_ib_unmap_free_xlt(dev, mtt, &sg);
1266 return err;
1267 }
1268
1269 /*
1270 * If ibmr is NULL it will be allocated by reg_create.
1271 * Else, the given ibmr will be used.
1272 */
1273 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1274 u64 iova, int access_flags,
1275 unsigned int page_size, bool populate)
1276 {
1277 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1278 struct mlx5_ib_mr *mr;
1279 __be64 *pas;
1280 void *mkc;
1281 int inlen;
1282 u32 *in;
1283 int err;
1284 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1285
1286 if (!page_size)
1287 return ERR_PTR(-EINVAL);
1288 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1289 if (!mr)
1290 return ERR_PTR(-ENOMEM);
1291
1292 mr->ibmr.pd = pd;
1293 mr->access_flags = access_flags;
1294 mr->page_shift = order_base_2(page_size);
1295
1296 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1297 if (populate)
1298 inlen += sizeof(*pas) *
1299 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1300 in = kvzalloc(inlen, GFP_KERNEL);
1301 if (!in) {
1302 err = -ENOMEM;
1303 goto err_1;
1304 }
1305 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1306 if (populate) {
1307 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1308 err = -EINVAL;
1309 goto err_2;
1310 }
1311 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1312 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1313 }
1314
1315 /* The pg_access bit allows setting the access flags
1316 * in the page list submitted with the command. */
1317 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1318
1319 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1320 set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1321 populate ? pd : dev->umrc.pd);
1322 MLX5_SET(mkc, mkc, free, !populate);
1323 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1324 MLX5_SET(mkc, mkc, umr_en, 1);
1325
1326 MLX5_SET64(mkc, mkc, len, umem->length);
1327 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1328 MLX5_SET(mkc, mkc, translations_octword_size,
1329 get_octo_len(iova, umem->length, mr->page_shift));
1330 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1331 if (populate) {
1332 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1333 get_octo_len(iova, umem->length, mr->page_shift));
1334 }
1335
1336 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1337 if (err) {
1338 mlx5_ib_warn(dev, "create mkey failed\n");
1339 goto err_2;
1340 }
1341 mr->mmkey.type = MLX5_MKEY_MR;
1342 mr->umem = umem;
1343 set_mr_fields(dev, mr, umem->length, access_flags);
1344 kvfree(in);
1345
1346 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1347
1348 return mr;
1349
1350 err_2:
1351 kvfree(in);
1352 err_1:
1353 kfree(mr);
1354 return ERR_PTR(err);
1355 }
1356
1357 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1358 u64 length, int acc, int mode)
1359 {
1360 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1361 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1362 struct mlx5_ib_mr *mr;
1363 void *mkc;
1364 u32 *in;
1365 int err;
1366
1367 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1368 if (!mr)
1369 return ERR_PTR(-ENOMEM);
1370
1371 in = kzalloc(inlen, GFP_KERNEL);
1372 if (!in) {
1373 err = -ENOMEM;
1374 goto err_free;
1375 }
1376
1377 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1378
1379 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1380 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1381 MLX5_SET64(mkc, mkc, len, length);
1382 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1383
1384 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1385 if (err)
1386 goto err_in;
1387
1388 kfree(in);
1389
1390 set_mr_fields(dev, mr, length, acc);
1391
1392 return &mr->ibmr;
1393
1394 err_in:
1395 kfree(in);
1396
1397 err_free:
1398 kfree(mr);
1399
1400 return ERR_PTR(err);
1401 }
1402
1403 int mlx5_ib_advise_mr(struct ib_pd *pd,
1404 enum ib_uverbs_advise_mr_advice advice,
1405 u32 flags,
1406 struct ib_sge *sg_list,
1407 u32 num_sge,
1408 struct uverbs_attr_bundle *attrs)
1409 {
1410 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1411 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1412 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1413 return -EOPNOTSUPP;
1414
1415 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1416 sg_list, num_sge);
1417 }
1418
1419 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1420 struct ib_dm_mr_attr *attr,
1421 struct uverbs_attr_bundle *attrs)
1422 {
1423 struct mlx5_ib_dm *mdm = to_mdm(dm);
1424 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1425 u64 start_addr = mdm->dev_addr + attr->offset;
1426 int mode;
1427
1428 switch (mdm->type) {
1429 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1430 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1431 return ERR_PTR(-EINVAL);
1432
1433 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1434 start_addr -= pci_resource_start(dev->pdev, 0);
1435 break;
1436 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1437 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1438 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1439 return ERR_PTR(-EINVAL);
1440
1441 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1442 break;
1443 default:
1444 return ERR_PTR(-EINVAL);
1445 }
1446
1447 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1448 attr->access_flags, mode);
1449 }
1450
1451 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1452 u64 iova, int access_flags)
1453 {
1454 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1455 struct mlx5_ib_mr *mr = NULL;
1456 bool xlt_with_umr;
1457 int err;
1458
1459 xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length);
1460 if (xlt_with_umr) {
1461 mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1462 } else {
1463 unsigned int page_size = mlx5_umem_find_best_pgsz(
1464 umem, mkc, log_page_size, 0, iova);
1465
1466 mutex_lock(&dev->slow_path_mutex);
1467 mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1468 mutex_unlock(&dev->slow_path_mutex);
1469 }
1470 if (IS_ERR(mr)) {
1471 ib_umem_release(umem);
1472 return ERR_CAST(mr);
1473 }
1474
1475 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1476
1477 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1478
1479 if (xlt_with_umr) {
1480 /*
1481 * If the MR was created with reg_create then it will be
1482 * configured properly but left disabled. It is safe to go ahead
1483 * and configure it again via UMR while enabling it.
1484 */
1485 err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1486 if (err) {
1487 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1488 return ERR_PTR(err);
1489 }
1490 }
1491 return &mr->ibmr;
1492 }
1493
1494 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1495 u64 iova, int access_flags,
1496 struct ib_udata *udata)
1497 {
1498 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1499 struct ib_umem_odp *odp;
1500 struct mlx5_ib_mr *mr;
1501 int err;
1502
1503 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1504 return ERR_PTR(-EOPNOTSUPP);
1505
1506 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1507 if (err)
1508 return ERR_PTR(err);
1509 if (!start && length == U64_MAX) {
1510 if (iova != 0)
1511 return ERR_PTR(-EINVAL);
1512 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1513 return ERR_PTR(-EINVAL);
1514
1515 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1516 if (IS_ERR(mr))
1517 return ERR_CAST(mr);
1518 return &mr->ibmr;
1519 }
1520
1521 /* ODP requires xlt update via umr to work. */
1522 if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1523 return ERR_PTR(-EINVAL);
1524
1525 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1526 &mlx5_mn_ops);
1527 if (IS_ERR(odp))
1528 return ERR_CAST(odp);
1529
1530 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1531 if (IS_ERR(mr)) {
1532 ib_umem_release(&odp->umem);
1533 return ERR_CAST(mr);
1534 }
1535 xa_init(&mr->implicit_children);
1536
1537 odp->private = mr;
1538 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1539 if (err)
1540 goto err_dereg_mr;
1541
1542 err = mlx5_ib_init_odp_mr(mr);
1543 if (err)
1544 goto err_dereg_mr;
1545 return &mr->ibmr;
1546
1547 err_dereg_mr:
1548 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1549 return ERR_PTR(err);
1550 }
1551
1552 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1553 u64 iova, int access_flags,
1554 struct ib_udata *udata)
1555 {
1556 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1557 struct ib_umem *umem;
1558
1559 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1560 return ERR_PTR(-EOPNOTSUPP);
1561
1562 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1563 start, iova, length, access_flags);
1564
1565 if (access_flags & IB_ACCESS_ON_DEMAND)
1566 return create_user_odp_mr(pd, start, length, iova, access_flags,
1567 udata);
1568 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1569 if (IS_ERR(umem))
1570 return ERR_CAST(umem);
1571 return create_real_mr(pd, umem, iova, access_flags);
1572 }
1573
1574 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1575 {
1576 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1577 struct mlx5_ib_mr *mr = umem_dmabuf->private;
1578
1579 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1580
1581 if (!umem_dmabuf->sgt)
1582 return;
1583
1584 mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1585 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1586 }
1587
1588 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1589 .allow_peer2peer = 1,
1590 .move_notify = mlx5_ib_dmabuf_invalidate_cb,
1591 };
1592
1593 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1594 u64 length, u64 virt_addr,
1595 int fd, int access_flags,
1596 struct ib_udata *udata)
1597 {
1598 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1599 struct mlx5_ib_mr *mr = NULL;
1600 struct ib_umem_dmabuf *umem_dmabuf;
1601 int err;
1602
1603 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1604 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1605 return ERR_PTR(-EOPNOTSUPP);
1606
1607 mlx5_ib_dbg(dev,
1608 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1609 offset, virt_addr, length, fd, access_flags);
1610
1611 /* dmabuf requires xlt update via umr to work. */
1612 if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1613 return ERR_PTR(-EINVAL);
1614
1615 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1616 access_flags,
1617 &mlx5_ib_dmabuf_attach_ops);
1618 if (IS_ERR(umem_dmabuf)) {
1619 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1620 PTR_ERR(umem_dmabuf));
1621 return ERR_CAST(umem_dmabuf);
1622 }
1623
1624 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1625 access_flags);
1626 if (IS_ERR(mr)) {
1627 ib_umem_release(&umem_dmabuf->umem);
1628 return ERR_CAST(mr);
1629 }
1630
1631 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1632
1633 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1634 umem_dmabuf->private = mr;
1635 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1636 if (err)
1637 goto err_dereg_mr;
1638
1639 err = mlx5_ib_init_dmabuf_mr(mr);
1640 if (err)
1641 goto err_dereg_mr;
1642 return &mr->ibmr;
1643
1644 err_dereg_mr:
1645 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1646 return ERR_PTR(err);
1647 }
1648
1649 /**
1650 * revoke_mr - Fence all DMA on the MR
1651 * @mr: The MR to fence
1652 *
1653 * Upon return the NIC will not be doing any DMA to the pages under the MR,
1654 * and any DMA in progress will be completed. Failure of this function
1655 * indicates the HW has failed catastrophically.
1656 */
1657 static int revoke_mr(struct mlx5_ib_mr *mr)
1658 {
1659 struct mlx5_umr_wr umrwr = {};
1660
1661 if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1662 return 0;
1663
1664 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1665 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1666 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1667 umrwr.pd = mr_to_mdev(mr)->umrc.pd;
1668 umrwr.mkey = mr->mmkey.key;
1669 umrwr.ignore_free_state = 1;
1670
1671 return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr);
1672 }
1673
1674 /*
1675 * True if the change in access flags can be done via UMR, only some access
1676 * flags can be updated.
1677 */
1678 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1679 unsigned int current_access_flags,
1680 unsigned int target_access_flags)
1681 {
1682 unsigned int diffs = current_access_flags ^ target_access_flags;
1683
1684 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1685 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1686 return false;
1687 return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags,
1688 target_access_flags);
1689 }
1690
1691 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1692 int access_flags)
1693 {
1694 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1695 struct mlx5_umr_wr umrwr = {
1696 .wr = {
1697 .send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE |
1698 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS,
1699 .opcode = MLX5_IB_WR_UMR,
1700 },
1701 .mkey = mr->mmkey.key,
1702 .pd = pd,
1703 .access_flags = access_flags,
1704 };
1705 int err;
1706
1707 err = mlx5_ib_post_send_wait(dev, &umrwr);
1708 if (err)
1709 return err;
1710
1711 mr->access_flags = access_flags;
1712 mr->mmkey.pd = to_mpd(pd)->pdn;
1713 return 0;
1714 }
1715
1716 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1717 struct ib_umem *new_umem,
1718 int new_access_flags, u64 iova,
1719 unsigned long *page_size)
1720 {
1721 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1722
1723 /* We only track the allocated sizes of MRs from the cache */
1724 if (!mr->cache_ent)
1725 return false;
1726 if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length))
1727 return false;
1728
1729 *page_size =
1730 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1731 if (WARN_ON(!*page_size))
1732 return false;
1733 return (1ULL << mr->cache_ent->order) >=
1734 ib_umem_num_dma_blocks(new_umem, *page_size);
1735 }
1736
1737 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1738 int access_flags, int flags, struct ib_umem *new_umem,
1739 u64 iova, unsigned long page_size)
1740 {
1741 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1742 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1743 struct ib_umem *old_umem = mr->umem;
1744 int err;
1745
1746 /*
1747 * To keep everything simple the MR is revoked before we start to mess
1748 * with it. This ensure the change is atomic relative to any use of the
1749 * MR.
1750 */
1751 err = revoke_mr(mr);
1752 if (err)
1753 return err;
1754
1755 if (flags & IB_MR_REREG_PD) {
1756 mr->ibmr.pd = pd;
1757 mr->mmkey.pd = to_mpd(pd)->pdn;
1758 upd_flags |= MLX5_IB_UPD_XLT_PD;
1759 }
1760 if (flags & IB_MR_REREG_ACCESS) {
1761 mr->access_flags = access_flags;
1762 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1763 }
1764
1765 mr->ibmr.length = new_umem->length;
1766 mr->mmkey.iova = iova;
1767 mr->mmkey.size = new_umem->length;
1768 mr->page_shift = order_base_2(page_size);
1769 mr->umem = new_umem;
1770 err = mlx5_ib_update_mr_pas(mr, upd_flags);
1771 if (err) {
1772 /*
1773 * The MR is revoked at this point so there is no issue to free
1774 * new_umem.
1775 */
1776 mr->umem = old_umem;
1777 return err;
1778 }
1779
1780 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1781 ib_umem_release(old_umem);
1782 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1783 return 0;
1784 }
1785
1786 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1787 u64 length, u64 iova, int new_access_flags,
1788 struct ib_pd *new_pd,
1789 struct ib_udata *udata)
1790 {
1791 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1792 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1793 int err;
1794
1795 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1796 return ERR_PTR(-EOPNOTSUPP);
1797
1798 mlx5_ib_dbg(
1799 dev,
1800 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1801 start, iova, length, new_access_flags);
1802
1803 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1804 return ERR_PTR(-EOPNOTSUPP);
1805
1806 if (!(flags & IB_MR_REREG_ACCESS))
1807 new_access_flags = mr->access_flags;
1808 if (!(flags & IB_MR_REREG_PD))
1809 new_pd = ib_mr->pd;
1810
1811 if (!(flags & IB_MR_REREG_TRANS)) {
1812 struct ib_umem *umem;
1813
1814 /* Fast path for PD/access change */
1815 if (can_use_umr_rereg_access(dev, mr->access_flags,
1816 new_access_flags)) {
1817 err = umr_rereg_pd_access(mr, new_pd, new_access_flags);
1818 if (err)
1819 return ERR_PTR(err);
1820 return NULL;
1821 }
1822 /* DM or ODP MR's don't have a normal umem so we can't re-use it */
1823 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1824 goto recreate;
1825
1826 /*
1827 * Only one active MR can refer to a umem at one time, revoke
1828 * the old MR before assigning the umem to the new one.
1829 */
1830 err = revoke_mr(mr);
1831 if (err)
1832 return ERR_PTR(err);
1833 umem = mr->umem;
1834 mr->umem = NULL;
1835 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1836
1837 return create_real_mr(new_pd, umem, mr->mmkey.iova,
1838 new_access_flags);
1839 }
1840
1841 /*
1842 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1843 * but the logic around releasing the umem is different
1844 */
1845 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1846 goto recreate;
1847
1848 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1849 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1850 struct ib_umem *new_umem;
1851 unsigned long page_size;
1852
1853 new_umem = ib_umem_get(&dev->ib_dev, start, length,
1854 new_access_flags);
1855 if (IS_ERR(new_umem))
1856 return ERR_CAST(new_umem);
1857
1858 /* Fast path for PAS change */
1859 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1860 &page_size)) {
1861 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1862 new_umem, iova, page_size);
1863 if (err) {
1864 ib_umem_release(new_umem);
1865 return ERR_PTR(err);
1866 }
1867 return NULL;
1868 }
1869 return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1870 }
1871
1872 /*
1873 * Everything else has no state we can preserve, just create a new MR
1874 * from scratch
1875 */
1876 recreate:
1877 return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1878 new_access_flags, udata);
1879 }
1880
1881 static int
1882 mlx5_alloc_priv_descs(struct ib_device *device,
1883 struct mlx5_ib_mr *mr,
1884 int ndescs,
1885 int desc_size)
1886 {
1887 struct mlx5_ib_dev *dev = to_mdev(device);
1888 struct device *ddev = &dev->mdev->pdev->dev;
1889 int size = ndescs * desc_size;
1890 int add_size;
1891 int ret;
1892
1893 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1894
1895 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1896 if (!mr->descs_alloc)
1897 return -ENOMEM;
1898
1899 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1900
1901 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1902 if (dma_mapping_error(ddev, mr->desc_map)) {
1903 ret = -ENOMEM;
1904 goto err;
1905 }
1906
1907 return 0;
1908 err:
1909 kfree(mr->descs_alloc);
1910
1911 return ret;
1912 }
1913
1914 static void
1915 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1916 {
1917 if (!mr->umem && mr->descs) {
1918 struct ib_device *device = mr->ibmr.device;
1919 int size = mr->max_descs * mr->desc_size;
1920 struct mlx5_ib_dev *dev = to_mdev(device);
1921
1922 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1923 DMA_TO_DEVICE);
1924 kfree(mr->descs_alloc);
1925 mr->descs = NULL;
1926 }
1927 }
1928
1929 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1930 {
1931 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1932 struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1933 int rc;
1934
1935 /*
1936 * Any async use of the mr must hold the refcount, once the refcount
1937 * goes to zero no other thread, such as ODP page faults, prefetch, any
1938 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1939 */
1940 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1941 refcount_read(&mr->mmkey.usecount) != 0 &&
1942 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1943 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1944
1945 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1946 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1947 mr->sig, NULL, GFP_KERNEL);
1948
1949 if (mr->mtt_mr) {
1950 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1951 if (rc)
1952 return rc;
1953 mr->mtt_mr = NULL;
1954 }
1955 if (mr->klm_mr) {
1956 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1957 if (rc)
1958 return rc;
1959 mr->klm_mr = NULL;
1960 }
1961
1962 if (mlx5_core_destroy_psv(dev->mdev,
1963 mr->sig->psv_memory.psv_idx))
1964 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1965 mr->sig->psv_memory.psv_idx);
1966 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1967 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1968 mr->sig->psv_wire.psv_idx);
1969 kfree(mr->sig);
1970 mr->sig = NULL;
1971 }
1972
1973 /* Stop DMA */
1974 if (mr->cache_ent) {
1975 if (revoke_mr(mr)) {
1976 spin_lock_irq(&mr->cache_ent->lock);
1977 mr->cache_ent->total_mrs--;
1978 spin_unlock_irq(&mr->cache_ent->lock);
1979 mr->cache_ent = NULL;
1980 }
1981 }
1982 if (!mr->cache_ent) {
1983 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1984 if (rc)
1985 return rc;
1986 }
1987
1988 if (mr->umem) {
1989 bool is_odp = is_odp_mr(mr);
1990
1991 if (!is_odp)
1992 atomic_sub(ib_umem_num_pages(mr->umem),
1993 &dev->mdev->priv.reg_pages);
1994 ib_umem_release(mr->umem);
1995 if (is_odp)
1996 mlx5_ib_free_odp_mr(mr);
1997 }
1998
1999 if (mr->cache_ent) {
2000 mlx5_mr_cache_free(dev, mr);
2001 } else {
2002 mlx5_free_priv_descs(mr);
2003 kfree(mr);
2004 }
2005 return 0;
2006 }
2007
2008 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
2009 int access_mode, int page_shift)
2010 {
2011 void *mkc;
2012
2013 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2014
2015 /* This is only used from the kernel, so setting the PD is OK. */
2016 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
2017 MLX5_SET(mkc, mkc, free, 1);
2018 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2019 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
2020 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
2021 MLX5_SET(mkc, mkc, umr_en, 1);
2022 MLX5_SET(mkc, mkc, log_page_size, page_shift);
2023 }
2024
2025 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2026 int ndescs, int desc_size, int page_shift,
2027 int access_mode, u32 *in, int inlen)
2028 {
2029 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2030 int err;
2031
2032 mr->access_mode = access_mode;
2033 mr->desc_size = desc_size;
2034 mr->max_descs = ndescs;
2035
2036 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
2037 if (err)
2038 return err;
2039
2040 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
2041
2042 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
2043 if (err)
2044 goto err_free_descs;
2045
2046 mr->mmkey.type = MLX5_MKEY_MR;
2047 mr->ibmr.lkey = mr->mmkey.key;
2048 mr->ibmr.rkey = mr->mmkey.key;
2049
2050 return 0;
2051
2052 err_free_descs:
2053 mlx5_free_priv_descs(mr);
2054 return err;
2055 }
2056
2057 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
2058 u32 max_num_sg, u32 max_num_meta_sg,
2059 int desc_size, int access_mode)
2060 {
2061 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2062 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2063 int page_shift = 0;
2064 struct mlx5_ib_mr *mr;
2065 u32 *in;
2066 int err;
2067
2068 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2069 if (!mr)
2070 return ERR_PTR(-ENOMEM);
2071
2072 mr->ibmr.pd = pd;
2073 mr->ibmr.device = pd->device;
2074
2075 in = kzalloc(inlen, GFP_KERNEL);
2076 if (!in) {
2077 err = -ENOMEM;
2078 goto err_free;
2079 }
2080
2081 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2082 page_shift = PAGE_SHIFT;
2083
2084 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2085 access_mode, in, inlen);
2086 if (err)
2087 goto err_free_in;
2088
2089 mr->umem = NULL;
2090 kfree(in);
2091
2092 return mr;
2093
2094 err_free_in:
2095 kfree(in);
2096 err_free:
2097 kfree(mr);
2098 return ERR_PTR(err);
2099 }
2100
2101 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2102 int ndescs, u32 *in, int inlen)
2103 {
2104 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2105 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2106 inlen);
2107 }
2108
2109 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2110 int ndescs, u32 *in, int inlen)
2111 {
2112 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2113 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2114 }
2115
2116 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2117 int max_num_sg, int max_num_meta_sg,
2118 u32 *in, int inlen)
2119 {
2120 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2121 u32 psv_index[2];
2122 void *mkc;
2123 int err;
2124
2125 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2126 if (!mr->sig)
2127 return -ENOMEM;
2128
2129 /* create mem & wire PSVs */
2130 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2131 if (err)
2132 goto err_free_sig;
2133
2134 mr->sig->psv_memory.psv_idx = psv_index[0];
2135 mr->sig->psv_wire.psv_idx = psv_index[1];
2136
2137 mr->sig->sig_status_checked = true;
2138 mr->sig->sig_err_exists = false;
2139 /* Next UMR, Arm SIGERR */
2140 ++mr->sig->sigerr_count;
2141 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2142 sizeof(struct mlx5_klm),
2143 MLX5_MKC_ACCESS_MODE_KLMS);
2144 if (IS_ERR(mr->klm_mr)) {
2145 err = PTR_ERR(mr->klm_mr);
2146 goto err_destroy_psv;
2147 }
2148 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2149 sizeof(struct mlx5_mtt),
2150 MLX5_MKC_ACCESS_MODE_MTT);
2151 if (IS_ERR(mr->mtt_mr)) {
2152 err = PTR_ERR(mr->mtt_mr);
2153 goto err_free_klm_mr;
2154 }
2155
2156 /* Set bsf descriptors for mkey */
2157 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2158 MLX5_SET(mkc, mkc, bsf_en, 1);
2159 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2160
2161 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2162 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2163 if (err)
2164 goto err_free_mtt_mr;
2165
2166 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2167 mr->sig, GFP_KERNEL));
2168 if (err)
2169 goto err_free_descs;
2170 return 0;
2171
2172 err_free_descs:
2173 destroy_mkey(dev, mr);
2174 mlx5_free_priv_descs(mr);
2175 err_free_mtt_mr:
2176 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2177 mr->mtt_mr = NULL;
2178 err_free_klm_mr:
2179 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2180 mr->klm_mr = NULL;
2181 err_destroy_psv:
2182 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2183 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2184 mr->sig->psv_memory.psv_idx);
2185 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2186 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2187 mr->sig->psv_wire.psv_idx);
2188 err_free_sig:
2189 kfree(mr->sig);
2190
2191 return err;
2192 }
2193
2194 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2195 enum ib_mr_type mr_type, u32 max_num_sg,
2196 u32 max_num_meta_sg)
2197 {
2198 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2199 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2200 int ndescs = ALIGN(max_num_sg, 4);
2201 struct mlx5_ib_mr *mr;
2202 u32 *in;
2203 int err;
2204
2205 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2206 if (!mr)
2207 return ERR_PTR(-ENOMEM);
2208
2209 in = kzalloc(inlen, GFP_KERNEL);
2210 if (!in) {
2211 err = -ENOMEM;
2212 goto err_free;
2213 }
2214
2215 mr->ibmr.device = pd->device;
2216 mr->umem = NULL;
2217
2218 switch (mr_type) {
2219 case IB_MR_TYPE_MEM_REG:
2220 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2221 break;
2222 case IB_MR_TYPE_SG_GAPS:
2223 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2224 break;
2225 case IB_MR_TYPE_INTEGRITY:
2226 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2227 max_num_meta_sg, in, inlen);
2228 break;
2229 default:
2230 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2231 err = -EINVAL;
2232 }
2233
2234 if (err)
2235 goto err_free_in;
2236
2237 kfree(in);
2238
2239 return &mr->ibmr;
2240
2241 err_free_in:
2242 kfree(in);
2243 err_free:
2244 kfree(mr);
2245 return ERR_PTR(err);
2246 }
2247
2248 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2249 u32 max_num_sg)
2250 {
2251 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2252 }
2253
2254 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2255 u32 max_num_sg, u32 max_num_meta_sg)
2256 {
2257 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2258 max_num_meta_sg);
2259 }
2260
2261 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2262 {
2263 struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2264 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2265 struct mlx5_ib_mw *mw = to_mmw(ibmw);
2266 u32 *in = NULL;
2267 void *mkc;
2268 int ndescs;
2269 int err;
2270 struct mlx5_ib_alloc_mw req = {};
2271 struct {
2272 __u32 comp_mask;
2273 __u32 response_length;
2274 } resp = {};
2275
2276 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2277 if (err)
2278 return err;
2279
2280 if (req.comp_mask || req.reserved1 || req.reserved2)
2281 return -EOPNOTSUPP;
2282
2283 if (udata->inlen > sizeof(req) &&
2284 !ib_is_udata_cleared(udata, sizeof(req),
2285 udata->inlen - sizeof(req)))
2286 return -EOPNOTSUPP;
2287
2288 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2289
2290 in = kzalloc(inlen, GFP_KERNEL);
2291 if (!in) {
2292 err = -ENOMEM;
2293 goto free;
2294 }
2295
2296 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2297
2298 MLX5_SET(mkc, mkc, free, 1);
2299 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2300 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2301 MLX5_SET(mkc, mkc, umr_en, 1);
2302 MLX5_SET(mkc, mkc, lr, 1);
2303 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2304 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2305 MLX5_SET(mkc, mkc, qpn, 0xffffff);
2306
2307 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2308 if (err)
2309 goto free;
2310
2311 mw->mmkey.type = MLX5_MKEY_MW;
2312 ibmw->rkey = mw->mmkey.key;
2313 mw->ndescs = ndescs;
2314
2315 resp.response_length =
2316 min(offsetofend(typeof(resp), response_length), udata->outlen);
2317 if (resp.response_length) {
2318 err = ib_copy_to_udata(udata, &resp, resp.response_length);
2319 if (err)
2320 goto free_mkey;
2321 }
2322
2323 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2324 err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2325 if (err)
2326 goto free_mkey;
2327 }
2328
2329 kfree(in);
2330 return 0;
2331
2332 free_mkey:
2333 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
2334 free:
2335 kfree(in);
2336 return err;
2337 }
2338
2339 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2340 {
2341 struct mlx5_ib_dev *dev = to_mdev(mw->device);
2342 struct mlx5_ib_mw *mmw = to_mmw(mw);
2343
2344 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2345 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2346 /*
2347 * pagefault_single_data_segment() may be accessing mmw
2348 * if the user bound an ODP MR to this MW.
2349 */
2350 mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2351
2352 return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
2353 }
2354
2355 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2356 struct ib_mr_status *mr_status)
2357 {
2358 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2359 int ret = 0;
2360
2361 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2362 pr_err("Invalid status check mask\n");
2363 ret = -EINVAL;
2364 goto done;
2365 }
2366
2367 mr_status->fail_status = 0;
2368 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2369 if (!mmr->sig) {
2370 ret = -EINVAL;
2371 pr_err("signature status check requested on a non-signature enabled MR\n");
2372 goto done;
2373 }
2374
2375 mmr->sig->sig_status_checked = true;
2376 if (!mmr->sig->sig_err_exists)
2377 goto done;
2378
2379 if (ibmr->lkey == mmr->sig->err_item.key)
2380 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2381 sizeof(mr_status->sig_err));
2382 else {
2383 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2384 mr_status->sig_err.sig_err_offset = 0;
2385 mr_status->sig_err.key = mmr->sig->err_item.key;
2386 }
2387
2388 mmr->sig->sig_err_exists = false;
2389 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2390 }
2391
2392 done:
2393 return ret;
2394 }
2395
2396 static int
2397 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2398 int data_sg_nents, unsigned int *data_sg_offset,
2399 struct scatterlist *meta_sg, int meta_sg_nents,
2400 unsigned int *meta_sg_offset)
2401 {
2402 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2403 unsigned int sg_offset = 0;
2404 int n = 0;
2405
2406 mr->meta_length = 0;
2407 if (data_sg_nents == 1) {
2408 n++;
2409 mr->ndescs = 1;
2410 if (data_sg_offset)
2411 sg_offset = *data_sg_offset;
2412 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2413 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2414 if (meta_sg_nents == 1) {
2415 n++;
2416 mr->meta_ndescs = 1;
2417 if (meta_sg_offset)
2418 sg_offset = *meta_sg_offset;
2419 else
2420 sg_offset = 0;
2421 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2422 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2423 }
2424 ibmr->length = mr->data_length + mr->meta_length;
2425 }
2426
2427 return n;
2428 }
2429
2430 static int
2431 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2432 struct scatterlist *sgl,
2433 unsigned short sg_nents,
2434 unsigned int *sg_offset_p,
2435 struct scatterlist *meta_sgl,
2436 unsigned short meta_sg_nents,
2437 unsigned int *meta_sg_offset_p)
2438 {
2439 struct scatterlist *sg = sgl;
2440 struct mlx5_klm *klms = mr->descs;
2441 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2442 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2443 int i, j = 0;
2444
2445 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2446 mr->ibmr.length = 0;
2447
2448 for_each_sg(sgl, sg, sg_nents, i) {
2449 if (unlikely(i >= mr->max_descs))
2450 break;
2451 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2452 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2453 klms[i].key = cpu_to_be32(lkey);
2454 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2455
2456 sg_offset = 0;
2457 }
2458
2459 if (sg_offset_p)
2460 *sg_offset_p = sg_offset;
2461
2462 mr->ndescs = i;
2463 mr->data_length = mr->ibmr.length;
2464
2465 if (meta_sg_nents) {
2466 sg = meta_sgl;
2467 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2468 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2469 if (unlikely(i + j >= mr->max_descs))
2470 break;
2471 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2472 sg_offset);
2473 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2474 sg_offset);
2475 klms[i + j].key = cpu_to_be32(lkey);
2476 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2477
2478 sg_offset = 0;
2479 }
2480 if (meta_sg_offset_p)
2481 *meta_sg_offset_p = sg_offset;
2482
2483 mr->meta_ndescs = j;
2484 mr->meta_length = mr->ibmr.length - mr->data_length;
2485 }
2486
2487 return i + j;
2488 }
2489
2490 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2491 {
2492 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2493 __be64 *descs;
2494
2495 if (unlikely(mr->ndescs == mr->max_descs))
2496 return -ENOMEM;
2497
2498 descs = mr->descs;
2499 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2500
2501 return 0;
2502 }
2503
2504 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2505 {
2506 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2507 __be64 *descs;
2508
2509 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2510 return -ENOMEM;
2511
2512 descs = mr->descs;
2513 descs[mr->ndescs + mr->meta_ndescs++] =
2514 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2515
2516 return 0;
2517 }
2518
2519 static int
2520 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2521 int data_sg_nents, unsigned int *data_sg_offset,
2522 struct scatterlist *meta_sg, int meta_sg_nents,
2523 unsigned int *meta_sg_offset)
2524 {
2525 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2526 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2527 int n;
2528
2529 pi_mr->ndescs = 0;
2530 pi_mr->meta_ndescs = 0;
2531 pi_mr->meta_length = 0;
2532
2533 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2534 pi_mr->desc_size * pi_mr->max_descs,
2535 DMA_TO_DEVICE);
2536
2537 pi_mr->ibmr.page_size = ibmr->page_size;
2538 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2539 mlx5_set_page);
2540 if (n != data_sg_nents)
2541 return n;
2542
2543 pi_mr->data_iova = pi_mr->ibmr.iova;
2544 pi_mr->data_length = pi_mr->ibmr.length;
2545 pi_mr->ibmr.length = pi_mr->data_length;
2546 ibmr->length = pi_mr->data_length;
2547
2548 if (meta_sg_nents) {
2549 u64 page_mask = ~((u64)ibmr->page_size - 1);
2550 u64 iova = pi_mr->data_iova;
2551
2552 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2553 meta_sg_offset, mlx5_set_page_pi);
2554
2555 pi_mr->meta_length = pi_mr->ibmr.length;
2556 /*
2557 * PI address for the HW is the offset of the metadata address
2558 * relative to the first data page address.
2559 * It equals to first data page address + size of data pages +
2560 * metadata offset at the first metadata page
2561 */
2562 pi_mr->pi_iova = (iova & page_mask) +
2563 pi_mr->ndescs * ibmr->page_size +
2564 (pi_mr->ibmr.iova & ~page_mask);
2565 /*
2566 * In order to use one MTT MR for data and metadata, we register
2567 * also the gaps between the end of the data and the start of
2568 * the metadata (the sig MR will verify that the HW will access
2569 * to right addresses). This mapping is safe because we use
2570 * internal mkey for the registration.
2571 */
2572 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2573 pi_mr->ibmr.iova = iova;
2574 ibmr->length += pi_mr->meta_length;
2575 }
2576
2577 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2578 pi_mr->desc_size * pi_mr->max_descs,
2579 DMA_TO_DEVICE);
2580
2581 return n;
2582 }
2583
2584 static int
2585 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2586 int data_sg_nents, unsigned int *data_sg_offset,
2587 struct scatterlist *meta_sg, int meta_sg_nents,
2588 unsigned int *meta_sg_offset)
2589 {
2590 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2591 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2592 int n;
2593
2594 pi_mr->ndescs = 0;
2595 pi_mr->meta_ndescs = 0;
2596 pi_mr->meta_length = 0;
2597
2598 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2599 pi_mr->desc_size * pi_mr->max_descs,
2600 DMA_TO_DEVICE);
2601
2602 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2603 meta_sg, meta_sg_nents, meta_sg_offset);
2604
2605 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2606 pi_mr->desc_size * pi_mr->max_descs,
2607 DMA_TO_DEVICE);
2608
2609 /* This is zero-based memory region */
2610 pi_mr->data_iova = 0;
2611 pi_mr->ibmr.iova = 0;
2612 pi_mr->pi_iova = pi_mr->data_length;
2613 ibmr->length = pi_mr->ibmr.length;
2614
2615 return n;
2616 }
2617
2618 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2619 int data_sg_nents, unsigned int *data_sg_offset,
2620 struct scatterlist *meta_sg, int meta_sg_nents,
2621 unsigned int *meta_sg_offset)
2622 {
2623 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2624 struct mlx5_ib_mr *pi_mr = NULL;
2625 int n;
2626
2627 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2628
2629 mr->ndescs = 0;
2630 mr->data_length = 0;
2631 mr->data_iova = 0;
2632 mr->meta_ndescs = 0;
2633 mr->pi_iova = 0;
2634 /*
2635 * As a performance optimization, if possible, there is no need to
2636 * perform UMR operation to register the data/metadata buffers.
2637 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2638 * Fallback to UMR only in case of a failure.
2639 */
2640 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2641 data_sg_offset, meta_sg, meta_sg_nents,
2642 meta_sg_offset);
2643 if (n == data_sg_nents + meta_sg_nents)
2644 goto out;
2645 /*
2646 * As a performance optimization, if possible, there is no need to map
2647 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2648 * descriptors and fallback to KLM only in case of a failure.
2649 * It's more efficient for the HW to work with MTT descriptors
2650 * (especially in high load).
2651 * Use KLM (indirect access) only if it's mandatory.
2652 */
2653 pi_mr = mr->mtt_mr;
2654 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2655 data_sg_offset, meta_sg, meta_sg_nents,
2656 meta_sg_offset);
2657 if (n == data_sg_nents + meta_sg_nents)
2658 goto out;
2659
2660 pi_mr = mr->klm_mr;
2661 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2662 data_sg_offset, meta_sg, meta_sg_nents,
2663 meta_sg_offset);
2664 if (unlikely(n != data_sg_nents + meta_sg_nents))
2665 return -ENOMEM;
2666
2667 out:
2668 /* This is zero-based memory region */
2669 ibmr->iova = 0;
2670 mr->pi_mr = pi_mr;
2671 if (pi_mr)
2672 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2673 else
2674 ibmr->sig_attrs->meta_length = mr->meta_length;
2675
2676 return 0;
2677 }
2678
2679 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2680 unsigned int *sg_offset)
2681 {
2682 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2683 int n;
2684
2685 mr->ndescs = 0;
2686
2687 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2688 mr->desc_size * mr->max_descs,
2689 DMA_TO_DEVICE);
2690
2691 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2692 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2693 NULL);
2694 else
2695 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2696 mlx5_set_page);
2697
2698 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2699 mr->desc_size * mr->max_descs,
2700 DMA_TO_DEVICE);
2701
2702 return n;
2703 }