]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/infiniband/hw/mlx5/mr.c
Merge tag 'mtd/fixes-for-5.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / drivers / infiniband / hw / mlx5 / mr.c
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43
44 enum {
45 MAX_PENDING_REG_MR = 8,
46 };
47
48 #define MLX5_UMR_ALIGN 2048
49
50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
52 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
53 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
54
55 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
56 {
57 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
58 }
59
60 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
61 {
62 int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
63
64 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
65 /* Wait until all page fault handlers using the mr complete. */
66 synchronize_srcu(&dev->mr_srcu);
67
68 return err;
69 }
70
71 static int order2idx(struct mlx5_ib_dev *dev, int order)
72 {
73 struct mlx5_mr_cache *cache = &dev->cache;
74
75 if (order < cache->ent[0].order)
76 return 0;
77 else
78 return order - cache->ent[0].order;
79 }
80
81 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
82 {
83 return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
84 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
85 }
86
87 static void update_odp_mr(struct mlx5_ib_mr *mr)
88 {
89 if (is_odp_mr(mr)) {
90 /*
91 * This barrier prevents the compiler from moving the
92 * setting of umem->odp_data->private to point to our
93 * MR, before reg_umr finished, to ensure that the MR
94 * initialization have finished before starting to
95 * handle invalidations.
96 */
97 smp_wmb();
98 to_ib_umem_odp(mr->umem)->private = mr;
99 /*
100 * Make sure we will see the new
101 * umem->odp_data->private value in the invalidation
102 * routines, before we can get page faults on the
103 * MR. Page faults can happen once we put the MR in
104 * the tree, below this line. Without the barrier,
105 * there can be a fault handling and an invalidation
106 * before umem->odp_data->private == mr is visible to
107 * the invalidation handler.
108 */
109 smp_wmb();
110 }
111 }
112
113 static void reg_mr_callback(int status, struct mlx5_async_work *context)
114 {
115 struct mlx5_ib_mr *mr =
116 container_of(context, struct mlx5_ib_mr, cb_work);
117 struct mlx5_ib_dev *dev = mr->dev;
118 struct mlx5_mr_cache *cache = &dev->cache;
119 int c = order2idx(dev, mr->order);
120 struct mlx5_cache_ent *ent = &cache->ent[c];
121 u8 key;
122 unsigned long flags;
123 struct xarray *mkeys = &dev->mdev->priv.mkey_table;
124 int err;
125
126 spin_lock_irqsave(&ent->lock, flags);
127 ent->pending--;
128 spin_unlock_irqrestore(&ent->lock, flags);
129 if (status) {
130 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
131 kfree(mr);
132 dev->fill_delay = 1;
133 mod_timer(&dev->delay_timer, jiffies + HZ);
134 return;
135 }
136
137 mr->mmkey.type = MLX5_MKEY_MR;
138 spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
139 key = dev->mdev->priv.mkey_key++;
140 spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
141 mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
142
143 cache->last_add = jiffies;
144
145 spin_lock_irqsave(&ent->lock, flags);
146 list_add_tail(&mr->list, &ent->head);
147 ent->cur++;
148 ent->size++;
149 spin_unlock_irqrestore(&ent->lock, flags);
150
151 xa_lock_irqsave(mkeys, flags);
152 err = xa_err(__xa_store(mkeys, mlx5_base_mkey(mr->mmkey.key),
153 &mr->mmkey, GFP_ATOMIC));
154 xa_unlock_irqrestore(mkeys, flags);
155 if (err)
156 pr_err("Error inserting to mkey tree. 0x%x\n", -err);
157
158 if (!completion_done(&ent->compl))
159 complete(&ent->compl);
160 }
161
162 static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
163 {
164 struct mlx5_mr_cache *cache = &dev->cache;
165 struct mlx5_cache_ent *ent = &cache->ent[c];
166 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
167 struct mlx5_ib_mr *mr;
168 void *mkc;
169 u32 *in;
170 int err = 0;
171 int i;
172
173 in = kzalloc(inlen, GFP_KERNEL);
174 if (!in)
175 return -ENOMEM;
176
177 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
178 for (i = 0; i < num; i++) {
179 if (ent->pending >= MAX_PENDING_REG_MR) {
180 err = -EAGAIN;
181 break;
182 }
183
184 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
185 if (!mr) {
186 err = -ENOMEM;
187 break;
188 }
189 mr->order = ent->order;
190 mr->allocated_from_cache = 1;
191 mr->dev = dev;
192
193 MLX5_SET(mkc, mkc, free, 1);
194 MLX5_SET(mkc, mkc, umr_en, 1);
195 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
196 MLX5_SET(mkc, mkc, access_mode_4_2,
197 (ent->access_mode >> 2) & 0x7);
198
199 MLX5_SET(mkc, mkc, qpn, 0xffffff);
200 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
201 MLX5_SET(mkc, mkc, log_page_size, ent->page);
202
203 spin_lock_irq(&ent->lock);
204 ent->pending++;
205 spin_unlock_irq(&ent->lock);
206 err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
207 &dev->async_ctx, in, inlen,
208 mr->out, sizeof(mr->out),
209 reg_mr_callback, &mr->cb_work);
210 if (err) {
211 spin_lock_irq(&ent->lock);
212 ent->pending--;
213 spin_unlock_irq(&ent->lock);
214 mlx5_ib_warn(dev, "create mkey failed %d\n", err);
215 kfree(mr);
216 break;
217 }
218 }
219
220 kfree(in);
221 return err;
222 }
223
224 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
225 {
226 struct mlx5_mr_cache *cache = &dev->cache;
227 struct mlx5_cache_ent *ent = &cache->ent[c];
228 struct mlx5_ib_mr *tmp_mr;
229 struct mlx5_ib_mr *mr;
230 LIST_HEAD(del_list);
231 int i;
232
233 for (i = 0; i < num; i++) {
234 spin_lock_irq(&ent->lock);
235 if (list_empty(&ent->head)) {
236 spin_unlock_irq(&ent->lock);
237 break;
238 }
239 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
240 list_move(&mr->list, &del_list);
241 ent->cur--;
242 ent->size--;
243 spin_unlock_irq(&ent->lock);
244 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
245 }
246
247 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
248 synchronize_srcu(&dev->mr_srcu);
249
250 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
251 list_del(&mr->list);
252 kfree(mr);
253 }
254 }
255
256 static ssize_t size_write(struct file *filp, const char __user *buf,
257 size_t count, loff_t *pos)
258 {
259 struct mlx5_cache_ent *ent = filp->private_data;
260 struct mlx5_ib_dev *dev = ent->dev;
261 char lbuf[20] = {0};
262 u32 var;
263 int err;
264 int c;
265
266 count = min(count, sizeof(lbuf) - 1);
267 if (copy_from_user(lbuf, buf, count))
268 return -EFAULT;
269
270 c = order2idx(dev, ent->order);
271
272 if (sscanf(lbuf, "%u", &var) != 1)
273 return -EINVAL;
274
275 if (var < ent->limit)
276 return -EINVAL;
277
278 if (var > ent->size) {
279 do {
280 err = add_keys(dev, c, var - ent->size);
281 if (err && err != -EAGAIN)
282 return err;
283
284 usleep_range(3000, 5000);
285 } while (err);
286 } else if (var < ent->size) {
287 remove_keys(dev, c, ent->size - var);
288 }
289
290 return count;
291 }
292
293 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
294 loff_t *pos)
295 {
296 struct mlx5_cache_ent *ent = filp->private_data;
297 char lbuf[20];
298 int err;
299
300 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
301 if (err < 0)
302 return err;
303
304 return simple_read_from_buffer(buf, count, pos, lbuf, err);
305 }
306
307 static const struct file_operations size_fops = {
308 .owner = THIS_MODULE,
309 .open = simple_open,
310 .write = size_write,
311 .read = size_read,
312 };
313
314 static ssize_t limit_write(struct file *filp, const char __user *buf,
315 size_t count, loff_t *pos)
316 {
317 struct mlx5_cache_ent *ent = filp->private_data;
318 struct mlx5_ib_dev *dev = ent->dev;
319 char lbuf[20] = {0};
320 u32 var;
321 int err;
322 int c;
323
324 count = min(count, sizeof(lbuf) - 1);
325 if (copy_from_user(lbuf, buf, count))
326 return -EFAULT;
327
328 c = order2idx(dev, ent->order);
329
330 if (sscanf(lbuf, "%u", &var) != 1)
331 return -EINVAL;
332
333 if (var > ent->size)
334 return -EINVAL;
335
336 ent->limit = var;
337
338 if (ent->cur < ent->limit) {
339 err = add_keys(dev, c, 2 * ent->limit - ent->cur);
340 if (err)
341 return err;
342 }
343
344 return count;
345 }
346
347 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
348 loff_t *pos)
349 {
350 struct mlx5_cache_ent *ent = filp->private_data;
351 char lbuf[20];
352 int err;
353
354 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
355 if (err < 0)
356 return err;
357
358 return simple_read_from_buffer(buf, count, pos, lbuf, err);
359 }
360
361 static const struct file_operations limit_fops = {
362 .owner = THIS_MODULE,
363 .open = simple_open,
364 .write = limit_write,
365 .read = limit_read,
366 };
367
368 static int someone_adding(struct mlx5_mr_cache *cache)
369 {
370 int i;
371
372 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
373 if (cache->ent[i].cur < cache->ent[i].limit)
374 return 1;
375 }
376
377 return 0;
378 }
379
380 static void __cache_work_func(struct mlx5_cache_ent *ent)
381 {
382 struct mlx5_ib_dev *dev = ent->dev;
383 struct mlx5_mr_cache *cache = &dev->cache;
384 int i = order2idx(dev, ent->order);
385 int err;
386
387 if (cache->stopped)
388 return;
389
390 ent = &dev->cache.ent[i];
391 if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
392 err = add_keys(dev, i, 1);
393 if (ent->cur < 2 * ent->limit) {
394 if (err == -EAGAIN) {
395 mlx5_ib_dbg(dev, "returned eagain, order %d\n",
396 i + 2);
397 queue_delayed_work(cache->wq, &ent->dwork,
398 msecs_to_jiffies(3));
399 } else if (err) {
400 mlx5_ib_warn(dev, "command failed order %d, err %d\n",
401 i + 2, err);
402 queue_delayed_work(cache->wq, &ent->dwork,
403 msecs_to_jiffies(1000));
404 } else {
405 queue_work(cache->wq, &ent->work);
406 }
407 }
408 } else if (ent->cur > 2 * ent->limit) {
409 /*
410 * The remove_keys() logic is performed as garbage collection
411 * task. Such task is intended to be run when no other active
412 * processes are running.
413 *
414 * The need_resched() will return TRUE if there are user tasks
415 * to be activated in near future.
416 *
417 * In such case, we don't execute remove_keys() and postpone
418 * the garbage collection work to try to run in next cycle,
419 * in order to free CPU resources to other tasks.
420 */
421 if (!need_resched() && !someone_adding(cache) &&
422 time_after(jiffies, cache->last_add + 300 * HZ)) {
423 remove_keys(dev, i, 1);
424 if (ent->cur > ent->limit)
425 queue_work(cache->wq, &ent->work);
426 } else {
427 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
428 }
429 }
430 }
431
432 static void delayed_cache_work_func(struct work_struct *work)
433 {
434 struct mlx5_cache_ent *ent;
435
436 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
437 __cache_work_func(ent);
438 }
439
440 static void cache_work_func(struct work_struct *work)
441 {
442 struct mlx5_cache_ent *ent;
443
444 ent = container_of(work, struct mlx5_cache_ent, work);
445 __cache_work_func(ent);
446 }
447
448 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry)
449 {
450 struct mlx5_mr_cache *cache = &dev->cache;
451 struct mlx5_cache_ent *ent;
452 struct mlx5_ib_mr *mr;
453 int err;
454
455 if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) {
456 mlx5_ib_err(dev, "cache entry %d is out of range\n", entry);
457 return NULL;
458 }
459
460 ent = &cache->ent[entry];
461 while (1) {
462 spin_lock_irq(&ent->lock);
463 if (list_empty(&ent->head)) {
464 spin_unlock_irq(&ent->lock);
465
466 err = add_keys(dev, entry, 1);
467 if (err && err != -EAGAIN)
468 return ERR_PTR(err);
469
470 wait_for_completion(&ent->compl);
471 } else {
472 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
473 list);
474 list_del(&mr->list);
475 ent->cur--;
476 spin_unlock_irq(&ent->lock);
477 if (ent->cur < ent->limit)
478 queue_work(cache->wq, &ent->work);
479 return mr;
480 }
481 }
482 }
483
484 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
485 {
486 struct mlx5_mr_cache *cache = &dev->cache;
487 struct mlx5_ib_mr *mr = NULL;
488 struct mlx5_cache_ent *ent;
489 int last_umr_cache_entry;
490 int c;
491 int i;
492
493 c = order2idx(dev, order);
494 last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev));
495 if (c < 0 || c > last_umr_cache_entry) {
496 mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
497 return NULL;
498 }
499
500 for (i = c; i <= last_umr_cache_entry; i++) {
501 ent = &cache->ent[i];
502
503 mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
504
505 spin_lock_irq(&ent->lock);
506 if (!list_empty(&ent->head)) {
507 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
508 list);
509 list_del(&mr->list);
510 ent->cur--;
511 spin_unlock_irq(&ent->lock);
512 if (ent->cur < ent->limit)
513 queue_work(cache->wq, &ent->work);
514 break;
515 }
516 spin_unlock_irq(&ent->lock);
517
518 queue_work(cache->wq, &ent->work);
519 }
520
521 if (!mr)
522 cache->ent[c].miss++;
523
524 return mr;
525 }
526
527 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
528 {
529 struct mlx5_mr_cache *cache = &dev->cache;
530 struct mlx5_cache_ent *ent;
531 int shrink = 0;
532 int c;
533
534 if (!mr->allocated_from_cache)
535 return;
536
537 c = order2idx(dev, mr->order);
538 WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES);
539
540 if (unreg_umr(dev, mr)) {
541 mr->allocated_from_cache = false;
542 destroy_mkey(dev, mr);
543 ent = &cache->ent[c];
544 if (ent->cur < ent->limit)
545 queue_work(cache->wq, &ent->work);
546 return;
547 }
548
549 ent = &cache->ent[c];
550 spin_lock_irq(&ent->lock);
551 list_add_tail(&mr->list, &ent->head);
552 ent->cur++;
553 if (ent->cur > 2 * ent->limit)
554 shrink = 1;
555 spin_unlock_irq(&ent->lock);
556
557 if (shrink)
558 queue_work(cache->wq, &ent->work);
559 }
560
561 static void clean_keys(struct mlx5_ib_dev *dev, int c)
562 {
563 struct mlx5_mr_cache *cache = &dev->cache;
564 struct mlx5_cache_ent *ent = &cache->ent[c];
565 struct mlx5_ib_mr *tmp_mr;
566 struct mlx5_ib_mr *mr;
567 LIST_HEAD(del_list);
568
569 cancel_delayed_work(&ent->dwork);
570 while (1) {
571 spin_lock_irq(&ent->lock);
572 if (list_empty(&ent->head)) {
573 spin_unlock_irq(&ent->lock);
574 break;
575 }
576 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
577 list_move(&mr->list, &del_list);
578 ent->cur--;
579 ent->size--;
580 spin_unlock_irq(&ent->lock);
581 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
582 }
583
584 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
585 synchronize_srcu(&dev->mr_srcu);
586 #endif
587
588 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
589 list_del(&mr->list);
590 kfree(mr);
591 }
592 }
593
594 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
595 {
596 if (!mlx5_debugfs_root || dev->is_rep)
597 return;
598
599 debugfs_remove_recursive(dev->cache.root);
600 dev->cache.root = NULL;
601 }
602
603 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
604 {
605 struct mlx5_mr_cache *cache = &dev->cache;
606 struct mlx5_cache_ent *ent;
607 struct dentry *dir;
608 int i;
609
610 if (!mlx5_debugfs_root || dev->is_rep)
611 return;
612
613 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
614
615 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
616 ent = &cache->ent[i];
617 sprintf(ent->name, "%d", ent->order);
618 dir = debugfs_create_dir(ent->name, cache->root);
619 debugfs_create_file("size", 0600, dir, ent, &size_fops);
620 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
621 debugfs_create_u32("cur", 0400, dir, &ent->cur);
622 debugfs_create_u32("miss", 0600, dir, &ent->miss);
623 }
624 }
625
626 static void delay_time_func(struct timer_list *t)
627 {
628 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
629
630 dev->fill_delay = 0;
631 }
632
633 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
634 {
635 struct mlx5_mr_cache *cache = &dev->cache;
636 struct mlx5_cache_ent *ent;
637 int i;
638
639 mutex_init(&dev->slow_path_mutex);
640 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
641 if (!cache->wq) {
642 mlx5_ib_warn(dev, "failed to create work queue\n");
643 return -ENOMEM;
644 }
645
646 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
647 timer_setup(&dev->delay_timer, delay_time_func, 0);
648 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
649 ent = &cache->ent[i];
650 INIT_LIST_HEAD(&ent->head);
651 spin_lock_init(&ent->lock);
652 ent->order = i + 2;
653 ent->dev = dev;
654 ent->limit = 0;
655
656 init_completion(&ent->compl);
657 INIT_WORK(&ent->work, cache_work_func);
658 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
659
660 if (i > MR_CACHE_LAST_STD_ENTRY) {
661 mlx5_odp_init_mr_cache_entry(ent);
662 continue;
663 }
664
665 if (ent->order > mr_cache_max_order(dev))
666 continue;
667
668 ent->page = PAGE_SHIFT;
669 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
670 MLX5_IB_UMR_OCTOWORD;
671 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
672 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
673 !dev->is_rep &&
674 mlx5_core_is_pf(dev->mdev))
675 ent->limit = dev->mdev->profile->mr_cache[i].limit;
676 else
677 ent->limit = 0;
678 queue_work(cache->wq, &ent->work);
679 }
680
681 mlx5_mr_cache_debugfs_init(dev);
682
683 return 0;
684 }
685
686 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
687 {
688 int i;
689
690 if (!dev->cache.wq)
691 return 0;
692
693 dev->cache.stopped = 1;
694 flush_workqueue(dev->cache.wq);
695
696 mlx5_mr_cache_debugfs_cleanup(dev);
697 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
698
699 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
700 clean_keys(dev, i);
701
702 destroy_workqueue(dev->cache.wq);
703 del_timer_sync(&dev->delay_timer);
704
705 return 0;
706 }
707
708 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
709 {
710 struct mlx5_ib_dev *dev = to_mdev(pd->device);
711 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
712 struct mlx5_core_dev *mdev = dev->mdev;
713 struct mlx5_ib_mr *mr;
714 void *mkc;
715 u32 *in;
716 int err;
717
718 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
719 if (!mr)
720 return ERR_PTR(-ENOMEM);
721
722 in = kzalloc(inlen, GFP_KERNEL);
723 if (!in) {
724 err = -ENOMEM;
725 goto err_free;
726 }
727
728 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
729
730 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
731 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
732 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
733 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
734 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
735 MLX5_SET(mkc, mkc, lr, 1);
736
737 MLX5_SET(mkc, mkc, length64, 1);
738 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
739 MLX5_SET(mkc, mkc, qpn, 0xffffff);
740 MLX5_SET64(mkc, mkc, start_addr, 0);
741
742 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
743 if (err)
744 goto err_in;
745
746 kfree(in);
747 mr->mmkey.type = MLX5_MKEY_MR;
748 mr->ibmr.lkey = mr->mmkey.key;
749 mr->ibmr.rkey = mr->mmkey.key;
750 mr->umem = NULL;
751
752 return &mr->ibmr;
753
754 err_in:
755 kfree(in);
756
757 err_free:
758 kfree(mr);
759
760 return ERR_PTR(err);
761 }
762
763 static int get_octo_len(u64 addr, u64 len, int page_shift)
764 {
765 u64 page_size = 1ULL << page_shift;
766 u64 offset;
767 int npages;
768
769 offset = addr & (page_size - 1);
770 npages = ALIGN(len + offset, page_size) >> page_shift;
771 return (npages + 1) / 2;
772 }
773
774 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
775 {
776 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
777 return MR_CACHE_LAST_STD_ENTRY + 2;
778 return MLX5_MAX_UMR_SHIFT;
779 }
780
781 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata,
782 u64 start, u64 length, int access_flags,
783 struct ib_umem **umem, int *npages, int *page_shift,
784 int *ncont, int *order)
785 {
786 struct ib_umem *u;
787 int err;
788
789 *umem = NULL;
790
791 u = ib_umem_get(udata, start, length, access_flags, 0);
792 err = PTR_ERR_OR_ZERO(u);
793 if (err) {
794 mlx5_ib_dbg(dev, "umem get failed (%d)\n", err);
795 return err;
796 }
797
798 mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
799 page_shift, ncont, order);
800 if (!*npages) {
801 mlx5_ib_warn(dev, "avoid zero region\n");
802 ib_umem_release(u);
803 return -EINVAL;
804 }
805
806 *umem = u;
807
808 mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
809 *npages, *ncont, *order, *page_shift);
810
811 return 0;
812 }
813
814 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
815 {
816 struct mlx5_ib_umr_context *context =
817 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
818
819 context->status = wc->status;
820 complete(&context->done);
821 }
822
823 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
824 {
825 context->cqe.done = mlx5_ib_umr_done;
826 context->status = -1;
827 init_completion(&context->done);
828 }
829
830 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
831 struct mlx5_umr_wr *umrwr)
832 {
833 struct umr_common *umrc = &dev->umrc;
834 const struct ib_send_wr *bad;
835 int err;
836 struct mlx5_ib_umr_context umr_context;
837
838 mlx5_ib_init_umr_context(&umr_context);
839 umrwr->wr.wr_cqe = &umr_context.cqe;
840
841 down(&umrc->sem);
842 err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
843 if (err) {
844 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
845 } else {
846 wait_for_completion(&umr_context.done);
847 if (umr_context.status != IB_WC_SUCCESS) {
848 mlx5_ib_warn(dev, "reg umr failed (%u)\n",
849 umr_context.status);
850 err = -EFAULT;
851 }
852 }
853 up(&umrc->sem);
854 return err;
855 }
856
857 static struct mlx5_ib_mr *alloc_mr_from_cache(
858 struct ib_pd *pd, struct ib_umem *umem,
859 u64 virt_addr, u64 len, int npages,
860 int page_shift, int order, int access_flags)
861 {
862 struct mlx5_ib_dev *dev = to_mdev(pd->device);
863 struct mlx5_ib_mr *mr;
864 int err = 0;
865 int i;
866
867 for (i = 0; i < 1; i++) {
868 mr = alloc_cached_mr(dev, order);
869 if (mr)
870 break;
871
872 err = add_keys(dev, order2idx(dev, order), 1);
873 if (err && err != -EAGAIN) {
874 mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
875 break;
876 }
877 }
878
879 if (!mr)
880 return ERR_PTR(-EAGAIN);
881
882 mr->ibmr.pd = pd;
883 mr->umem = umem;
884 mr->access_flags = access_flags;
885 mr->desc_size = sizeof(struct mlx5_mtt);
886 mr->mmkey.iova = virt_addr;
887 mr->mmkey.size = len;
888 mr->mmkey.pd = to_mpd(pd)->pdn;
889
890 return mr;
891 }
892
893 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages,
894 void *xlt, int page_shift, size_t size,
895 int flags)
896 {
897 struct mlx5_ib_dev *dev = mr->dev;
898 struct ib_umem *umem = mr->umem;
899
900 if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
901 if (!umr_can_use_indirect_mkey(dev))
902 return -EPERM;
903 mlx5_odp_populate_klm(xlt, idx, npages, mr, flags);
904 return npages;
905 }
906
907 npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx);
908
909 if (!(flags & MLX5_IB_UPD_XLT_ZAP)) {
910 __mlx5_ib_populate_pas(dev, umem, page_shift,
911 idx, npages, xlt,
912 MLX5_IB_MTT_PRESENT);
913 /* Clear padding after the pages
914 * brought from the umem.
915 */
916 memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0,
917 size - npages * sizeof(struct mlx5_mtt));
918 }
919
920 return npages;
921 }
922
923 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
924 MLX5_UMR_MTT_ALIGNMENT)
925 #define MLX5_SPARE_UMR_CHUNK 0x10000
926
927 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
928 int page_shift, int flags)
929 {
930 struct mlx5_ib_dev *dev = mr->dev;
931 struct device *ddev = dev->ib_dev.dev.parent;
932 int size;
933 void *xlt;
934 dma_addr_t dma;
935 struct mlx5_umr_wr wr;
936 struct ib_sge sg;
937 int err = 0;
938 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
939 ? sizeof(struct mlx5_klm)
940 : sizeof(struct mlx5_mtt);
941 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
942 const int page_mask = page_align - 1;
943 size_t pages_mapped = 0;
944 size_t pages_to_map = 0;
945 size_t pages_iter = 0;
946 gfp_t gfp;
947 bool use_emergency_page = false;
948
949 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
950 !umr_can_use_indirect_mkey(dev))
951 return -EPERM;
952
953 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
954 * so we need to align the offset and length accordingly
955 */
956 if (idx & page_mask) {
957 npages += idx & page_mask;
958 idx &= ~page_mask;
959 }
960
961 gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
962 gfp |= __GFP_ZERO | __GFP_NOWARN;
963
964 pages_to_map = ALIGN(npages, page_align);
965 size = desc_size * pages_to_map;
966 size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
967
968 xlt = (void *)__get_free_pages(gfp, get_order(size));
969 if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
970 mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
971 size, get_order(size), MLX5_SPARE_UMR_CHUNK);
972
973 size = MLX5_SPARE_UMR_CHUNK;
974 xlt = (void *)__get_free_pages(gfp, get_order(size));
975 }
976
977 if (!xlt) {
978 mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
979 xlt = (void *)mlx5_ib_get_xlt_emergency_page();
980 size = PAGE_SIZE;
981 memset(xlt, 0, size);
982 use_emergency_page = true;
983 }
984 pages_iter = size / desc_size;
985 dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
986 if (dma_mapping_error(ddev, dma)) {
987 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
988 err = -ENOMEM;
989 goto free_xlt;
990 }
991
992 sg.addr = dma;
993 sg.lkey = dev->umrc.pd->local_dma_lkey;
994
995 memset(&wr, 0, sizeof(wr));
996 wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
997 if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
998 wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
999 wr.wr.sg_list = &sg;
1000 wr.wr.num_sge = 1;
1001 wr.wr.opcode = MLX5_IB_WR_UMR;
1002
1003 wr.pd = mr->ibmr.pd;
1004 wr.mkey = mr->mmkey.key;
1005 wr.length = mr->mmkey.size;
1006 wr.virt_addr = mr->mmkey.iova;
1007 wr.access_flags = mr->access_flags;
1008 wr.page_shift = page_shift;
1009
1010 for (pages_mapped = 0;
1011 pages_mapped < pages_to_map && !err;
1012 pages_mapped += pages_iter, idx += pages_iter) {
1013 npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1014 dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1015 npages = populate_xlt(mr, idx, npages, xlt,
1016 page_shift, size, flags);
1017
1018 dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1019
1020 sg.length = ALIGN(npages * desc_size,
1021 MLX5_UMR_MTT_ALIGNMENT);
1022
1023 if (pages_mapped + pages_iter >= pages_to_map) {
1024 if (flags & MLX5_IB_UPD_XLT_ENABLE)
1025 wr.wr.send_flags |=
1026 MLX5_IB_SEND_UMR_ENABLE_MR |
1027 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1028 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1029 if (flags & MLX5_IB_UPD_XLT_PD ||
1030 flags & MLX5_IB_UPD_XLT_ACCESS)
1031 wr.wr.send_flags |=
1032 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1033 if (flags & MLX5_IB_UPD_XLT_ADDR)
1034 wr.wr.send_flags |=
1035 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1036 }
1037
1038 wr.offset = idx * desc_size;
1039 wr.xlt_size = sg.length;
1040
1041 err = mlx5_ib_post_send_wait(dev, &wr);
1042 }
1043 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1044
1045 free_xlt:
1046 if (use_emergency_page)
1047 mlx5_ib_put_xlt_emergency_page();
1048 else
1049 free_pages((unsigned long)xlt, get_order(size));
1050
1051 return err;
1052 }
1053
1054 /*
1055 * If ibmr is NULL it will be allocated by reg_create.
1056 * Else, the given ibmr will be used.
1057 */
1058 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1059 u64 virt_addr, u64 length,
1060 struct ib_umem *umem, int npages,
1061 int page_shift, int access_flags,
1062 bool populate)
1063 {
1064 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1065 struct mlx5_ib_mr *mr;
1066 __be64 *pas;
1067 void *mkc;
1068 int inlen;
1069 u32 *in;
1070 int err;
1071 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1072
1073 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1074 if (!mr)
1075 return ERR_PTR(-ENOMEM);
1076
1077 mr->ibmr.pd = pd;
1078 mr->access_flags = access_flags;
1079
1080 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1081 if (populate)
1082 inlen += sizeof(*pas) * roundup(npages, 2);
1083 in = kvzalloc(inlen, GFP_KERNEL);
1084 if (!in) {
1085 err = -ENOMEM;
1086 goto err_1;
1087 }
1088 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1089 if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
1090 mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1091 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1092
1093 /* The pg_access bit allows setting the access flags
1094 * in the page list submitted with the command. */
1095 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1096
1097 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1098 MLX5_SET(mkc, mkc, free, !populate);
1099 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1100 MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
1101 MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
1102 MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
1103 MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
1104 MLX5_SET(mkc, mkc, lr, 1);
1105 MLX5_SET(mkc, mkc, umr_en, 1);
1106
1107 MLX5_SET64(mkc, mkc, start_addr, virt_addr);
1108 MLX5_SET64(mkc, mkc, len, length);
1109 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1110 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1111 MLX5_SET(mkc, mkc, translations_octword_size,
1112 get_octo_len(virt_addr, length, page_shift));
1113 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1114 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1115 if (populate) {
1116 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1117 get_octo_len(virt_addr, length, page_shift));
1118 }
1119
1120 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1121 if (err) {
1122 mlx5_ib_warn(dev, "create mkey failed\n");
1123 goto err_2;
1124 }
1125 mr->mmkey.type = MLX5_MKEY_MR;
1126 mr->desc_size = sizeof(struct mlx5_mtt);
1127 mr->dev = dev;
1128 kvfree(in);
1129
1130 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1131
1132 return mr;
1133
1134 err_2:
1135 kvfree(in);
1136
1137 err_1:
1138 if (!ibmr)
1139 kfree(mr);
1140
1141 return ERR_PTR(err);
1142 }
1143
1144 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1145 int npages, u64 length, int access_flags)
1146 {
1147 mr->npages = npages;
1148 atomic_add(npages, &dev->mdev->priv.reg_pages);
1149 mr->ibmr.lkey = mr->mmkey.key;
1150 mr->ibmr.rkey = mr->mmkey.key;
1151 mr->ibmr.length = length;
1152 mr->access_flags = access_flags;
1153 }
1154
1155 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1156 u64 length, int acc, int mode)
1157 {
1158 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1159 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1160 struct mlx5_core_dev *mdev = dev->mdev;
1161 struct mlx5_ib_mr *mr;
1162 void *mkc;
1163 u32 *in;
1164 int err;
1165
1166 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1167 if (!mr)
1168 return ERR_PTR(-ENOMEM);
1169
1170 in = kzalloc(inlen, GFP_KERNEL);
1171 if (!in) {
1172 err = -ENOMEM;
1173 goto err_free;
1174 }
1175
1176 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1177
1178 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1179 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1180 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
1181 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
1182 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
1183 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
1184 MLX5_SET(mkc, mkc, lr, 1);
1185
1186 MLX5_SET64(mkc, mkc, len, length);
1187 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1188 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1189 MLX5_SET64(mkc, mkc, start_addr, start_addr);
1190
1191 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
1192 if (err)
1193 goto err_in;
1194
1195 kfree(in);
1196
1197 mr->umem = NULL;
1198 set_mr_fields(dev, mr, 0, length, acc);
1199
1200 return &mr->ibmr;
1201
1202 err_in:
1203 kfree(in);
1204
1205 err_free:
1206 kfree(mr);
1207
1208 return ERR_PTR(err);
1209 }
1210
1211 int mlx5_ib_advise_mr(struct ib_pd *pd,
1212 enum ib_uverbs_advise_mr_advice advice,
1213 u32 flags,
1214 struct ib_sge *sg_list,
1215 u32 num_sge,
1216 struct uverbs_attr_bundle *attrs)
1217 {
1218 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1219 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
1220 return -EOPNOTSUPP;
1221
1222 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1223 sg_list, num_sge);
1224 }
1225
1226 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1227 struct ib_dm_mr_attr *attr,
1228 struct uverbs_attr_bundle *attrs)
1229 {
1230 struct mlx5_ib_dm *mdm = to_mdm(dm);
1231 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1232 u64 start_addr = mdm->dev_addr + attr->offset;
1233 int mode;
1234
1235 switch (mdm->type) {
1236 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1237 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1238 return ERR_PTR(-EINVAL);
1239
1240 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1241 start_addr -= pci_resource_start(dev->pdev, 0);
1242 break;
1243 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1244 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1245 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1246 return ERR_PTR(-EINVAL);
1247
1248 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1249 break;
1250 default:
1251 return ERR_PTR(-EINVAL);
1252 }
1253
1254 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1255 attr->access_flags, mode);
1256 }
1257
1258 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1259 u64 virt_addr, int access_flags,
1260 struct ib_udata *udata)
1261 {
1262 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1263 struct mlx5_ib_mr *mr = NULL;
1264 bool use_umr;
1265 struct ib_umem *umem;
1266 int page_shift;
1267 int npages;
1268 int ncont;
1269 int order;
1270 int err;
1271
1272 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1273 return ERR_PTR(-EOPNOTSUPP);
1274
1275 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1276 start, virt_addr, length, access_flags);
1277
1278 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1279 length == U64_MAX) {
1280 if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1281 !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1282 return ERR_PTR(-EINVAL);
1283
1284 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1285 if (IS_ERR(mr))
1286 return ERR_CAST(mr);
1287 return &mr->ibmr;
1288 }
1289
1290 err = mr_umem_get(dev, udata, start, length, access_flags, &umem,
1291 &npages, &page_shift, &ncont, &order);
1292
1293 if (err < 0)
1294 return ERR_PTR(err);
1295
1296 use_umr = !MLX5_CAP_GEN(dev->mdev, umr_modify_entity_size_disabled) &&
1297 (!MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled) ||
1298 !MLX5_CAP_GEN(dev->mdev, atomic));
1299
1300 if (order <= mr_cache_max_order(dev) && use_umr) {
1301 mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1302 page_shift, order, access_flags);
1303 if (PTR_ERR(mr) == -EAGAIN) {
1304 mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
1305 mr = NULL;
1306 }
1307 } else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
1308 if (access_flags & IB_ACCESS_ON_DEMAND) {
1309 err = -EINVAL;
1310 pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
1311 goto error;
1312 }
1313 use_umr = false;
1314 }
1315
1316 if (!mr) {
1317 mutex_lock(&dev->slow_path_mutex);
1318 mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1319 page_shift, access_flags, !use_umr);
1320 mutex_unlock(&dev->slow_path_mutex);
1321 }
1322
1323 if (IS_ERR(mr)) {
1324 err = PTR_ERR(mr);
1325 goto error;
1326 }
1327
1328 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1329
1330 mr->umem = umem;
1331 set_mr_fields(dev, mr, npages, length, access_flags);
1332
1333 update_odp_mr(mr);
1334
1335 if (use_umr) {
1336 int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1337
1338 if (access_flags & IB_ACCESS_ON_DEMAND)
1339 update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
1340
1341 err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1342 update_xlt_flags);
1343
1344 if (err) {
1345 dereg_mr(dev, mr);
1346 return ERR_PTR(err);
1347 }
1348 }
1349
1350 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1351 mr->live = 1;
1352 atomic_set(&mr->num_pending_prefetch, 0);
1353 }
1354
1355 return &mr->ibmr;
1356 error:
1357 ib_umem_release(umem);
1358 return ERR_PTR(err);
1359 }
1360
1361 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1362 {
1363 struct mlx5_core_dev *mdev = dev->mdev;
1364 struct mlx5_umr_wr umrwr = {};
1365
1366 if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1367 return 0;
1368
1369 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1370 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1371 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1372 umrwr.pd = dev->umrc.pd;
1373 umrwr.mkey = mr->mmkey.key;
1374 umrwr.ignore_free_state = 1;
1375
1376 return mlx5_ib_post_send_wait(dev, &umrwr);
1377 }
1378
1379 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1380 int access_flags, int flags)
1381 {
1382 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1383 struct mlx5_umr_wr umrwr = {};
1384 int err;
1385
1386 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1387
1388 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1389 umrwr.mkey = mr->mmkey.key;
1390
1391 if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1392 umrwr.pd = pd;
1393 umrwr.access_flags = access_flags;
1394 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1395 }
1396
1397 err = mlx5_ib_post_send_wait(dev, &umrwr);
1398
1399 return err;
1400 }
1401
1402 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1403 u64 length, u64 virt_addr, int new_access_flags,
1404 struct ib_pd *new_pd, struct ib_udata *udata)
1405 {
1406 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1407 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1408 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1409 int access_flags = flags & IB_MR_REREG_ACCESS ?
1410 new_access_flags :
1411 mr->access_flags;
1412 int page_shift = 0;
1413 int upd_flags = 0;
1414 int npages = 0;
1415 int ncont = 0;
1416 int order = 0;
1417 u64 addr, len;
1418 int err;
1419
1420 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1421 start, virt_addr, length, access_flags);
1422
1423 atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1424
1425 if (!mr->umem)
1426 return -EINVAL;
1427
1428 if (flags & IB_MR_REREG_TRANS) {
1429 addr = virt_addr;
1430 len = length;
1431 } else {
1432 addr = mr->umem->address;
1433 len = mr->umem->length;
1434 }
1435
1436 if (flags != IB_MR_REREG_PD) {
1437 /*
1438 * Replace umem. This needs to be done whether or not UMR is
1439 * used.
1440 */
1441 flags |= IB_MR_REREG_TRANS;
1442 ib_umem_release(mr->umem);
1443 mr->umem = NULL;
1444 err = mr_umem_get(dev, udata, addr, len, access_flags,
1445 &mr->umem, &npages, &page_shift, &ncont,
1446 &order);
1447 if (err)
1448 goto err;
1449 }
1450
1451 if (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len)) {
1452 /*
1453 * UMR can't be used - MKey needs to be replaced.
1454 */
1455 if (mr->allocated_from_cache)
1456 err = unreg_umr(dev, mr);
1457 else
1458 err = destroy_mkey(dev, mr);
1459 if (err)
1460 goto err;
1461
1462 mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1463 page_shift, access_flags, true);
1464
1465 if (IS_ERR(mr)) {
1466 err = PTR_ERR(mr);
1467 mr = to_mmr(ib_mr);
1468 goto err;
1469 }
1470
1471 mr->allocated_from_cache = 0;
1472 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1473 mr->live = 1;
1474 } else {
1475 /*
1476 * Send a UMR WQE
1477 */
1478 mr->ibmr.pd = pd;
1479 mr->access_flags = access_flags;
1480 mr->mmkey.iova = addr;
1481 mr->mmkey.size = len;
1482 mr->mmkey.pd = to_mpd(pd)->pdn;
1483
1484 if (flags & IB_MR_REREG_TRANS) {
1485 upd_flags = MLX5_IB_UPD_XLT_ADDR;
1486 if (flags & IB_MR_REREG_PD)
1487 upd_flags |= MLX5_IB_UPD_XLT_PD;
1488 if (flags & IB_MR_REREG_ACCESS)
1489 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1490 err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1491 upd_flags);
1492 } else {
1493 err = rereg_umr(pd, mr, access_flags, flags);
1494 }
1495
1496 if (err)
1497 goto err;
1498 }
1499
1500 set_mr_fields(dev, mr, npages, len, access_flags);
1501
1502 update_odp_mr(mr);
1503 return 0;
1504
1505 err:
1506 ib_umem_release(mr->umem);
1507 mr->umem = NULL;
1508
1509 clean_mr(dev, mr);
1510 return err;
1511 }
1512
1513 static int
1514 mlx5_alloc_priv_descs(struct ib_device *device,
1515 struct mlx5_ib_mr *mr,
1516 int ndescs,
1517 int desc_size)
1518 {
1519 int size = ndescs * desc_size;
1520 int add_size;
1521 int ret;
1522
1523 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1524
1525 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1526 if (!mr->descs_alloc)
1527 return -ENOMEM;
1528
1529 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1530
1531 mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1532 size, DMA_TO_DEVICE);
1533 if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1534 ret = -ENOMEM;
1535 goto err;
1536 }
1537
1538 return 0;
1539 err:
1540 kfree(mr->descs_alloc);
1541
1542 return ret;
1543 }
1544
1545 static void
1546 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1547 {
1548 if (mr->descs) {
1549 struct ib_device *device = mr->ibmr.device;
1550 int size = mr->max_descs * mr->desc_size;
1551
1552 dma_unmap_single(device->dev.parent, mr->desc_map,
1553 size, DMA_TO_DEVICE);
1554 kfree(mr->descs_alloc);
1555 mr->descs = NULL;
1556 }
1557 }
1558
1559 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1560 {
1561 int allocated_from_cache = mr->allocated_from_cache;
1562
1563 if (mr->sig) {
1564 if (mlx5_core_destroy_psv(dev->mdev,
1565 mr->sig->psv_memory.psv_idx))
1566 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1567 mr->sig->psv_memory.psv_idx);
1568 if (mlx5_core_destroy_psv(dev->mdev,
1569 mr->sig->psv_wire.psv_idx))
1570 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1571 mr->sig->psv_wire.psv_idx);
1572 kfree(mr->sig);
1573 mr->sig = NULL;
1574 }
1575
1576 if (!allocated_from_cache) {
1577 destroy_mkey(dev, mr);
1578 mlx5_free_priv_descs(mr);
1579 }
1580 }
1581
1582 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1583 {
1584 int npages = mr->npages;
1585 struct ib_umem *umem = mr->umem;
1586
1587 if (is_odp_mr(mr)) {
1588 struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem);
1589
1590 /* Prevent new page faults and
1591 * prefetch requests from succeeding
1592 */
1593 mr->live = 0;
1594
1595 /* dequeue pending prefetch requests for the mr */
1596 if (atomic_read(&mr->num_pending_prefetch))
1597 flush_workqueue(system_unbound_wq);
1598 WARN_ON(atomic_read(&mr->num_pending_prefetch));
1599
1600 /* Wait for all running page-fault handlers to finish. */
1601 synchronize_srcu(&dev->mr_srcu);
1602 /* Destroy all page mappings */
1603 if (umem_odp->page_list)
1604 mlx5_ib_invalidate_range(umem_odp,
1605 ib_umem_start(umem_odp),
1606 ib_umem_end(umem_odp));
1607 else
1608 mlx5_ib_free_implicit_mr(mr);
1609 /*
1610 * We kill the umem before the MR for ODP,
1611 * so that there will not be any invalidations in
1612 * flight, looking at the *mr struct.
1613 */
1614 ib_umem_release(umem);
1615 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1616
1617 /* Avoid double-freeing the umem. */
1618 umem = NULL;
1619 }
1620
1621 clean_mr(dev, mr);
1622
1623 /*
1624 * We should unregister the DMA address from the HCA before
1625 * remove the DMA mapping.
1626 */
1627 mlx5_mr_cache_free(dev, mr);
1628 ib_umem_release(umem);
1629 if (umem)
1630 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1631
1632 if (!mr->allocated_from_cache)
1633 kfree(mr);
1634 }
1635
1636 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1637 {
1638 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1639
1640 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1641 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1642 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1643 }
1644
1645 dereg_mr(to_mdev(ibmr->device), mmr);
1646
1647 return 0;
1648 }
1649
1650 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1651 int access_mode, int page_shift)
1652 {
1653 void *mkc;
1654
1655 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1656
1657 MLX5_SET(mkc, mkc, free, 1);
1658 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1659 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1660 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1661 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1662 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1663 MLX5_SET(mkc, mkc, umr_en, 1);
1664 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1665 }
1666
1667 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1668 int ndescs, int desc_size, int page_shift,
1669 int access_mode, u32 *in, int inlen)
1670 {
1671 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1672 int err;
1673
1674 mr->access_mode = access_mode;
1675 mr->desc_size = desc_size;
1676 mr->max_descs = ndescs;
1677
1678 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1679 if (err)
1680 return err;
1681
1682 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1683
1684 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1685 if (err)
1686 goto err_free_descs;
1687
1688 mr->mmkey.type = MLX5_MKEY_MR;
1689 mr->ibmr.lkey = mr->mmkey.key;
1690 mr->ibmr.rkey = mr->mmkey.key;
1691
1692 return 0;
1693
1694 err_free_descs:
1695 mlx5_free_priv_descs(mr);
1696 return err;
1697 }
1698
1699 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1700 u32 max_num_sg, u32 max_num_meta_sg,
1701 int desc_size, int access_mode)
1702 {
1703 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1704 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1705 int page_shift = 0;
1706 struct mlx5_ib_mr *mr;
1707 u32 *in;
1708 int err;
1709
1710 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1711 if (!mr)
1712 return ERR_PTR(-ENOMEM);
1713
1714 mr->ibmr.pd = pd;
1715 mr->ibmr.device = pd->device;
1716
1717 in = kzalloc(inlen, GFP_KERNEL);
1718 if (!in) {
1719 err = -ENOMEM;
1720 goto err_free;
1721 }
1722
1723 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1724 page_shift = PAGE_SHIFT;
1725
1726 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1727 access_mode, in, inlen);
1728 if (err)
1729 goto err_free_in;
1730
1731 mr->umem = NULL;
1732 kfree(in);
1733
1734 return mr;
1735
1736 err_free_in:
1737 kfree(in);
1738 err_free:
1739 kfree(mr);
1740 return ERR_PTR(err);
1741 }
1742
1743 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1744 int ndescs, u32 *in, int inlen)
1745 {
1746 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1747 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1748 inlen);
1749 }
1750
1751 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1752 int ndescs, u32 *in, int inlen)
1753 {
1754 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1755 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1756 }
1757
1758 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1759 int max_num_sg, int max_num_meta_sg,
1760 u32 *in, int inlen)
1761 {
1762 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1763 u32 psv_index[2];
1764 void *mkc;
1765 int err;
1766
1767 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1768 if (!mr->sig)
1769 return -ENOMEM;
1770
1771 /* create mem & wire PSVs */
1772 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1773 if (err)
1774 goto err_free_sig;
1775
1776 mr->sig->psv_memory.psv_idx = psv_index[0];
1777 mr->sig->psv_wire.psv_idx = psv_index[1];
1778
1779 mr->sig->sig_status_checked = true;
1780 mr->sig->sig_err_exists = false;
1781 /* Next UMR, Arm SIGERR */
1782 ++mr->sig->sigerr_count;
1783 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1784 sizeof(struct mlx5_klm),
1785 MLX5_MKC_ACCESS_MODE_KLMS);
1786 if (IS_ERR(mr->klm_mr)) {
1787 err = PTR_ERR(mr->klm_mr);
1788 goto err_destroy_psv;
1789 }
1790 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1791 sizeof(struct mlx5_mtt),
1792 MLX5_MKC_ACCESS_MODE_MTT);
1793 if (IS_ERR(mr->mtt_mr)) {
1794 err = PTR_ERR(mr->mtt_mr);
1795 goto err_free_klm_mr;
1796 }
1797
1798 /* Set bsf descriptors for mkey */
1799 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1800 MLX5_SET(mkc, mkc, bsf_en, 1);
1801 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1802
1803 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1804 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1805 if (err)
1806 goto err_free_mtt_mr;
1807
1808 return 0;
1809
1810 err_free_mtt_mr:
1811 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1812 mr->mtt_mr = NULL;
1813 err_free_klm_mr:
1814 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1815 mr->klm_mr = NULL;
1816 err_destroy_psv:
1817 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1818 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1819 mr->sig->psv_memory.psv_idx);
1820 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1821 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1822 mr->sig->psv_wire.psv_idx);
1823 err_free_sig:
1824 kfree(mr->sig);
1825
1826 return err;
1827 }
1828
1829 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1830 enum ib_mr_type mr_type, u32 max_num_sg,
1831 u32 max_num_meta_sg)
1832 {
1833 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1834 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1835 int ndescs = ALIGN(max_num_sg, 4);
1836 struct mlx5_ib_mr *mr;
1837 u32 *in;
1838 int err;
1839
1840 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1841 if (!mr)
1842 return ERR_PTR(-ENOMEM);
1843
1844 in = kzalloc(inlen, GFP_KERNEL);
1845 if (!in) {
1846 err = -ENOMEM;
1847 goto err_free;
1848 }
1849
1850 mr->ibmr.device = pd->device;
1851 mr->umem = NULL;
1852
1853 switch (mr_type) {
1854 case IB_MR_TYPE_MEM_REG:
1855 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1856 break;
1857 case IB_MR_TYPE_SG_GAPS:
1858 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1859 break;
1860 case IB_MR_TYPE_INTEGRITY:
1861 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1862 max_num_meta_sg, in, inlen);
1863 break;
1864 default:
1865 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1866 err = -EINVAL;
1867 }
1868
1869 if (err)
1870 goto err_free_in;
1871
1872 kfree(in);
1873
1874 return &mr->ibmr;
1875
1876 err_free_in:
1877 kfree(in);
1878 err_free:
1879 kfree(mr);
1880 return ERR_PTR(err);
1881 }
1882
1883 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1884 u32 max_num_sg, struct ib_udata *udata)
1885 {
1886 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1887 }
1888
1889 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1890 u32 max_num_sg, u32 max_num_meta_sg)
1891 {
1892 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1893 max_num_meta_sg);
1894 }
1895
1896 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1897 struct ib_udata *udata)
1898 {
1899 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1900 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1901 struct mlx5_ib_mw *mw = NULL;
1902 u32 *in = NULL;
1903 void *mkc;
1904 int ndescs;
1905 int err;
1906 struct mlx5_ib_alloc_mw req = {};
1907 struct {
1908 __u32 comp_mask;
1909 __u32 response_length;
1910 } resp = {};
1911
1912 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1913 if (err)
1914 return ERR_PTR(err);
1915
1916 if (req.comp_mask || req.reserved1 || req.reserved2)
1917 return ERR_PTR(-EOPNOTSUPP);
1918
1919 if (udata->inlen > sizeof(req) &&
1920 !ib_is_udata_cleared(udata, sizeof(req),
1921 udata->inlen - sizeof(req)))
1922 return ERR_PTR(-EOPNOTSUPP);
1923
1924 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1925
1926 mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1927 in = kzalloc(inlen, GFP_KERNEL);
1928 if (!mw || !in) {
1929 err = -ENOMEM;
1930 goto free;
1931 }
1932
1933 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1934
1935 MLX5_SET(mkc, mkc, free, 1);
1936 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1937 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1938 MLX5_SET(mkc, mkc, umr_en, 1);
1939 MLX5_SET(mkc, mkc, lr, 1);
1940 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1941 MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
1942 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1943
1944 err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
1945 if (err)
1946 goto free;
1947
1948 mw->mmkey.type = MLX5_MKEY_MW;
1949 mw->ibmw.rkey = mw->mmkey.key;
1950 mw->ndescs = ndescs;
1951
1952 resp.response_length = min(offsetof(typeof(resp), response_length) +
1953 sizeof(resp.response_length), udata->outlen);
1954 if (resp.response_length) {
1955 err = ib_copy_to_udata(udata, &resp, resp.response_length);
1956 if (err) {
1957 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1958 goto free;
1959 }
1960 }
1961
1962 kfree(in);
1963 return &mw->ibmw;
1964
1965 free:
1966 kfree(mw);
1967 kfree(in);
1968 return ERR_PTR(err);
1969 }
1970
1971 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1972 {
1973 struct mlx5_ib_mw *mmw = to_mmw(mw);
1974 int err;
1975
1976 err = mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev,
1977 &mmw->mmkey);
1978 if (!err)
1979 kfree(mmw);
1980 return err;
1981 }
1982
1983 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1984 struct ib_mr_status *mr_status)
1985 {
1986 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1987 int ret = 0;
1988
1989 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1990 pr_err("Invalid status check mask\n");
1991 ret = -EINVAL;
1992 goto done;
1993 }
1994
1995 mr_status->fail_status = 0;
1996 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1997 if (!mmr->sig) {
1998 ret = -EINVAL;
1999 pr_err("signature status check requested on a non-signature enabled MR\n");
2000 goto done;
2001 }
2002
2003 mmr->sig->sig_status_checked = true;
2004 if (!mmr->sig->sig_err_exists)
2005 goto done;
2006
2007 if (ibmr->lkey == mmr->sig->err_item.key)
2008 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2009 sizeof(mr_status->sig_err));
2010 else {
2011 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2012 mr_status->sig_err.sig_err_offset = 0;
2013 mr_status->sig_err.key = mmr->sig->err_item.key;
2014 }
2015
2016 mmr->sig->sig_err_exists = false;
2017 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2018 }
2019
2020 done:
2021 return ret;
2022 }
2023
2024 static int
2025 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2026 int data_sg_nents, unsigned int *data_sg_offset,
2027 struct scatterlist *meta_sg, int meta_sg_nents,
2028 unsigned int *meta_sg_offset)
2029 {
2030 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2031 unsigned int sg_offset = 0;
2032 int n = 0;
2033
2034 mr->meta_length = 0;
2035 if (data_sg_nents == 1) {
2036 n++;
2037 mr->ndescs = 1;
2038 if (data_sg_offset)
2039 sg_offset = *data_sg_offset;
2040 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2041 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2042 if (meta_sg_nents == 1) {
2043 n++;
2044 mr->meta_ndescs = 1;
2045 if (meta_sg_offset)
2046 sg_offset = *meta_sg_offset;
2047 else
2048 sg_offset = 0;
2049 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2050 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2051 }
2052 ibmr->length = mr->data_length + mr->meta_length;
2053 }
2054
2055 return n;
2056 }
2057
2058 static int
2059 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2060 struct scatterlist *sgl,
2061 unsigned short sg_nents,
2062 unsigned int *sg_offset_p,
2063 struct scatterlist *meta_sgl,
2064 unsigned short meta_sg_nents,
2065 unsigned int *meta_sg_offset_p)
2066 {
2067 struct scatterlist *sg = sgl;
2068 struct mlx5_klm *klms = mr->descs;
2069 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2070 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2071 int i, j = 0;
2072
2073 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2074 mr->ibmr.length = 0;
2075
2076 for_each_sg(sgl, sg, sg_nents, i) {
2077 if (unlikely(i >= mr->max_descs))
2078 break;
2079 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2080 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2081 klms[i].key = cpu_to_be32(lkey);
2082 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2083
2084 sg_offset = 0;
2085 }
2086
2087 if (sg_offset_p)
2088 *sg_offset_p = sg_offset;
2089
2090 mr->ndescs = i;
2091 mr->data_length = mr->ibmr.length;
2092
2093 if (meta_sg_nents) {
2094 sg = meta_sgl;
2095 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2096 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2097 if (unlikely(i + j >= mr->max_descs))
2098 break;
2099 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2100 sg_offset);
2101 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2102 sg_offset);
2103 klms[i + j].key = cpu_to_be32(lkey);
2104 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2105
2106 sg_offset = 0;
2107 }
2108 if (meta_sg_offset_p)
2109 *meta_sg_offset_p = sg_offset;
2110
2111 mr->meta_ndescs = j;
2112 mr->meta_length = mr->ibmr.length - mr->data_length;
2113 }
2114
2115 return i + j;
2116 }
2117
2118 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2119 {
2120 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2121 __be64 *descs;
2122
2123 if (unlikely(mr->ndescs == mr->max_descs))
2124 return -ENOMEM;
2125
2126 descs = mr->descs;
2127 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2128
2129 return 0;
2130 }
2131
2132 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2133 {
2134 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2135 __be64 *descs;
2136
2137 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2138 return -ENOMEM;
2139
2140 descs = mr->descs;
2141 descs[mr->ndescs + mr->meta_ndescs++] =
2142 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2143
2144 return 0;
2145 }
2146
2147 static int
2148 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2149 int data_sg_nents, unsigned int *data_sg_offset,
2150 struct scatterlist *meta_sg, int meta_sg_nents,
2151 unsigned int *meta_sg_offset)
2152 {
2153 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2154 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2155 int n;
2156
2157 pi_mr->ndescs = 0;
2158 pi_mr->meta_ndescs = 0;
2159 pi_mr->meta_length = 0;
2160
2161 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2162 pi_mr->desc_size * pi_mr->max_descs,
2163 DMA_TO_DEVICE);
2164
2165 pi_mr->ibmr.page_size = ibmr->page_size;
2166 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2167 mlx5_set_page);
2168 if (n != data_sg_nents)
2169 return n;
2170
2171 pi_mr->data_iova = pi_mr->ibmr.iova;
2172 pi_mr->data_length = pi_mr->ibmr.length;
2173 pi_mr->ibmr.length = pi_mr->data_length;
2174 ibmr->length = pi_mr->data_length;
2175
2176 if (meta_sg_nents) {
2177 u64 page_mask = ~((u64)ibmr->page_size - 1);
2178 u64 iova = pi_mr->data_iova;
2179
2180 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2181 meta_sg_offset, mlx5_set_page_pi);
2182
2183 pi_mr->meta_length = pi_mr->ibmr.length;
2184 /*
2185 * PI address for the HW is the offset of the metadata address
2186 * relative to the first data page address.
2187 * It equals to first data page address + size of data pages +
2188 * metadata offset at the first metadata page
2189 */
2190 pi_mr->pi_iova = (iova & page_mask) +
2191 pi_mr->ndescs * ibmr->page_size +
2192 (pi_mr->ibmr.iova & ~page_mask);
2193 /*
2194 * In order to use one MTT MR for data and metadata, we register
2195 * also the gaps between the end of the data and the start of
2196 * the metadata (the sig MR will verify that the HW will access
2197 * to right addresses). This mapping is safe because we use
2198 * internal mkey for the registration.
2199 */
2200 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2201 pi_mr->ibmr.iova = iova;
2202 ibmr->length += pi_mr->meta_length;
2203 }
2204
2205 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2206 pi_mr->desc_size * pi_mr->max_descs,
2207 DMA_TO_DEVICE);
2208
2209 return n;
2210 }
2211
2212 static int
2213 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2214 int data_sg_nents, unsigned int *data_sg_offset,
2215 struct scatterlist *meta_sg, int meta_sg_nents,
2216 unsigned int *meta_sg_offset)
2217 {
2218 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2219 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2220 int n;
2221
2222 pi_mr->ndescs = 0;
2223 pi_mr->meta_ndescs = 0;
2224 pi_mr->meta_length = 0;
2225
2226 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2227 pi_mr->desc_size * pi_mr->max_descs,
2228 DMA_TO_DEVICE);
2229
2230 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2231 meta_sg, meta_sg_nents, meta_sg_offset);
2232
2233 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2234 pi_mr->desc_size * pi_mr->max_descs,
2235 DMA_TO_DEVICE);
2236
2237 /* This is zero-based memory region */
2238 pi_mr->data_iova = 0;
2239 pi_mr->ibmr.iova = 0;
2240 pi_mr->pi_iova = pi_mr->data_length;
2241 ibmr->length = pi_mr->ibmr.length;
2242
2243 return n;
2244 }
2245
2246 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2247 int data_sg_nents, unsigned int *data_sg_offset,
2248 struct scatterlist *meta_sg, int meta_sg_nents,
2249 unsigned int *meta_sg_offset)
2250 {
2251 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2252 struct mlx5_ib_mr *pi_mr = NULL;
2253 int n;
2254
2255 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2256
2257 mr->ndescs = 0;
2258 mr->data_length = 0;
2259 mr->data_iova = 0;
2260 mr->meta_ndescs = 0;
2261 mr->pi_iova = 0;
2262 /*
2263 * As a performance optimization, if possible, there is no need to
2264 * perform UMR operation to register the data/metadata buffers.
2265 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2266 * Fallback to UMR only in case of a failure.
2267 */
2268 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2269 data_sg_offset, meta_sg, meta_sg_nents,
2270 meta_sg_offset);
2271 if (n == data_sg_nents + meta_sg_nents)
2272 goto out;
2273 /*
2274 * As a performance optimization, if possible, there is no need to map
2275 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2276 * descriptors and fallback to KLM only in case of a failure.
2277 * It's more efficient for the HW to work with MTT descriptors
2278 * (especially in high load).
2279 * Use KLM (indirect access) only if it's mandatory.
2280 */
2281 pi_mr = mr->mtt_mr;
2282 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2283 data_sg_offset, meta_sg, meta_sg_nents,
2284 meta_sg_offset);
2285 if (n == data_sg_nents + meta_sg_nents)
2286 goto out;
2287
2288 pi_mr = mr->klm_mr;
2289 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2290 data_sg_offset, meta_sg, meta_sg_nents,
2291 meta_sg_offset);
2292 if (unlikely(n != data_sg_nents + meta_sg_nents))
2293 return -ENOMEM;
2294
2295 out:
2296 /* This is zero-based memory region */
2297 ibmr->iova = 0;
2298 mr->pi_mr = pi_mr;
2299 if (pi_mr)
2300 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2301 else
2302 ibmr->sig_attrs->meta_length = mr->meta_length;
2303
2304 return 0;
2305 }
2306
2307 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2308 unsigned int *sg_offset)
2309 {
2310 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2311 int n;
2312
2313 mr->ndescs = 0;
2314
2315 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2316 mr->desc_size * mr->max_descs,
2317 DMA_TO_DEVICE);
2318
2319 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2320 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2321 NULL);
2322 else
2323 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2324 mlx5_set_page);
2325
2326 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2327 mr->desc_size * mr->max_descs,
2328 DMA_TO_DEVICE);
2329
2330 return n;
2331 }