]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/infiniband/hw/mlx5/mr.c
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-hirsute-kernel.git] / drivers / infiniband / hw / mlx5 / mr.c
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43
44 enum {
45 MAX_PENDING_REG_MR = 8,
46 };
47
48 #define MLX5_UMR_ALIGN 2048
49
50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
52 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
53 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
54
55 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
56 {
57 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
58 }
59
60 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
61 {
62 int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
63
64 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
65 /* Wait until all page fault handlers using the mr complete. */
66 synchronize_srcu(&dev->mr_srcu);
67
68 return err;
69 }
70
71 static int order2idx(struct mlx5_ib_dev *dev, int order)
72 {
73 struct mlx5_mr_cache *cache = &dev->cache;
74
75 if (order < cache->ent[0].order)
76 return 0;
77 else
78 return order - cache->ent[0].order;
79 }
80
81 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
82 {
83 return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
84 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
85 }
86
87 static void update_odp_mr(struct mlx5_ib_mr *mr)
88 {
89 if (is_odp_mr(mr)) {
90 /*
91 * This barrier prevents the compiler from moving the
92 * setting of umem->odp_data->private to point to our
93 * MR, before reg_umr finished, to ensure that the MR
94 * initialization have finished before starting to
95 * handle invalidations.
96 */
97 smp_wmb();
98 to_ib_umem_odp(mr->umem)->private = mr;
99 /*
100 * Make sure we will see the new
101 * umem->odp_data->private value in the invalidation
102 * routines, before we can get page faults on the
103 * MR. Page faults can happen once we put the MR in
104 * the tree, below this line. Without the barrier,
105 * there can be a fault handling and an invalidation
106 * before umem->odp_data->private == mr is visible to
107 * the invalidation handler.
108 */
109 smp_wmb();
110 }
111 }
112
113 static void reg_mr_callback(int status, struct mlx5_async_work *context)
114 {
115 struct mlx5_ib_mr *mr =
116 container_of(context, struct mlx5_ib_mr, cb_work);
117 struct mlx5_ib_dev *dev = mr->dev;
118 struct mlx5_mr_cache *cache = &dev->cache;
119 int c = order2idx(dev, mr->order);
120 struct mlx5_cache_ent *ent = &cache->ent[c];
121 u8 key;
122 unsigned long flags;
123 struct xarray *mkeys = &dev->mdev->priv.mkey_table;
124 int err;
125
126 spin_lock_irqsave(&ent->lock, flags);
127 ent->pending--;
128 spin_unlock_irqrestore(&ent->lock, flags);
129 if (status) {
130 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
131 kfree(mr);
132 dev->fill_delay = 1;
133 mod_timer(&dev->delay_timer, jiffies + HZ);
134 return;
135 }
136
137 mr->mmkey.type = MLX5_MKEY_MR;
138 spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
139 key = dev->mdev->priv.mkey_key++;
140 spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
141 mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
142
143 cache->last_add = jiffies;
144
145 spin_lock_irqsave(&ent->lock, flags);
146 list_add_tail(&mr->list, &ent->head);
147 ent->cur++;
148 ent->size++;
149 spin_unlock_irqrestore(&ent->lock, flags);
150
151 xa_lock_irqsave(mkeys, flags);
152 err = xa_err(__xa_store(mkeys, mlx5_base_mkey(mr->mmkey.key),
153 &mr->mmkey, GFP_ATOMIC));
154 xa_unlock_irqrestore(mkeys, flags);
155 if (err)
156 pr_err("Error inserting to mkey tree. 0x%x\n", -err);
157
158 if (!completion_done(&ent->compl))
159 complete(&ent->compl);
160 }
161
162 static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
163 {
164 struct mlx5_mr_cache *cache = &dev->cache;
165 struct mlx5_cache_ent *ent = &cache->ent[c];
166 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
167 struct mlx5_ib_mr *mr;
168 void *mkc;
169 u32 *in;
170 int err = 0;
171 int i;
172
173 in = kzalloc(inlen, GFP_KERNEL);
174 if (!in)
175 return -ENOMEM;
176
177 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
178 for (i = 0; i < num; i++) {
179 if (ent->pending >= MAX_PENDING_REG_MR) {
180 err = -EAGAIN;
181 break;
182 }
183
184 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
185 if (!mr) {
186 err = -ENOMEM;
187 break;
188 }
189 mr->order = ent->order;
190 mr->allocated_from_cache = 1;
191 mr->dev = dev;
192
193 MLX5_SET(mkc, mkc, free, 1);
194 MLX5_SET(mkc, mkc, umr_en, 1);
195 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
196 MLX5_SET(mkc, mkc, access_mode_4_2,
197 (ent->access_mode >> 2) & 0x7);
198
199 MLX5_SET(mkc, mkc, qpn, 0xffffff);
200 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
201 MLX5_SET(mkc, mkc, log_page_size, ent->page);
202
203 spin_lock_irq(&ent->lock);
204 ent->pending++;
205 spin_unlock_irq(&ent->lock);
206 err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
207 &dev->async_ctx, in, inlen,
208 mr->out, sizeof(mr->out),
209 reg_mr_callback, &mr->cb_work);
210 if (err) {
211 spin_lock_irq(&ent->lock);
212 ent->pending--;
213 spin_unlock_irq(&ent->lock);
214 mlx5_ib_warn(dev, "create mkey failed %d\n", err);
215 kfree(mr);
216 break;
217 }
218 }
219
220 kfree(in);
221 return err;
222 }
223
224 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
225 {
226 struct mlx5_mr_cache *cache = &dev->cache;
227 struct mlx5_cache_ent *ent = &cache->ent[c];
228 struct mlx5_ib_mr *tmp_mr;
229 struct mlx5_ib_mr *mr;
230 LIST_HEAD(del_list);
231 int i;
232
233 for (i = 0; i < num; i++) {
234 spin_lock_irq(&ent->lock);
235 if (list_empty(&ent->head)) {
236 spin_unlock_irq(&ent->lock);
237 break;
238 }
239 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
240 list_move(&mr->list, &del_list);
241 ent->cur--;
242 ent->size--;
243 spin_unlock_irq(&ent->lock);
244 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
245 }
246
247 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
248 synchronize_srcu(&dev->mr_srcu);
249
250 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
251 list_del(&mr->list);
252 kfree(mr);
253 }
254 }
255
256 static ssize_t size_write(struct file *filp, const char __user *buf,
257 size_t count, loff_t *pos)
258 {
259 struct mlx5_cache_ent *ent = filp->private_data;
260 struct mlx5_ib_dev *dev = ent->dev;
261 char lbuf[20] = {0};
262 u32 var;
263 int err;
264 int c;
265
266 count = min(count, sizeof(lbuf) - 1);
267 if (copy_from_user(lbuf, buf, count))
268 return -EFAULT;
269
270 c = order2idx(dev, ent->order);
271
272 if (sscanf(lbuf, "%u", &var) != 1)
273 return -EINVAL;
274
275 if (var < ent->limit)
276 return -EINVAL;
277
278 if (var > ent->size) {
279 do {
280 err = add_keys(dev, c, var - ent->size);
281 if (err && err != -EAGAIN)
282 return err;
283
284 usleep_range(3000, 5000);
285 } while (err);
286 } else if (var < ent->size) {
287 remove_keys(dev, c, ent->size - var);
288 }
289
290 return count;
291 }
292
293 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
294 loff_t *pos)
295 {
296 struct mlx5_cache_ent *ent = filp->private_data;
297 char lbuf[20];
298 int err;
299
300 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
301 if (err < 0)
302 return err;
303
304 return simple_read_from_buffer(buf, count, pos, lbuf, err);
305 }
306
307 static const struct file_operations size_fops = {
308 .owner = THIS_MODULE,
309 .open = simple_open,
310 .write = size_write,
311 .read = size_read,
312 };
313
314 static ssize_t limit_write(struct file *filp, const char __user *buf,
315 size_t count, loff_t *pos)
316 {
317 struct mlx5_cache_ent *ent = filp->private_data;
318 struct mlx5_ib_dev *dev = ent->dev;
319 char lbuf[20] = {0};
320 u32 var;
321 int err;
322 int c;
323
324 count = min(count, sizeof(lbuf) - 1);
325 if (copy_from_user(lbuf, buf, count))
326 return -EFAULT;
327
328 c = order2idx(dev, ent->order);
329
330 if (sscanf(lbuf, "%u", &var) != 1)
331 return -EINVAL;
332
333 if (var > ent->size)
334 return -EINVAL;
335
336 ent->limit = var;
337
338 if (ent->cur < ent->limit) {
339 err = add_keys(dev, c, 2 * ent->limit - ent->cur);
340 if (err)
341 return err;
342 }
343
344 return count;
345 }
346
347 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
348 loff_t *pos)
349 {
350 struct mlx5_cache_ent *ent = filp->private_data;
351 char lbuf[20];
352 int err;
353
354 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
355 if (err < 0)
356 return err;
357
358 return simple_read_from_buffer(buf, count, pos, lbuf, err);
359 }
360
361 static const struct file_operations limit_fops = {
362 .owner = THIS_MODULE,
363 .open = simple_open,
364 .write = limit_write,
365 .read = limit_read,
366 };
367
368 static int someone_adding(struct mlx5_mr_cache *cache)
369 {
370 int i;
371
372 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
373 if (cache->ent[i].cur < cache->ent[i].limit)
374 return 1;
375 }
376
377 return 0;
378 }
379
380 static void __cache_work_func(struct mlx5_cache_ent *ent)
381 {
382 struct mlx5_ib_dev *dev = ent->dev;
383 struct mlx5_mr_cache *cache = &dev->cache;
384 int i = order2idx(dev, ent->order);
385 int err;
386
387 if (cache->stopped)
388 return;
389
390 ent = &dev->cache.ent[i];
391 if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
392 err = add_keys(dev, i, 1);
393 if (ent->cur < 2 * ent->limit) {
394 if (err == -EAGAIN) {
395 mlx5_ib_dbg(dev, "returned eagain, order %d\n",
396 i + 2);
397 queue_delayed_work(cache->wq, &ent->dwork,
398 msecs_to_jiffies(3));
399 } else if (err) {
400 mlx5_ib_warn(dev, "command failed order %d, err %d\n",
401 i + 2, err);
402 queue_delayed_work(cache->wq, &ent->dwork,
403 msecs_to_jiffies(1000));
404 } else {
405 queue_work(cache->wq, &ent->work);
406 }
407 }
408 } else if (ent->cur > 2 * ent->limit) {
409 /*
410 * The remove_keys() logic is performed as garbage collection
411 * task. Such task is intended to be run when no other active
412 * processes are running.
413 *
414 * The need_resched() will return TRUE if there are user tasks
415 * to be activated in near future.
416 *
417 * In such case, we don't execute remove_keys() and postpone
418 * the garbage collection work to try to run in next cycle,
419 * in order to free CPU resources to other tasks.
420 */
421 if (!need_resched() && !someone_adding(cache) &&
422 time_after(jiffies, cache->last_add + 300 * HZ)) {
423 remove_keys(dev, i, 1);
424 if (ent->cur > ent->limit)
425 queue_work(cache->wq, &ent->work);
426 } else {
427 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
428 }
429 }
430 }
431
432 static void delayed_cache_work_func(struct work_struct *work)
433 {
434 struct mlx5_cache_ent *ent;
435
436 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
437 __cache_work_func(ent);
438 }
439
440 static void cache_work_func(struct work_struct *work)
441 {
442 struct mlx5_cache_ent *ent;
443
444 ent = container_of(work, struct mlx5_cache_ent, work);
445 __cache_work_func(ent);
446 }
447
448 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry)
449 {
450 struct mlx5_mr_cache *cache = &dev->cache;
451 struct mlx5_cache_ent *ent;
452 struct mlx5_ib_mr *mr;
453 int err;
454
455 if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) {
456 mlx5_ib_err(dev, "cache entry %d is out of range\n", entry);
457 return NULL;
458 }
459
460 ent = &cache->ent[entry];
461 while (1) {
462 spin_lock_irq(&ent->lock);
463 if (list_empty(&ent->head)) {
464 spin_unlock_irq(&ent->lock);
465
466 err = add_keys(dev, entry, 1);
467 if (err && err != -EAGAIN)
468 return ERR_PTR(err);
469
470 wait_for_completion(&ent->compl);
471 } else {
472 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
473 list);
474 list_del(&mr->list);
475 ent->cur--;
476 spin_unlock_irq(&ent->lock);
477 if (ent->cur < ent->limit)
478 queue_work(cache->wq, &ent->work);
479 return mr;
480 }
481 }
482 }
483
484 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
485 {
486 struct mlx5_mr_cache *cache = &dev->cache;
487 struct mlx5_ib_mr *mr = NULL;
488 struct mlx5_cache_ent *ent;
489 int last_umr_cache_entry;
490 int c;
491 int i;
492
493 c = order2idx(dev, order);
494 last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev));
495 if (c < 0 || c > last_umr_cache_entry) {
496 mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
497 return NULL;
498 }
499
500 for (i = c; i <= last_umr_cache_entry; i++) {
501 ent = &cache->ent[i];
502
503 mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
504
505 spin_lock_irq(&ent->lock);
506 if (!list_empty(&ent->head)) {
507 mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
508 list);
509 list_del(&mr->list);
510 ent->cur--;
511 spin_unlock_irq(&ent->lock);
512 if (ent->cur < ent->limit)
513 queue_work(cache->wq, &ent->work);
514 break;
515 }
516 spin_unlock_irq(&ent->lock);
517
518 queue_work(cache->wq, &ent->work);
519 }
520
521 if (!mr)
522 cache->ent[c].miss++;
523
524 return mr;
525 }
526
527 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
528 {
529 struct mlx5_mr_cache *cache = &dev->cache;
530 struct mlx5_cache_ent *ent;
531 int shrink = 0;
532 int c;
533
534 if (!mr->allocated_from_cache)
535 return;
536
537 c = order2idx(dev, mr->order);
538 WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES);
539
540 if (unreg_umr(dev, mr)) {
541 mr->allocated_from_cache = false;
542 destroy_mkey(dev, mr);
543 ent = &cache->ent[c];
544 if (ent->cur < ent->limit)
545 queue_work(cache->wq, &ent->work);
546 return;
547 }
548
549 ent = &cache->ent[c];
550 spin_lock_irq(&ent->lock);
551 list_add_tail(&mr->list, &ent->head);
552 ent->cur++;
553 if (ent->cur > 2 * ent->limit)
554 shrink = 1;
555 spin_unlock_irq(&ent->lock);
556
557 if (shrink)
558 queue_work(cache->wq, &ent->work);
559 }
560
561 static void clean_keys(struct mlx5_ib_dev *dev, int c)
562 {
563 struct mlx5_mr_cache *cache = &dev->cache;
564 struct mlx5_cache_ent *ent = &cache->ent[c];
565 struct mlx5_ib_mr *tmp_mr;
566 struct mlx5_ib_mr *mr;
567 LIST_HEAD(del_list);
568
569 cancel_delayed_work(&ent->dwork);
570 while (1) {
571 spin_lock_irq(&ent->lock);
572 if (list_empty(&ent->head)) {
573 spin_unlock_irq(&ent->lock);
574 break;
575 }
576 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
577 list_move(&mr->list, &del_list);
578 ent->cur--;
579 ent->size--;
580 spin_unlock_irq(&ent->lock);
581 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
582 }
583
584 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
585 synchronize_srcu(&dev->mr_srcu);
586 #endif
587
588 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
589 list_del(&mr->list);
590 kfree(mr);
591 }
592 }
593
594 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
595 {
596 if (!mlx5_debugfs_root || dev->is_rep)
597 return;
598
599 debugfs_remove_recursive(dev->cache.root);
600 dev->cache.root = NULL;
601 }
602
603 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
604 {
605 struct mlx5_mr_cache *cache = &dev->cache;
606 struct mlx5_cache_ent *ent;
607 struct dentry *dir;
608 int i;
609
610 if (!mlx5_debugfs_root || dev->is_rep)
611 return;
612
613 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
614
615 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
616 ent = &cache->ent[i];
617 sprintf(ent->name, "%d", ent->order);
618 dir = debugfs_create_dir(ent->name, cache->root);
619 debugfs_create_file("size", 0600, dir, ent, &size_fops);
620 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
621 debugfs_create_u32("cur", 0400, dir, &ent->cur);
622 debugfs_create_u32("miss", 0600, dir, &ent->miss);
623 }
624 }
625
626 static void delay_time_func(struct timer_list *t)
627 {
628 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
629
630 dev->fill_delay = 0;
631 }
632
633 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
634 {
635 struct mlx5_mr_cache *cache = &dev->cache;
636 struct mlx5_cache_ent *ent;
637 int i;
638
639 mutex_init(&dev->slow_path_mutex);
640 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
641 if (!cache->wq) {
642 mlx5_ib_warn(dev, "failed to create work queue\n");
643 return -ENOMEM;
644 }
645
646 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
647 timer_setup(&dev->delay_timer, delay_time_func, 0);
648 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
649 ent = &cache->ent[i];
650 INIT_LIST_HEAD(&ent->head);
651 spin_lock_init(&ent->lock);
652 ent->order = i + 2;
653 ent->dev = dev;
654 ent->limit = 0;
655
656 init_completion(&ent->compl);
657 INIT_WORK(&ent->work, cache_work_func);
658 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
659
660 if (i > MR_CACHE_LAST_STD_ENTRY) {
661 mlx5_odp_init_mr_cache_entry(ent);
662 continue;
663 }
664
665 if (ent->order > mr_cache_max_order(dev))
666 continue;
667
668 ent->page = PAGE_SHIFT;
669 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
670 MLX5_IB_UMR_OCTOWORD;
671 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
672 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
673 !dev->is_rep &&
674 mlx5_core_is_pf(dev->mdev))
675 ent->limit = dev->mdev->profile->mr_cache[i].limit;
676 else
677 ent->limit = 0;
678 queue_work(cache->wq, &ent->work);
679 }
680
681 mlx5_mr_cache_debugfs_init(dev);
682
683 return 0;
684 }
685
686 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
687 {
688 int i;
689
690 if (!dev->cache.wq)
691 return 0;
692
693 dev->cache.stopped = 1;
694 flush_workqueue(dev->cache.wq);
695
696 mlx5_mr_cache_debugfs_cleanup(dev);
697 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
698
699 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
700 clean_keys(dev, i);
701
702 destroy_workqueue(dev->cache.wq);
703 del_timer_sync(&dev->delay_timer);
704
705 return 0;
706 }
707
708 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
709 {
710 struct mlx5_ib_dev *dev = to_mdev(pd->device);
711 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
712 struct mlx5_core_dev *mdev = dev->mdev;
713 struct mlx5_ib_mr *mr;
714 void *mkc;
715 u32 *in;
716 int err;
717
718 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
719 if (!mr)
720 return ERR_PTR(-ENOMEM);
721
722 in = kzalloc(inlen, GFP_KERNEL);
723 if (!in) {
724 err = -ENOMEM;
725 goto err_free;
726 }
727
728 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
729
730 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
731 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
732 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
733 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
734 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
735 MLX5_SET(mkc, mkc, lr, 1);
736
737 MLX5_SET(mkc, mkc, length64, 1);
738 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
739 MLX5_SET(mkc, mkc, qpn, 0xffffff);
740 MLX5_SET64(mkc, mkc, start_addr, 0);
741
742 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
743 if (err)
744 goto err_in;
745
746 kfree(in);
747 mr->mmkey.type = MLX5_MKEY_MR;
748 mr->ibmr.lkey = mr->mmkey.key;
749 mr->ibmr.rkey = mr->mmkey.key;
750 mr->umem = NULL;
751
752 return &mr->ibmr;
753
754 err_in:
755 kfree(in);
756
757 err_free:
758 kfree(mr);
759
760 return ERR_PTR(err);
761 }
762
763 static int get_octo_len(u64 addr, u64 len, int page_shift)
764 {
765 u64 page_size = 1ULL << page_shift;
766 u64 offset;
767 int npages;
768
769 offset = addr & (page_size - 1);
770 npages = ALIGN(len + offset, page_size) >> page_shift;
771 return (npages + 1) / 2;
772 }
773
774 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
775 {
776 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
777 return MR_CACHE_LAST_STD_ENTRY + 2;
778 return MLX5_MAX_UMR_SHIFT;
779 }
780
781 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata,
782 u64 start, u64 length, int access_flags,
783 struct ib_umem **umem, int *npages, int *page_shift,
784 int *ncont, int *order)
785 {
786 struct ib_umem *u;
787
788 *umem = NULL;
789
790 if (access_flags & IB_ACCESS_ON_DEMAND) {
791 struct ib_umem_odp *odp;
792
793 odp = ib_umem_odp_get(udata, start, length, access_flags);
794 if (IS_ERR(odp)) {
795 mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
796 PTR_ERR(odp));
797 return PTR_ERR(odp);
798 }
799
800 u = &odp->umem;
801
802 *page_shift = odp->page_shift;
803 *ncont = ib_umem_odp_num_pages(odp);
804 *npages = *ncont << (*page_shift - PAGE_SHIFT);
805 if (order)
806 *order = ilog2(roundup_pow_of_two(*ncont));
807 } else {
808 u = ib_umem_get(udata, start, length, access_flags, 0);
809 if (IS_ERR(u)) {
810 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
811 return PTR_ERR(u);
812 }
813
814 mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
815 page_shift, ncont, order);
816 }
817
818 if (!*npages) {
819 mlx5_ib_warn(dev, "avoid zero region\n");
820 ib_umem_release(u);
821 return -EINVAL;
822 }
823
824 *umem = u;
825
826 mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
827 *npages, *ncont, *order, *page_shift);
828
829 return 0;
830 }
831
832 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
833 {
834 struct mlx5_ib_umr_context *context =
835 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
836
837 context->status = wc->status;
838 complete(&context->done);
839 }
840
841 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
842 {
843 context->cqe.done = mlx5_ib_umr_done;
844 context->status = -1;
845 init_completion(&context->done);
846 }
847
848 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
849 struct mlx5_umr_wr *umrwr)
850 {
851 struct umr_common *umrc = &dev->umrc;
852 const struct ib_send_wr *bad;
853 int err;
854 struct mlx5_ib_umr_context umr_context;
855
856 mlx5_ib_init_umr_context(&umr_context);
857 umrwr->wr.wr_cqe = &umr_context.cqe;
858
859 down(&umrc->sem);
860 err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
861 if (err) {
862 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
863 } else {
864 wait_for_completion(&umr_context.done);
865 if (umr_context.status != IB_WC_SUCCESS) {
866 mlx5_ib_warn(dev, "reg umr failed (%u)\n",
867 umr_context.status);
868 err = -EFAULT;
869 }
870 }
871 up(&umrc->sem);
872 return err;
873 }
874
875 static struct mlx5_ib_mr *alloc_mr_from_cache(
876 struct ib_pd *pd, struct ib_umem *umem,
877 u64 virt_addr, u64 len, int npages,
878 int page_shift, int order, int access_flags)
879 {
880 struct mlx5_ib_dev *dev = to_mdev(pd->device);
881 struct mlx5_ib_mr *mr;
882 int err = 0;
883 int i;
884
885 for (i = 0; i < 1; i++) {
886 mr = alloc_cached_mr(dev, order);
887 if (mr)
888 break;
889
890 err = add_keys(dev, order2idx(dev, order), 1);
891 if (err && err != -EAGAIN) {
892 mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
893 break;
894 }
895 }
896
897 if (!mr)
898 return ERR_PTR(-EAGAIN);
899
900 mr->ibmr.pd = pd;
901 mr->umem = umem;
902 mr->access_flags = access_flags;
903 mr->desc_size = sizeof(struct mlx5_mtt);
904 mr->mmkey.iova = virt_addr;
905 mr->mmkey.size = len;
906 mr->mmkey.pd = to_mpd(pd)->pdn;
907
908 return mr;
909 }
910
911 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages,
912 void *xlt, int page_shift, size_t size,
913 int flags)
914 {
915 struct mlx5_ib_dev *dev = mr->dev;
916 struct ib_umem *umem = mr->umem;
917
918 if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
919 if (!umr_can_use_indirect_mkey(dev))
920 return -EPERM;
921 mlx5_odp_populate_klm(xlt, idx, npages, mr, flags);
922 return npages;
923 }
924
925 npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx);
926
927 if (!(flags & MLX5_IB_UPD_XLT_ZAP)) {
928 __mlx5_ib_populate_pas(dev, umem, page_shift,
929 idx, npages, xlt,
930 MLX5_IB_MTT_PRESENT);
931 /* Clear padding after the pages
932 * brought from the umem.
933 */
934 memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0,
935 size - npages * sizeof(struct mlx5_mtt));
936 }
937
938 return npages;
939 }
940
941 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
942 MLX5_UMR_MTT_ALIGNMENT)
943 #define MLX5_SPARE_UMR_CHUNK 0x10000
944
945 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
946 int page_shift, int flags)
947 {
948 struct mlx5_ib_dev *dev = mr->dev;
949 struct device *ddev = dev->ib_dev.dev.parent;
950 int size;
951 void *xlt;
952 dma_addr_t dma;
953 struct mlx5_umr_wr wr;
954 struct ib_sge sg;
955 int err = 0;
956 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
957 ? sizeof(struct mlx5_klm)
958 : sizeof(struct mlx5_mtt);
959 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
960 const int page_mask = page_align - 1;
961 size_t pages_mapped = 0;
962 size_t pages_to_map = 0;
963 size_t pages_iter = 0;
964 gfp_t gfp;
965 bool use_emergency_page = false;
966
967 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
968 !umr_can_use_indirect_mkey(dev))
969 return -EPERM;
970
971 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
972 * so we need to align the offset and length accordingly
973 */
974 if (idx & page_mask) {
975 npages += idx & page_mask;
976 idx &= ~page_mask;
977 }
978
979 gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
980 gfp |= __GFP_ZERO | __GFP_NOWARN;
981
982 pages_to_map = ALIGN(npages, page_align);
983 size = desc_size * pages_to_map;
984 size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
985
986 xlt = (void *)__get_free_pages(gfp, get_order(size));
987 if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
988 mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
989 size, get_order(size), MLX5_SPARE_UMR_CHUNK);
990
991 size = MLX5_SPARE_UMR_CHUNK;
992 xlt = (void *)__get_free_pages(gfp, get_order(size));
993 }
994
995 if (!xlt) {
996 mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
997 xlt = (void *)mlx5_ib_get_xlt_emergency_page();
998 size = PAGE_SIZE;
999 memset(xlt, 0, size);
1000 use_emergency_page = true;
1001 }
1002 pages_iter = size / desc_size;
1003 dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
1004 if (dma_mapping_error(ddev, dma)) {
1005 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1006 err = -ENOMEM;
1007 goto free_xlt;
1008 }
1009
1010 sg.addr = dma;
1011 sg.lkey = dev->umrc.pd->local_dma_lkey;
1012
1013 memset(&wr, 0, sizeof(wr));
1014 wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1015 if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1016 wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1017 wr.wr.sg_list = &sg;
1018 wr.wr.num_sge = 1;
1019 wr.wr.opcode = MLX5_IB_WR_UMR;
1020
1021 wr.pd = mr->ibmr.pd;
1022 wr.mkey = mr->mmkey.key;
1023 wr.length = mr->mmkey.size;
1024 wr.virt_addr = mr->mmkey.iova;
1025 wr.access_flags = mr->access_flags;
1026 wr.page_shift = page_shift;
1027
1028 for (pages_mapped = 0;
1029 pages_mapped < pages_to_map && !err;
1030 pages_mapped += pages_iter, idx += pages_iter) {
1031 npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1032 dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1033 npages = populate_xlt(mr, idx, npages, xlt,
1034 page_shift, size, flags);
1035
1036 dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1037
1038 sg.length = ALIGN(npages * desc_size,
1039 MLX5_UMR_MTT_ALIGNMENT);
1040
1041 if (pages_mapped + pages_iter >= pages_to_map) {
1042 if (flags & MLX5_IB_UPD_XLT_ENABLE)
1043 wr.wr.send_flags |=
1044 MLX5_IB_SEND_UMR_ENABLE_MR |
1045 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1046 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1047 if (flags & MLX5_IB_UPD_XLT_PD ||
1048 flags & MLX5_IB_UPD_XLT_ACCESS)
1049 wr.wr.send_flags |=
1050 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1051 if (flags & MLX5_IB_UPD_XLT_ADDR)
1052 wr.wr.send_flags |=
1053 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1054 }
1055
1056 wr.offset = idx * desc_size;
1057 wr.xlt_size = sg.length;
1058
1059 err = mlx5_ib_post_send_wait(dev, &wr);
1060 }
1061 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1062
1063 free_xlt:
1064 if (use_emergency_page)
1065 mlx5_ib_put_xlt_emergency_page();
1066 else
1067 free_pages((unsigned long)xlt, get_order(size));
1068
1069 return err;
1070 }
1071
1072 /*
1073 * If ibmr is NULL it will be allocated by reg_create.
1074 * Else, the given ibmr will be used.
1075 */
1076 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1077 u64 virt_addr, u64 length,
1078 struct ib_umem *umem, int npages,
1079 int page_shift, int access_flags,
1080 bool populate)
1081 {
1082 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1083 struct mlx5_ib_mr *mr;
1084 __be64 *pas;
1085 void *mkc;
1086 int inlen;
1087 u32 *in;
1088 int err;
1089 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1090
1091 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1092 if (!mr)
1093 return ERR_PTR(-ENOMEM);
1094
1095 mr->ibmr.pd = pd;
1096 mr->access_flags = access_flags;
1097
1098 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1099 if (populate)
1100 inlen += sizeof(*pas) * roundup(npages, 2);
1101 in = kvzalloc(inlen, GFP_KERNEL);
1102 if (!in) {
1103 err = -ENOMEM;
1104 goto err_1;
1105 }
1106 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1107 if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
1108 mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1109 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1110
1111 /* The pg_access bit allows setting the access flags
1112 * in the page list submitted with the command. */
1113 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1114
1115 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1116 MLX5_SET(mkc, mkc, free, !populate);
1117 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1118 MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
1119 MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
1120 MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
1121 MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
1122 MLX5_SET(mkc, mkc, lr, 1);
1123 MLX5_SET(mkc, mkc, umr_en, 1);
1124
1125 MLX5_SET64(mkc, mkc, start_addr, virt_addr);
1126 MLX5_SET64(mkc, mkc, len, length);
1127 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1128 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1129 MLX5_SET(mkc, mkc, translations_octword_size,
1130 get_octo_len(virt_addr, length, page_shift));
1131 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1132 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1133 if (populate) {
1134 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1135 get_octo_len(virt_addr, length, page_shift));
1136 }
1137
1138 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1139 if (err) {
1140 mlx5_ib_warn(dev, "create mkey failed\n");
1141 goto err_2;
1142 }
1143 mr->mmkey.type = MLX5_MKEY_MR;
1144 mr->desc_size = sizeof(struct mlx5_mtt);
1145 mr->dev = dev;
1146 kvfree(in);
1147
1148 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1149
1150 return mr;
1151
1152 err_2:
1153 kvfree(in);
1154
1155 err_1:
1156 if (!ibmr)
1157 kfree(mr);
1158
1159 return ERR_PTR(err);
1160 }
1161
1162 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1163 int npages, u64 length, int access_flags)
1164 {
1165 mr->npages = npages;
1166 atomic_add(npages, &dev->mdev->priv.reg_pages);
1167 mr->ibmr.lkey = mr->mmkey.key;
1168 mr->ibmr.rkey = mr->mmkey.key;
1169 mr->ibmr.length = length;
1170 mr->access_flags = access_flags;
1171 }
1172
1173 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1174 u64 length, int acc, int mode)
1175 {
1176 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1177 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1178 struct mlx5_core_dev *mdev = dev->mdev;
1179 struct mlx5_ib_mr *mr;
1180 void *mkc;
1181 u32 *in;
1182 int err;
1183
1184 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1185 if (!mr)
1186 return ERR_PTR(-ENOMEM);
1187
1188 in = kzalloc(inlen, GFP_KERNEL);
1189 if (!in) {
1190 err = -ENOMEM;
1191 goto err_free;
1192 }
1193
1194 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1195
1196 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1197 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1198 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
1199 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
1200 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
1201 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
1202 MLX5_SET(mkc, mkc, lr, 1);
1203
1204 MLX5_SET64(mkc, mkc, len, length);
1205 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1206 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1207 MLX5_SET64(mkc, mkc, start_addr, start_addr);
1208
1209 err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
1210 if (err)
1211 goto err_in;
1212
1213 kfree(in);
1214
1215 mr->umem = NULL;
1216 set_mr_fields(dev, mr, 0, length, acc);
1217
1218 return &mr->ibmr;
1219
1220 err_in:
1221 kfree(in);
1222
1223 err_free:
1224 kfree(mr);
1225
1226 return ERR_PTR(err);
1227 }
1228
1229 int mlx5_ib_advise_mr(struct ib_pd *pd,
1230 enum ib_uverbs_advise_mr_advice advice,
1231 u32 flags,
1232 struct ib_sge *sg_list,
1233 u32 num_sge,
1234 struct uverbs_attr_bundle *attrs)
1235 {
1236 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1237 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
1238 return -EOPNOTSUPP;
1239
1240 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1241 sg_list, num_sge);
1242 }
1243
1244 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1245 struct ib_dm_mr_attr *attr,
1246 struct uverbs_attr_bundle *attrs)
1247 {
1248 struct mlx5_ib_dm *mdm = to_mdm(dm);
1249 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1250 u64 start_addr = mdm->dev_addr + attr->offset;
1251 int mode;
1252
1253 switch (mdm->type) {
1254 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1255 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1256 return ERR_PTR(-EINVAL);
1257
1258 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1259 start_addr -= pci_resource_start(dev->pdev, 0);
1260 break;
1261 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1262 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1263 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1264 return ERR_PTR(-EINVAL);
1265
1266 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1267 break;
1268 default:
1269 return ERR_PTR(-EINVAL);
1270 }
1271
1272 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1273 attr->access_flags, mode);
1274 }
1275
1276 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1277 u64 virt_addr, int access_flags,
1278 struct ib_udata *udata)
1279 {
1280 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1281 struct mlx5_ib_mr *mr = NULL;
1282 bool use_umr;
1283 struct ib_umem *umem;
1284 int page_shift;
1285 int npages;
1286 int ncont;
1287 int order;
1288 int err;
1289
1290 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1291 return ERR_PTR(-EOPNOTSUPP);
1292
1293 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1294 start, virt_addr, length, access_flags);
1295
1296 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1297 length == U64_MAX) {
1298 if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1299 !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1300 return ERR_PTR(-EINVAL);
1301
1302 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1303 if (IS_ERR(mr))
1304 return ERR_CAST(mr);
1305 return &mr->ibmr;
1306 }
1307
1308 err = mr_umem_get(dev, udata, start, length, access_flags, &umem,
1309 &npages, &page_shift, &ncont, &order);
1310
1311 if (err < 0)
1312 return ERR_PTR(err);
1313
1314 use_umr = mlx5_ib_can_use_umr(dev, true);
1315
1316 if (order <= mr_cache_max_order(dev) && use_umr) {
1317 mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1318 page_shift, order, access_flags);
1319 if (PTR_ERR(mr) == -EAGAIN) {
1320 mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
1321 mr = NULL;
1322 }
1323 } else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
1324 if (access_flags & IB_ACCESS_ON_DEMAND) {
1325 err = -EINVAL;
1326 pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
1327 goto error;
1328 }
1329 use_umr = false;
1330 }
1331
1332 if (!mr) {
1333 mutex_lock(&dev->slow_path_mutex);
1334 mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1335 page_shift, access_flags, !use_umr);
1336 mutex_unlock(&dev->slow_path_mutex);
1337 }
1338
1339 if (IS_ERR(mr)) {
1340 err = PTR_ERR(mr);
1341 goto error;
1342 }
1343
1344 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1345
1346 mr->umem = umem;
1347 set_mr_fields(dev, mr, npages, length, access_flags);
1348
1349 update_odp_mr(mr);
1350
1351 if (use_umr) {
1352 int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1353
1354 if (access_flags & IB_ACCESS_ON_DEMAND)
1355 update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
1356
1357 err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1358 update_xlt_flags);
1359
1360 if (err) {
1361 dereg_mr(dev, mr);
1362 return ERR_PTR(err);
1363 }
1364 }
1365
1366 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1367 mr->live = 1;
1368 atomic_set(&mr->num_pending_prefetch, 0);
1369 }
1370
1371 return &mr->ibmr;
1372 error:
1373 ib_umem_release(umem);
1374 return ERR_PTR(err);
1375 }
1376
1377 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1378 {
1379 struct mlx5_core_dev *mdev = dev->mdev;
1380 struct mlx5_umr_wr umrwr = {};
1381
1382 if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1383 return 0;
1384
1385 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1386 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1387 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1388 umrwr.pd = dev->umrc.pd;
1389 umrwr.mkey = mr->mmkey.key;
1390 umrwr.ignore_free_state = 1;
1391
1392 return mlx5_ib_post_send_wait(dev, &umrwr);
1393 }
1394
1395 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1396 int access_flags, int flags)
1397 {
1398 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1399 struct mlx5_umr_wr umrwr = {};
1400 int err;
1401
1402 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1403
1404 umrwr.wr.opcode = MLX5_IB_WR_UMR;
1405 umrwr.mkey = mr->mmkey.key;
1406
1407 if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1408 umrwr.pd = pd;
1409 umrwr.access_flags = access_flags;
1410 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1411 }
1412
1413 err = mlx5_ib_post_send_wait(dev, &umrwr);
1414
1415 return err;
1416 }
1417
1418 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1419 u64 length, u64 virt_addr, int new_access_flags,
1420 struct ib_pd *new_pd, struct ib_udata *udata)
1421 {
1422 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1423 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1424 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1425 int access_flags = flags & IB_MR_REREG_ACCESS ?
1426 new_access_flags :
1427 mr->access_flags;
1428 int page_shift = 0;
1429 int upd_flags = 0;
1430 int npages = 0;
1431 int ncont = 0;
1432 int order = 0;
1433 u64 addr, len;
1434 int err;
1435
1436 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1437 start, virt_addr, length, access_flags);
1438
1439 atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1440
1441 if (!mr->umem)
1442 return -EINVAL;
1443
1444 if (flags & IB_MR_REREG_TRANS) {
1445 addr = virt_addr;
1446 len = length;
1447 } else {
1448 addr = mr->umem->address;
1449 len = mr->umem->length;
1450 }
1451
1452 if (flags != IB_MR_REREG_PD) {
1453 /*
1454 * Replace umem. This needs to be done whether or not UMR is
1455 * used.
1456 */
1457 flags |= IB_MR_REREG_TRANS;
1458 ib_umem_release(mr->umem);
1459 mr->umem = NULL;
1460 err = mr_umem_get(dev, udata, addr, len, access_flags,
1461 &mr->umem, &npages, &page_shift, &ncont,
1462 &order);
1463 if (err)
1464 goto err;
1465 }
1466
1467 if (!mlx5_ib_can_use_umr(dev, true) ||
1468 (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) {
1469 /*
1470 * UMR can't be used - MKey needs to be replaced.
1471 */
1472 if (mr->allocated_from_cache)
1473 err = unreg_umr(dev, mr);
1474 else
1475 err = destroy_mkey(dev, mr);
1476 if (err)
1477 goto err;
1478
1479 mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1480 page_shift, access_flags, true);
1481
1482 if (IS_ERR(mr)) {
1483 err = PTR_ERR(mr);
1484 mr = to_mmr(ib_mr);
1485 goto err;
1486 }
1487
1488 mr->allocated_from_cache = 0;
1489 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1490 mr->live = 1;
1491 } else {
1492 /*
1493 * Send a UMR WQE
1494 */
1495 mr->ibmr.pd = pd;
1496 mr->access_flags = access_flags;
1497 mr->mmkey.iova = addr;
1498 mr->mmkey.size = len;
1499 mr->mmkey.pd = to_mpd(pd)->pdn;
1500
1501 if (flags & IB_MR_REREG_TRANS) {
1502 upd_flags = MLX5_IB_UPD_XLT_ADDR;
1503 if (flags & IB_MR_REREG_PD)
1504 upd_flags |= MLX5_IB_UPD_XLT_PD;
1505 if (flags & IB_MR_REREG_ACCESS)
1506 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1507 err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1508 upd_flags);
1509 } else {
1510 err = rereg_umr(pd, mr, access_flags, flags);
1511 }
1512
1513 if (err)
1514 goto err;
1515 }
1516
1517 set_mr_fields(dev, mr, npages, len, access_flags);
1518
1519 update_odp_mr(mr);
1520 return 0;
1521
1522 err:
1523 ib_umem_release(mr->umem);
1524 mr->umem = NULL;
1525
1526 clean_mr(dev, mr);
1527 return err;
1528 }
1529
1530 static int
1531 mlx5_alloc_priv_descs(struct ib_device *device,
1532 struct mlx5_ib_mr *mr,
1533 int ndescs,
1534 int desc_size)
1535 {
1536 int size = ndescs * desc_size;
1537 int add_size;
1538 int ret;
1539
1540 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1541
1542 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1543 if (!mr->descs_alloc)
1544 return -ENOMEM;
1545
1546 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1547
1548 mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1549 size, DMA_TO_DEVICE);
1550 if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1551 ret = -ENOMEM;
1552 goto err;
1553 }
1554
1555 return 0;
1556 err:
1557 kfree(mr->descs_alloc);
1558
1559 return ret;
1560 }
1561
1562 static void
1563 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1564 {
1565 if (mr->descs) {
1566 struct ib_device *device = mr->ibmr.device;
1567 int size = mr->max_descs * mr->desc_size;
1568
1569 dma_unmap_single(device->dev.parent, mr->desc_map,
1570 size, DMA_TO_DEVICE);
1571 kfree(mr->descs_alloc);
1572 mr->descs = NULL;
1573 }
1574 }
1575
1576 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1577 {
1578 int allocated_from_cache = mr->allocated_from_cache;
1579
1580 if (mr->sig) {
1581 if (mlx5_core_destroy_psv(dev->mdev,
1582 mr->sig->psv_memory.psv_idx))
1583 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1584 mr->sig->psv_memory.psv_idx);
1585 if (mlx5_core_destroy_psv(dev->mdev,
1586 mr->sig->psv_wire.psv_idx))
1587 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1588 mr->sig->psv_wire.psv_idx);
1589 kfree(mr->sig);
1590 mr->sig = NULL;
1591 }
1592
1593 if (!allocated_from_cache) {
1594 destroy_mkey(dev, mr);
1595 mlx5_free_priv_descs(mr);
1596 }
1597 }
1598
1599 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1600 {
1601 int npages = mr->npages;
1602 struct ib_umem *umem = mr->umem;
1603
1604 if (is_odp_mr(mr)) {
1605 struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem);
1606
1607 /* Prevent new page faults and
1608 * prefetch requests from succeeding
1609 */
1610 mr->live = 0;
1611
1612 /* dequeue pending prefetch requests for the mr */
1613 if (atomic_read(&mr->num_pending_prefetch))
1614 flush_workqueue(system_unbound_wq);
1615 WARN_ON(atomic_read(&mr->num_pending_prefetch));
1616
1617 /* Wait for all running page-fault handlers to finish. */
1618 synchronize_srcu(&dev->mr_srcu);
1619 /* Destroy all page mappings */
1620 if (!umem_odp->is_implicit_odp)
1621 mlx5_ib_invalidate_range(umem_odp,
1622 ib_umem_start(umem_odp),
1623 ib_umem_end(umem_odp));
1624 else
1625 mlx5_ib_free_implicit_mr(mr);
1626 /*
1627 * We kill the umem before the MR for ODP,
1628 * so that there will not be any invalidations in
1629 * flight, looking at the *mr struct.
1630 */
1631 ib_umem_odp_release(umem_odp);
1632 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1633
1634 /* Avoid double-freeing the umem. */
1635 umem = NULL;
1636 }
1637
1638 clean_mr(dev, mr);
1639
1640 /*
1641 * We should unregister the DMA address from the HCA before
1642 * remove the DMA mapping.
1643 */
1644 mlx5_mr_cache_free(dev, mr);
1645 ib_umem_release(umem);
1646 if (umem)
1647 atomic_sub(npages, &dev->mdev->priv.reg_pages);
1648
1649 if (!mr->allocated_from_cache)
1650 kfree(mr);
1651 }
1652
1653 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1654 {
1655 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1656
1657 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1658 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1659 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1660 }
1661
1662 dereg_mr(to_mdev(ibmr->device), mmr);
1663
1664 return 0;
1665 }
1666
1667 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1668 int access_mode, int page_shift)
1669 {
1670 void *mkc;
1671
1672 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1673
1674 MLX5_SET(mkc, mkc, free, 1);
1675 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1676 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1677 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1678 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1679 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1680 MLX5_SET(mkc, mkc, umr_en, 1);
1681 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1682 }
1683
1684 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1685 int ndescs, int desc_size, int page_shift,
1686 int access_mode, u32 *in, int inlen)
1687 {
1688 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1689 int err;
1690
1691 mr->access_mode = access_mode;
1692 mr->desc_size = desc_size;
1693 mr->max_descs = ndescs;
1694
1695 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1696 if (err)
1697 return err;
1698
1699 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1700
1701 err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1702 if (err)
1703 goto err_free_descs;
1704
1705 mr->mmkey.type = MLX5_MKEY_MR;
1706 mr->ibmr.lkey = mr->mmkey.key;
1707 mr->ibmr.rkey = mr->mmkey.key;
1708
1709 return 0;
1710
1711 err_free_descs:
1712 mlx5_free_priv_descs(mr);
1713 return err;
1714 }
1715
1716 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1717 u32 max_num_sg, u32 max_num_meta_sg,
1718 int desc_size, int access_mode)
1719 {
1720 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1721 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1722 int page_shift = 0;
1723 struct mlx5_ib_mr *mr;
1724 u32 *in;
1725 int err;
1726
1727 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1728 if (!mr)
1729 return ERR_PTR(-ENOMEM);
1730
1731 mr->ibmr.pd = pd;
1732 mr->ibmr.device = pd->device;
1733
1734 in = kzalloc(inlen, GFP_KERNEL);
1735 if (!in) {
1736 err = -ENOMEM;
1737 goto err_free;
1738 }
1739
1740 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1741 page_shift = PAGE_SHIFT;
1742
1743 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1744 access_mode, in, inlen);
1745 if (err)
1746 goto err_free_in;
1747
1748 mr->umem = NULL;
1749 kfree(in);
1750
1751 return mr;
1752
1753 err_free_in:
1754 kfree(in);
1755 err_free:
1756 kfree(mr);
1757 return ERR_PTR(err);
1758 }
1759
1760 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1761 int ndescs, u32 *in, int inlen)
1762 {
1763 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1764 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1765 inlen);
1766 }
1767
1768 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1769 int ndescs, u32 *in, int inlen)
1770 {
1771 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1772 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1773 }
1774
1775 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1776 int max_num_sg, int max_num_meta_sg,
1777 u32 *in, int inlen)
1778 {
1779 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1780 u32 psv_index[2];
1781 void *mkc;
1782 int err;
1783
1784 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1785 if (!mr->sig)
1786 return -ENOMEM;
1787
1788 /* create mem & wire PSVs */
1789 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1790 if (err)
1791 goto err_free_sig;
1792
1793 mr->sig->psv_memory.psv_idx = psv_index[0];
1794 mr->sig->psv_wire.psv_idx = psv_index[1];
1795
1796 mr->sig->sig_status_checked = true;
1797 mr->sig->sig_err_exists = false;
1798 /* Next UMR, Arm SIGERR */
1799 ++mr->sig->sigerr_count;
1800 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1801 sizeof(struct mlx5_klm),
1802 MLX5_MKC_ACCESS_MODE_KLMS);
1803 if (IS_ERR(mr->klm_mr)) {
1804 err = PTR_ERR(mr->klm_mr);
1805 goto err_destroy_psv;
1806 }
1807 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1808 sizeof(struct mlx5_mtt),
1809 MLX5_MKC_ACCESS_MODE_MTT);
1810 if (IS_ERR(mr->mtt_mr)) {
1811 err = PTR_ERR(mr->mtt_mr);
1812 goto err_free_klm_mr;
1813 }
1814
1815 /* Set bsf descriptors for mkey */
1816 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1817 MLX5_SET(mkc, mkc, bsf_en, 1);
1818 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1819
1820 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1821 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1822 if (err)
1823 goto err_free_mtt_mr;
1824
1825 return 0;
1826
1827 err_free_mtt_mr:
1828 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1829 mr->mtt_mr = NULL;
1830 err_free_klm_mr:
1831 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1832 mr->klm_mr = NULL;
1833 err_destroy_psv:
1834 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1835 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1836 mr->sig->psv_memory.psv_idx);
1837 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1838 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1839 mr->sig->psv_wire.psv_idx);
1840 err_free_sig:
1841 kfree(mr->sig);
1842
1843 return err;
1844 }
1845
1846 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1847 enum ib_mr_type mr_type, u32 max_num_sg,
1848 u32 max_num_meta_sg)
1849 {
1850 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1851 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1852 int ndescs = ALIGN(max_num_sg, 4);
1853 struct mlx5_ib_mr *mr;
1854 u32 *in;
1855 int err;
1856
1857 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1858 if (!mr)
1859 return ERR_PTR(-ENOMEM);
1860
1861 in = kzalloc(inlen, GFP_KERNEL);
1862 if (!in) {
1863 err = -ENOMEM;
1864 goto err_free;
1865 }
1866
1867 mr->ibmr.device = pd->device;
1868 mr->umem = NULL;
1869
1870 switch (mr_type) {
1871 case IB_MR_TYPE_MEM_REG:
1872 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1873 break;
1874 case IB_MR_TYPE_SG_GAPS:
1875 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1876 break;
1877 case IB_MR_TYPE_INTEGRITY:
1878 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1879 max_num_meta_sg, in, inlen);
1880 break;
1881 default:
1882 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1883 err = -EINVAL;
1884 }
1885
1886 if (err)
1887 goto err_free_in;
1888
1889 kfree(in);
1890
1891 return &mr->ibmr;
1892
1893 err_free_in:
1894 kfree(in);
1895 err_free:
1896 kfree(mr);
1897 return ERR_PTR(err);
1898 }
1899
1900 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1901 u32 max_num_sg, struct ib_udata *udata)
1902 {
1903 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1904 }
1905
1906 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1907 u32 max_num_sg, u32 max_num_meta_sg)
1908 {
1909 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1910 max_num_meta_sg);
1911 }
1912
1913 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1914 struct ib_udata *udata)
1915 {
1916 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1917 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1918 struct mlx5_ib_mw *mw = NULL;
1919 u32 *in = NULL;
1920 void *mkc;
1921 int ndescs;
1922 int err;
1923 struct mlx5_ib_alloc_mw req = {};
1924 struct {
1925 __u32 comp_mask;
1926 __u32 response_length;
1927 } resp = {};
1928
1929 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1930 if (err)
1931 return ERR_PTR(err);
1932
1933 if (req.comp_mask || req.reserved1 || req.reserved2)
1934 return ERR_PTR(-EOPNOTSUPP);
1935
1936 if (udata->inlen > sizeof(req) &&
1937 !ib_is_udata_cleared(udata, sizeof(req),
1938 udata->inlen - sizeof(req)))
1939 return ERR_PTR(-EOPNOTSUPP);
1940
1941 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1942
1943 mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1944 in = kzalloc(inlen, GFP_KERNEL);
1945 if (!mw || !in) {
1946 err = -ENOMEM;
1947 goto free;
1948 }
1949
1950 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1951
1952 MLX5_SET(mkc, mkc, free, 1);
1953 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1954 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1955 MLX5_SET(mkc, mkc, umr_en, 1);
1956 MLX5_SET(mkc, mkc, lr, 1);
1957 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1958 MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
1959 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1960
1961 err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
1962 if (err)
1963 goto free;
1964
1965 mw->mmkey.type = MLX5_MKEY_MW;
1966 mw->ibmw.rkey = mw->mmkey.key;
1967 mw->ndescs = ndescs;
1968
1969 resp.response_length = min(offsetof(typeof(resp), response_length) +
1970 sizeof(resp.response_length), udata->outlen);
1971 if (resp.response_length) {
1972 err = ib_copy_to_udata(udata, &resp, resp.response_length);
1973 if (err) {
1974 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1975 goto free;
1976 }
1977 }
1978
1979 kfree(in);
1980 return &mw->ibmw;
1981
1982 free:
1983 kfree(mw);
1984 kfree(in);
1985 return ERR_PTR(err);
1986 }
1987
1988 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1989 {
1990 struct mlx5_ib_mw *mmw = to_mmw(mw);
1991 int err;
1992
1993 err = mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev,
1994 &mmw->mmkey);
1995 if (!err)
1996 kfree(mmw);
1997 return err;
1998 }
1999
2000 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2001 struct ib_mr_status *mr_status)
2002 {
2003 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2004 int ret = 0;
2005
2006 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2007 pr_err("Invalid status check mask\n");
2008 ret = -EINVAL;
2009 goto done;
2010 }
2011
2012 mr_status->fail_status = 0;
2013 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2014 if (!mmr->sig) {
2015 ret = -EINVAL;
2016 pr_err("signature status check requested on a non-signature enabled MR\n");
2017 goto done;
2018 }
2019
2020 mmr->sig->sig_status_checked = true;
2021 if (!mmr->sig->sig_err_exists)
2022 goto done;
2023
2024 if (ibmr->lkey == mmr->sig->err_item.key)
2025 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2026 sizeof(mr_status->sig_err));
2027 else {
2028 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2029 mr_status->sig_err.sig_err_offset = 0;
2030 mr_status->sig_err.key = mmr->sig->err_item.key;
2031 }
2032
2033 mmr->sig->sig_err_exists = false;
2034 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2035 }
2036
2037 done:
2038 return ret;
2039 }
2040
2041 static int
2042 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2043 int data_sg_nents, unsigned int *data_sg_offset,
2044 struct scatterlist *meta_sg, int meta_sg_nents,
2045 unsigned int *meta_sg_offset)
2046 {
2047 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2048 unsigned int sg_offset = 0;
2049 int n = 0;
2050
2051 mr->meta_length = 0;
2052 if (data_sg_nents == 1) {
2053 n++;
2054 mr->ndescs = 1;
2055 if (data_sg_offset)
2056 sg_offset = *data_sg_offset;
2057 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2058 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2059 if (meta_sg_nents == 1) {
2060 n++;
2061 mr->meta_ndescs = 1;
2062 if (meta_sg_offset)
2063 sg_offset = *meta_sg_offset;
2064 else
2065 sg_offset = 0;
2066 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2067 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2068 }
2069 ibmr->length = mr->data_length + mr->meta_length;
2070 }
2071
2072 return n;
2073 }
2074
2075 static int
2076 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2077 struct scatterlist *sgl,
2078 unsigned short sg_nents,
2079 unsigned int *sg_offset_p,
2080 struct scatterlist *meta_sgl,
2081 unsigned short meta_sg_nents,
2082 unsigned int *meta_sg_offset_p)
2083 {
2084 struct scatterlist *sg = sgl;
2085 struct mlx5_klm *klms = mr->descs;
2086 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2087 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2088 int i, j = 0;
2089
2090 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2091 mr->ibmr.length = 0;
2092
2093 for_each_sg(sgl, sg, sg_nents, i) {
2094 if (unlikely(i >= mr->max_descs))
2095 break;
2096 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2097 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2098 klms[i].key = cpu_to_be32(lkey);
2099 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2100
2101 sg_offset = 0;
2102 }
2103
2104 if (sg_offset_p)
2105 *sg_offset_p = sg_offset;
2106
2107 mr->ndescs = i;
2108 mr->data_length = mr->ibmr.length;
2109
2110 if (meta_sg_nents) {
2111 sg = meta_sgl;
2112 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2113 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2114 if (unlikely(i + j >= mr->max_descs))
2115 break;
2116 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2117 sg_offset);
2118 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2119 sg_offset);
2120 klms[i + j].key = cpu_to_be32(lkey);
2121 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2122
2123 sg_offset = 0;
2124 }
2125 if (meta_sg_offset_p)
2126 *meta_sg_offset_p = sg_offset;
2127
2128 mr->meta_ndescs = j;
2129 mr->meta_length = mr->ibmr.length - mr->data_length;
2130 }
2131
2132 return i + j;
2133 }
2134
2135 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2136 {
2137 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2138 __be64 *descs;
2139
2140 if (unlikely(mr->ndescs == mr->max_descs))
2141 return -ENOMEM;
2142
2143 descs = mr->descs;
2144 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2145
2146 return 0;
2147 }
2148
2149 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2150 {
2151 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2152 __be64 *descs;
2153
2154 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2155 return -ENOMEM;
2156
2157 descs = mr->descs;
2158 descs[mr->ndescs + mr->meta_ndescs++] =
2159 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2160
2161 return 0;
2162 }
2163
2164 static int
2165 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2166 int data_sg_nents, unsigned int *data_sg_offset,
2167 struct scatterlist *meta_sg, int meta_sg_nents,
2168 unsigned int *meta_sg_offset)
2169 {
2170 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2171 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2172 int n;
2173
2174 pi_mr->ndescs = 0;
2175 pi_mr->meta_ndescs = 0;
2176 pi_mr->meta_length = 0;
2177
2178 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2179 pi_mr->desc_size * pi_mr->max_descs,
2180 DMA_TO_DEVICE);
2181
2182 pi_mr->ibmr.page_size = ibmr->page_size;
2183 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2184 mlx5_set_page);
2185 if (n != data_sg_nents)
2186 return n;
2187
2188 pi_mr->data_iova = pi_mr->ibmr.iova;
2189 pi_mr->data_length = pi_mr->ibmr.length;
2190 pi_mr->ibmr.length = pi_mr->data_length;
2191 ibmr->length = pi_mr->data_length;
2192
2193 if (meta_sg_nents) {
2194 u64 page_mask = ~((u64)ibmr->page_size - 1);
2195 u64 iova = pi_mr->data_iova;
2196
2197 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2198 meta_sg_offset, mlx5_set_page_pi);
2199
2200 pi_mr->meta_length = pi_mr->ibmr.length;
2201 /*
2202 * PI address for the HW is the offset of the metadata address
2203 * relative to the first data page address.
2204 * It equals to first data page address + size of data pages +
2205 * metadata offset at the first metadata page
2206 */
2207 pi_mr->pi_iova = (iova & page_mask) +
2208 pi_mr->ndescs * ibmr->page_size +
2209 (pi_mr->ibmr.iova & ~page_mask);
2210 /*
2211 * In order to use one MTT MR for data and metadata, we register
2212 * also the gaps between the end of the data and the start of
2213 * the metadata (the sig MR will verify that the HW will access
2214 * to right addresses). This mapping is safe because we use
2215 * internal mkey for the registration.
2216 */
2217 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2218 pi_mr->ibmr.iova = iova;
2219 ibmr->length += pi_mr->meta_length;
2220 }
2221
2222 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2223 pi_mr->desc_size * pi_mr->max_descs,
2224 DMA_TO_DEVICE);
2225
2226 return n;
2227 }
2228
2229 static int
2230 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2231 int data_sg_nents, unsigned int *data_sg_offset,
2232 struct scatterlist *meta_sg, int meta_sg_nents,
2233 unsigned int *meta_sg_offset)
2234 {
2235 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2236 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2237 int n;
2238
2239 pi_mr->ndescs = 0;
2240 pi_mr->meta_ndescs = 0;
2241 pi_mr->meta_length = 0;
2242
2243 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2244 pi_mr->desc_size * pi_mr->max_descs,
2245 DMA_TO_DEVICE);
2246
2247 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2248 meta_sg, meta_sg_nents, meta_sg_offset);
2249
2250 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2251 pi_mr->desc_size * pi_mr->max_descs,
2252 DMA_TO_DEVICE);
2253
2254 /* This is zero-based memory region */
2255 pi_mr->data_iova = 0;
2256 pi_mr->ibmr.iova = 0;
2257 pi_mr->pi_iova = pi_mr->data_length;
2258 ibmr->length = pi_mr->ibmr.length;
2259
2260 return n;
2261 }
2262
2263 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2264 int data_sg_nents, unsigned int *data_sg_offset,
2265 struct scatterlist *meta_sg, int meta_sg_nents,
2266 unsigned int *meta_sg_offset)
2267 {
2268 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2269 struct mlx5_ib_mr *pi_mr = NULL;
2270 int n;
2271
2272 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2273
2274 mr->ndescs = 0;
2275 mr->data_length = 0;
2276 mr->data_iova = 0;
2277 mr->meta_ndescs = 0;
2278 mr->pi_iova = 0;
2279 /*
2280 * As a performance optimization, if possible, there is no need to
2281 * perform UMR operation to register the data/metadata buffers.
2282 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2283 * Fallback to UMR only in case of a failure.
2284 */
2285 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2286 data_sg_offset, meta_sg, meta_sg_nents,
2287 meta_sg_offset);
2288 if (n == data_sg_nents + meta_sg_nents)
2289 goto out;
2290 /*
2291 * As a performance optimization, if possible, there is no need to map
2292 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2293 * descriptors and fallback to KLM only in case of a failure.
2294 * It's more efficient for the HW to work with MTT descriptors
2295 * (especially in high load).
2296 * Use KLM (indirect access) only if it's mandatory.
2297 */
2298 pi_mr = mr->mtt_mr;
2299 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2300 data_sg_offset, meta_sg, meta_sg_nents,
2301 meta_sg_offset);
2302 if (n == data_sg_nents + meta_sg_nents)
2303 goto out;
2304
2305 pi_mr = mr->klm_mr;
2306 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2307 data_sg_offset, meta_sg, meta_sg_nents,
2308 meta_sg_offset);
2309 if (unlikely(n != data_sg_nents + meta_sg_nents))
2310 return -ENOMEM;
2311
2312 out:
2313 /* This is zero-based memory region */
2314 ibmr->iova = 0;
2315 mr->pi_mr = pi_mr;
2316 if (pi_mr)
2317 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2318 else
2319 ibmr->sig_attrs->meta_length = mr->meta_length;
2320
2321 return 0;
2322 }
2323
2324 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2325 unsigned int *sg_offset)
2326 {
2327 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2328 int n;
2329
2330 mr->ndescs = 0;
2331
2332 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2333 mr->desc_size * mr->max_descs,
2334 DMA_TO_DEVICE);
2335
2336 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2337 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2338 NULL);
2339 else
2340 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2341 mlx5_set_page);
2342
2343 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2344 mr->desc_size * mr->max_descs,
2345 DMA_TO_DEVICE);
2346
2347 return n;
2348 }